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1. The following question was brought up a considerable time ago by

both Liapounofff and Poincaré,î but has apparently not been answered up

to the present:

"Consider a homogeneous incompressible fluid whose particles attract one

another according to Newton's law and which is acted on by no external

forces. Then, are there any positions of equilibrium for the fluid besides the

sphere?"

It will be shown that there are no such positions, whether of stable or un-

stable equilibrium.

2. A necessary condition for equilibrium will be obtained by examining

an approximating figure made up of elementary parallelepipeds, or parallel

rods. The rods will be treated as rigid and free to move in the direction of

their lengths only, so that perpendicular distances between them remain

unchanged. They will be so chosen that whenever two collinear rods are

moved into contact with one another their ends will fit together exactly and

the rods will become merged into one.

If the approximating system consists of two rods only, it can be seen by

inspection that its potential energy diminishes continuously as the centers

of the rods approach one another. Equilibrium can, therefore, only occur

if the rods are touching end to end or if they are symmetrical about a perpen-

dicular line through their centers.

If there are more than two rods, the potential energy of the approximating

system is equal to the sum of the potential energies of all sub-systems con-

sisting of two rods only. Suppose the rods are set in motion in such a way

that the center of each rod approaches a fixed perpendicular plane, ir, with a

velocity equal to its instantaneous absolute distance from ir. Then, as the

system moves, the distance between the centers of two rods never increases,

while, on the contrary, it decreases whenever the centers are at unequal

distances from ir .

* Presented to the Society, February 28, 1920.

t Liapounoff, Sur le corps du potentiel maximum, Communications de la So-

ciété Mathématique de Kharkow  (1887), pp. 63-73.

t Poincaré, Sur un théorème de M. Liapounoff relatif à l'équilibre d'une masse fluide, Comp-

tes Rendus , vol. 104 (1887), p. 622.
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The rate-loss of potential energy, — dW/dt, changes abruptly whenever

two collinear rods merge into one, since the rods undergo a sudden change of

velocity at that instant. The value of — dW/dt stays greater than zero,

however, so long as two rods are collinear without touching and so long as the

system is not symmetrical about a plane through its center of mass and

parallel to ir. Under either of these conditions, therefore, the approximating

system can not be in equilibrium.

3. The problem for the fluid mass itself can now be solved by an obvious

passage to the limit if we impose upon the boundary the restrictions that are

usually assumed in a discussion of this kind. As we wish to handle the

perfectly general case, however, we merely observe at this point that the

limiting process is obvious provided the fluid is convex. Therefore, since

the orientation of the rods of the approximating systems does not affect the

argument in any way, we have the

Theorem. A convex figure of equilibrium is symmetrical about every plane

through its center of mass and is therefore bounded by a sphere.

It remains to be shown that a figure which is not convex cannot be one

of equilibrium.

4. Although a perfectly general boundary will be permitted, spurious

"boundaries" either wholly within or wholly without the fluid are to be

excluded. We therefore assume: that every interior point is within a sphere

which encloses interior points only; that every exterior point is within a

sphere which encloses exterior points only; that within every sphere about a

boundary point there are both interior and exterior points. We shall also

assume that there is an upper bound, L, to the distance between two interior

points.

Under the above assumptions, we must be prepared to meet the case where

the boundary of the fluid is a set of points of measure greater than zero, so

that the volume depends on whether we decide to count in or leave out the

boundary points.* Let us agree to define the volume, T, as the measure

of the interior points only. The potential energy will then be the Lebesgue

integral
fcrr    drdr'
2jjRir,T')

extended over the interior points, where k is the gravitational constant and

R i t , t') , the ultimate distance between the elements dr and dr'. If space

be cut up into cubes by means of three systems of parallel planes, the sum of

the volumes of the cubes that are wholly within the fluid approaches the

limit T as the distance between parallel planes approaches zero.   Moreover,

* For the analogous case in two dimensions, cf. Osgood, A Jordan curve of positive area,

these Transactions, vol. 4 (1903), pp. 107-112.
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the potential energy of the system composed of interior cubes approaches

the limit W.

5. Since the fluid is not convex, a segment PQP' can always be found such

that P and P' are both within the fluid while Q is without it or on the boundary.

Moreover, we can always arrange to make Q an outside point by displacing

the segment PQP' a bit, if necessary.

Let us approximate the fluid figure, which we shall call F, by a sequence

of figures, Fi, F2, F3, • • • made up of rods parallel to the segment PQP',

such that P and P' are interior points of Fi and that every figure Fi is contained

within all subsequent figures of the series and in F. Then, to be sure, a

plane ir perpendicular to PQP' can be chosen with reference to which the

figures F i can be set in motion in the manner described in § 2. Furthermore

a perfectly unambiguous limiting motion can be determined by allowing i to

increase indefinitely. Unfortunately, the limiting motion so changes the

internal structure of the fluid by transforming interior points into boundary

points and vice versa, that we cannot be sure among other things that the

volume remains constant.    We therefore proceed in a more roundabout way.

About the points Q, P, and P' we draw spheres of radii I, 1/3, and 1/3

respectively, where / is so small that the sphere about Q is exterior to the

fluid F, while the spheres about P and P' are interior to the first approximating

figure Fi. We can then obtain a lower bound for the rate-loss of potential

energy of the figure Fi when set in motion in the way described above, such

that this lower bound depends on I and L (§ 4) alone and not on i.

Let us choose the plane ir perpendicular to PQP' and through the center of

mass of F. Then consider what happens as the motion begins. The spheres

about P and P' have between them a gap of exterior points interior to the

sphere about Q and of width at least I. Consequently, they approach one

another with a velocity greater than I. Moreover their mutual attraction is

at least k ( T2/L2 ), where T is the volume of each.

Therefore, if the potential energy of F i be Wi, we have at the start of a

motion

dWi T2
--jr > (p,       where       d> = k j^l,

while during an interval of time t depending on I and L but not on i, we have

(1) --¿fxp/2,       l>t>0.

Suppose now, we expand the figures Fi to the volume of F by similarity

transformations which preserve directions and leave fixed the center of mass

of F.    We then obtain a second sequence of approximating figures F\ of the
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same volume as F. Moreover, when the figures F\ are set in notion in the

same way as the figures F¿, we have from (1)

dW
(2) --^><¿/2,       t>t>0

a fortiori.

Let us denote by e¡ the maximum displacement undergone by any point

of the figure F\ after a motion lasting a time t.   Then we have

Ldt > del,
and therefore,

dW'i      <¿-^7>2L'       i><>0-

Furthermore, if AW\ be the total change in potential energy of the figure F\

after motion lasting a time t and if As'¡ be the maximum distance from a point

on the interior or boundary of the displaced figure to the nearest point on the

interior or boundary of the figure in its original position, we have

¡ =   j    dW,       and       As, =   I   de,.
Jo Jo

AW

Therefore

(3) _AW¡     ±
{á) As¡ >2L-

Now, let AW i be the difference between the potential energy of the displaced

figure FI at a time t and the potential energy of the fluid F, and let Ai; be the

maximum distance from a point on the interior or boundary of the displaced

F i and the nearest point on the interior or boundary of F. Then, if we hold t

fixed, we have

(4) Slâst-âi-J^0'
since the undisplaced figure F, tends towards the figure F in the limit. There-

fore by (3) and (4), we can find, corresponding to any t, a value of i such that

-§>â-

Finally, let t run through a decreasing sequence of values with zero as

limit. Then, corresponding to each value of t, we can find a displaced figure

F% such that the relation (5) holds. These displaced figures evidently ap-

proach F as limit, since i increases and the time of displacement flecreases

towards zero. Therefore, in view of (5), the figure F is not in equilibrium.

Hence :

The sphere is the only figure of equilibrium.
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6. Before leaving this matter, let us say one word about the more general

problem, where the fluid mass is rotating about an axis through its center of

gravity.    The methods used in this paper show us at once that the fluid

cannot be in equilibrium unless symmetrical about a plane perpendicular to

the axis of rotation and unless a line parallel to this axis cuts the fluid in at

most one segment.

New York,

January, 1919.


