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1. In the algebra of Boolean f entities as developed by Ernst Schröder % and

others, several important theorems regarding functions of Boolean variables are

used. They have recently been stated by Eugen Müller. § The following

three I shall use in this paper.

P. 1. Boole's theorem. Every function f(x) of one variable can be "developed,"

i. e., brought into the "normal form"

f(x)=ax + bx

where a=f(U) and b=f(Z), Uand Z designating the universal and the null class,

respectively.

P. 2. Proposition of mean value.    The values which a function

f(x) =ax + bx

can  take lie  "between"** ab and a  +  b,  i.  e., ab < f(x) < a + b, for all

values of x.+t

* Presented to the Society, September 7, 1922.

t Regarding the term "Boolean" cf. the paper by H. M. Sheffer, A set of five independent

postulates for Boolean algebras, these Transactions, vol. 14 (1913).

% Ernst Schröder, Vorlesungen über die Algebra der Logik, Leipzig, 1890-95 (3 volumes).

§ Eugen Müller, Schroder's Abriss der Algebra der Logik, Leipzig, 1909, 1910.

** Following Schröder and others I say that a Boolean entity c lies "between" a and b, if

a is wholly contained in c and c in b (or the same conditions with a and b interchanged). Josiah

Royce, following Kempe, means by the statement c lies "between" a and b, that ab is wholly

contained in c and c in a 4- 6; cf. Josiah Royce, The relation of the principles of logic to the founda-

tions of geometry, these Transactions, vol. 6 (1905). The former usage follows the analogy

between the "inclusion-relation" and the "less-than relation." The latter, however, while

at first a little surprising, is really the better. It includes the former whenever a is wholly con-

tained in b (or vice versa).

tt The symbol <, which I use to designate "inclusion" (or "implication") is due to Mrs.

Christine Ladd Franklin; cf. Baldwin's Dictionary of Philosophy, articles "syllogism" and

"proposition."

(212)
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P. 3. Converse of the proposition of mean value, or Eugen Müller's* theorem.

A function f(x) = ax 4- bx will take every assigned value c which lies in the interval

ab to a 4- bfor some value of x; x — ac + bc=f(c) is such a value. And, in general,

f(x)=c if x=(ac 4- ac) v 4- (be 4- bc)v, where v may take any value whatever.f

These theorems form an important beginning of a theory of functions of

Boolean variables. But the variation of a function as determined by the varia-

tion of an independent variable has not yet been studied at all. This is the

problem which the present paper sets itself, and of which it gives a complete

solution.

The main difficulty which had to be removed before the variation of a function

could be studied at all, is this : f(x) takes every one of its possible values for an

infinite number of values of x, by Eugen Müller's theorem. If, then, we let

x vary in any prescribed manner, how can we know what the effect of such a

change will be on f(x) ? From a value xi the independent variable may change

to an indefinite number of values without producing any change whatever in

f(x) ! The behaviour of f(x) is here somewhat similar to that of periodic func-

tions in the theory of functions of a complex variable. There we bring order

into the confusion by limiting the independent variable to intervals which form

"periods;" so that, within these intervals, we can say, in general: when xi and

x2 represent two distinct values of the independent variable, f(xi) and f(x2) are

also distinct. But the case is not quite the same for functions of Boolean vari-

ables :  there is no such periodic repetition of the values of f(x). %

2. The difficulty is removed here by limiting the variation of x, e. g., to the

interval from ab to a 4- b.

D. 1. For reasons which will appear presently, I shall call the values in this

interval the "effective values of x," and the interval itself the "effective range."

Of course, a range which is effective with respect to one function, f(x) =ax + bx,

need not be effective with respect to another. Effectiveness is therefore always

meant relative to a given function.

The chief property of effective values is stated in the following fundamental

proposition :

* As far as I am aware this proposition was first stated and proved by Eugen Müller, loe.

cit., pp. 82-83 and p. 111.

t Schroder's formula for the "general" solution of an equation

ax + bx =Z,

namely x — aoi +, bu provided ab = Z, is a special case of this theorem.    For different expres-

sions, cf. the discussion of the inverse function in the present paper.

Î For functions of a Boolean variable we have indeed / (x + uab + vab) =f(x) somewhat

resembling the definition of doubly periodic functions. But u and v are here not "integer"

but arbitrary variables.
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P. 4. Proposition. If Xi and x2 are effective values of x relative tof(x) =ax +bx,

f(xi) differs from f(xi) when, and only when, Xi differs from x2, i. e.,

(ab < Xi < a + b) (ab < xt < a + b) < [(xi 9¿ x,) = {f(xi) 9¿f(x2)} ].

In other words: If we limit x to the effective range, then every change in x

produces a change in f(x). It is this property which justifies the name "effective

range."

Proof. I show that, under the hypothesis for Xi and Xt, f(xx) is identical with

f(xi) when, and only when, Xi is identical with x2; from which the theorem follows

by contraposition.    Let

f(xi) =axi + bxi and f(xt) = axt + bxt;

then

\f(xi) =f(xt)] = (axi + bxi = axi + bxt)

(1) = [(axi + bxi) (axt + bxt) + (axx + bxi) (axt + bx2)=Z]

= [(ab + ab) (xiXt + xxx2) =Z].

But

(au < Xi < a + b) = (abxi + a~bxi = Z) < (abxiXt + abxiXt=Z),

and

(ab < Xi < a + 6) = (aZ)ic2 + abxt = Z) < (abxiXt + 06^^=2),

or:

(2) (ab < xi < a + fc).(a6 < x2 < a + o) < [(a6 + äfc) (*i¿¡¡ + XiXt) =Z].

By combining (1) and (2) we obtain:

(l)-(2) < [(ab + ab + ab + ab) (xix2 + xxxt) =Z] < (xxxt + XiXt = Z) = (xi=Xt).

So that, under the hypotheses for xi and x2,

U(xù=f(xt)] < (a;i = ̂ ).

But from the uniquely determining character of the fundamental operations

it follows that

(*i = *2)   <   [/(*l)=/(*2)],

i. e.,f(x) is always a "uniform" function.*

* For the term "uniform" see Forsyth, Theory of Functions of a Complex Variable, (1900),

p. 15.
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We obtain therefore:

[f(xi)=f(xt)] = (xi=xt)

provided xi and xt are effective values.

From this our theorem follows by contraposition:

\f(Xi)  ^f(Xi)] = (xi9^Xi).

Within the effective range f(x) is therefore a uniform function which does not

"repeat" its values.

D. 2. The values of x which lie either in the interval Z to ab, or in the interval

Z to ab, I call "ineffective." By an "ineffective range", I mean a collection of

ineffective values.

This name is justified by the following:

P. 5. Proposition. However x may vary, provided it belongs to the ineffective

range, f(x) remains constant, i. e., is not affected by the change in x.

Proof: To prove this theorem, I show that (1) for all values of x such that

x < ab the function has the value f(x) = b and (2) for all values of x such that

x < ab the function has also the value f(x) =b; i. e.,

\f(x)=ax 4- bx] (x <ab) < [f(x)=b]

and

\f(x)=ax 4- bx]_(x < âb) < [/(*)=&].
(1) (x < ab) [f(x)=ax + bx] = (x = abx) \f(xj=ax 4- bx]

< [f(x)=abx + b_(a + b + x)]= [f(x)=b(ax + a + x)]

<\f(x) = b(x + ä A-x)]=\f(x)=b];

(2) . (x < ab) \f(x)=ax 4- bx] = (x = abx) [f(x)=ax + bx]

< \f(x) =6(a + b + x)] < [f(x) =b]. q. e. d.

Given, therefore, a function of one Boolean variable, it is always possible, by

Boole's theorem, to put it into the "normal" form; and therefore to determine

the effective range of x, as well as the ineffective range.

The following theorem leads to a still further distinction which is sometimes

important.

P. 5. Proposition. The effective range of x contains in general (namely pro-

vided ab 9¿ Z) an ineffective part, which is innocuous.

For let the effective values of x be designated by xe; then, as they lie "between"

ab and a + b, they can be represented* thus;

xe=ab 4- v(a + b) =ab 4- v(ab 4- ab 4- ab)

=ab +v (ab + ab),

* See Schröder, loe. cit., vol. I, p. 426.
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where v may take any value between Z and U. By this representation every

effective value of x is split into two parts, namely ab and v(ab + ab). It is the

ab part which is ineffective, i. e., it contributes nothing to the value of f(x) ; or

f[ab + v(ab + ab)]=f[v(ab + ab)].

For

(1) flab + v(ab + âb)]_=a[ab + v(ab + ab)] + b[(â + o_) (s + ab + äo)]
=a£> + vab + abv=a(b + v) + abv = b(a + ») + at),

and

(2) /[í>(a¿> + ao)] = i>a6 + o(t) + ab + ab)=vab + bv -\- ab

= a(b + v) + bv = b(a + v) + av.

I call this ineffective part of x, "innocuous" to indicate that it does not in-

validate the fundamental proposition

W.)*Âx't)]=(x',*x't)

which was proved above (P. 4) for effective values of x. The reason why this

ineffective part of xe is innocuous is clear: it, as a whole, is part of every xe, so

that the variation of xe does not take place in it at all.

D. 3. But this consideration leads to the definition of the wholly-effective range

of x. By this I mean the collection of values which lie between Z and ab + ab,

i. e.,

Z < xu < ab + ab,

where xa designates the wholly-effective values of x. It is obvious that the

wholly-effective range of x is obtained by omitting the ineffective part ab from

the effective range.

We can write xa in the form :

xa = v(ab + ab)

where

Z < v < U.

If we choose the regional interpretation of our Boolean entities, which in the

present paper is the preferred interpretation, then the wholly-effective range is,

in general, represented by a disconnected region. A value in this range can be

expressed thus:

(xa = Xi + x2) (xi < ab) (xt < ab).
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P. 7. Proposition. (1) For every wholly-effective value xu there exists an effec-

tive value xe, determined by the condition.

xe=xu + ab

and (2) for every effective value xe there exists a wholly-effective value xu, determined

by the condition

xa=xe ab.

For

,.v (ab  < xe < a + b)= [xe = ab + v(a + &)]

1 ' = [xe = ab + v(ab + ab)]= [xe = ab + *„]

and

(2) xe ab=[ab + v(a + b)]-ab = v(ab + 06) =xu.

D. 4. I shall call an xe and an xa thus related "associated values."

For wholly-effective values we have the same theorem (P. 4) which was demon-

strated for effective values, namely

P. 8. Proposition.

[/(O  ^ f(xl)] = (x'u 9¿ O

where xu and xa designate any two wholly-effective values.

An independent analytical proof of this theorem can be made in a manner per-

fectly analogous to the one given for P. 4. But to give an illustration of our new

methods, I shall present the following.

Let us start with the definite value

f(xi)=ax¿ + bx'a = k

and consider the function

P(x) =J(x'u + *) =a(x'„ + x) + b(x'a + *)

where x shall be limited in its variation to the range Z to ah, i. e.,

II(* < ab).*
X

I show that the values of x in this range are ineffective relative to F(x).

For:

F(x) =F(U)x + F(Z)x   (by Boole's theorem)

=ax + kx.

* I use Schroder's notation to express: "for all values of *." Cf. Schröder, Algebra der

Logik, vol. II, p. 26, et al.
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The range from Z to ak is therefore an ineffective range of x relative to F(x),

according to D. 2.

But

ab < k

by the Proposition of Mean Value applied to f(xj), and

(ab < k) < (ab < ak),

so  that

(x < ab) < (x < ak);

x. e., the values of x which are limited to the range Z to ab lie also in the range

Z to ak and are therefore ineffective relative to F(x), i. e., F(x) remains constant

while x varies from Z to ab.    But for x = Z, we have

F(x)=f(x'a)=k.

F(x) keeps therefore the value k even when x takes the value ab.    But

xi+ ab=x. (by P. 7).

We find therefore that, if xa and xe are two associated values, then we have

always

/(O =/tó

and the present theorem is reduced to the previous one.    q.E.d.

Let us state the proposition by which this reduction is effected as a separate

proposition and add an analytical proof.

P. 9. Proposition.    If x¿, and xe are two associated values, i. e., if

x'e =x'a 4- ab

then

f(x'e), =f(x'a),

i.  e., f(x) takes the same value for an effective value of x and its associated

wholly-effective   value.

Proof.

f(x'.)=f(xú + ab) =axl + ab + ahx'a
= ax'„ 4- b(a + ax'u) =ax'a +_b(a 4- x'a)

= ax'a -f bx'a 4- ab-ax'u 4- bx'u=f(x'¿). q. e. d.

3. We have shown that a function f(x) is a uniform function if x is restricted to

the effective (or the wholly-effective) range.    I prove next
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P. 10. Proposition. f(x) will take any one of its possible values, as k, for one

and only one effective value of x, and

xe =f(k) —ak + bk

is this value.

Proof. (1) By Eugen Midler's Proposition, Xi=f(k)=ak + bk is a value

for  which f(xi) = k.

(2) f(k) is an effective value of x, i. e., f(k)=xe, for it lies in the effective

range ab to a + b, by the Proposition of Mean Value.

(3) Iif(xe) =k, for an effective value xe, and xe is an effective value such that

x\ ?¿ x\, then/fe) ^ f(x"e) 9¿ k (P. 4). Q. E. d.

This proposition allows us to limit x to the effective range and yet obtain all

the possible values of f(x).

We may even limit x to the wholly-effective range and still obtain all the

possible values oif(x), as is shown by the following:

P. 11. Proposition. A function f(x) will take any one of its possible values,

as k, for one (and only one) wholly-effective value of x, and xa = bk + bk is this

value.

Proof.   By the previous proposition (P. 10) there is a value

xe = f(k) = ok + bk

such that

Therefore there must be a value xa, namely the associated wholly-effective

value, such that/(*J =f(xe)=k (P. 7 and P. 9).

But xa = xe-ab, (P. 7), i. e.,

xa=(ak + bk)ab = ab~k + abk=abk + abk + abk + abk = bk + bk.

since

(ab <k <a + b) = (abk=Z) (abk=Z),

and this value is the only wholly-effective value for which f(xj =k (by P. 9).

Q.E.d.

4. The values which a function of one Boolean variable takes may be grouped

into three ranges, in terms of the regional interpretation.
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D. 5, 6, 7, 8.    I say that a function

f(x)=ax + bx

consists, in general, of three possible regions, namely

ab, ab and ab

which I shall call the "constant region (ab) (D. 5), the "increment region"- (ab),

(D. 6) and the "decrement region" (ab) (D. 7), respectively. The remaining

region ab, I call the "impossible region" (D. 8) for f(x).* This distinction is

preparatory to the statement of the principal theorem (P. 16) ; the reasons for

naming these regions as I do will presently become apparent.

Let us first consider a few special cases.

Case 1. Let x be any (effective) value which lies wholly in the increment

region, ab, of f(x), i. e.,

(x < ab) = (x=mab)

where

Z < m < U.

Then

f(x)=ax 4- bx = m-ab 4- b(m + a + b)= m-ab + b

= x 4-0.

Or, if x is the region marked thus: ==, and f(x) is the region marked thus ||||,

the accompanying Figure 1 will represent the relation of f(x) to x.

In other words: as long as x. remains wholly within the increment region,

otherwise varying in any manner whatsoever, f(x) will be obtained by adding

a constant amount, namely b, to it.    Or, put differently:

P. 12. Proposition. If x flows in any manner whatsoever into the increment

region ab, or out of it, f(x) will flow with it into ab, or out of it.

Case 2. Let x be any (effective) value which lies wholly in the decrement

region, ab, of f(x), i. e.,

(x < ab) = (x=nab)

where

Z < n < U.

Then

f(x)—ax 4- bx = anab + b(n + a + b)=bx.

* The relation between the "possible" regions of f(x) and the effective values of * should be

noticed.
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With the same method of representation the accompanying figure 2 will

exhibit the relation oif(x) to x in this case.

This relation is stated in the following proposition:

P. 13. Proposition. If x flows, in any manner whatsoever, into the decrement

region ab, f(x) flows out of it by the same amount; andf(x) flows into the decrement

region, if x flmvs out, and by the same amount. So that f(x) will always fill the

decrement region unless forced out of it by the inflow of an x of the same amount.

Case 3.    Let x consist of two pieces xi and x2 such that

(x = xi + x2)-(xi < ab) (xt < ab),

i. e.,

x=m-ab + nab,

where m and « take any values whatever.

Then

f(x)=m-db + bx=xi + bx=xi + bxvx2=xi-+bx2.

This is represented in figure 3.    In other words :
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P. 14. Proposition. The effect of the two parts of x onf(x) can be obtained by

considering their effects separately and combining the partial effects.

It will be recalled that the values of x are in these three cases effective, and

indeed wholly-effective, relative to f(x).

Case 4. Let x be any value which lies wholly within the constant region ab.

Its variation will have no effect onf(x).    Hence:

P. 15. Proposition. Thef(x) always fills the constant region, by the Proposition of

Mean Value, irrespective of x's flowing into or out of it. No change of x what-

ever can force f(x) out of the constant region ab ; or into the impossible region ab

(the latter also by the Proposition of Mean Value).

We are now prepared to state in a single proposition the behavior of f(x) =

ax 4- bx for any change of x :

P. 16. Principal Theorem. Every change of x, or part of x, in the increment

region ab produces the same change inf(x) ; in the decrement region ab it produces the

opposite effect; and a change of x in any other region has no effect whatsoever on

f(x), which always occupies ab, and never enters ab.


