NOTES AND ERRATA: VOLUME 8

L. P. Eisenhart: Applicable surfaces with asymptotic lines \cdots .

Pp. 113-134.

Since the publication of this memoir, the author is informed by Professor BIANCHI that he obtained the fundamental theorem (p. 122) in a note, "Sulle coppie di superficie applicabili con assignata rappresentazione sferica," published in the Rendiconti della R. Accademia dei Lincei, volume 13 (1904), pp. 147-161. The methods are essentially the same.

W. R. Longley: A class of periodic orbits

P. 165, l. 23.

For
$$(m < \mu)$$
 read $(m < \overline{\mu})$.

P. 166, l. 7.

$$\begin{array}{lll} For & (m<\mu) & read & (m<\overline{\mu}). \\ & & \dfrac{\sqrt{1-(\overline{e}+e)^2}}{\left[1-(\overline{e}+e)\right]^2} & `` & \dfrac{\sqrt{1-(\overline{e}+e)^2}}{(1+\alpha)^{\frac{3}{2}}\left[1-(\overline{e}+e)\right]^2}. \end{array}$$

L. E. Dickson: Invariants of binary forms

P. 219, l. 6.

For
$$p < 2$$
 read $p > 2$.

"
 $3n$ "
 3^n .

P. 223, formula (60).

$$3n$$
 " 3^n

C. N. Moore: On the introduction of convergence factors

and $\phi''(x) \ge 0$ ($0 < xa \le c$).

P. 305, l. 1 up.

For
$$\phi(0) = 0$$
 read $\lim_{x=+0} \phi(x) = \phi(0) = 1$.
Condition (iii) should read: $\phi''(x)$ exists for $x > 0$

P. 306, l. 1.

Replace the sentence beginning in 1. 5 by the following: Condition (a) follows for x = 0 from (ii) and for x > 0 from the fact that the second derivative of $\phi(x)$ exists for all values x > 0.

l. 5 and l. 6.

For
$$0 \le x \le c$$
 read $0 < x \le c$.

l. 2 up. P. 307, 1. 3.

P. 308, l. 3 up.

AfterCondition (ii) follows from (c)

and the continuity of $\phi(x)$ for x = 0.

Replace this line by the following: If for any value of α , (d) or (d') holds for all values of n, (e) is unnecessary.

A similar change must be made in the corresponding footnote for Theorem V, and may be made, and thus