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Peano in Mathesis, vol. 9 (1889), p. 75 and p. 110 seems to have been the

first to point out that the identical vanishing of the Wronskian of n functions of

a single variable is not in all cases a sufficient condition for the linear dependence

of these functions.f At the same time he indicated a case in which it is a suf-

ficient condition, $ and suggested the importance of finding other cases of the

same sort. Without at first knowing of Peano's work, I was recently led to

this same question, and found a case not included in Peano's in which the iden-

tical vanishing of the Wronskian is a sufficient condition. § It is my purpose

in the present paper to consider these cases and others of a similar nature.

By far the most important case in which the identical vanishing of the

Wronskian is a sufficient condition for linear dependence is that in which the

functions in question are at every point of a certain region analytic functions,

whether of a real or complex variable is, of course, immaterial. This case re-

quires no further treatment here.

We shall therefore be concerned exclusively with the case, in which the inde-

pendent variable x is real. This variable we will suppose to be confined to an

interval 7 which may be finite or infinite, and if limited in one or both direc-

tions may or may not contain the end points. In some of the proofs we shall

use a subinterval a =x = b of 7; ||  this subinterval we call 7'.

Whether the functions are real or complex is immaterial.

We use the symbol = to denote an identity, i. e., an equality which holds at

every point of the interval we are considering.

* Presented to the Society December 28, 1900.    Received for publication December 28, 1900.

fit is of course a necessary condition provided the functions have finite derivatives of the

first n— 1 orders at every point of the region in question.

X See § 4 of the present paper.

§See Bulletin of the American Mathematical Society, December, 1900, p. 120,

and Annals of Mathematics, second series, vol. 2, p. 93.

|| We suppose here that a and b are finite quantities.
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§ 1.  The Fundamental Theorem.

We consider first the special case of two functions.

Theorem I.    Let ux(x) and u2(x) be functions of x which at every point of

I have finite first derivatives, while ux does not vanish in I; then if

(1) «x«j — u2u'x = 0 ,

ux and u2 are linearly dependent throughout I, and in particular

(2) cu,

For dividing (1) by u\ we have ;

d  ( u,

dx
Therefore

\ux)

«2

We pass now to the general case which includes the case just considered.

Theorem II. Let ux(x), u2(x), • • •, un(x) be functions of x which at every

point of I have finite derivatives of the first n — 1 orders, while the Wronskian

of ux, u2, ■ ■ ■, un_x does not vanish in I; then if the Wronskian Wof ux, u2t

■ • -, un vanishes identically ux, u2, • ■ -, un are linearly dependent throughout I,

and in particular :

un m cxux + c2u2 + ■■■ + cn_xun_x.

In the Wronskian :

W =

u2

ii',

,0.-1)   „(»-!)

u
n

u'„

,0—1)

we denote by Wx,   W2,  ■■ ■,   Wn the minors corresponding to the elements of

the last row.    We have then :

Wx<J + W2uf +■■■ + Wyf> =0     (i = o, l,•••,»-1).

Differentiating each of the first n — 1 of these identities and subtracting from

it the one next following we get :

W[uf + W'2uf + ■■■ + Wjl\p = 0      (i = 0, 1, •■•, n-2).

Let us add these identities together after having multiplied the i-th of them
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(i = 1, 2 , ■ • • , n — 1) by the first minor of Wn corresponding to w,(i_1).    This

gives :

W'xWn-W'nWx = 0.

Now since by hypothesis Wn does not vanish in 7 we have by theorem I :

Wx=-cxWn.

In the same wav :

W2    =-c2   Wn,

Wn_x=-cn_xWn.
Therefore the identity

Wxux+ W2n2+-.-+ Wun=0,
can be written :

Wn(- cxux - c2u2 ■ ■ ■ cn_xun_x + «J m 0 ,

and, since Wn does not vanish, our theorem follows at once.*

§ 2.    A Generalization for the Case of Two Functions.

Theorem IILf Let u, and u2 be functions of x which at every point of I

have finite derivatives of the first k orders (k = 1) , while ux, u[, u'[, • • •, uxk)

do not all vanish at any one point of I ; then if

uxu'2 — u2u[ = 0 ,

M, and u2 are linearly dependent, and in particular :

u2 = cux.

This theorem will evidently be established if we can prove it for every finite

and perfect subinterval 7' of 7. We will therefore in our proof consider only

the interval I'.

There cannot be more than a finite number of points in I' where «, = 0 .

For if there were these points would have at least one limiting point a;0 in I',

and since u. is continuous it would vanish at x0. By Rolle's theorem there

would also be an infinite number of points where u[ = 0 and these points would

have xg as limiting point, and owing to the continuity of u[ we should have

u'fXy) — 0 . Proceeding in the same way we see that «',', «',", • • • , w(,*_1) would

all vanish at xu.    That uf would also vanish at x0 must be shown in a slightly

*This proof is merely a slight modification of the one given by Frobenius, Crelle, vol. 76

(1873), p. 238.    Cf. also Hefftee, Lineare Differentialgleichungen, p. 233.

fThe special ease k — 1 of this theorem was given by Peano, 1. c. Cf. also Annals of

Mathematics, second series, vol. 2, p. 92.
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different manner since we do not know that u'x' is continuous. This follows at

once, however, from the fact that u(x~l) would vanish in every neighborhood of

x0. We thus see that if ux vanished at an infinite number of points in P there

would be a point x0 where ux, u[, ■ ■ ■, «?' all vanish, and this is contrary to

hypothesis.

The points at which ux = 0 therefore divide the interval I' into a finite number

of pieces throughout each of which theorem I tells that u2 is a constant multiple

of ux, and owing to the continuity of ux and u2 this relation must also hold at

the extremities of the piece in question. It remains to show that this constant

is the same for all the pieces. It will evidently be sufficient to consider two

adjacent pieces separated by the point p. Suppose that in the piece to the left

of p we have

u2 = cxux,

and in the piece to the right,

u2 = c2ux.

Since the derivatives of ux and u2 at p may be found either by differentiating to

the right or to the left we have :

uf(p) = CjM^A» t
(¿ = 1, 2,  •••,  k).

u2'\p) = c2u^(p),

Therefore
(ci - cí) u'ñp). = '° (í=i, 2, • ■ ■, t).

Now, since ux(p) = 0 , there must be at least one of the derivatives u'x, u"x, ■ ■ ■,

uxk) which does not vanish at p.    Therefore

ci = ?2 '

and our theorem is proved.

§ 3.  Two Extensions to the case of n Functions.

Theorem IV.* Let ux,u2, ■ ■ -, un be functions of x which at every point

of I have finite derivatives of the first n — 2 + k orders (k= 1), while the

Wronskian of ux, u2, ■ ■ -, wn_1 and its first k derivatives do not all vanish at

any one point of I; then if the Wronskian of ux,u2, ■ ■ -,un is identically

zero ux, u2, • ■ ■, un are linearly dependent, and in particular :

Un —  C1M1  + C2M2 +-1"  C„-l7i„-l •

The proof of this theorem is, in the main, the same as that of theorem II.

We will therefore only point out the two points of difference.

1. We must use theorem III instead of theorem I to establish the relation :

* The special case 7c = 1 of this theorem was given by the writer, 1. c.
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Wx = -cxWn.

2. From the identity :

IF (— CM, — CM. ■ ■ ■ C    M     , + U ) = 0 ,
nV 11 2    2 n—1    n— 1    '        n/ '

we can now infer only that at the points where Wn + 0 ,

U   = CM, + • • • + C     M     , .
n 11' '       Ti—1    71—1

In order to prove that this equation also holds at the points where Wn = 0 ,

we notice first that these points in any finite and perfect subinterval 7' of 7 are

finite in number as otherwise there would be (cf. the proof of theorem III) a

point of 7' where Wn, W'n, ••■, Wff all vanish. All the points where Wn

vanishes are therefore isolated, and since the equation

Un = C1M1 + • • • + C„-i"«-l

holds everywhere except at these points it must on account of the continuity of

the w's hold at these points also.    Thus our theorem is proved.

A little reflection on the results so far obtained will suggest the question

whether the theorem of the last section might not be extended to the case of n

functions by requiring, not as we have just done, that Wn, W'n, - • -, Wf\ do

not all vanish at any point of 7, but that ux and a certain number of its de-

rivatives shall not all vanish at any point of I. The following example shows,

however, not only that the theorem thus suggested is not true, but that even

when no one of the u's vanishes at any point of I the identical vanishing of

the Wronskian is not necessarily a sufficient condition for linear dependence

when we have more than two functions.

Example.    Consider the three functions :

1 + e  *s     (x + 0),

1 (X=0),

\l+e  *■ (x> 0),

1 (x = 0),        u3 = 1
_ j_

1 — e *" (x < 0),

These three functions are obviously linearly independent in any interval includ-

ing both positive and negative values of x. Moreover no one of them vanishes

for any real value of x.    Yet the Wronskian of ux, u2, u3 is identically zero.

The following theorems V and VI, which run somewhat along the lines just

indicated, are, however, true :

Theorem V. Let ux,u2, ■ ■•, unbe functions of x which at every point of

I have finite derivatives of the first n — 1 orders, while no function (other

than zero) of the form :

gxux + g2u2 + ■■■ + gun
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(the g's being constants) vanishes together with its fii'st n — 1 derivatives at any

point of I ; then if the Wronskian of ux, u2, ■ ■ ■, un vanishes at any point p

of I these functions are linearly dependent.

From the fact that the Wronskian vanishes at p follows the existence of n con-

stants cx, c2 ■ • •, cn not all zero and such that

Cxu['\p) + C2uf(p) +■■■ + CU^(p) = 0      (Í = 0 , 1, • ■ ■ , n - 1 ) ,

i. e., the function cxux + c2u2 + • ■ ■ + cnun vanishes together with its first n — 1

derivatives at the point p, and must therefore be identically zero. Thus our

theorem is proved.

Theorem VI. Let ux,u2, • • -, un be functions of x which at every point of

I have finite derivatives of the first k orders (& > n — 1), while no function

(other than zero) of the form

9iu,+9îuî+ ••• + </'A >

(the g's being constants) vanishes together with its first k derivatives at any

point of I; then if the Wronskian of ux, u2, ■ ■ -, un vanishes identically these

functions are linearly dependent.

We prove this theorem first on the supposition that the Wronskian of

ux, u2, • • -, un_x does not vanish identically.* In this case there exists a pointy»

of /where the Wronskian of ux,u2, ■ ■ -, un_x does not vanish. Since this last

named Wronskian is continuous it is different from zero throughout the neigh-

borhood of p. We see then by applying II that there exist n constants

cx, c2, ■ ■ -, cn not all zero and such that the function

Cj«j + c2u2 + ■ ■ ■ + cun

is zero throughout the neighborhood of p. Accordingly this fuction vanishes

together with its first k derivatives at p, and therefore vanishes identically.

Thus our theorem is proved in this special case.

In order to prove the theorem in general we first notice that if ux = 0 the m's

are surely linearly dependent. If ux is not identically zero, consider in succes-

sion the Wronskians of u., u2, of ux, u2, u,, of ux, u2, u3, m4 , etc. Suppose the

first of these which vanishes identically is the Wronskian of ux, u2, • ■ •, um

(m = n — 1). Then since the Wronskian of ux, u2, • • -, um_x does not vanish

identically, the special case of our theorem which we have already proved shows

that ux, u2, ■■■, » are linearly dependent. Accordingly ux, u2, ■■■,uii are

linearly dependent, and our theorem is proved.

Theorems V and VI admit of immediate application to the theory of linear

differential equations, as the following theorem shows.

* The proof of this part of the theorem has been modified since the paper was presented to the

Society by mating it depend on II instead of on the lemmas of § 5.
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Theorem VII. Let px, p2, ■ ■ ■, pn be functions of x which at every point

of I are continuous, and let yx, y2, • ■ ■, yk(k = n) be functions of x which at

every point of I satisfy the differential equation :

y{n) + p.f-v + ■■■+p„y = 0;

then the identical vanishing of the Wronskian of ' y,, y2, ■ • ■, yh (or in the case

k = n the vanishing of this Wronskian at a single point of I) is a sufficient

condition for the linear dependence of yx,y2, ■ • -, yk .

This theorem follows at once from theorems V and VI when we recall the fact

that a solution of the above written differential equation which vanishes together

with its first n — 1 derivatives at a point of 7 is necessarily identically zero.

§ 4. Discussion of Peano's Theorems. *

One of Peano's results, as has already been stated, is the special case k = 1

of theorem III. Apart from this Peano's results cover no case which is not

also covered by the fundamental theorem of § 1. I propose to show this in the

present section.

For this purpose we first establish the following:

Lemma. Let ux and u2 be functions of x which at every point of I have

finite first derivatives, while

uxu'2 — u2u[ = 0 ;

if a point p exists in I at which u2 = 0 , while in every neighborhood of p lie

points where u2 =j= 0 , then ux(p) = 0 .

For if ux(p>) + 0 we could, on account of the continuity of ux, mark off a

neighborhood of p throughout which ux does not vanish, and throughout which

therefore by theorem I

U2 = CM, .

Since at p ux +. 0 and u2 = 0 we must have c = 0 , but this would make u2

vanish throughout the neighborhood of p, and this is contrary to hypothesis.

Peano deduces the following theorem in the case of two functions. This

theorem includes as a special case the theorem to which theorem III reduces

when k = 1, and appears at first sight to go beyond it.

Peano's First Theorem. Let ux andu2 be functions of x which at every

point of I have finite first derivatives, while ux, u2, u[, u'2 do not all vanish

at any point of I ; then if

uxu'2 — u2u[ = 0 ,

ux and u2 are linearly dependent.

* See, besides the notes in Mathesis referred to at the beginning of this article, a paper by

Peano : Rendiconti della Accademia dei Lincei, ser. 5, vol. 6. 1° sem. (1897), p. 413.
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The truth of this theorem will be established, and at the same time it will be

proved that it covers no case which is not also covered by the special case k = 1

of theorem III, if we can show that either there is no point of / where ux and

u[ both vanish, or there is no point of / where u2 and u'2 both vanish. Assume

then that there is a point where u2 and u'2 both vanish. Here we distinguish

between two cases :

(a) u2 = 0. Here u2 = u2 = 0 at every point of /, and therefore there can

be no point in / where ux = u[ = 0 .

(b) u2 is not identically zero. Then there exists a point p in /at which

u2 = u2 = 0 , but in whose every neighborhood lie points where u2 4= 0 .

Therefore by the above lemma ux(p) = 0. We must therefore have u[(p) 4= 0 .

Accordingly there exists an e such that throughout the interval p <Cx <_p + e,

and also throughout the interval p~> x~> p — e , ux does not vanish. Let us

choose that one of these intervals in which lie points where u2 4= 0 . By the-

orem I we have at every point of this interval, and therefore on account of the

continuity of ux and u2 also at p,

where c 4= 0 as otherwise u2 would vanish at every point of this interval. From

this last equation we infer that

u'2(p) = cu'x(p) .

Therefore since u'2(p) = 0 and c 4=. 0 we get u[(p) = 0 . We are thus led to a

contradiction, and therefore the case (6) cannot occur.

Peano's Second Theorem.    Let ux, u„, ■ ■ ■, un be functions of x which at

every point of I have finite derivatives of the first n — 1  orders, while the

Wronskians of these functions taken n — 1 at a time do not all vanish at any

point  of I; then if the Wronskian of ux, u2,  ■ • ■, un vanishes identically

ux, u2, ■ ■ ■, un are linearly dependent.

We will establish this theorem, and at the same time show that it covers no

case which is not also covered by the fundamental theorem II, by proving that

there must be one of the Wronskians Wx, W2, ■ ■■, Wn (to use the notation em-

ployed in the proof of theorem II) which does not vanish at any point of the

interval I. Suppose each of these W's vanished in I. They cannot all vanish

identically. Suppose that Wn is one of those which does not vanish identically.

Then there exists a point p at which Wn = 0 but in whose every neighborhood

lie points where Wn 4= 0 .

Now by the reasoning used in the proof of theorem II we see that :

WtWu-WtW:mO (£ = 1,2, ••.,»-!).

Therefore, by our lemma, Wi vanishes at p (i = 1, 2, ■ ■ -,n — 1) and this is

contrary to hypothesis since Wn also vanishes at p.
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§ 5. A Theorem concerning Wronskians.

I have now completed what I have to say on the subject of linear dependence.

There remains however a theorem concerning Wronskians which I have found

useful in the course of my work, although in the form which I have finally given

to this paper no use has been made of it.

Before stating this theorem we will first establish two lemmas which we shall

use in its proof.

Consider a matrix M of n + m rows and n columns. Denote by Di the n-

rowed determinant obtained from 31 by striking out all of its m + 1 last rows

except the (n — 1 + i)-th row. Denote by M' the matrix obtained from 31 by

striking out its last m + 1 rows. Denote by A. the (n — l)-rowed determinant

obtained from 31' by striking out its i-th column.

Lemma I. If Dx = D2= •■ ■ = Dm+X = 0 , and if Ax, A2, ■ ■ •, An are not

all zero, then all the n-rowed determinants of M are zero.

For denoting the element of M which stands in the i-th row and J-th column

by a¿., we have :

aiAi - atA2 +•■• + (- 1)*"XA = °     (<=1 ,»,•••, •+•),

and these form a set of n + m homogeneous linear equations satisfied by the

n A's which by hypothesis are not all zero.

Lemma II. Let ux,u2, ■ • ■, unbe functions of x which at every point of I

have finite derivatives of the first k orders (k = n), while their Wronskian

vanishes identically ; then, except at points where the Wronskian of ux, u2,

• • • > un_x is zero, all the n-rowed determinants of the matrix :

u[      u2        ••■      u'n

are zero.

We first prove this lemma in the case k = n. Here the determinant ob-

tained from the above matrix by striking out the next to the last row is simply

the derivative of the Wronskian of ux, u2, ■ ■ ■, un, and therefore also vanishes

identically.    The truth of our lemma thus follows at once from lemma I.

In order to prove the lemma in the general case we use the method of mathe-

matical induction, and assume that the lemma has been proved when k = kx — 1.

We wish to prove that the lemma also holds when k = kx . Let us denote by

31 the above matrix when k has the value kx, and by X the matrix obtained

from 31 by striking out its last row ; and let p be any point of 7 where the
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Wronskian of ux, u2, • • •, un_x does not vanish.    If then we can prove that the

determinant :

D =

<-2><-2)

t
XI

U0—2)

,(*,)

vanishes at p, it will follow at once from lemma I that all the n-rowed deter-

minants of M vanish at p , since this is true of all the «-rowed determinants of

N. In order to prove that D vanishes at p let us consider the (kx — n + l)-th

derivative of the Wronskian of ux, u2, ■ ■ ■, un. This derivative will of course

vanish identically. If we compute its value we find that it consists of the sum

of a number of w-rowed determinants of which D is one while the others are all

determinants of the matrix N, and therefore vanish at p . Thus we see that D

vanishes at p, and our lemma is proved.

Theorem VIII. Let ux, u2, ■ ■ -, un+x be functions of x which at every point

of I have continuous derivatives of the first n orders; then if the Wronskia7i

of ux, u2, ■ ■ ■, un vanishes identically the Wronskian of ux, u2,

vanish identically.

Denote by M the matrix obtained from the Wronskian

W =

Un+\   wdl

.,(»)
<> • • •

,C)

by striking out the last column. Then lemma II tells us that all the n-

rowed determinants of M vanish except at the points where the Wronskians

A., A„, • • -, A   of the functions u,,u„, ■ ■ -, u  taken n — 1 at a time all vanish.1'21 '        » ,'2' t      it

Accordingly W= 0  except  at these points.    Let p be any such point of /.

Our theorem will be proved if we can show that W vanishes at p.

We must distinguish two cases :

(a) Ax, A2, • • ■, An do not all vanish identically throughout the neighborhood

of p. There are therefore points in every neighborhood of p where the A's are

not all zero, and where therefore W = 0 ; accordingly W must also vanish at

p since it is a continuous function of x.*

(b) The A's all vanish identically throughout the neighborhood of p .    Before

* This is the only point in the proof where use is made of the assumption that the nth deriva-

tives of the it's are continuous.    Would not the theorem still be true without this assumption ?
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proving in general that W = 0 for points of class (b) we will prove it in the

simple case n = 2 . Here we have two A's : A, = u2, A2 = w,. Since these

vanish identically in the neighborhood of p all the elements of the first two

columns of IF vanish at p , and therefore IF vanishes at p .

We will now complete our proof by the method of mathematical induction by

assuming that the theorem has been proved when we have less than n + 1 func-

tions. Since each of the A's is the Wronskian of n — 1 of the functions ux, u2,

■ ■ ■, un it follows that throughout the neighborhood of p the Wronskian of any

n of the n + 1 functions ux, u2, ■ ■ ■, u.1 must vanish. Accordingly IF also

vanishes at p , as we see by expanding it according to the elements of its last row.

Rapallo, Italy, December 9, 1900.


