
ON THE ZEROS OF SOLUTIONS OF HOMOGENEOUS LINEAR

DIFFERENTIAL EQUATIONS*

BY

CLARENCE N. REYNOLDS, JR.

1. Introduction

In this paper I shall first prove a general separation theorem for the zeros

of solutions of the general homogeneous linear differential equation. I shall

then generalize Birkhoff's theorems of oscillation and comparison for equations

of the third ordert by proving two series of theorems, one for equations of

odd order and one for equations of even order. This latter series of theorems

is then applied to the study of the zeros of the solutions of self-adjoint linear

homogeneous differential equations of the fourth order. It would be sufficient

for my purposes if I were to assume that the coefficients and solutions of the

equations considered, together with a sufficient number of their derivatives,

were defined and continuous for all values of the independent variable con-

sidered. In order to simplify the statements of my results I shall assume

these coefficients and solutions analytic.

We may, without loss of generality, take our reth order equation in the

form
n

(1) y(n) + 23 Pi2/<n_0 = 0 (o<x<6)
t=2

and assume that the wronskian of any fundamental system of those solutions

of (1) whose zeros we are studying is identically equal to one; i.e.,

yi,        2/2, • • •,   2/n

Wix) = \yi'        y'2'' '"'   y'n

l2/l I      2/2 , ,      2/n

=   1.

The equation adjoint to (1) is

(2) z(B) + ¿3 ( - 1 )*' ipi *)(n_i) = 0.

* Presented to the Society, September, 1918, and September, 1919.

t Birkhoff, On the solutions of ordinary linear homogeneous differential equations of the third,

order,   Annals of Mathematics, ser. 2, vol. 12 (1911), pp. 103-127.
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This equation is satisfied by Zi(x), the cofactor of y<"_1)(a:) in Wix),

i = 1, 2, • • •, n.   By the properties of z,- (x) as a cof actor,

(3) Zylt)(x)ziix)^0 (k =0,1, •••,n-2),

(4) Erf-?(*)*(«)-i.

Throughout this paper I shall denote determinants of the form

by the symbol :

y?l\  y^\

#*, t/F>,

¿It) I

ilft*,3ti*, -",y^).

2.  A GENERAL SEPARATION THEOREM

Theorem 1. If Xx and x2 are consecutive zeros of yi (x), and if y2 (a;) does

not vanish for either of these values of x, then the number of zeros ofyt(x) between

xi and x2 plus the number of zeros of (yi, y'2) in the same interval is odd.

If for definiteness we let

then
yi(a;) > 0       (xx < x < a;2).

yi(*i) - y'xixx) =

yx(xi) = y[(xi) =

= 2^-,)(x1) =0,

-#-*(*)-0,

jfPixt) >0,

(-1)«*?><*,) >0,

where j<n and k<n since W(x) 4= 0. Differentiating the function

f(x) = yt(yi,y'i) repeatedly, we find that

/<">(a;i) =0,       to<j-1,

fm)(Xi) =0,       to< k - 1,

f"-»(xx) = -yí(xx)yíii,(xx)<0,

(_ i)i/M(li) . _ (- l)*tf(ä*)rf»(aO < 0,
or

(-l)*-7<*-»(a;,)>0.

Hence the number of zeros oîf(x) between a;i and Xi is odd. Therefore the

number of zeros of yx(x) plus the number of zeros of (yi, y2) between a;i

and Xt is odd.

Theorem 1 may be geometrically interpreted by supposing the numbers

yi (x), yt (x), • ■ •, y„ (x) to be the homogeneous coordinates of a point on
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an analytic curve in space of re — 1 dimensions. This curve is the integral

curve of equation (1). The condition Wix) + 0 then means that the oscu-

lating (re — 2)-way plane spread is never stationary. The determinants

iyi,y'j) ii,j = 1,2, ■ ■ ■, re), re (re — 1 )/2 inn umber, are the homogeneous

line coordinates of the tangent to the curve at the point (2/1,2/2. ■ • • > 2/») •

The vanishing of (2/1,2/2) at a point on the curve means that the tangent at

the point meets the (re — 3)-way plane intersection of the (re — 2)-way

plane spreads, whose equations are j/i — 0 and 2/2 = 0.

Hence Theorem 1 may be read as follows :

If the integral curve of equation (1) does not meet the (re — 3)-way plane

spread whose equations are 7/1 = 0, y2 — 0, then between two intersections

of the curve with the (re — 2)-way plane spread whose equation is 7/1 = 0,

there are an odd number of intersections with the ( re — 2 )-way plane spread

whose equation is 2/2 = 0, and points of tangency with elements of the pencil

of ( re — 2 )-way plane spreads whose equation is aj/i + ßVi ~ 0 > where

a and ß are parameters.

For equations of the second order this theorem is equivalent to Sturm's

theorem* that the zeros of two linearly independent solutions alternate, since

(2/1.2/2) 4= 0 in this case. For equations of the third order it is equivalent to

Birkhoff's general separation theorem, t

3. Regular intervals
Let

(5) 0<x,£)=3¿Z,(£)2/»(z),
i=i

then from (3) and (4) we have

..£

(6) ^0(X,É)=O,        g.¿       (fc = 0,l,2,...,n-2),

and

(7) £Í0(*,£) = 1>       »-«•

From (6) and (7) we can prove by substitution that if 77 ( x ) is a function satis-

fying

(8) !?(*)«!/(*)-  r*(*,¿)B(€MÉ)dí,
»7«

where y (x) is an arbitrary solution of (1) and Ä(x) is an arbitrary analytic

function of x, then 77 ( x ) is a solution of the linear differential system

* Cf. C. Sturm, Journal  de  mathématiques  pures  et appliquées,

vol. 1 (1836), p. 131.
t Cf. Birkhoff, loc. cit., p. 109.
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(9) vM + ílpiV(nr-i)+Rv = 0,
<=2

(10) 7/<*>(a) =y«(a) (fc = 0,1, •••, n - 1).

Interchanging the roles of (1) and (9) we may define

(so *<*.*)■£&(*)*(*),
i=2

where rn(x), (i = 1,2, • • •, n), is a fundamental system of solutions of

(9) and the £"'s are derived from the 77's as the z's were derived from the y's.

Then

(6') â?*(z,Ê) »=0,        X = I     (fc = 0,l,2,...,n-2),

(70 SlK*.€)-l,        *-€.
and

(80

dx"

y ix) -i?(*)+jT^(*,i)Ä(€)y(€)d€.

Now, if we set y (a; 1 = <£(#»«) in (8), we have

(11) *(*,«) =faix,a) - J™0(*, $)*(*)*(?,«)#,

since ^(i)(a;,a) = fa» (x, a), x = £, (fc = 0,1, 2, • • •, n - 1), by (6),

(7), (6'), and (7')- It will now be possible to compare solutions of (1) and

(9) in intervals which satisfy the following

Definition. An interval (a^iSi) shall be said to be regular with

respect to (1) and of the first [or second] kind whenever the following condi-

tions are fulfilled, as x and £ vary throughout the interval :

Kind of Regular Interval n Odd n Even

First.^(i,{)50,i>{       <t>(x, {) > 0, x > £

Second.4>(x, {)g0, x < J       <t>(x, {) <0, x < {.

The proof of the following theorem does not differ essentially from the proof

of the special case for the equation of the third order, which Birkhoff has

given.*   For this reason I do not give the proof here.

Theorem 2. If an interval is a regular interval of the first [second] kind

for an equation (1) of odd order, then it is also a regular interval of the same kind

for the equation (9), provided that the inequality Rix) Ê 0[7i(a;) ^0] obtains

throughout the interval.

Theorem 3.   ^4ny regular interval of either kind for an equation (1) of even

* Loc. cit., p. 117.
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order throughout which R (x) ifli» also a regular interval of the same kind for

equation (9).

If.a is any number in our interval, then, by (6') and (7'), 0 (x, a) is posi-

tive if x is in the immediate right-hand neighborhood of a. If 0 ( x, a ) =í 0

for any value of x greater than a, then, since 0 ( x, a ) is continuous, there

exists a number, x0; greater than a, such that 0(xo, a) = 0, 0(x, a) >0,

(a < x < Xo).

If our interval is regular and of the first kind for (1), then 0 (x0, £) > 0,

(a SI f < *o). If we now let R (x) ^ 0 throughout our interval and sub-

stitute xo for x in (11), we have

0 = <¡>(x0, «) - f°4>ixo, É)A(í)*(f, «)df,

or zero equal to the sum of a positive quantity and an integral which cannot

be negative. Therefore the assumption that 0 (x, a) Si 0 for any value of x

greater than a leads to an absurdity. Hence fix, a) > 0 for x > a, where

a is any value of £ in our interval, and our interval is regular and of the first

kind for the equation (9).

Similarly our theorem may be proven for regular intervals of the second

kind.

Theorem 4. 7/ (o s x Si b) is a regular interval of the first [second] kind,

for an equation (9) of odd order, throughout which Rix) < 0 [R(x) > 0],

except for at most a finite number of zeros, and if yix) and v (x) are non-

identically vanishing solutions of (1) and (9), respectively, such that

yw(a) = vill)(o:),       a Si a Si 6    (*-0,1, •••,*-1),

then between a and the least [greatest] zero of v(x) [yix)] which is greater [less]

than a, there exists at least one zero of y(x)[r¡(x)] at which yix) [re(x) ]

changes sign.

For definiteness, let the first of the numbers nw (a) which does not vanish

be positive. Then, in the immediate right-hand neighborhood of x = a,

both n ( x ) and y ( x ) are positive. Now, let x be such that re ( x ) = 0,

re(x)>0(a=?x<x).   Then, substituting x = x in (8'), we have

yix) =O + jT0(*,£)Ä(£)2/(s£)rfs£.

Now, if our interval is regular and of the first kind, 0(x,£)iSO(x>£)

and Ä({)<0 (ag{Si), except for at most a finite number of zeros.

Hence, if we suppose that y ( x ) does not change sign between a and x, we have

2/(£) =0(ag{gi) and a non-negative quantity y ( x ) equal to an integral

that must be negative, which is absurd. Therefore, yix) changes sign at

least once between a and x.
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If our interval is regular and of the second kind, a similar proof will hold.

If we change the sign of R (x), we interchange y(x) and re (x) in the con-

clusion.

Theorem 5. 7/ (a Si x Si 6) is a regular interval of the first [second] kind,

for an equation (9) of even order, throughout which R ( x ) < 0, except for at most a

finite number of zeros, and if yix) and nix) are non-identically vanishing solu-

tions of il) and (9), respectively, such that

27w(«) = n^(a),        (aSiaSifc)     (fc = 0, 1, ••-, n-1),

then between a and the least [greatest] zero of r¡(x)[y(x)], which is greater [less]

than a, there exists at least one zero of yix) [t?(x) ] at which yix) [nix) ]

changes sign.

A proof similar to that of Theorem 4 proves this theorem, and, as in

Theorem 4, a change in sign of 7i(x) interchanges yix) and re(x) in our

conclusion.

4.  SELF-ADJOINT  EQUATION'S  OF  THE  FOURTH  ORDER

The general self-adjoint linear homogeneous differential equation of the

fourth order, with the coefficient of the first term identically equal to 1, can

be written in the form

(12) 7?IV + 10p2 re" + lOp't t,' + idpï + 9p? + Ti) re = 0,

where p2 (x) is not the function used in (1). Here the form of the coefficient

of Tj is not dictated by the condition of self-adjointness, but is chosen for the

purpose of relating equation (12) to the equation

(13) 2/IV + lOPi y" + 10p¡ y' + (32^' + 9¡pl)y - 0,

which is satisfied by the cube of any solution of*

(14) u" + PiU = 0.

Furthermore we know that if y (x) is any solution of (13) then re (x) as defined

by (8) satisfies (12).    If <j>> (x, $) is the solution of (14) defined by (5), thent

d
<h(x,i) = 0,       ^02(x, ¿J) = 1»       x = £,

and

&(*,£)= fx<l>î (X,t) »¿-¡0i(*,i)=O,       -¿Zltâix,t;)=<0,       *-{.

* Cf. Briosehi, Acta Mathematica, vol. 14 (1890), p. 236.
t If Ui(x) and u%(x) are two solutions of (14) for which (iii, u' ) = 1, then

4>i(x, t) = - u>(()«i(x) + ui(f)us(*).
Trans. Am. Mstb. Sue. 15
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Therefore if <£4 (a;, |) is the solution of (13) defined by (5), then

fa(*A) =i0i(a;,í).

Hence by the definition of regular intervals any interval which is regular for

(14) will be regular for (13) and conversely. Therefore we can substitute

(14) for (1) and (12) for (9) in Theorem 3 and obtain

Theorem 6. ^4ny regular interval for (14) is a regular interval of both kinds

for (12) provided that R(x) Si 0 throughout our interval.

Similarly we may substitute (13) for (1), (14) for the first (9) and (12) for

the second (9) in Theorem 5 and obtain

Theorem 7. If ( |i Si x Si £2) is a regular interval for (14) throughout

which R(x) < 0 except for at most a finite number of zeros, and if y(x) and

n(x) are non-identically vanishing solutions of (13) and (12) respectively such

that yw (a) = v™ (a), |i Si a Si f2, (k = 0, 1, 2, 3), then between a and

the least [greatest] zero of n (x) [y (x)] which is greater [less] than a there exists

at least one zero of y(x) [r\(x)]at which y(x) [n (x)] changes sign.

In applying these two theorems it is to be noted that sometimes the regu-

lar intervals for equation (14) are bounded by two consecutive zeros of a

solution of (14), but that if (14) has non-oscillatory solutions then they are

not so bounded.

Definitions. The forward interval of oscillation at x = a for a given equation

is the least interval (a, ß) such that all solutions vanishing for x = a will vanish

again in ( a, ß ).

The backward interval of oscillation at x = a is the least interval (ß, a) such

that all solutions vanishing for x = a will vanish again in ( ß, a).

Theorem 8. If R ( x ) < 0 except for at most a finite number of zeros and if

equation (14) possesses a backward interval of oscillation at x = a, then equation

(12) possesses a backtcard interval of oscillation at x = a which is not greater

than the backward interval of oscillation for equation (14).

Any solution of (13), being a homogeneous binary form of the third degree

with real constant coefficients in any pair of linearly independent solutions of

(14), has at least one real linear factor. This factor vanishes once and only

once in the interval (xx Si x < a) where a;i is the zero of fa(x, a) which

immediately precedes a. Therefore, equation (13) possesses a backward

interval of oscillation at x = a. Since fa3(x, a) satisfies (13), this interval

is equal to the backward interval of oscillation for (14).

By the preceding theorem any solution, n(x), of (12) which vanishes for

x = a, vanishes and changes sign at least once between a and the greatest

zero less than a of that solution, y (a;), of (13) which satisfies the conditions

(10). Therefore, -n (x) vanishes and changes sign at least once in the interval

( a;i Si x < a ).   Of all the zeros, infinite in number, immediately preceding a,
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of the various solutions of (12) which vanish at X = a there must be a lower

limiting value, x, which is not less than xx, such that all solutions of (12) which

vanish for * = a vanish again in the interval ( x Si x < a ). This interval

is the required interval of oscillation.

5.  A  SEPARATION  THEOREM  FOR  SELF-ADJOINT  EQUATIONS  OF THE

FOURTH ORDER

If 17;(a) and Vj(x) satisfy equation (12) then we can prove by differ-

entiating or by Lagrange's identity* that

(15) P(Vi, ■",) = (V¡, Vj") - (m, n'j) + 10pi(r)i, n'j)

is a constant.

Again it is well known that the six functions

im,n'j) (*,J = 1.2,3,4,t <j)

satisfy a linear differential equation of the fifth order, f Therefore, they

must be linearly dependent. If we expand the following linear combination

of identically vanishing determinants,

(16) (171, Vi", T}3, n'i) - (w|, r¡i, r)3, v't) + lOpiili, Ú, V3, Vt) — 0,

in terms of the two-rowed determinants of the first two rows we have the linear

relation

P(Vx, rn)(ri3,T)'t) - P(vx, V3)(V2, Vt) + P (m, Vi) (V2, Vi)

U7)
+ P(V2,Vü)(Vx, Vi)-P(V2, Vi)(vx, r)3)+P(y3, Vi) (fix, V2) =0.

Furthermore, it can be shown by actual expansion of terms that

(18) ¡¡j = P(ri2,173)174 + P(i73, 174)172 + P(t)i, »72)173,

the other f's being obtained by cyclic permutations of the subscripts. Sub-

stituting fi in (17) we have

(19) (m,fi) +
172 » 173, 1?4

I72, 1?3, I?!

P(vx,m),   P(vx,v3),   P(vx,vi)

= 0,

where our three-rowed determinant does not involve 171 ( X ) explicitly. Solving

for (171, fí) and substituting in Theorem 1, we have a general separation

theorem for self-adjoint equations of the fourth order.

Theorem 9.    If w(x) (i *= 1, 2, 3, 4) are linearly independent solutions

of (12) then between two consecutive zeros of r¡x(x) at which

* Cf. Bôcher, Leçons sur les Méthodes de Sturm, Paris, 1917, p. 23.

t Cf. Forsyth, Philosophical Transactions, vol. 179 (1SS8), p. 45¿
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fi(x)[=s  - (t/2, v's, VÏ)]

does not vanish, there exist an odd number of zeros of f i ( x ) and

12, Vl, Vi
ti»

7/2, 7/J, 7/4

P(vi,m),   Pivi.vz),   Pivi,Vi)

Interpreting this theorem geometrically by means of the curve whose

parametric equations are y% — ra(x) (¿ = 1,2,3,4) and the conical pro-

jection of this curve upon the plane yi = 0 from the vertex.( 1, 0, 0, 0 ) we

see that between two consecutive intersections of our curve with the plane

2/1 = 0 at which the projected curve has no point of inflection there will exist

on the projected curve an odd number of points of inflection and points at

which the tangent to the curve passes through the point [0, P(rei,rej),

P(rei,7,3), J>faffi)J.

6. Applications

In this section I shall apply the theorems derived in Section 4 to two

examples.

Example 1.

(a) reIV + lOn" + xt; = 0,       xSi9.

We shall compare the solutions of this equation with the solutions of the

equation

ib) 2/IV + lOy" + 927=0.

Here Ä (x) = x — 9 Si 0, and (6) is satisfied by u*(x) whenever

(c) u" + u = 0.

Every interval of length 7r is an interval of oscillation for equations (b) and (c).

Therefore, by Theorem 6, ( 9 — 7r si x Si 9 ) is a regular interval of both

kinds for (a). Theorem 7 implies that if two solutions, re(x) and y(x), of

(a) and (b) respectively, are such that

n(t)(a) =yw(ot),       9-tt Si a Si 9 (k = 0,1, 2, 3),

then between a and the least [greatest] zero of re (y) which is greater than a

[less than a] there exists at least one zero f 7/(77) at which 2/(re) changes

signs. By Theorem 8 we know that for a Si 9, (a) possesses a backward

interval of oscillation at x = a of length not greater than x.

Example 2.

ia) reIV-xre = 0,       x^0.

Here R (x) = — x = 0.   In this case our comparison equation
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(b) yiy = 0

has no intervals of oscillation. If the particular solution 771(3;) satisfies the

boundary conditions

(c) 171(a) = 1,       77'i(a) = r¡['(a) = Vi"(oí) = 0,        a SO,

then yx(x), the corresponding solution of  (b), is identically equal to 1.

Therefore, by Theorem 7, i?i(a;) cannot vanish for any value of x greater

than a.   Similarly none of the other principal solutions of (a) at x = a

vanish for x greater than a.

If r¡2 (x) satisfies the boundary conditions

(c')     i?2(l) =0,       n2(l) = -l,       i72'(l) = 0,       t7l"(l)=6,

then
y2(a;) = a;(a; - 1)(* - 2).

Therefore by Theorem 7, tj2 ( a; ) has at least one zero in the interval

(0Sia;Sil),no zero in the interval (1 Si x Si 2), and may have zeros for x

greater than 2.


