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I. Introduction

We consider linear algebras in which neither the commutative nor the asso-

ciative law of multiplication is assumed, and whose coordinates and constants

of multiplication are numbers of a general field F. A rational integral invariant,

or covariant, is a rational integral function of the constants of multiplication,

or of the constants of multiplication and the coordinates of the general number,

which has the invariantive property under the total group of linear homogeneous

transformations on the units. If an invariantive function also actually involves

the units, it has been called a vector covariant by Professor O. C. Hazlett,t

who shows that every rational integral vector covariant can be obtained as a

covariant of the general number of the algebra and a fundamental set of ordinary

covariants.

In Section II of this article, it is shown how vector covariants may be formed

directly from the constants of multiplication without assuming the knowledge

of any ordinary covariants or invariants. To do this, the notion is introduced

of a hypercomplex determinant whose elements obey neither the associative nor

the commutative law of multiplication, and a few simple properties of such hyper-

complex determinants are derived. From the vector covariants and the charac-

teristic determinants of the algebra, ordinary relative invariants may easily be

found.

In Section III the linear algebra in three units, one of which is a principle unit,

is considered. Invariants and covariants of the algebra are calculated by the

method of Section II, and a set of ten of these functions is shown to form a com-

plete system of invariants and covariants from the standpoint of Lie.

In Section IV it is shown that for the example of Section III the arithmetic

invariant denoting the rank can be replaced by a rational integral covariant.

The generic case is defined as the case for which certain three covariants are

* Presented to the Society, March 25, 1921.

t These Transactions, vol. 19 (1918), p. 408.

(135)
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different from zero, and this case is reduced by rational transformations in the

general field to a canonical form. The parameters of the canonical form are

characterized by invariants.

II. Invariants and vector covariants

1. Notations.    Consider the general linear algebra in n units whose multi-

plication table is given by

(1) efij = J2k=" y»kek (*' /=!,•■•,«).

and whose general number is x = 2jl" #,•£,■, where the y^ and x{ are num-

bers of a general field P.    Consider the transformation of units

(2) P: e/ = 23:" a&j   D = \ «ö | * 0 (* - 1-n),

also with coefficients a^ in P. This transformation P induces upon the con-

stants y{jk of multiplication and the coordinates x¡ a transformation 5 which

carries yijk into yijk and x{ into x, in such a way that

(3) eißj = 2^»., fijifik,

and

(4) £K *»-*"*'"££*'«'■

According to Professor Hazlett, * a vector covariant is defined to be a function

of the units and the constants of multiplication and the coordinates of the form

■v(lijk\ xr;es) (i, j, k, r, s = 1, .. ., n),

such that, under a transformation P of the units and its induced transformation

5, there exists a relation of the form

(5) v' = v(y'm; x'r; e's) = D" v(yijk; xr; es)       (i, j, k, r, s = 1, ..., n).

The integer ¡x is called the weight of the vector covariant v.

As Miss Hazlett noted, f it follows readily from (1) and (3) that every vector

covariant is expressible linearly in the units, i. e.,

(6) fl' = z;:N*:.     »-££>.*

where v[ is the same function of the yijk and xr that v{ is of the yiik and the xT.

* These Transactions, vol. 19 (1918), p. 408.

t Ibid., p. €16.
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2. Theorem 1. The coefficients v{ of every vector covariant of weight ¡i expressed

in the form v = 2J"" v^ are transformed cogrediently apart from the factor D~ß

with the coordinates x¡ of the general number x = S)="«:,e,- under a linear trans-

formation of determinant D.

From (5) and (6) we have

Making use of (2), we find that

On account of the linear independence of the units e¡, which occur only where

shown explicitly,

(7) ^=£""Z::=Na* (/ = i....,»).

Similarly from (4) and (2) we have

(8) Xj = J^X¡atí (j

Comparing (7) with (8), we see that the theorem is proved.

1, »).

3. Hypercomplex determinants.* On account of the fact that multiplication

is usually neither commutative nor associative, a determinant whose elements

are hypercomplex numbers must be defined more precisely than a determinant

whose elements are ordinary numbers. We define the general hypercomplex

determinant of the wth order

(9) D =

an ... aln

a„i . . . ann

[ana22 ... a„„]

to be the sum of » ! terms of the type

(-1)* [oujOa^ ... aniJ

in which ii, it, ..., iH is an arrangement of 1, 2, ..., » derived from the natural

order by k interchanges. The first subscripts must occur in their natural order

in every term. The brackets indicate that the method of grouping the factors

is arbitrary, but the same method is to be used in each term.   A particular

* Determinants whose elements are quaternions and hence associative but not commuta-

tive were considered by Cayley, On certain results relating to quaternions, The Philosoph-

icalMagazine, vol.26 (1845) pp. 141-145; and also by C. J. Joly, second edition of

Hamilton's Elements of Quaternions, vol. 2, Appendix 1, p. 361.
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hypercomplex determinant of the nth order is obtained by replacing the brackets

inclosing the leading term by a particular grouping of that term, in which case

it is understood that every term of the expansion is to be grouped in that way.

Thus there are as many particular hypercomplex determinants of the nth order

as there are ways of grouping n ordered factors.

4. Lemma 1. Every hypercomplex determinant merely changes sign upon the

interchange of any two columns.

Consider the determinant (9). Its terms may be arranged in ¡¡(w!) pairs

of the type

(10)
(-1)* [aUi ... ari  ... oJ>t-aniJ,

(-1)*+1 [aHi ... arif .... asir ... aniJ,

where the two .terms in each pair differ only in having their ir and is subscripts

interchanged. Since each is obtainable from the other by one interchange of

subscripts, they are opposite in sign. Let us denote D with its rth and 5th

columns interchanged by D'. Evidently this interchange leaves the first sub-

scripts in their natural order but interchanges the second subscripts ir and is

wherever they occur, and so interchanges the absolute values of the terms in

each pair (10). Thus every term in D with its sign changed is equal to a term

of D' and vice versa. Then D' = —D. This argument depends in no way

upon the manner of grouping, so the lemma holds for all hypercomplex deter-

minants.

No analogous theorem exists concerning the interchange of two rows.

Lemma 2. Any hypercomplex determinant two of whose columns are identical

is zero.

For by the interchange of the two identical columns the determinant is un-

altered, and yet changes in sign.

5. Lemma 3. A hypercomplex determinant the elements of whose jth column are

binomials a{j 4- b{¡ is equal to the sum of two determinants identical with the first

except that the jth column of the one is composed of the oö while the jth column of the

other is composed of the b¡j.    The corresponding theorem holds for rows.

Let us set

D =
O-ll ■ ■■   (blr + ¿Ir)   ■ ■ ■ Û1«

0»1  • • •   (bnr + Cnr)   ■ ■ ■   <*„

an

A =
au an

P,=

O-U

'ani . ■ o,n *nl • a.
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where it is understood that the manner of grouping is arbitrary, but the same

manner must be used consistently in every term of each determinant. It

follows from the distributive law that

(H) au (bSi, + cSit) ... anin = aUj ... bsi¡ + au, ■ .. a.

for all values of the subscripts and for all methods of grouping. It holds in

particular for is = r and 5 = 1, ..., » where r is fixed. Let k denote the num-

ber of interchanges necessary to obtain the order ilt ..., i„ from the natural

order 1, ..., ». Then, multiplying (11) by (—1)* and summing for iv ..., i„,

we have

D = A + Dt,

which was to be proved.

We prove the corresponding theorem for rows by noting that (11) holds when

s is fixed and is ranges over the values 1, ...,«, and summing as before.

6. Theorem 2.    The determinant

V =

ei ... e„

ei ... en

vector covariant of weight 1 of the linear algebra in n units eu ..., e„ for every

manner of grouping.

We set

V

Under transformation (2) this becomes

V =

Y!actUleil...YZ^aninein

From Lemma 3 we see that

Vi=     S
ft.»'«=1

<*ihe„ ... «„,-„<?,-„

<*iiieii anin ein

By Lemma 2 such of these determinants as have two identical columns are zero.

Moreover the a's are numbers of the field F. Hence we may restrict the iu

..., i„ to sets of » distinct values and write
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eil   ■ ■ ■   ein

V = J2 alh ... anin   .......
«>.•'»

*« • • • *.»

Let fe denote the number of interchanges necessary to produce the order ilt

. . ., i„ from the natural order of the integers 1, ..., n. By Lemma 1 the above

determinant changes sign with each such interchange, that is with each inter-

change of two columns.   Then

V' = £(-1)* «„,...  anin

«.»n

The above sum is exactly the determinant D of the transformation (2). Hence,

as stated,

V = DV.

7. Rational integral invariants. In the general linear algebra in n units the

right- and left-hand characteristic determinants*

Í'(«) = | Yfc ViJk xj - bik « |       (*,/,*- 1-n),

and the coefficients of the pqwers of o therein are absolute covariants under the

general group of homogeneous linear transformations on the units. In view of

Theorem 2, there are conceivably as many vector covariants of weight 1 as there

are ways of grouping n ordered factors, but it may happen in certain algebras

that a smaller number results. Thus for commutative algebras they all vanish

and for associative algebras they become identical. By means of the multi-

plication table (1) each such vector covariant can be expressed linearly in terms

of the units, i. e., in the form (6). Suppose that p of them are linearly indepen-

dent. By Theorem 1 the coefficients îj, are transformed cogrediently apart from

the factor P_1 with the coordinates x{ of the general number. Therefore if

these coefficients v{ be inserted in place of the x{ in a homogeneous absolute

invariant of degree r, there results a relative invariant of the linear algebra of

weight r.   This method yields 2np relative invariants.

III. A Lie complete system of invariants and covariants for

A TERNARY ALGEBRA

8. Foreword. It will be shown that for the algebra with three units, one of

which is a principal unit, the invariants formed by the method of the preceding

section together with those obtained from the characteristic determinants by

* L. E. Dickson, Linear Algebras, Cambridge Tract No.  16 (Cambridge, 1914), p. 17 and

p. 20.

ex ... en

ex ... en
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the methods of the theory of invariants of forms constitute a complete system

of invariants and covariants from the standpoint of Lie. In fact, if all the

invariants obtainable by both methods are taken, there is considerable redun-

dance. A set of the simpler ones is shown to be composed of functionally inde-

pendent invariants.

9. The finite transformations.    In the linear algebra in three units 1, eu d,

where 1 is a principal unit, the general number is of the form

(13) x = xo + £i<?i + XtCt

where x0, X\, Xt are numbers of a field F. The multiplication table may be taken

tobe

ci2 — do + atft + atet,

,...>. e,2 = bo + bid + b2e2,

exe2 = Co + cid + ctd,

erfi = do + di^i + tiie2,

where the coefficients are numbers of F. By applying the linear transformation

of units

,.. f.\ e'i — «o + «101 + cttCt,

K   } e'2 = /So + ft* + fe?2,

where the coefficients are numbers of F such that D = aißt — atßi is different

from zero, the principal unit is left invariant and the general number and multi-

plication table become (13) and (14) respectively with each letter primed. That

is, the transformation (15) of units induces upon the coefficients the following

transformation :

x'o = x0 + D~l(a2ß0 — aoßt)xi + D~l(ctoßi — aißo)x2,

x[ = D-1 ßtxi - D-1 ßiXt,

x2 = — D~x atXi + D~l aiXt,

a0 = A + D~\atßo ~ a0ßt)B + D~\aoßi - aiß0)C,

a[ = Z)-1 ßtB - D~lßiC,

a2 = -B-1 atB + D-1 aiC,

(16) b'0 = E + D-*(a2ßo - aoß2)F + D~Kotoßi ~ «iA)G,

b[ = D"» ßtF - i?-» ßiG,
b2 = - D-1 atF + D-1 aiG,

c'0  = H + D-^atßo - a0ßt)I + £>~ Wi - oift)/,

c'i  = D-» 0*7 - Z?-i ftj,
ci  = - D"1 <*2/ + D"1 «i/,

d[=K + D-l{atßo - a0ßt)L + D-l(«o/3i - «ift)M,

dl = D~l ßtL - D-i ßiM,
dl - - Í?-1 a2L + Z?-1 aiM,
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where

A = cto2 4- ai2Oo 4- a22bo 4- aia^o 4- ctictido,

B = «i2ai + o:226i 4- 2a0cti + aia2Ci 4- aiafedi,

C se oti2a2 4" «2262 4" 2aoa2 + a.i<x2c2 4" aiand2,

E =ßo2 + ßi2cto 4- ßi2bo 4- 01020 + ßißtdn,

F = ßi2ai 4- ft2èi + 20oj8i 4- ftftd 4- fcftdi,
G = ßM 4- ft2ö2 4- 20002 4- 01&C2 4- ftftda,
H = ao0o + aij3ia0 4- a2ß2b0 4- caßiCo + ct2ßido,

I = aißo + otoßi + aißiay 4- aißibi + aißiCi 4- a2j3idi,

J = otißo 4- 0-002 4- ai0iO2 4- a2ß2b2 4- aiß2c2 4- oç/SiC^,

K = a0ßo + oiißido 4- Ö202&O 4- a20iCo 4- ctißvdo,

L = oro0i 4- otißo + ai0iOi 4- a2ßibi -\- ct2ßiCi + aift>di,

M = a0ß2 + a2ß0 + caßia2 + a2ß2b2 -f a20iC2 4" a-iß^fh.

10. The Lie group. The generators* of the infinitesimal transformation

corresponding to the finite transformation (16) are found to consist of six partial

differential equations which it is not necessary to give here in detail. The

first term of each equation involves only the xit and is the only term in which

the x, occur. Since these equations are generators of an infinitesimal group

corresponding to the finite group of transformations (16), they form a fortiori

á complete system of partial differential equations. The six equations in fifteen

variables have nine functionally independent solutions, and these solutions form

a complete set of absolute invariants and covariants of the linear algebra (14).

Moreover, if the terms involving x0, Xi, x2 in these equations be deleted, there

results another complete system of partial differential equations, the generators

of the group corresponding to the group of transformations in (16) on the con-

stants of multiplication only. This system has six functionally independent

solutions, the six absolute invariants of the linear algebra. They are six of the

nine solutions of the first complete system. We see then that there are exactly

six absolute invariants and three absolute covariants in a complete system of

invariants and covariants for the algebra. There are then no more than seven

functionally independent relative invariants. A complete system will be

exhibited of three absolute covariants and seven relative invariants whose

jacobian does not vanish identically.

11. Invariants of the characteristic determinants. The right- and left-hand

characteristic   determinants   (12)   become

5(to) = - w3 4- Aw2 - Tu + A,

b'(w) = - w3 4- AV - T'w + A',

* Lie-Scheffers, Vorlesungen über continuierliche Gruppen, Leipzig, 1893, p. 716, et seq.
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where

A = 3*o + (ai + c2)*i + (di + b2)x2,

T = 3x02 + (aic2 — OüCi — Oo)*i2 +  (Mi — bidt — b0)xt2 + (2ai

+ 2ct)xoXi + (2b2 + 2dùxoXt + (ai62 — ajji + ddi — Cidt — d0 — Co)xiX2,

(17) A  = *os + (oüCo — aoCi)xi3 +  (bido — MiW + (aic2 — atCi

— a0) XoXi2 +  (ai + c2)xo2Xi + (h + di)z02*2 + (Wi — M2 — b0) xoXt2

+  (cock — Ctdo + a260 — ao&2 + aoCi — aic0)xi2Xt + (¿>odü — btd0 + ao&i

— Oièo   +  Cido   —  codAxiXt2   +  (ctdi   —   cid2   + a¡bt  —  a26i   —  c0

— do)xoXix2,

and A', I", A' are obtained from A, T, A respectively by interchanging c, and

df, for i = 0, 1, 2. Each of these six expressions satisfies the equations of §10

and is an absolute covariant of the algebra.

The invariants of the six ternary forms (17) are invariants of the algebra.

A and A' have no invariants. T and T' have one invariant each, their hessians.

The ternary cubic forms A and A' each have two relative invariants, the S and

T of Aronhold.* But only six of the seven invariants have been accounted for

by this means, even if all six should prove to be independent. Thus it is evident

that the invariants obtainable as the invariants of the coefficients of the char-

acteristic determinants are not sufficient to form a complete system.

12. Additional invariants by the method of Section II. By Theorem 2 of §6,

the hypercomplex determinant

1   ei   et\

V 1    ei   e2

1    d   et

= det — etßi

is a vector covariant of weight 1.   By the multiplication table (14) this can be

expressed as

(18) V = (c0- do) + (d - di)d + (c2 - dt)et.

Now by Theorem 1, §2, the coefficients of the units in (18) are transformed co-

grediently apart from the factor D-1 with the coefficients Xo, Xu x2 of the general

number, and hence when substituted for these variables in (17) give relative

invariants of the algebra, t   Thus we have

Ai = 3(c0 - do) + (ai + c2)(ci - di) + (di + b2)(c2 — dt),

A[ = 3(c0 — d0) + (oi + dt)(ci — di) + (ci + b2)(a - dt),

r2 = 3(co - do)2 + (oiC2 - atCi - Oo)(ci - di)2 -\-,

rj = 3(co - do)2 + (aidt - chdi - ao)(ci - d,)2 -|-,

A3 = (co — do)3 + (a2c0 — ooc2)(ci — di)3 -\-,

A'3 = (co - do)3 + (atdo — aod2)(ci - di)3 + ■• ■ .

(19)

* Salmon, Higher Plane Curves, Dublin, 1897, pp. 191-192.

t Throughout this article the subscript on the symbol for an invariant indicates its weight.
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Each of these forms is transformed into a function of itself by the differential

operators of §10.

Evidently there are functional relations between the twelve relative invariants

which these methods yield, since it has been shown that there can be but seven

functionally independent invariants. This redundance makes unnecessary

the use of the complicated S and P invariants of A and A'. The 5 invariant of

A — A' is quite simple however, and will be used.

13. A complete system of invariants. It will be shown that the following

three covariants and seven invariants form a complete system:

(20) A,A',e = T-T',Ht = hessian of T, H2'= hessian of T',

Si = S of A - A', Ai, r2, IV, A,.

Since we have only ten relations in fifteen variables, it is sufficient to show

that they are independent when five of these variables are put equal to constants.

It is found convenient to set ao = ai = c2 = d2 = 0 and a¡ = 1. In fact this

normalization can be made upon T,V, A, A' before H2, H2', and Si are calculated.

The ten invariants (20) then reduce to the fairly simple forms :

A = 3*o 4- (bt + di)x2,

A' = 3*o 4- (bt + Ci)x2,

9 = — (ci — di)xi2 — b2(ci — di)x22 — 2(ci — di)xoXt,

Hi = 4ci(di2 - Mi 4- h2) 4- 126oCi - 3V - 66i(c0 4- d0)

-3 (co + do)2,

Hi' = 4d1(ci2 - btci + bt2) 4- 12Wi - 3¿>i2 - 6¿>i(c0 + do)

(21) - 3 (co + do)2,

St    = (ci - di)2/8l [3b2(c0 - do)2 + 6(c0 - d0)(ci<¿o - Codi)

4- 36i (co - d0)(ci - di) - (ci - di)* (b22 + 360)],

Ai     = 3(c0 — d0),

T2    = 3(co - do)2 - ci(ci - di)2,

Ti'   = 3(co - do)2 - di(ci - di)2,

A3    = (co - do)3 + Co(ci — di)z — Ci(co — d0)(ci — di)2.

14. Independence of the invariants. To prove the independence of these

ten invariants it is sufficient to prove that the jacobian

(22) d(A, a', e, Ht, Ht', Si, Ai, ra, iy, a3)

ô(*o, Xi, Xt, bo, bi, bt, Co, Ci, do, di)

does not vanish identically. Now only the first three of these polynomials (21)

involve jcoi xu Xt, and only the first six involve bo, bu bt. Hence it follows from

considering the Laplace development that the jacobian (22) factors into three

factors, viz.,
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o(A, a', e) x b(H2, H2', Si) x 5(Alt r2, iy, a3)

b(xQ, xi, xt)        b(b0, bi, b2) b(c0, d, d0, di)

It is sufficient to show that no one of these three jacobians vanishes identically

in ci, and hence it is sufficient to show that the coefficient of the highest power of

ci in each jacobian is not identically zero. It is then permissible to drop all

terms in each element except those involving Ci to the highest power to which

it occurs in that element; for the other terms evidently cannot enter into the

term of highest degree in Ci in the expansion of the determinant. It is important

to be sure, however, that the coefficient of the highest power does not vanish,

for this method does not give the coefficients of lower powers correctly. By

this method it is easy to show that

d(A,A', 9)
-:- = oxiCi2 + lower powers of ch
b(xn. X\. Xi)

di(cQ — do) Ci5 + lower powers of C\,

b(xo, xi, xt)

b(Ht, Ht', Si)       = _   16

b(bQ, bu bt) 9

o(Ai, r2, IV, A3)
= — 9ci7 + lower powers of Cu

b(co, C\, do, di)

Then the jacobian (22) becomes

96 xidi(co — do)ci14 + lower powers of C\,

and the ten polynomials (20) are functionally independent and form a complete

system of invariants and covariants of the linear algebra (14) from the stand-

point of Lie.

IV. Characterization by invariants of a canonical form

15. The rank covariant. Let us consider the algebra in three units 1, d, et

whose general number and multiplication table are given by (13) and (14)

respectively. The rank* of every such algebra is three or two according as every

number does not or does satisfy a quadratic equation. This rank is an arith-

metic invariant under every linear transformation of units (15). It will be shown

that for this example the arithmetic rank invariant can be replaced by a rational

covariant.

* There is an equation p(w) f 0 of lowest degree having X as a right-hand (left-hand)

root. The degree of this equation is called the right-hand (left-hand) rank of the algebra.

(Cf. Dickson, Linear Algebras, p. 23.) It can be shown that there is at least one number

satisfying no equation of lower degree.
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In every algebra of rank 3 with a principal unit, there is some number x

which does not satisfy a quadratic equation. Then the powers 1, x, x2 are

linearly independent and may be taken as the units 1, ei, e2. That is, the multi-

plication table of every rank 3 algebra in these units has the form (14) with

a0 = ai = 0, ai = 1. Conversely, every algebra of this form is of rank 3.

Evidently, then, a necessary and sufficient condition that an algebra (14) be of

rank 3 is that it be possible to make the above normalization.

From equations (16) it is seen that the conditions on a transformation (15)

which shall make a0' = a/ = 0 and a2 = 1 are

A 4- D~l(a2ßo - aoß2)B + P'Wi - aiß0)C = 0,
D~lß2B - D~lßiC = 0,

-D~la2B 4- D-lctiC = 1.

These conditions are readily found to be equivalent to

(23) 0o = A,       0i = B,       02 = C,

where A, B, C, given in (16), are polynomials in the a's and the constants of

multiplication. Thus the as can be chosen arbitrarily and the 0's calculated

from the above relations, provided only that the determinant of the transforma-

tion

(24) D = eked3 4- (— ai + c2 4- d2)ai2a2 4- (b2 — cx — di)aia22 — bia2s

be different from zero. Now a\ and a2 can evidently be chosen so that D is

not zero unless every coefficient of D vanishes. Then a necessary and sufficient

condition that the algebra be of rank 3 is that not every coefficient a2 etc. of

(24) vanish.

It will now be shown that there exists a covariant $ whose coefficients are the

coefficients of (24).    From (17) we form the absolute covariant

I" - T 4- | (A2 - A'2)

every term of which involves (ci — di) or (c2 — d2). It was shown in (18) that

(co — d0), (ci — di), (c2 — d2) are transformed cogrediently apart from the

factor P_1 with x0, xu x2, so we may substitute Xi and x2 respectively for these

expressions and obtain a relative invariant of weight — 1,

3> = 02*i3 + (— ai 4- c2 4- d2)xi2x2 4- (b2 — ci — di)xix22 — biXt3,

whose coefficients are the coefficients of (24). Hence a necessary and sufficient

condition that an algebra (14) be of rank 3 is that $ does not vanish identically.
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16. Determination of a canonical form. We shall designate as the generic

case that case for which neither $, T2 — IV, nor A — A' vanishes identically,

and reduce this generic case by rational transformations in the general field F

to a canonical form—i. e., to a form in which each remaining coefficient is a

relative invariant under the most general transformation which does not destroy

the normalization. Since 3> is not identically zero, the multiplication table can

at once be reduced as in §15. Then from (23) we see that in order to preserve

this normalization the ß's must obey the conditions :

ßo = c*o2 + cti2b0 + aia2(c0 + do),

(25) ßi = on2bi + 2«o«i + aia2(ci + di),

ßt — ai2 + a22b2 + 2a0a2 + aia2(c2 + d2).

If c2 — dt is not already zero, it is possible to effect a transformation making

ct   — dt equal to zero.    From (16) it is seen that under every transformation,

(26) Ct   - dt' = - a2(ci — di) + ai(c2 - dt).

Therefore if we choose «i and a2 satisfying the conditions

(2~s <*i(ci - dt) = a2(ci - di),

D = ai3 + (c2 + di)ai2a2 + (b2 — Ci — di)aia22 — bia23 ¿¿ 0,

and the ß's according to (25), we have the required transformation. Multiply-

ing the second equation of (27) by (c2 — d2)3 and eliminating ai by means of the

first equation, we have

D = ai3[(ci - dO3 + (a + dt)(c2 - d2)(d - di)2

+ (b2 — bi — Ci — di)(c2 — dt)3}.

Hence this normalization is possible if and only if the expression in brackets is

different from zero.    But this expression is precisely the reduced form of the

invariant IV — T2 which we have assumed not zero.

Since the covariant

A — A' = (c2 — d2)#i — (ci — di)x2

does not vanish identically for this case, we know that d — dx is not zero. From

(26) it is then seen that a necessary and sufficient condition on a transformation

that shall leave this normalization undisturbed is that a2 = 0. Then condi-

tions (25) require that ai ^ 0, a2 = 0, ßa = ao2, ßi = 2a0«i, ß2 = ai2, and

hence D = «i3.    We see from (16) that by (15)

(28) c2   = Zaoai + ai2c2,
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so let us now apply the transformation

(a0    «i    a2\        /— C2/3 1 0\

0o    0i    02/ = V c22/9   -2c2/3    l)

which reduces c2 to zero. Dropping accents, we obtain the canonical form of

the generic case for rational transformations, viz.,

ei2    = e2,

e22    = bo + biei 4- b2e2,

(29) eie2   = c0 + Cieu

e2ei   = do 4- d^i, Ci — di ^ 0.

It is evident from (28) that for c2 = 0 and ai ¿¿ 0, a necessary and sufficient

condition that c2 = 0 is that a0 = 0. Then the most general transformation

which will leave (29) unaltered in form is of the type

/O    a,     0\     n

(0     0    ai2) '  D ' *'■

The effect of this transformation on the coefficients of (29) is to make

(30) fco' = oti%,    W = ai36i,      b2    =  ai2b2,    c0'  =  ai%,   c\    =   ai2Ci,

d0' = ai3do,   di' = a^di.

Hence no further reduction by rational transformations is possible, although

by a transformation in general irrational any one of these coefficients which is

not zero can be reduced to unity. Then the other six are parameters which

cannot be altered except by a factor which is a root of unity.

17. Characterization of parameters. It is seen from (30) that the most that

any transformation can do to (29), preserving its form, is to multiply each co-

efficient by a power of the determinant. It is natural to expect then that each

coefficient in (29) is the reduced form of a relative invariant of the original form

(14). We shall expect c0, do and ¿>i to be relative invariants of weight 1 ; cu di

and b2 of weight 3 ; and b0 of weight 5. We prove that this is so by actually

finding these invariants in terms of known invariants. The invariants which

characterize c0, Ci, d0, di will be denoted by, respectively, C°, C, D°, D'.

Making the normalization indicated in (29), we find that the invariants (19)

reduce to the forms

3(c0 — d0),

d0)2 - ci(ci — di)2,

do)2 - d,(ci - di)2,

(Co — do)3 + Co(ci — di)3 — Ci(co — d0)(ci — di)2.

(31)

A! = A/ .
r2 - 3(co

IV = 3(c0

A3 - A3'
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We have exactly four relations to determine four unknowns. We find c0 in

terms of the reduced invariants (31) and define C to be the corresponding func-

tion of the complete invariants, so that C is an invariant which reduces to

Co under the normalization (29). Similarly we find invariants which reduce to

the other parameters.    Thus, since IY — r2 9e 0,

C =

D° =

As - L At3 + | At(| V - T2)

IV - r2

A3 - ¿ Ai3 + i Ai(| A!2 - IV)

iY - r2

„,    i ax2 - r2 i A!2 - iy

(r2'-r2)f (r22-r2)f

Evidently the weights are as predicted.

18. Equations defining the remaining parameters. Let us now consider the

problem of finding invariants which characterize bo, bi, b2. In addition to the

invariants (31) we use the hessians H2 and H2 of T and V, and the invariants

St and T6 of A — A'.    Under the normalization (29) we find

(a) H2,   (b)H2',   (c) Si as given by (21),

(    '       (d) 76 = 4 l2mp3 - 3 l2r2p2 + 6 pHqrs - 12 mrpq3 + 8 qh* - 27 p2q2s2,

where

I = Co — do, m = b0(c! — di) — bi(c0 — do), p = -^j (c\ — d¡),

q = —.■ (ci - di), s = y [62(c0 - d0) + 2cid0 - 2c0di],

r = —i í>2(ci — di).

Making use of the relation (33) in (32c), we have (34) :

(33) Hi - Ht' = 4(ci - di)(bt2 + 3&o - Cidi);

(34) 6i(c0 - do)(c,  - di)  + &2(c0  - do)2  =  ¡  [81 S4/(d  - d,)

- 6(c0 - d0) Mo - codi) + \ (ci - di)(H2 - Ht') + adi(ci - dj)2].

Multiplying (326) by Ci and subtracting this product from the product of (326)

by di, we obtain

(35) 36i2 + 6bi(c0 + do) + 4ö2c1d1 =  (dÄ - CiH1')/(c1 - d,)

+ 4cidi (ci + di) - 3 (co + d0)2.
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Directly from (33) comes

(36) í>22 4- 3b0 =  (4ci _ 4¿i)  [H2 - H2' + 4cid,(ci - di)].

Now Co, do, Ci, di are the values which the known invariants C, D°, C, D'

take when the general algebra becomes (29). Consider functions B°, B', B"

of the coefficients of the general algebra such that P° has the value b0, B' the

value bi and B" the value b2 when the general algebra becomes (29). Then

corresponding to (34), (35), (36), and (32d), we have

(37)

where

B'(C° - Do)(C - D') + B"(C° - D«) = E,

3B'2 4- 6P'(C° 4- D°) + 4B"C'D' = P,

B"2 4- 3P° = G,

P6 = 4 Ihnp* - 3 l2r2p2 4- 6 pHqrs - 12 mrpq3 4- 8 q3r3 - 27 p2q2s2,

E = | [81 Si/(C - D')2 - 6(C° - Da)(C'D° - C°D')

+ \(C - D')(H2 - Hi') 4- C'D'(C - D')2],
F = (D'Hi - C'Ht')l(C - D') 4- 4C'PP(C 4- D') - 3(C° + Da)2,

G =  (4C - AD')  [Hi * H2' + 4C"D'(C' - D')],

I   = C° - P°, m = B»(C - D') - B'(C° - D°),

P = - I (C - D'),        q-i (C - D'),
r  = - | B"(C - D'),    s = I [B"(C° - P°) 4- 2C'D° - 2C°D'].

Equations (37) determine the invariants P°, B', B" uniquely. A practical

method for determining them is to calculate the two solutions of the first three

equations of (37) and retain only the one which satisfies the fourth relation.

Thus the invariants of the linear algebra (14) which we have found are suffi-

cient to isolate and characterize the generic case.

The University of Chicago,
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