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1. The importance of the concept group-matrix in the theory of finite groups

was recognized by Dedekind as early as 1880. The development of a general

theory of group-matrices is due, however, to Frobenius, (Berliner Sitz-

ungsberichte, from 1896 to the present). In particular, Frobenius has

applied the theory to the representation of a finite group as a (non-modular)

linear group. Since linear congruence groups are of importance in the theory

of groups, particularly in questions of isomorphisms, and play a fundamental rôle

in the applications of groups to the theory of functions and to geometry, the

study of the representations of a finite group as a linear congruence group is of

decided importance.

It is here proved that, if p" is the highest power of the prime p dividing the

order a of a group G, the group-matrix of G can be transformed, by a matrix

whose elements are integers taken modulo p, into a compound matrix in which

the submatrices to the right of the main diagonal have zero elements through-

out, while the p" submatrices in the diagonal are identical. Let D denote one

of the diagonal submatrices, so that D is a square matrix of order g/])". Then

the group-determinant A of G is congruent to | D \p" modulo p. This result is

in marked contrast to the non-modular theory, in which each algebraically irre-

ducible factor of A enters to a power exactly equal to its degree.

It is shown in § 8 that the group-matrices of all groups of order p* can be

reduced to their canonical form modulo p by one and the same transformation.

An interesting theorem on group-characters is obtained in § 11.

Just as simplicity is attained in the algebraic theory only when certain alge-

braic irrationalities are introduced to permit of the complete factoring of the

group-determinant into algebraically irreducible factors, so corresponding sim-

plicity in the modular theory can be attained only by the use of Galois imagi-

naries (roots of irreducible congruences) in order to normalize completely the

diagonal matrices D (§ 10). It is therefore proposed to take as the field of

reference the field F defined as the aggregate of the Galois fields GF\_pn"\ ,
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» — 1,2,3, •■•. Every equation with coefficients in F is completely solvable

within F .

When the modulus p does not divide the order of G, the fundamental,

theorems of the algebraic theory are also true in the field Fp, as was first pointed

out in the writer's paper in these Transactions, vol. 3 (1902), pp. 285-301.

For the same case, the exposition of the algebraic theory by Schur (Berliner

Sitzungsberichte, 1905, pp. 406-432) is valid in the field Fp.

When the modulus divides the order of G, the problem presents marked con-

trasts to the algebraic theory. It is to this outstanding case that the present

paper is directed, as also the companion paper, " Modular theory of group-

characters " (Bulletin of the American Mathematical Society,

July, 1907).

2. Let G be a group of finite order g ; let H he a subgroup,

tl :        sx = 1, s2, • • •, sh,

of order h and index q = g/h. Let ex = 7, e2, ■ • -, e be right-hand extenders

of H to G, so that
G = H+He2+.-. + Heq.

Form the left-hand multiplication-table of G with the operations

-* » e2 ' ' ' ' > eq  ' S2 ' S2 C2 ' ' ' ' ' S2 eq  ' S3 ' S3 C2 ' * ' ' ' S3 ßq  '

in the first row, and their inverses, in this order, in the first column. The body

of the table is a compound matrix M with h2 matrices MtJ as its elements.

The matrix in the £th row of matrices and jth column of matrices is

(1) Mi%j = M,c,        if        silSj = sk.

We have

!k Sk e2 " ' Skeq

(2) Mk = (efskef)=\e2'h    e7lstei    ••'    e2~'s*e3

• V «*v
If II is a subgroup of order h of a group G, the body of the multiplica-

tion-table of G may be exhibited as a compound matrix whose h2 submatrices

Mk have the same relative arrangement as the elements sk in the multiplication-

table («r» Sj) of II.

To the h elements si of a group H we make correspond h independent vari-

ables xs..    Then the group-matrix of II is

(3) (*.r\) a,j = i,---,h).

3. Let p" be the highest power of p dividing the order p" q of a group G,

and let 7/ be a Sylow subgroup of order p" .
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It will be shown in § 5 that there exists a matrix (6r) which transforms the

group-matrix (3) of H into a matrix whose diagonal elements are congruent,

modulo p, to XXi., and whose elements to the right of the diagonal are congru-

ent to zero. Then, if 7 denotes the unit matrix of order q, the compound

matrix (b{.I) transforms the group-matrix of G, arranged as in § 2, into a

compound matrix, each of the p" submatrices in the main diagonal being con-

gruent to

(4) (Is**"*) ('. •=!.•••.«>.
while each submatrix to the right of the main diagonal has all its elements con-

gruent to zero modulo p.    Hence we may state the following

Theorem. If ft" is the highest power of p dividing the order of a group

G, the group-determinant of G is congruent modulo p to DpW, where D is the

determinant of the matrix (4).

Consider the linear transformation T on £. (i = 0, 1, • • •, p" — 1) whose

matrix is the group matrix of H - with a convenient order for the elements x,t

in the first row (§ 5).    When T is expressed in terms of the new variables

(5) '«"law*' (i=o,i,-,p*-i),
the coefficients being binomial coefficients, it takes the canonical form (modulo p)

given above. The corresponding normalization of the transformation whose

matrix is the group-matrix of G is accomplished by the introduction of the new

variables

(6) **.-*g(¿)f*+.     «=0,l,-.p.-l;. = l, ■•,,).

4. Matrix (4) has the important property that, in the terminology of Fro-

benius, it is a matrix belonging to the group G. Removing the restriction

that H is a Sylow subgroup, we obtain the matrix

(7) -y-(g«.^.) (',* = !. •".«>■

We prove that matrix A'belongs to the group G, viz., that

(8) XY= Z if y£,XByg.lA — Za (E ranging over G ).
it

The element in the rth row and cth column of XY is

t  í Jl. \ f h \       h fl

X,( Z»v.vj ( Ey<;^) = T, 2>ÄyÄ-v-Vc = £%w
j=l \)ii=l /   \»=1 / k=l     ¡t k = l

where B = e~ls e., s, = s s..
r      in   ji    li m   I
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A second proof that matrix X belongs to the group G results incidentally

from the following discussion which gives a (partial) normalization of the group-

matrix of G by an algebraic transformation, in contrast to the (more complete)

normalization in § 3 by a modular transformation. The transformation on

ffj, • • •, | h whose matrix is the group-matrix of G ( § 2 ) is

(9) f('t-i)g+r = S ^W« £c¿-i)í+í        (»ii = l» •■•. A; »"i < = !>•••> «)•

Consider the functions analogous to (6) with £ = 0 :

»

7,-Eí(H)frl (, = 1' •••>«)•

Then

''r = L( L X<;1»i1v1 ) Çu-dî+i = 2-1 ( ¿^ x«;'«*«« ) 6(j-D?+< = 2-, I zLi '"e;1»!«, ) Vt •
j,t   \ i=l / Í  \*=1 / 1=1 \*=i /

Hence the variables tjx, • • •, 77 undergo a transformation whose matrix is (7).

In particular, \X\ is an algebraic factor of the group determinant of G.

5. Theorem. If G is a group of order p", p a prime, with the operations

gi, the group-matrix of G can be transformed * into one whose diagonal ele-

ments are congruent to 53 xv modulo p, while the elements to the right of the

main diagonal are congruent to zero.

The proof is by induction from it — 1 to 77-.    It proved in § 7 for tt = 1.

To apply § 2, let TT be a subgroup of order pw~%. Then q = p, and we may

set e. = e'-1 (£ = 2, • • -,p). By the hypothesis for the induction, the group

matrix ( x, ) of H can be transformed into a matrix whose diagonal elements are

congruent to Sas, modulo p, while those to the right of the main diagonal are

congruent to zero. Let the transforming matrix be (a..), i,j=l, •••,p*~\

Then, if 7 is the unit matrix of order p, the compound matrix (af.I) will trans-

form the group-matrix (xg.) of Gp* into a compound matrix, each of whose

diagonal matrices Di is (7) for h =p'~1, while the elements of the matrices to

the right of the diagonal are zero. Now H^-i is invariant in G *. Hence

e~lske ranges over the operations of H where sk does, so that

jjir-l

S aVv, = £œe-(,-i)J4ec-i = Xv-ri
i=l

We introduce the abbreviation

(10) o^Ex,»,.
i=l

Since ep belongs to H, we have

(H) »,*-*,•

■ The transforming matrix is given in § 8.
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Hence each diagonal matrix Di is the cyclic matrix

(12) (<V-)=| *f *'.    '.'
er.i     er ,

By § 7, this matrix of the cyclic group of order p can be transformed into a

matrix whose diagonal elements are congruent to

p—i p"

1=0 j=l

modulo p, while the elements to right of the diagonal are = 0.

6. It remains to normalize the group-matrix of the cyclic group of order p

by a transformation modulo p. Without increasing the difficulty of the prob-

lem, we treat the cyclic group of order p".    We shall need two algebraic lemmas.

The transformation, with binomial coefficients,

(13) *-§('( H (*-0,l,...,f-l),

has, algebraically, the following inverse :

(14) ^-ëi-l)*'^)^ «=0,1....,*-!).

This will be the case if, and only if,

(is) ¿(-iy+'(j)(.) = si;    (*,=i.<—oii*+i).

This well known formula (cf. Netto, Combinatorik, p.  255, formula 43) is

a special case of the following one, which is needed later :

0       (r>s)

w) *_.-¿<-i)'(ocr)-
To evaluate E, we apply

and obtain two sums P and Q.    Making a similar replacement for (i+,m) in Q,

we get

— — P — E
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Hence we have the recursion formula

Thus for r = s, Emr, = ( - 1 )rE„m_r and (16) follows.    For r - s = p > 0,

^s = (-iy^po=(-iyí:(-i)í(^)=(-i)s(i-i)p=o.

For the case m = s, formula (16) may be obtained from formula (41), (Netto,

loe. cit., p. 255), by replacing m, n, q, shy r, s, s — m, i — s + m, respectively.

7. Theorem. The group-matrix of the cyclic group of order pn can be

transformed into a matrix, given by (22), having congruent elements, modulo p,

in every parallel to the main diagonal, the elements to the right of the latter

being congruent to zero.

The group-matrix of the cyclic group of order g is

a   i
9-1

(17) A = ( Vi  ao      ai      ■■■      Vs      Vi

a2 a3 ■■■ Vl a0

Let a. = a _k.    Then A is the matrix of the transformation

(18) £=£V,?; « = 0, l,..-,,-l).

Introducing the variables n by means of (13) and (14), we get

m    ,:-!„„,„    ,,.(-irtf(-if(;)(^.
The value of y   will be determined modulo/», for the case g = p".

For 0 = m = g — 1, the coefficient of a_m in ( — 1 )ryar is c + c, where c is

the sum of the terms with j = i + m, c the sum with j = i + m — g.

Let first j = i + in. The minimum value of i is the greater of 0 and s — m .

But, for in < 8 and i < s — m, (Js) = 0. Hence in c we may allow £ to begin

with the value zero. The maximum value of £ is the lesser of r and g — 1 — m.

Hence if ?»». < g — r, c is given by (16). Next, let m = g — r, so that

i ~ g — 1 — m. Now c will be unaltered modulo p if we allow £ to take the

additional values g — m + t ( t = 0 , 1, • • -, s — 1), since

(2> )-°     (mod;») («<«<**:

Indeed, there is no term z* in

(20) (l + Bí"r)(l + a)'ss(l +s)í"r+'    (niodp).
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Thus, if g — r = m < a — r + s, then g — m + s — 1 = r and c is congruent

to (16).    Finally, for m = g — r + s, c + c is congruent to (16) in view of (21).

Let next j = i + m — g.    Then i ranges from g — m + s to r, so that terms

c occur only for m =5 g — r + s.    For s <;>" = g, t <Cg,

0-cr). rro-cr) ™
by (20).    Hence c' = 0 iî m <ig — r + s; while for m = g — r + s,

<2i>      '-jL(-xKï)('*") «-^
Therefore in every case the coefficient of a_m in ( — 1 )r7sr is congruent modulo

p to the sum (16).    Thus
¡»-i /   m   \

y„m0(i£r>s),        y,r = £^ _ p J «_, (if r ==a).

Hence 7sr = 7s_r0 (r — s).    Set at = ya.    Then (19) becomes

* g~l f m\
(22) ^ =!>,'?,-„ «(=Z (,)«_„,( mod jp).

8. Theorem. 7%e group-matrices of all groups of order p", with a suitable

order for the elements of the first row, can be transformed simultaneously into

their canonical forms modulo p by the same transforming matrix.

Employing the notations of § 5, we prove that the transformation T on the

variables £t., whose matrix is the group-matrix (y) of a given group G of order

p", can be reduced to its canonical form modulo p by the introduction of the

new variables (5), viz., that transformation (5) transforms T into its canonical

form. Then the matrix of (14), i. e., the inverse of the matrix of (5), will

transform the group-matrix (y) into its canonical form modulo p. The proof

is by induction from ir — 1 to 7r. We therefore assume that the transforma-

tion whose matrix is the group-matrix (a;) of the subgroup H of order p"-x can

be reduced to its canonical form by the introduction of the new variables

(23) *-S(Í)f' (» = 0, 1, •••, a = p*-i — 1).

The matrix ( a„) of § 5 is thus the inverse of the matrix of (23).   Hence (a{.I)

is the inverse of the matrix of

(24) '".«"li (<)
■Jp+S     (i = 0,!,-■■,a; s = 0, 1,    -,p-l).

It remains to normalize the diagonal matrices Dk (k = 0, 1, •••, a), each of

Trans. Am. Math. Soc. 87
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which is of the form (12).    Hence by § 6 we introduce the new variables

(25) t^-£(5)vw    i*-o,i,....«n-o,li...,*-l).

Eliminating the 77's from (24) and (25), we get

p—1   «   /s\ /m\
(26) ^-££w(ij^    (1-0.1,...,.|r-0,l,...,,-l).

To prove that (26) is equivalent modulo p to transformation (5), set

i = Ip + r,       j = »rap + s.

In view of the limits of the summation indices in (26), we have

0^r = s=p — l,        0=iZ=iTO = a («=j»«-»—1).

It  therefore follows  from  the writer's Dissertation (Annals  of  Mathe-

matics, ser. 1, vol. 11 (1896-7), pp. 75, 76), that

<"> CD-0(7)
The induction is therefore complete.

9. We have now established the lemmas employed in the proof of the general

theorem of § 3. The problem of the ultimate canonical form modulo^ of the

group-matrix of a given group G of order p" q is therefore reduced to the

problem of normalizing the diagonal matrices (4). One step of this normaliza-

tion is readily effected in § 10, the resulting matrix (34) having the desirable

property that the elements of the non-diagonal submatrices are all zero. In

particular, this normalization is complete if a Sylow subgroup of order p" is

invariant in G.

10. Let TTpir be invariant in Xp*m, but in no larger subgroup of the given

group Gp*q.    Set

(28) K=H+He2+-.. + Hem,      G = K+ Kf2+ ■■ . + Kfn    (»=8/m).

Then (4) may be exhibited as a compound matrix (E4.) whose n2 elements E{

are square matrices of order m :

** = \S aJ/r,«'W>) (r' C = t' ""' ro)'

For r fixed, e~] sk and «^e"1 range over the same set of elements.    Set

(29) trlf - JT Xf?Ht/ (< = /, o, ■■■,«.),
*=i
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the m functions with i and j fixed being independent.    Hence

(30) ■#*««»..) (r,c = l, ••.,*).

Now e~l ec may be given the form sec with s in H.    Then

(31) •&.-<.        (Hef)-\Hef) = Hev.

Hence, ybr eacA t awi J, 7^. £s iAe group-matrix of the quotient-group K/H.

The order, m, of the latter is relatively prime to the modulus p. Hence by

§ 1 there exists a matrix p, of order m and with elements in the field F , which

transforms Exx into its ultimate canonical form Cxx. Then the compound

matrix

>    0    0    -

[ 0   m   o   .

transforms the compound matrix (E{.) into (p~lEtjp) = ( C..).    Here the C{

have simultaneously their canonical forms :

'c[i 0    0

(33) C..=    0    c»> 0

where c*y is a square matrix, whose determinant is irreducible in Ft, and whose

elements are linear functions of cr%f, • • •, cr'f, with coefficients independent of

i,j. Applying to (C..) a certain transformation which merely permutes the

variables, we get

Cx    0    0   .

(34) 0     G,   o   ... I,       C, = (c]J)       «.i-l.

7Ae problem has therefore been reduced to the normalization of certain matrices

C, ("belonging " to the group G) of order n, the index of 77 „ in i/ie largest

subgroup (of the given group G ) in which H„ is invariant.

If the Sylow subgroup H „ is invariant in G, then n = 1 and the normaliza-

tion is complete.

11. From the theorem in § 5 we readily derive an interesting result on group-

characters. Let H be a group with the h elements s. and group-determinant

A, defined as the determinant of matrix (3). Let G,« be any Sylow subgroup

with the elements g. and group-determinant D.    If we set

(35) xh = 0 for every element s of 77 not in G »•"
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A becomes equal to an exact power of D.    By § 5,

7» = 7^(mod^),        £-£*,,.
1 = 0

In our field F , let <t> be an irreducible factor of degree f of A. Hence, under

the assumption (35), 4> becomes a function congruent to Lf modulo p. The

coefficient of

(36) xi~'x<ji (* + *)

in Lf is f. By definition the coefficient of (36) in <ï> is the character x(ffi)'

while x ( 7) = f.    We may therefore state the

Theorem.    Ifxis the group-character defined by a factor, of degree f and

irreducible in the field Fv, of the group-determinant of a finite group 77, then

(37) x{g)^f(modp)

for every element g of period a power of p in 77.

The definition of characters is employed also for reducible factors.    But

4> = <I>'<I>" implies x(g) = X(9) + x"(g)-

Hence (37) is true also of algebraic group-characters.

The University of Chicago,

May 8, 1907.


