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Introduction

The question to what extent the general Einstein space is determined

by its group of motions seems to be of interest from a physical as well

as a geometric standpoint.

In what follows we have discussed the problem of determining the group

of motions in a given Riemannian n-space and its converse (Killing's

equations). The assumption is then made that an Einstein space whose

linear element is

S 8

(a) —ds2 = 2 ffik dxi dxk—2 9io dxt dxp, x0 = t,
i o

shall admit the group of "rotations"

_,: *-f£-»|£ (¿,*= 1,2,3)

and the following theorem is proved:

A necessary and sufficient condition that the space (a) shall be reducible

to the form

(6) — ds2= 9, dr*-\-y,(dO* + ain* Ody*) — <px dt2,

<px, <p2 and fs being arbitrary functions of r and t, is that it shall admit

the group G3 as a complete group of motions.i

It may further be required that (b) admit a one-parameter group

Si_ + 5'__

where  §0  and £, are functions of r and t.    The necessary and sufficient

conditions that this shall be the case are found to be

"* Presented to the Society, March 26, 1921.

f This theorem has generally been taken for granted by writers on relativity.
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(*■ an arbitrary function of ys or a constant).   It is then shown that if these

conditions are satisfied, the space (o) may be reduced to the static form.

Special forms of static spaces are then considered with special reference

to their group properties and the principal curvature of their sub-spaces

Ss:   t = 0;        S\:   f = 0;        S2:   0 = 0.

The question of the class of the quadratic form (o) is then taken up,

and it is proved that a necessary and sufficient condition that (b) shall

be of class 1 is

(«0 (02, 02) (13, 13) = (01, 01) (23, 23)+ (12, 02) (13, 03).

The general space (6) can therefore be immersed in a flat 6-space,  and,

if (c) is satisfied, in a flat 5-space.

It is also proved that if a general space («) admits any one of the

abelian groups

9/.     JL   JS_.       9/      V      9/
3x0'      3x0'   9x3'      9x0'   9xs'   dx2 '

as complete group of motions, it is of the fifth, third, and second class

respectively. Among these spaces is found Weyl's static and cylindrical

space admitting an abelian G2.

1. The general differential quadratic form. Let there be given

a general differential quadratic form

n

(1) ds2 = ¿j aikdxidxk
i

which may be interpreted as the linear element of a curved space Sn of n

dimensions. This space is said to admit of a group of rigid motions, if

there exists a group of transformations

(2) xi = fiixx, Xi, ---, xn, ax, a-2, ■ --, ar) (t = 1, 2, • • -, n),

which will carry the form (1) into the form

n

ds2 = j£ a'ik dx'i dx'k
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such that the  coefficients a\k are the same functions of x\ as the aik's

are of Xi.   If the coefficients Oik are perfectly general, no such group exists.

In order that a given form (1) shall admit a group*

the |'s must satisfy the so-called Killing's equations,

(3)    P'i%+?°"ik+?°»ik*=0 u*-1-*-.»).
the integration of which will determine the £'s as functions of xi and r

constants of integration. The maximum group has r = n(rc + l)/2 para-

meters, in which case the space Sn has a constant Riemannian curvature.

Bianchit gives Killing's equations another form,

(4)     ï^ + lÎ"1?)'!^    1« =-£<_**       H,k= 1,2,-..,n),

|¿ft I
where ] .    are the usual Christoffel symbols.   All the second derivatives

obtained from these equations can be expressed linearly and homogeneously

in terms of the t/'s and their first derivatives.   We thus obtain the system

(5)
_____        ___VÍ¿i. ___VÍ*71 9 l'<y\kl\
Sxkdxl ~~ dxt Y » * ' ^ + 9*k T 1* ''*      dxi^\X I n>-

ii, k, I = 1,2, • • -, n).

If the systems (4) and (5) are completely integrable, the group has

r = n(n + l)/2 parameters. If r<«(n + l)/2, the system is not complete.

If therefore we form the conditions of integrability, we find new relations

between the r¡'s and their first derivatives which must be added to the

system (4). Continuing in this way we shall eventually arrive at the com-

plete Lie-Mayer system defining the group.

2.  Let us suppose that a space Sn admits at least a one-parameter

group Gx.   By proper choice of variables this group may always be reduced

* It is clear that if (1) is invariant under the oor finite transformations of the group (2)

it is also invariant under the corresponding r infinitesimal transformations of the group.

Por proof of the converse see L. Bianchi, Lezioni sulla Teoría dei Chruppi Continui di

Transformazioni, Pisa, 1918, pp. 493-495.

t L. Bianchi, loc. cit., pp. 502-503.
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to the form 9//9x,. If therefore we put £1 = 1, ?2 = £s = • • • = £„ = 0

in Killing's equations (3), we find

9ft¿fc _ 0

9xi

which means that the coefficients ft* do not contain xt. Hence, if a space

Sn admits a one-parameter group of motions, its linear element can always

be put in the form
3

(6) ds2 = ¿} anc dxi dxu,
o

where the coefficients au¡ do not contain Xi*

Suppose further that the group Gi is such that the infinitesimal motion

at every point of S„. has a constant amplitude. A motion of this kind

corresponds to a translation in ordinary euclidean space (Schiebung). Since

we have áx¿ = ?¿<íí, the condition to be satisfied, in addition to those

of equations (3), is

A   g 3

(7) —¿ = 2 a-ík h h = const. ;
Of 0

the ?'s are therefore the constants of direction at any point in Sn. If we

reduce ds2 to the form (6) and apply (7) we find ftu = const. But the

condition an = const, is the condition that the line xx shall be a geodesic

in Snà   "We have therefore the

Theorem I. An infinitesimal motion is a translation if, and only if,

the trajectories of the group Gi  generated by it are geodesic lines in Sn.

Any finite translation carries all the points of space the same geodesic

distance from their original positions.

We shall state the following proposition,! the proof of which Ave shall omit:

If the space Sn admits a translation, any spread formed by oo 1 trajec-

tories of the motion is of zero curvature.

3. The space of a four-dimensional metric field. After these

preliminaries which are largely restatements of well known theorems we

shall proceed to study the four-dimensional metric field of Einstein's relativity

theory, with a special view to its group-theoretical properties.

* The converse is also true : If the linear element of S„ can be put in the form (6),

the space admits at least a one-parameter group of motions.

f L. Bianchi, loc. cit., p. 500.

* Loc. cit., p. 500.
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Consider the quadratic form
8

(8) ds2 = 29ik dxi dxk,
o

which in Einstein's relativity theory contains the metrical relations of time

and physical space. Let x0 = t, t being interpreted as time, and let

Xi,x2, xs be the coordinates of a space such that its linear element

dsl = — ids2)dx0=o-

We may therefore put
3 3

(9) ds2 = —2 flik dxi dxk = 2 atk dxi dxk,

and we shall assume moreover that this form is positive and definite. The

general quadratic form (9) may therefore be written

3 8

(10) ds2 = g0o dt2A-2ffoidxidt—¿aikdxidxic
o i

which is indefinite, the index of inertia being 3. g00 may be interpreted as

a velocity; for, if t only varies, we have ds2/df = g00 = V2 so that

^.ftoo = y has the dimension of velocity.

Let us assume that the coefficients goo, gu> and a,#c do not contain t. By

Theorem I this means that (10) admits at least a one-parameter group of

motions, namely

(ID Uf=%,

the invariant spreads of which are the 3-spreads t = const. A space of

this kind we shall call with Levi-Civita a stationary space, so that we

have the

Theorem II. A necessary and sufficient condition that a general Einstein

space (10) shall be stationary is that it shall admit the group (11). This

motion is a "translation" if,   and only if, g0o is a constant iTheorem I).

The path-curves of the transformation (11) are not in general geodesies

in $4. Only when g00 is a constant will this be the case, and (10) may

be reduced to the geodesic form

(12) ds2 = c*dts—2aik dxi dxic,
i

in which the coefficients g& are absent and the new coefficients a,* do

not contain t as before.    Since oc1 paths-curves of the "translation" will

14
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form a spread of zero curvature, the space (12) may be described as

"cylindrical".*

We shall, however, assume that the space (10) is general, the coefficients gut

being functions of x%, i = 0, 1, 2, 3.    By means of the transformation

xo = Xp,    x'i = x'i (»o, xx, x2, xs) (. = 1, 2, 3)

we may remove the coefficients </.o in (10); in fact, it will be necessary

and sufficient that the functions x\ shall be solutions of the differential

equation

Vixo,») =_>-!£= 0,
0 0 Xi

Vixo. x'i) = 0 being the conditions that the space x[, x2, x's shall be

orthogonal to the coordinate line x'0.   The space (10) has now the form

8

(13) ds2 = gM dx\ —_Ç aik dxt dxk.

Let us suppose that this space admits a group G and let the general nature

of this group be left arbitrary for the time being, except that it does not

operate on x0 = t, i. e., it is a group of the sub-space x0 = const. We

write then

<14> ^^ff + ̂ íf + ̂ ií-o xx ó x2 o x3

The equations (3) are

_??i-^ + 2_.^fti^-i = 0,        _.¿";^J1+2_Ja1,^ = 0,"T     $xk        'T!,okdx() -T   k dxk        'T   xldx1

(15)

¿a^= = °'    ïa*-ïx~0 = °'    î^jï = °-

* The term " static " instead of " stationary " has been used by G. D. Birkhoff in a recent

publication, Relativity and Modern Physics (Cambridge, Harvard University Press, 1923).

If we consider the hydrodynamic analogy, it would seem that the term "stationary" is

a better term. We do not speak of a "static" motion in hydrodynamics, when a stationary

or permanent motion is meant. The term " static " field is used by T. Levi-Civita to denote

a stationary field in which the coefficients gm are absent. See T. Levi-Civita, La Teoría

di Einstein e il Principio di Fermât, Il Nuovo Cimento, ser. 6, vol. 16 (1918), pp. 105-114.
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Since the determinant |otft| cannot vanish, the last three equations show

that the ¿"'s  are independent of x0.    The first of equations (15) becomes

P^ = •■
which means that g00 is of the form g00 (y, x0) where y is an invariant

of the group G, or else a function of x0 alone, in which case g00 may be

reduced to a constant. In the first case, since G does not involve x0, #00

is itself an invariant of the group.

(ft) #00 ftw invariant of G. G must be an intransitive group considered

as belonging to Sá. But since G does not contain x0, nor operate on x0,

it must be a group of motions in #3 ; this is also clear when we consider

that the remaining equations in the system (15) are Killing's equations

corresponding to the space S*. It should be noted that this does not

prevent G from being a subgroup of a transitive group G of motions in S3,

but G will not belong to $, unless #00 is a function of x0 alone, or a constant.

(0) .ftoo = const. In this case G may be any group of motions in Ss,

transitive or intransitive; it may even be the maximum group G6 in which

case S3 is a space of constant positive or zero curvature. If G is a transitive

group in 5s, it can belong to $4 if, and only if, g00 is a function of x0

alone or a constant.    We shall state these results in the following

Theorem III.   If the space whose linear element is

3

a s — goo ftft-n    j¿¿ ft,-;, ax • ax k

admits a group of the form

9Xi 9,7'a 9x3

the |'s are independent ofx0, and the group belongs also to the subspace S$. g0o

is either an invariant of the group, or a function ofx0 alone. In the first case,

the group is intransitive. In the second case, g0o may by a transformation be

reduced to a constant, and the group is either transitive or intransitive.

A transitive group in Ss belongs to #4 if, and only if, g0o is ft constant.

4. The group of "rotations" in Ss* We shall suppose that S<

admits the intransitive group of "rotations" about the origin in Ss, viz.

9/ 9/ 9/ 9/ 9/ 9/
(''») Xi   c „ X2 ,   X2 X3 ,   Xg Xi .9x2 9xi 9x3 9x8 9xi 9x¡¡

* By a "group of rotations" we mean here a 3-parameter group in the variables xt, úr2, xt

having the invariant acj + a:£ + x% ; x1,xi, xa are not cartesian coordinates.

14«
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The sub-space ¡S3 is then said to be centro-symmetric.    If in (15) we in-

troduce in succession the following values of the ?'s,

?i = —x2, ¿"2 = Xx, S3 = 0,

£1 = 0, ?2 = — xs,      h = X2,

£i = Xi, ¿"2 =0, t% = —xx,

we obtain a system of equations for determining the quantities g00 and auc:

_9^oo__     _9jW   _ A _^oo__™ igoo   _ n
#1   „ *l   „ —   v», X2   „ X3 —   U,

9x\> 9xi 9x3 9xg
(ft)

T PJ09. __r _a-?oo_ — n-
9 Xi 9 x3

9ftu 9 «u   . 9«n 9 «ii A
xx--xs -   — + 2a12 = 0,      ^2^—-.'3-5— = 0,

9x2 dxi 9 Xs 9x2

9aa 9au
a»-«-«1-7-2 flu = 0,

9 Xi 9 x3

9a22 9ai2      0 A 9a22 9a22   , 0 A
xx--x2 —-2«i2 = 0,      x2--Xs—-h2«2s = 0,

9xä 9xi 9xs 9xä

9 «22 9 a2i
x3—-Xx~-— = 0,

9 Xi 9 x3

9ftss 9ft33 A 9ftss 9fts3       o A
x, —-x* —- = 0,      x-, —-x3-2 «»«  = 0,

1  9x2 9Xi ' 9x3 9x2

(17) .s^-^^3+2fti3=0,
dxx 9xs

9 «12 9ftt2 . A 9 «12 9 «12    , A
Xx—-Xi—-«n + «22=0,     x2 —-x$--H«13= 0,

9 xä 9 Xi 9 x3 9 x2

9 «12 9 «ig A
•^8   « xi fl2s   —   O,

9 Xi 9 x3

9 «is            9 «is   . A 9 «is 9 «is   . A
x      -Xi-L. a     — 0        x     — _ x -^ + «12 = 0,

9xs 9xt 9x.-)' 9x2

9 «18 9 «13 .

9 «28 9 «ss 9«2S 9 fl23

9«2s       ^   9ft23   , „
x3 —-Xi —-h «12 = O.

9 Xi 9 x3
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If we suppose that g00 is not a function of x0 alone,  the equations (a)

express the fact that a0o is an invariant of the group 6?3, so that we may put

•9oo fiWx\-\-x\ + -C2, x0).

We  proceed now  to integrate (6).    By elimination we easily find the

following relations:
.1 _ _   Xs x2
(lo) aXg —       aX2,       «23 — —aX2.

x2 xx

The equations involving a™, aX3, a23 give, on integrating, keeping account

of (18),

(19) al2 = xx x2 f2,        a13 = xx xs y2,        a28 = x2 x% y2,

</2 being an arbitrary function  of Vx\\x\Arx\ and x0.    We  also find

the relations

(20) a11— a^ = ix\ — x\)<p2,       a22— am = ix\ — x\)<f2,

am—an = ix2 — x2)f2.

Integrating the equations in an, a^ and a33 we have

We have thus obtained the following quadratic form,

, p             , .,       D2     I #i a xx -\- x2 a x2 -\- Xg a x3 I .     .,  .       .,  .       0.
a*.- = (rxdx- — -ft SPa|_-p-j— (fs[dx^ + dxf,-\- dx¡],

where -ft = Vx\-\-x2t\x\.    Introducing spherical coordinates

xx = R sin 0 cos <f,       x2 = R sin 0 sin (¡>,       x3 = R cos 6,

we have, remembering that «¡p2 and <¡p3 are arbitrary functions of R and x0,

(21 ) oV = y1 dag — (y8 + y2) dR2 — R'2y8 (rf02 + sin2 ötí</-').

The group G-¿ becomes, on introducing the new variables,

L7! = sin f ~- + cot ö cos y -^- ,

(22)                                                8* "
ft f                           d f 3 r"

Cj =   COSy-^-— cot« SÜ1 SP-rf-, U» = -¿.
OU                                       Off Of
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This group is transitive considered as a group in the variables 0 and <¡p,

and the variable R does not appear, as was to be expected according to

a theorem by Fubini.*    We have thus proved the

Theorem IV. A necessary and sufficient condition that the space (13)

shall be reducible to the form (21) is that it shall admit the group G3 as

a complete group of motions.

For the purpose of further specialization we shall consider a few

invariants that play an important rôle in the classification of 3- and 4-spaces

and also in the general relativity theory.

5. The total curvature of S4 (curvature scalar) is given by the formula

(23) R = '¿ghi Em,       Rh = 2 {hp ,w}-
h,i p

If instead of the symbols {hp,ip} we introduce the Kiemannian symbols

ihp, iq), we have
0---3 0---3

{hp,ip) =29pq ihp,iq)        E = 29m (hp,iq),
p,9 p,a

wheret

¡h« ¿ft)=- r8>^ + 92^ _ 9'gft* _ jiisíA
' 2 L9x¿9xj,       dxhdxq       dxpdxq       9xft9x¿J

and the quantities gm are the co-factors of gvq divided by g. We now

define the following expressions:

(24) Gih = ~gihR—Bih,

and, introducing the mixed forms Gi, we put

(25) Gl^Z^JGji.
J

We shall also recall here that for the empty space in an Einstein solar field

we must have Rik = 0, or, what is the same thing, Gi = 0. Calculating

the curvature tensors Rik for the space (21) which we write in the form

(21') — «V= <PidR2A-<Psid6*A-sm20d<f2) — yxdt*

* L. Bianchi, loc. cit.,  pp. 517-518.    See also Fubini's memoir in vol. 3 of Annali di

Matemática.

t The non-vanishing Riemannian symbols (hp, iq)  are given on p. 238, equations (58).
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we have

goo — — <Pi,   gn = fi,     g»2 = <Ps, g»a — spssin8»,

a11 = — a22 = —      a33 =_-_      a00 =_— •
9 9*'       9 n'    J </3sin20'    9 9x'

Rn = <7M(13, 23) + /°(10, 20),    R13 = a22(12, 32) + /°(10, 30),

(26a) i^s —.ffu(21,31) + ,a°°(20,30),     Rxo = a22(12, 02) + /3(13, 03),

R20 = gu (21, 01) + #33 (23, 03),    R30 = ^(31, 01) + /2(32, 02);

(266)

i2n = ,r/2(12, :2) + .933(13, 13) + .a00(10, 10),

B» = .au(21, 21) + /3(23, 23) + a°°(10, 10),

R33 = .a»(31, 31) + g22iS2, 32) + ,a00(30, 30),

Rpp = glli01, 01)+/2(02, 02) +^»(30, 30).

Calculating the Riemannian  symbols ihp, iq) and  substituting in  these

equations we find

Rx2 = 0,       Ri3 = 0,       R23 = 0,       R20 = 0,       R30 — 0,

„_1    98SP8    i        1      9y3 9y2 1    dtps df3   .       1     dtpx 9y3

10 " f3 drdt      2<p2y3 or   ot      2f2  or   ot i~ 2<?xy% or   dt '

„       _    Z!33_1    d2(f3   .     1   d<p., 9y3      J_ 9jPs_ 9jf>i_  ,_1   98y3

22 " :  sin20 "        2f2 dr2 "t_4y2  dr   dr      4y2  dt   dt + 2g>x  dt2

i        1       [9 «¡Pa   9ys_9y^ 9y3"l

4?»!^ L 9<"   9<        dr    dr J"1"   '

„_1   98y3   .     1    92y8_1    d2(px 1      d<p2 9y3

11 " 9>s   dr*       2fx   dt*       2fx   dr2 ^ 2f2f3   dr    dr

(97,      + J_ íi-OV  *   ^ __ 4- —l_ iii* i2_ J_ r___T
^    ; 2y2 Lar J ~p 2sp1y»    9¿    9¿ ^ 1yxf2 L dt J       4y2 L dr J

1     9y2  dffx 1       d<p2  dfy
+

4y2   9r    9<       4y1y2   9r    9i '

_       J_9^3_L ___ _. J_ _*_L  i        !       9y3  9y,

<p3   dt2       2[f2    dt*       2<p2   dr2       2yx<p3    dt    dt

, _i_ r_.__T_i_ __r__T_i_ _i
"1~ 2^ Lad ^4^ Lai J "T29>g

2 i     1    r9yäl2 i       1      9<¡p3 3<n   .       1_9y2 9yx
>5P3   9r   9r       4yx5PS   9í    9Í
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R = gnRii+g2i!R2i+g3SRss-j-g0(,Roo,       Ö« = \guR-Rii,

(28),

Gi = #   (7¿í = y-ß — .a  i¿¿¿, Gx = g   Gox = —g  R

Ghi = 0,        i, Ä.+ 1,0;

C\ = .ftaV8(23, 23) + .«00.«22(20, 20) + .a33,«00(03, 03),

Q% = ^"^(13, 13)+i«11.ff00(10, 10)+.«3s,ft0ü(03, 03),

Ö| = 0uí7"(12, 12)+.ft11.«00(10, 10) + .«2V°(02, 02),

öS = sr"í7M(12, 12)+í/11r/33(13, 13) + /V3(23, 23);

O1        J__      *      P»»? 1      [9ysT          1       9y3  9yt
1 " "   9,       4spaSp| Lar J 4y1y2L9U       2sp8gp*    9¿    Sí

_1         9y3 9yi 1     92y3
2 5Pi 9>2 5P3    9 r    dr y, <¡p8    912 '

ro 1    ■        1      pyaf |        1      py»]' ■_l__9y2_9^s
"   9>3       4y2y^L9rJ + 4y1y2L9Ü^2y^3    9r    9r

1 9yä  9ys_      1     98y3

2 yj y2 y3    9 ¿     9 ¿        y2 y3   9 r2 '

rf2   _    /2^

(29)'

r,2        ^ 1       92y2 1        92yi 1        9äyIT2   -   (T3
2yxy2    9í 2y!y2    9r8        2y3y2    9r2

_J_pjM2_i    [9yä]2 ■      l    pyil2_i    r9y3]2

"t4y2y|L9rJ       4y1y2! L dt\       ±<p2<f\ L dr J       4y1y2L9íJ

1       9 ys   9 y3 1       9 y2  9 y¡ 1 9 y8  9 yt
+

4y3yü    9r    9r        4y2y2    9¿     9¿        4<¡Piysy3    9r    9r

1       9y3  9yt 1 9y2  9y3   .        1       9y2   9yx

öS

4y2y8    9¿    dt        49>1ysy3    9í    9 lí       4yxy:;    dr    dr

!      1      98y3
2yiy3    9í* '

1 |~ 1   92y3 1      9y2 9y3 1    9y3 9y3 1      9yx 9y3"

SPiLyiLyf39r9¿       2y2y3   dt   dr       2f\  dr   dt       2yiy3   dr  dt.

It is  significant that these  mixed  tensors   do  not   contain   any   of  the

variables y, 0, while jB33 contains 0.

6. We shall now suppose that the space (21') admits a one-parameter

group whose infinitesimal symbol is of the form

Ox: Uf=U^jArix^,
dt dr
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where £0 and & are functions of r and t. In order that this shall be the

case, the functions fx, y2 and y3 must satisfy certain conditions which we

shall now proceed to find.    The Killing equations (4) are in this case

to

(30)

9y2

dt
v.     9^2      ,    „ 9 ^
Si ~^r + 2 y2 ■

so

dr

9jPs_

dt

dr

u y3     _

?1  dr   -

0.

0.

•c ____  i  t
.o 8i   + ?,

9yt

9r
o       9 ^*0 A

5Ps
9__

dt </v

9/

9|o

9r
0.

The third equation shows that y3 must be an invariant of the group or

a constant.   If <p3 is not a constant, we put

(31) h i 9ys t   .  . ¿lliL
dr '        -1 " dt

Substituting the values of ?0> si> and their derivatives obtained from (31)

in (30) we have

9 y8   9 w-j        dtf2   dip3   . 92y3
+ 2<P2~

(32)

9<? dr     dt

dr

dt     dr drdt

V:
9jPa

dt

— 2 __
9Í

9jPi   IjPj  __ 9 f/'L   dj^ 98y.H
9i~   9 y  "     9j-     9<  't~   ,Pl 9r9<

'/'i _?_
9r

(33)
9 p       9 y3        9 ç      9 y3

HI 9*~d t        "a"79i ~9r"
f/<!

92y8 9><

9¿2

where ¡? = log I.   Taking account of (29), these equations may be written

(32')

0 9 e 9 |   2fx y3 Gx
— 2—7 = — log yx y s y8 + —5——

9 r dr 9 y3

9 i   2 «¡Pi «jps Gx
"aT log ^ 'r2 y:! ̂ ^-^7;-
oí 0 (J'3

9r

— 2
dt

(33')   yiy2y3(Gfi — Go)
5Pj 5p3 Öi 9 y.,   .   «jpi ys (?i 9 y3

—~— ■ 9t
dr

dt

9y«

dr

dt
o.
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The conditions which must be satisfied by the functions yx, y2 and y3 are

therefore, besides (33'), the following:

(34)

We now put

(34)

9_

dt
9\ ?3 Gi

9ys

dt

9_

dr
yi y»öi

9^3

dr

9x 9s Gx 9 I1 fx 9s Gx 9 '/y

9y3 8r ' 9y3 dt ■

dt dr

from which we derive the differential equation for Is,

9y3    dW        9y3    dW

H     dr dr     dt
0.

Hence,   ÍP must be  an arbitrary function  of y3 or else a constant.    The

conditions (34) and (33') may now be written

(35)
flo        ,„, ,   N 9y8    ^9z

9x9s Gx =   W (ys)-g^r-gy-,

(35') yi y2 y8 (€r\ - G°0) = «■*<*) [fx (^)+ ?s (-^j'].

These conditions being satisfied, the corresponding öi has the form

9 y3 9 y3

Uf= -
dr dt

e^Vu 9< T e^Kyi 9r 'yi 92 93       "l       e    ^ yi y2 y3

We have then

27ze necessary and sufficient conditions that a centro-symmetric space with

linear element

(21') — ds* = y2«>2 + ys(d02+sin20«y) — 9i dt2,

fx, 9i and y3 being arbitrary functions of r and t and y3 not a constant,

shall admit a one-parameter group of motions Gx are

(35)

(35')

no !I{,    9ys    9'/'3

yiy*ys(öi—öS) = +</''M9ys \2,      / 9y3 \3
f,p2<   8t  '

where lV is an arbitrary function of y8, or « constant.
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But we know that by a proper choice of variables this group may always

be reduced to the form dfldt (Theorem II). The transformation _ = _ (r, t),

R — .ft (r, t), where R and T satisfy the two partial differential equations

(solved by two quadratures), will carry (21') into the form

(37) — ds2= y2dr2 + T"3(d02+sin20dy2) —y,d<2,

where yt, y2 and y3 are functions of r alone. It should be noted that

the transformation may always be so chosen as to preserve the orthogonality

of the space Sir, 6, <p) to the time-axis.   We have therefore

Theorem V. The necessary and sufficient conditions that a centro-symmetric

space (21') shall be reducible to the static form are given by the equations

(35) and (35').
If we choose the arbitrary function W = const., we have, as a corollary

of the above theorem,

If Gi = Go and G°x = 0, the centro-symmetric space (21') is reducible

to the static form.

Since for an Einstein solar field we have Gik = 0 it follows that the

Einstein solar field is necessarily static*

For a class of spaces of importance in relativity theory the generalized

Einstein equations hold: Gik = i-gik, where A is constant. We have there-

fore Gx = 0, Gx — Gp = 0. Hence, these spaces are also necessarily static.

Examples are De Sitter's cosmological space and the gravitational field of

an electron.t

The case y3 = const, needs special treatement, since

9y3 _ _9ys_ _ 0

dr dt

It will be convenient to transform (21') into the form

(21") —ds2= <pxidr2 — dt2) + 9side2 + sin2 0dy2).

Integrating equations (30) on the hypotheses cpx = <p2 and y3 = const,

we find
9?i 9i'n 9i*j 9Í0 , 8      ,2x
"97 = 17'     a*=T7'    * = » = 9<r-ñi

* For a different proof of this proposition see G. D. Birkhoff,  loc. cit.,  pp. 253-256.

t A. S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press,

1923, p. 100 and p. 185.
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hence

i'o = ®(r+i) + W (r — t),      ii = © (r + t) — W (r — t).

Without loss of generality we may put ít = t, £0 = r, and the group is

dt or

The integration of (36) will yield the transformation

r + t = R ■ eT,        r — t = R-e-T,

which will carry (21") into the static form.   We also find

0? = O,       Gx1-G°o=--?- = 0.
9-A        9s

To this class belongs the space discussed by Levi-Civita (p. 238, footnote).

This space is also necessarily static.

The case where y3 is a function of r alone, say y3 = r2, is not special,

since a transformation

R2= 9b,       T = ®ir,t)

will carry (21') into

(21'") — ds2= — 9xdT*+ f2dR2A-R3id02A- sin20«V).

öi =0,  since 9y3/9T = 0 and (34') shows that ll' is a function of B

alone.    The condition (35') becomes

(35") y2(öi —öS) = iV'iR).

7. We shall suppose that the linear element (21') admits the groups

ö[ and ö3, all the transformations of which form a group ö4, and that

it has been reduced to the form (37). If y8 is not co^ tant, the trans-

formation

R =   1/yV,      T = t,      y2 = 1 + y 2

will reduce (37) to the form

(38) «V= yi«^2— (l + y2)ft,r2-r2(«,02 + sin20«'y2)

admitting the group of motions ö4.
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We have now Rik — 0, i i k, and the mixed tensors G], which we shall

substitute for the tensors _"«, become (equations (29))

n1       *    r    »yin  /,«_    i    r i ry'i
Gl - r\l + 9i) I9* - Tri '   G»~ 72ü+y^ I*2 + ï+£J '

(39)   G\ = Gl =
•<jPi

+

+

9P2 yí y2

2y1(l+yä)   '   4^(1+<p2)2   '   2(1+ y2)8r

yi yi

4(l + 9P8)9'ï        2y1(l + y2)r-

It appears from these equations that while 67? = 0, the same is not trae

of the difference G\ — Go.   We find

(40) oí -Gt=     - [yí + T¡- y|l -tt^-t-
l + y2     J r(l + y2)yi

which vanishes if, and only if, yi (1 + y8) = c.   This ist he "Leithypothese"

of Kottler* which may be stated in the form of an equation as follows:

(41) g

9u    (hi   #i3

#12       #22       #23

#13       #23       #33

0

0

0

0  0  0 -g0p

axx aX2 aX3

aX2 a22 a23

«13 «¿8 «83

0      0      0

0

0

0
I«*! (—c2)>

where the a's  are the coefficients of the linear element of a euclidean

space and c is the velocity of light in "empty" space.    In fact, we have

or
g = — y* (1 + y2)i'4 sin2 0 = >A sin2 0(— c2),

yi(l+y2) = c'2.

c-i,  9 = Cs,  >5 = cs,  having theConsider  the  three  sub-spaces t

respective linear elements

SH: ds2 = (l + y8)dr8 + rV02 + sm*0«V),

(42)   S¡: ds2 = (1 + y») dr2 + r2 dd2 — yx d f-,

Si: ds2 = (1+ y2) iZr2 + r2 sin2 0dy2 — y^dt2

* P. Kottler, Z7/Jer die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,

Annalen der Physik, vol.56, pp. 401-462. Kottler considers this hypothesis as a sub-

stitute in general relativity for the hypothesis of the constancy of the velocity of light

in Minkowski's mechanics. The hypothesis holds for an Einstein solar field, but not

necessarily for spaces with a different mass-distribution. It does not hold for Einstein's

cosmological space, although it does for that of De Sitter.
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We shall calculate the principal Riemannian curvatures for each of them.

We find*

ö3. Ai   -       ,     —¡--r-, A2   -   A3-
r'd + yí)'        " •' "     2r(l + yä)2'

tf t      t f2

•,1 jri _ —5Pi        , SP2 spi_ , yi
ù3. Ai   — . -+-    .       ,,    ,   _   >2   "T

(43)
2yi(l+y2)   '   4yi(l+yä)2   '   4y*(l + y2)'

i^i_?+_ ^i =       yá_
" "      4y;(l + y,)' 2r(l + y2)2'

îS3: Ä*i = Kx,      Kz = K-2,      Km = ^3 = K> = K3.

Comparing these results with (40) we have, at once,

öS = Kx + Kz + Ks,
(44)

Gi = öl = Ki + Kl + K* = K'ÍA-K¡ + KÍ.

Since in *Ss we have K2 = K¿, the principal trihedron with respect to any

point P has one direction completely determined, namely the direction of

the tangent to the r-line, while the other two directions through P, normal

to it and to each other, may be chosen arbitrarily in the tangent plane

to the surface r — const. The space Ss can therefore rotate freely about

the geodesic r.t

This is not the case with the spaces Si and Si, since the three principal

curvatures are in general unequal. If, however, K\ = Ä^s, S\, and also Ss

will have the same property as Ss: At a point P the principal direction

along the r-line will be determinate, while the other two are arbitrary

in the tangent planes to the surface r = const. The condition K\ = K\

imposes therefore a certain symmetry on the time space $4, namely

The three subspaces S3, S-a, S% possess, at any generic point P, "rotational

mobility" about the geodesic r-line which passes through the point.

It should be noted that, in the case of the subspaces S\ and Si, a

"rotation" about the r-line means a "hyperbolic" rotation, since these

spaces have an indefinite quadratic form as line-element. If with Minkowsky

we put it = t, the hyperbolic rotation becomes ordinary euclidean.

* L. Bianchi, Lezione di Geometría Differenziale, vol. 1, pp. 365-358, and also Lezioni

sulla Teoría dei Gruppi, pp. 546-547 by the same author.

fit should be observed in this connection that when we say "rotate freely about the

geodesic r" this does not imply that the r-line is an axis. It would be a geodesic axis

only if Ki = K¡¡ = 0, that is, if <r2 is a constant. The transformation r = I ]/1 + </v dr

will make r a geodesic axis.
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Since K\ = K\ is equivalent to the condition OÎ = öS, or to the condition

(45) 9"i(1 + T2) = const>

we see that Kottler's "Leithypothese" is equivalent to the assumption of free

mobility of the subspaces 83, Ss, Si about the r-line.

With this assumption the linear element takes the form

(46) — ds2 = (1 + y2) dr2 + r2 (d02 + sin2 0 ft>2 ) — -~— df

and we also have, from (40),

(47) oí = öS = Zi+Zî+Zs, 02 = os = Ki+Ki+Kl = K\+KÎ+KI

8. We shall specialize further by assuming various values for the sum

of the three principal curvatures of SH, which is the space part of the

time-space #4.

(«)    Kx+K9+Ks = 0.    We have from (40)

929i—r9[ — 0,

or, since y2 = c2/(p1—1,

r9x — c¿r-\-C.

Putting C= — ac2 we have

r

which  is Schwarzschild's  solution  for the line-element of a static and

stationary space with centro-symmetric mass-distribution, viz.:

il>
•2

«

(48) —ds2 = —^-Yr2id62-\- sin20«V) — '■* 1-\dt2.
._a \       r I

r

This space is characterized by the following three geometrical properties:

1. It admits the group of motions ö4 (Assumption L).

2. The three subspaces SL, S2, 83 possess rotational mobility about the

r-line (Assumption M).

3. The sum of the three principal Eiemannian curvatures of the space S3

is zero (Assumption N).
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Assumptions Z, M, and N* are equivalent to the physical assumption

that in the gravitational field outside the mass the tensors _¿k all vanish.

In fact Einstein's equations are

(49) Qik = xTik=0, *=^^,

where k is the Newtonian gravitation constant.    But from (40) we have

G* = g^G-uc = 0, i\ k,

and since _t3Ki = 0 and K2 = K\, it follows that Gx = Gp = 0. If

the values of fX and l + </2 are substituted in the expression for G2 and G3

we find that they vanish also.

It will be noted that the principal Riemannian curvatures of the three

subspaces S3, S3, S& are

-¿-1 = Kx = Kx = —¡r, _2 = K2 == K2 = _3 = ZT3 = K;>, =-r—jf .
»' 2r

If, as has been suggested by Cesaro,t we put

and define _", K1, K2 as the mean curvatures of the respective spaces,

we have

Theorem VI. The subspaces 83, 83 and Ss of a static time-space (48)

ivith centro-symmetric mass distribution have their mean curvatures equal

to zero, and the three principal curvatures of any subspace are respectively

equal to the corresponding principal curvatures oj any other subspace.

ib)   Kx-\-K2-\~K, = const. = SIR2.   We have from (43)

9i9i—i'9t
rtct '

or

c*— yi—ryi

* L, M and Ar are also equivalent to postulates I—V of Eisenhart's paper Tlie permanent

gravitational field in the Einstein theory, Annals of Mathematics, ser. 2, vol.22, No.2;

December, 1920.

f Ernesto Cesàro, Lezioni di Geometría Intrinsica, Napoli, 1896, p. 223.

3
R2'

3cV

R2   '
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integrating, we have

C ±  «ii       '
(50) y, =  ~ + c2(l

Let C = 0 ; the linear element of S4 is

(51)      — «V = -    dr'yg   +r*(«,fl*+ sin20«V)—c2 (l—¿-j ^2-

1-
i22

This solution applies to the space inside of a homogeneous sphere of matter

provided the inertia! density (Trägheitsdichte) is assumed to be zero.*

If we calculate the Riemannian symbols (ik, rh), we find

i'ik, ik) = —ß2auakk,      (ik, rh) = 0,    i 4= r,    k ^ h,

which means that the curvature K0 = 1 IB2 (L. Bianchi, Lezioni, vol. I,

p. 344). The group of *S*4 is therefore the maximum öi0 of non-euclidean

rotations and translations, and that of Ss is the corresponding ö6. ö6 does

not belong to Sif while the group ö4 remains as a subgroup of öi0. The

space (51) is usually referred to as De Sitter's space.

(c) If in (50) we let  the constant C differ from zero,  we may put

C = c2 b2¡R2 and we have

(52)   9x= c2[l--ÇsA-^-±r],     l + yä
l

R2 + R2 ' r

The space to which this solution applies is that of a shell of thickness

ft — b. R is supposed to vary between the limits b>R<a.f Since

the shell acts on the region outside of it like a Newtonian masspoint m

determined by the relation

2 km a3 — 6s

~~c2~ ~      Rr     '

* H. Weyl, Raum, Zeit und Materie, 4th edition, p. 232; P. Kottler, loc. cit., pp. 438-439.

Kottler assumes that the cohesion pressure equals the entire energy of the mass, i. e.

fi = e—p = 0 where s is the energy and p the cohesion pressure. See also H.Weyl,

loc. cit., p. 254, and p. 256.

f P. Kottler, loc. cit., p. 493. He obtains this solution by assuming that the space has

no inertial mass, i. e. the cohesion pressure p = s. Kottler's solution has not been accepted

by Einstein, who prefers the one obtained by Schwarzschild (equation 55).

15
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we have, for .ft > a,

2r        a8-ft3   I"] 1

^"U1—n?""TJ'   ^y^-—omm1
Ä8      r

(d) We shall consider the case where Kx-\- _"2 + -S^ is inversely pro-

portional to the fourth power of the "distance" r from the mass-center.

We have

(53) K=  »».T* =4,re r

or, since we are still working under assumption M,

c*—9>i — rg>i

Integrating we have

ft = c2 (l — — + -^-J    and    1 + 9i =

r ~*~ r8

& has therefore the linear element

(54)      -ds8=-^-+r2(d02+sin20dy8) — e8(l— —+ 4W,
pa \ r       r I

r + rt

which has been obtained by Weyl.* He considers a sphere having a New-

tonian mass m and a static charge e. If we put ß = 2 a and « — ke*lci,

where a = kmlc2, we get the identical form due to Weyl. The group

of the space (54) is Gif assumptions Z and M hold, while for N is sub-

stituted (53). This space, and the two preceding ones, belong to a class

of spaces characterized by the property of having the sum of the three

principal curvatures of S3 equal to a function of the distance from the

mass-center, assumptions L and M being valid.   We find for the value of yx

ft = c2 [l - jjFir) dr]

(e) Let us retain  assumption Z.   Instead of M, i. e. K2 = K%, we put

M': K\ = K\,

* H. Weyl, loc. cit., pp. 236-237.
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and let, as before in case (6),

N':

235

KiA- K2A-K3 —
3_~B2

yi and ys must now satisfy the following differential equations obtained

from (42):

<P2_!_<f2 _ _3_
B2'r2(l + y2)   '   rU + y,)*

yi— + yi 92 yi SPi

r<Px       29Ï        2fPi(l + y2)        9x

Integrating the first equation, we find

1 + ys =

0.

1

1
B2

we let C be equal to zero and substitute the value of y2 in the second

equation and integrate; the result is

VfB,     =    C
V B2

where c and a are integration constants.   If we determine the initial value

of yi in such a way that for r = E we have

B2'

we get

Vyx   =  C

il
B2

and the linear element of the space 5* is

dr2
(55) -ds2 = + r*(«'02 + sm20ftV)

B2

»F¥-K^i■
B2

dt2,
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which is Schwarzschild's solution for the gravitational space within a liquid

sphere of radius a. The group of 83 is obviously Ge, but G6 does not

belong to Sx.   The condition C = O is equivalent to

Kx = K2 = K3 -
R2

83 is therefore a space of constant curvature.   Assumptions Z, M', and P

determine completely the Schwarzschild solution (55).

9. The case g00 = const.   If g00 is constant, the equations (43) become

Kl = Kl = 0,     _? _í= 0,     K2 = KB = K¡ :
2ril+fs)*'

K  _■ ___
1 "  ^(l+fi)'

The group of Sx is the systatic (x4, and, since #0o is constant, the trans-

formation dfldt is a translation (Theorem II). The space 8t can therefore

rotate freely about the Mine as geodesic axis. We shall consider the

following cases:

(a) _"j + K2 + K3 = 0.    We have

ya ( l + 9í ) + »" yí = 0.

Integrating we find

1
1 + ft =

!.__
r

where a is the integi-ation constant. If a = 0, the space is euclidean.

a 4= 0 does not correspond to any physical space, since the velocity of

light is constant.

(b) Kx-\-K2-\-Ki = 31R2.   This case gives us the Einstein-Schrödinger

solution for  a   closed space with incoherent mass in static equilibrium,*

(56) —ds2= -—^T- + rs(do8+sin20dy2)—.g0odt2.

1-—-
R*

* E. Schrödinger, Über die Lösungssysteme der allgemeinen kovarianten Gravitations-

gleichungen, Physikalische Zeitschrift, vol. 19 (1918), p. 20. See also F. Kottler,

loc. cit., p. 483, and H. Weyl, loe. cit., pp. 252-253.
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¿Ss is a space of constant curvature I IB2. The group of A» is a ö7,

namely 9//91, and ö6 which belongs also to S3. G-, is systatic, the systatic

spreads being the geodesic ¿-lines.

A general time-space (21') which admits the group Gi can be reduced

to the form (56); for since St admits the group ö6 which is a transitive

group in S3, rpx must be constant (Theorem III). Hence, the group ö7

completely characterizes the Einstein-Schrödinger solution (56).

10. A somewhat interesting type of centro-symmetric spaces is obtained

from the form (38) by assuming y3 = const. Let this constant be R2.

The transformation

Be = 0,        Rf = y,        Kl + ygftr = dr

will carry the linear element into the form

(57) -ds2 = «-p + ft^ + sin2-!«?2—fxdf.

The principal curvatures of the sub-spaces Sa, S3, Sa are

Kx — -=np — öi — öu;   Ki — Ka — 0;   Kx — Kx — 0;   Ka — K3 = 0;

K\ = Kl = - 4- & + 4r (4^)2 = ö| = öi
2yi   9r2        4y2 \ dr

S3 belongs to a type of L. Bianchi's normal spaces, namely that one for

which the three principal curvatures are constant. If the mean curvature

K = £Ki is positive, it is said to be of type B* This is here the case.

The group of the space $4 is Ö4 as before, but S3 admits a 4-parameter

group of motions, namely ös and the translation df/dr, the latter not

belonging to $4 except when yx is constant.

A notable case is where the mean curvature of the space $4 is zero.

We have then

Sf__V«j_   2       1 92yi  ,     1    /9yi\2_0

which integrated gives

Vffx = cxemi A-c2e~'r!U.

* L. Bianchi, Sugli spazi normali a tre dimenzioni colle curvature principali costanti,

Lincei Kendiconti, ser. 5, vol.25, 1st semester 1916, pp. 59-63.
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This space has been obtained by T. Levi-Civita. He assumes that the

physical space S3 is supplied with an electrical potential y = —Cr. The

intensity of the force is \C\ Vgxx and is directed normal to the surfaces

r = const.*

11. Class of a centro-symmetric space. It follows from a theorem

due to E. Kasner that the special Einstein 4-dimensional spread (48) cannot

be immersed in a flat 5-space. In other words, the linear element (48)

is at least of the second class.t The necessary and sufficient conditions

that a differential form ds2 in n-space shall be of the first class are

1. It must be possible to find a doubly symmetric system of quantities hk

(coefficients of the second differential form) such that

(a) irk, ih) = bri bkh — b,ci brh.

2. The system bik must satisfy the differential equations

dxh        dxi        t   I t  I t   \ t  \

Equations (a) and (6) are known as the generalized equations of Gauss

and CodazziJ for a euclidean w-space.

Starting with the general centro-symmetric space (21') we shall proceed

to find the conditions (a). Calculating the Riemannian symbols irk,ih)

we find that they all vanish except the following:

C12   12Ï  =        1   98y3        1     9y8  9y3 1    / 9«jP3\" ■      1     9ya  öfs .

k    '     ' ' 2   dr2 "t_4y8   dr    dr ~My3 \ dr I ~*~ 4yt   dt    dt '

(13, 13) = (12, 12) sin8 6;

(68) (_m)__44ä+4.**+ ' i^   » •* 8»
2     dt2    '   2    dr2    '   4y8 \ dt I       4y8    dr     dr

2 .     1      d(f2   d<px1    /9ft
l<px \ dr 4ft    dt     dt

m.m = [,.+1L.(^)'-4(^),|

* T. Levi-Civita, Realtà fisica di alcuni spaci normali del Bianchi, Lincei Rendiconti,

ser. 5, vol. 25, 1st semester 1917.

+ E. Kasner, The impossibility of Einstein fields immersed in aflat space of five dimen-

sions, American Journal of Mathematics, vol. 43, pp. 126-129. For the definition

of class see Ricci and Levi-Civita, Méthodes de calcul différentiel absolu, Mathematische

Annalen, vol.54, p. 160.

tL. Bianchi, Lezioni di Geometría Differenziali, 2d edition, vol. 1, p. 462.
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(02 02) = — 1    d*9a   ' d(pi   d'H   ' id(f3^

+

2     dt2    '   4y2    9r     9r    '   4y3 \ dt

1     9yt   df3

4yt    dt     dt   '

(03,03) = (02, 02) sin2 0;

1    98ys   .     1     9y2   9y8   ,     1     9y3   9y3
(58)

2   drdt      4yg    dt     dr       4y3    9r     dt

1     9 yi   9 y3

(12, 02)  = —

+ 4yi    9r    dt  '

(13,03) = (12,O2)sin20.

Equations (ft) are now

b02 = ha = bxa = b23 = bl2 = 0,    b01 b22 = (12, 02),

(59)  ftoi ha = (13, 03), &oo b33 = (03, 03), o0o b22 = (02, 02), ou &33 = (13,13),

b22b33 = (23, 23),    bxxb22 = (12, 12),    b0obxx-b2ox = (01, 01),

from which we derive the relations

_6m        (12, 12) = (02, 02)        (12, 02)
baa ' ' (13, 13)  " " (03, 03)  " " (13, 03) '

that is, we have the following two conditions:

(fti) (12, 12) (03, 03) = (02, 02) (13, 13),

(ft2) (12, 12) (13, 03) = (13, 13) (12, 02),

which are satisfied by (58).   We also find the following values for the non-

vanishing o's:

2 _  (02,02)2     2 _ (12, 12)2     2 2 __ 4      , _  (12,02)2
»OO = -ÎÎ-,  »ll-í¡-,  022- L>,   088- JJ Sin 0,  Olo-

where D = (23, 23)/sin20.   Substituting in the last equation of (59), we

obtain the condition

(fts) (02, 02) (13, 13) = (01, 01) (23, 23) + (12,02) (13, 03),

which is not satisfied for a general space (21').

Suppose now that the condition (a3) is satisfied. A rather long, but

not difficult, calculation will show that the o's also satisfy the Codazzi

equations (&).   We have thus proved the
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Theorem VII. A necessary and sufficient condition that the general centro-

symmetric space (21') shall be of the first class is

ia3) (02, 02) (13, 13) = (01, 01) (23, 23) + (12, 02) (13, 03).

Let the space (21') be static, and reduced to the form

(38) —ds2= (1 + y2) dr2+r2(df92+ sin2 Od<f*) — <pxdt2.

The condition (a3) becomes

1 rjpíípá   ■   (yQ21

yi =TL^r+"ft~J'
which integrated gives

(60) y2-     lâ   W

4      yx

This condition being satisfied, the spread (38) may be represented in a flat

5-space, the coordinates being

x¡ = r sino sin y.        x2 = r sin 0 cosy,        x3 = r cos 0,

Xi = k V yx cos —,      x¡ = k V<px sin -¡-,

where t = it.    Hence

A   necessary   and  sufficient  condition   that   the   static  centro-symmetric

space (38) shall be immersible in a fiat b-space is

(Mi m    -    *"     W(60) y2 - T —.

12. Particular spaces which occur in the theory of relativity and for

which the condition (60) is satisfied are the following:

1. De Sitter's space (51);    y>x = c2 (1 — r2/R2), *l-\-9i= 1/(1 — r*IR*).

2. All spaces for which g00 = yt is constant (Einstein's cosmic space).

3. The Schwarzschild solution for a space inside a liquid sphere of radius Oo

(equation (55)).  The coordinates of the 4-spread are

xx = r sin 0 sin y,       x2 = r sin 0 cos y,       xs = r cos 0,
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This surface is a 4-dimensional torus generated by revolving the 3-dimensional

sphere

ix\ — 3ft0r)2 + x2 + x2 + x2 = r2

in such a way that the center describes the circle x\-\-x\ = (3«0r)2. The

equation of the torus is

[2 x\ - r2 (1 + 9 «2) j' = 36 «2 r2 [r2~2 x2 ].

Since a0>|,* we have 3«0r>r so that the generating sphere does not

intersect the xx,x2, x3 and x4-axes. The space inside the liquid sphere

in S3 is represented by a 3-dimensional spherical cap on the generating

sphere defined by the limit ^x|<«^<r2(l — a2), and the corresponding

time-space by a 4-dimensional zone on the torus generated by the revolution

of the cap.

13. We have seen that the space of an Einstein solar field is at least

of the second class.   We shall prove the following general

Theorem VIII. The linear element (21') for which the condition («3) is

not satisfied is of the second class.

The transformation

ff,ir,t) = R2,        ipir,t) = T

will carry (21') into the form

(21'") —ds2 = —yi«,T2+y2aJß2 + JK2(d02+sin80«'y2)

or

— ds2 = do2+dsl =  -f.dT2 + (9„ — l)dR2(61) ° x 2

+ ( d £2 + if ¿ 02 +1¿2 sin2 0 «■ y2 ).

Consider the linear element

(62) da2 = —y1ft,ï72+(y2 —l)«"^2.

By the general theory of surfaces, if the Gaussian curvature of the 2-spread

(62) differs from zero, it is always possible to find three functions x4, x5,

and x6 of R and T such that

dx\Ar dx\-\-dx\ = da2,

*H. Weyl, loc. cit., p. 242;   a0 = r0 and r — a in Weyl's notation.
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and the linear element (61) may be put in the form

— ds2 — dx\ + dx\ + dx2 + dx2 + dx\ + dx2,

where

xx = Äsinösiny,       x¡¡ = „"sinöcosy,       x3 = Rcos0.

The 2-spread whose coordinates are xx, xh, and x6 we shall call the auxiliary

surface.

If the Gaussian curvature of the 2-spread (62) is zero, it will be possible

to express da2 in the form d<r2 — dx\-\- dx2, that is, the linear element (61)

is of the first class.   We find

__ 1 f   9   / 1 9y
2 l/yi — yiy2 1 dT \     •''ft — yiya     9T'

1 9ft

9i2 \ l^yt — yxft      9Z2

or, putting ZsT equal to zero and simplifying,

98ft        98ft    .     1     9ft   9ft 1    / 9 y i ̂ 2

dR2        dT2 n   2ft   9T   9T      2ft\9i¿
(63)

^/__î
}yx \dR

,  _L___   Í/9ya\2     9ft   9yi)
"t" 2(ft—1) '|\9T/        9i2   9Í2J

But this is precisely the condition (as), as is easily seen on calculating the

requisite Riemannian symbols for the form (61).

In the exceptional case y3 = const, no transformation is necessary;

(a3) reduces to (10, 10) = 0, that is, the Gaussian curvature of the

2-space da* = — fxdt*Jrf2 dr2 must be zero. This condition is not satis-

fied for the space (21'), y3 being a constant; it is therefore of the second

class.   Hence, the space (57) is also of the second class.

A necessary and sufficient condition that a 2-space (w, v) shall be of

class zero is that it shall admit an abelian group dfldu, dfldv as a group

of motions. This is the group-property which characterizes all surfaces

of zero Gaussian curvature. The condition (a3) reduces, in the case of

the transformed element (21'"), to the simpler form

(02, 02) (13, 13) = (01, 01) (23, 23),

which by (63) is equivalent to the condition that the sub-space y = const.,

0= ±iR-\- const.,  or the space (62), shall admit an abelian group G2
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of two parameters as a group of motions. Theorems VII and VIII may

therefore be stated thus:

A necessary and sufficient condition that the space (21'") shall be of the

first class is that the sub-space (62) shall admit an abelian group G2 as

a group of motions. A 4-space which admits the group ö4, i. e. the space

(21'), is at most of the second class.

A similar statement holds for spaces (21') for which y3 = const.

14. Let the space be static and its linear element written in the form

— ds2 = dR2A-R*id02Ar sin20«V) + 9*dR2+ 9xdT2,

where jP=¿í.    The spread has the coordinates

Xi = Asin0 siny, x2 = jßsin0 cosy,   x8 = -Bcos0,

(64)
3/4 yä-r-l dB,  xb = k V yt cosy,  x6 = k V yt sin y.

The auxiliary surface is a surface of revolution generated by revolving

the curve

x, = J ]/ y2 - lâ^ dB,     x5 = k Vfi

about the x4-axis. The surface xx = .Ssiny, x2 = -Kcosy, x4 = l^y3 dR

is a generalization of Flamm's quartic surface.*

If in (64) we put (yi)2 = (4/&2) yt y2, x4 = 0, and the linear element

is of class 1. If we put y2 = a/iR — a), fx = r;2(l — alR) and k = 1,

we get the representation of the Einstein solar field in a flat 6-space which

was obtained by Kasner in a slightly different form.t

15. Static spaces which are not centro-symmetric are in general of a class

higher than 2.    Thus the general static space

(65) —«V = g0dxlA- gxdx2Ar g^dxj-Y gsdxj,    x0 = it

* H. Weyl, loc. cit., p. 236.

t E. Kasner, Finite representation of the solar gravitational field in a flat space of six

dimensions, American Journal of Mathematics, vol.43, pp. 130-133. It follows as

a corollary from Theorem VIII that a general space (21') can be conformally represented

on a flat 5-space, and, when (as) is satisfied, on a flat 4-space. The space of an Einstein

solar field can therefore not be represented conformally on a euclidean 4-space.
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is of the fifth class, or one less than the maximum. To prove this we

shall write the element in the form

(65') — ds2 = go \dx% + Sk dx2 _j_ Si dx\ + 8* dx¡\ = g0 idx20 + da2).
L #0 #0 #0 J

But a general curved 3-space may be immersed in a euclidean 6-space

so that we have

— ds2 = gp [dx2 + _J d#2J ,

the y's being functions of xx,x2,x3. The space (65) is thus represented

conformally on a euclidean 7-space. Stich a space may be immersed in

a euclidean 9-space; for, write

*i = K(7o x0,       z2 = Vg0 yx, ■■■, Zi = l^#o y«,

and an easy calculation shows that

— ds* = g0 idx20 + _J dy\J = _? d«| + dg| — d^2.

Since a 4-space which admits a group Gx as complete group of motions

can always be reduced to the form (65) it follows that such a space is of

the fifth class.
If dfldxo is a translation, g0 is const, and (65) is of the third class.

If, in (65'), the sub-space da* admits the group df/dxs, gx/g0, #a/#o, #3/#o

are functions of xx and x2 alone. As will be proved in § 16, a 3-space of

this kind is of the first class, i. e. it can be immersed in a euclidean 4-space.

(65) is therefore of the third class.

16. Let the space (65) admit the abelian group dfldx0, 9//9x3 as

complete group of motions, in which case the g's are functions of xx and x2

alone. We shall prove that (65) is of the third class. We write (65)

in the form

— ds2 = da2-\rgzdx\;

da2 is the line-element of a 3-spread in a euclidean 4-space. To prove

this we calculate the Riemannian symbols, of which the following are

non-vanishing :

(10,10),        (20,20),        (12,12),        (10,20),
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and set up the Gaussian equations for the calculation of the o's.   We find

600 On = (10, 10),  600 o22 = (20, 20),  &00 ¿is = (10, 20),

611622 — b\2 = (12, 12).

These equations determine the b's and they also satisfy the four Codazzi

equations, which we shall not take the trouble of writing here. The line-

element is now

— ds2 = dy\Ardyl-\-dyl-\-dy\A-yzdxl.
If we put

2/6 + 2/7 = Vga,        Vo — 2/7 = — xi K?3,        2/5 = Vg3 xa,

we have the final result
6

(66) — ds2 = 2dy¡ — dy2.

If dfldxa is a translation, g3 is constant and the 4-spread belongs to

a euclidean 5-space.   Its class is 1.

A notable space of this kind is Weyl's cylindrical and static space

— d s2 = h ( ftV + d r2 ) + --y- — fd t*,

which is of the third class and admits the group df/dt, df/dd as a com-

plete group of motions.* If ft/= 1 we have the static centro-symmetric

space of class 2 which admits a ö4.

17. Let the 4-space admit the group df/dx0, df/dx3, dfldx2; it is found

that no reduction in class takes place. The space is of the third class

as in the preceding case.

It thus appears that the complete group of a 4-space (65) determines its

class, at least in the case of the abelian group, the group ö3 of "rotations"

and the group of "translations." Whether this is true for all the groups

of motions in a 4-space is an open question that might be worth while

answering. Fubini's classification of 4-spaces (vols. 8 and 9, Annali di

Matemática) would here render a notable service. It should however be

noted that the group of certain sub-spaces will also play a rôle in the deter-

mination of the class.

*H. Weyl, Annalen der Physik, vol. 54, pp. 134-137.

West Virginia University,

MOROANTOWN,   W. Va.


