THE GROUP OF MOTIONS OF AN EINSTEIN SPACE*

BY

JOHN EIESLAND

INTRODUCTION

The question to what extent the general Kinstein space is determined
by its group of motions seems to be of interest from a physical as well
as a geometric standpoint.

In what follows we have discussed the problem of determining the group
of motions in a given Riemannian =-space and its converse (Killing’s
equations). The assumption is then made that an Einstein space whose
linear element is

8 3

(a) —ds® = Zgik da; dax— 2 gio das dao, X = 1,
1 0

shall admit the group of “rotations”

» a2l O o
Gy x B Tk 5 (G, k=1,2,3)

and the following theorem is proved:

A necessary and sufficient condition that the space (a) shall be reducible
to the form

O] —ds? = ¢y dr®-t ¢3(d6%+ sin® 0dg®) —o, di?,

91, 92 and g3 being arbitrary functions of r and t, is that it shall admit
the group Gs as a complete group of motions.t
It may further be required that () admit a one-parameter group
(A o f
Xt o’
where & and & are functions of + and ¢{. The necessary and sufficient
conditions that this shall be the case are found to be

* Presented to the Society, March 26, 1921.
+ This theorem has generally been taken for granted by writers on relativity.
213
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' 3?’3 0¢s
e 3) ar’

! 6
9’1?2?3(01——03) = +2ql (9’3)[91 678 + P, 9’3],

9, 95 G =

(¥ an arbitrary function of ¢3 or a constant). It is then shown that if these
conditions are satisfied, the space (b) may be reduced to the static form.

Special forms of static spaces are then considered with special reference
to their group properties and the principal curvature of their sub-spaces

S;: t = 0; Sy ¢ = 0; S2: 9 = 0.

The question of the class of the quadratic form (b) is then taken up,
and it is proved that a necessary and sufficient condition that (b) shall
be of class 1 is

() (02, 02) (13, 13) == (01, 01) (23, 23) (12, 02) (13, 03).

The general space (b) can therefore be immersed in a flat 6-space, and,
if (¢) is satisfied, in a flat 5-space.
It is also proved that if a general space (a) admits any one of ithe

abelian groups
of | of of. of of of
on’ on’ al'a’ axo’ 8123, axg,

as complete group of motions, it is of the fifth, third, and second class
respectively. Among these spaces is found Weyl’s static and cylindrical
space admitting an abelian G,.

1. The general differential quadratic form. Let there be given
a general differential quadratic form

n
1) ds* = > am dxi da

1
which may be interpreted as the linear element of a curved space S, of n
dimensions. This space is said to admit of a group of rigid motions, if
there exists a group of transformations
(2) x’: zfi(xhx‘-” crty Xpy U1y A2, 000, a") (’i‘———‘—l,?,--*,’l’l),

which will carry the form (1) into the form

n
= > ay da} dai
1
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such that the coefficients aj; are the same functions of x; as the a;’s
are of ;. If the coefficients a; are perfectly general, no such group exists.
In order that a given form (1) shall admit a group*

vf = a2l +a o +a L

oxn’

the &s must satisfy the so-called Killing’s equations,
n o Ha, n aEA no 0%, ,
® D t2ag, tZaug, =0 (GE=12-m),

the integration of which will determine the &'s as functions of «; and r
constants of integration. The maximum group has r = n(n+1)/2 para-
meters, in which case the space S, has a constant Riemannian curvature.
Bianchit gives Killing’s equations another form,

a1, oy lnik 1--m . )
@ 4+t = 2;{1}’71; i = ;“agx (k=12 n),

02, awz.

where fik\ are the usual Christoffel symbols. All the second derivatives
1Al

obtained from these equations can be expressed linearly and homogeneously
in terms of the 2’s and their first derivatives. We thus obtain the system

ot Jzkl )i\ o k1
®) 0,0z, Bal 12 lef M ;{)_}”/}
(z’,k,l — 1,2, .-, m).

If the systems (4) and (5) are completely integrable, the group has
r = n(n-+1)/2 parameters. If r <<n(n - 1)/2, the system is not complete.
If therefore we form the conditions of integrability, we find new relations
between the #’s and their first derivatives which must be added to the
system (4). Continuing in this way we shall eventually arrive at the com-
plete Lie-Mayer system defining the group.

2. Let us suppose that a space S, admits at least a one-parameter
group G,. By proper choice of variables this group may always be reduced

* Tt is clear that if (1) is invariant under the co” finite transformations of the group (2)
it is also invariant under the corresponding r infinitesimal transformations of the group.
For proof of the converse see L. Bianchi, Lezioni sulla Teoria dei Gruppi Continui di
Transformazioni, Pisa, 1918, pp. 493-495.

T L. Bianchi, loc. cit., pp. 502-503.
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to the form 0f/dx,. If therefore we put & =1, & = & = =&§=0
in Killing’s equations (3), we find

Ok

oxy, 0

which means that the coefficients ag do not contain ;. Hence, if a space
Sn admits a one-parameter group of motions, its linear element can always
be put in the form

3
6) ds® = 2 ai dx; dxr,
0

where the coefficients a;; do mot contain z,.*

Suppose further that the group G, is such that the infinitesimal motion
at every point of S, has a constant amplitude. A motion of this kind
corresponds to a translation in ordinary euclidean space (Schiebung). Since
we have dx; — &;d¢, the condition to be satisfied, in addition to those
of equations (3), is

3

(M = D g & & = const.;

0

the &’s are therefore the constants of direction at any point in §,. If we
reduce ds® to the form (6) and apply (7) we find @, = const. But the
condition a;; = const. is the condition that the line x; shall be a geodesic
in S,.t We have therefore the

THEOREM 1. An infinitesimal wmotion is a translation if, and only if,
the tragectories of the group Gy generated by it are geodesic lines in Sp.

Any finite translation carries all the points of space the same geodesic
distance from their original positions.

We shall state the following proposition,i the proof of which we shall omit:

If the space Sn admits a tramslation, any spread formed by o' trajec-
tories of the motion is of zero curvature.

3. The space of a four-dimensional metric field. After these
preliminaries which are largely restatements of well known theorems we
shall proceed to study the four-dimensional metric field of Einstein’s relativity
theory, with a special view to its group-theoretical properties.

* The converse is also true: If the linear element of S, can be put in the form (6),
the space admits at least a one-parameter group of motions.

7 L. Bianchi, loc. cit., p. 500.

* Loe. cit., p. 500.
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Consider the quadratic form

3
(8) ds® = Zg,:k dx; dx,
)

which in Einstein’s relativity theory contains the metrical relations of time
and physical space. Let x, =t, ¢ being interpreted as time, and let
xy, 23,23 be the codrdinates of a space such that its linear element

dst = — (ds*)azm=0.

We may therefore put
3 3

(9) dsg == —2 Gik dz; dar = 2 Qi dx; dack,
1 1

and we shall assume moreover that this form is positive and definite. The
general quadratic form (9) may therefore be written

8 8
(10) ds® = goo d*+ ; goi Aoy dt — ; i dw; dax,

which is indefinite, the index of inertia being 3. gy, may be interpreted as
a velocity; for, if ¢ only varies, we have ds*dt* = gy = V? so that
V goo = V has the dimension of velocity.

Let us assume that the coefficients goo, gio and as do not contain ¢. By
Theorem I this means that (10) admits at least a one-parameter group of
motions, namely

_of

(11) Ur = 30

the invariant spreads of which are the 3-spreads { = const. A space of
this kind we shall call with Levi-Civita a stationary space, so that we
have the

THEOREM II. A necessary and sufficient condition that a general Einstein
space (10) shall be stationary is that it shall admit the group (11). This
motion s a ‘“tramslation” if, and only if, goo is a constant (Theorem I).

The path-curves of the transformation (11) are not in general geodesics
in S;. Only when g is a constant will this be the case, and (10) may
be reduced to the geodesic form

3
(12) ds® = A4 —2 ag; dz; dag,
T

in which the coefficients g; are absent and the new coefficients a;. do
not contain ¢ as before. Since oo! paths-curves of the “translation” will
14
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form a spread of zero curvature, the space (12) may be described as
“cylindrical ”.*

We shall, however, assume that the space (10) is general, the coefficients g
being functions of x;, ¢ = 0, 1,2, 3. By means of the transformation

xb = x0, i = xi (20, 21, T2, X3) (i=1,2,3)

we may remove the coefficients gio in (10); in fact, it will be necessary
and sufficient that the functions a} shall be solutions of the differential

equation
3

V(xo, ) _2(/10 7@ = 0,

V(xo. ;) = O being the conditions that the space xi, x5, x3 shall be
orthogonal to the coo¢rdinate line xz;. The space (10) has now the form

3
(13) At = gy, daz —2 a, dx, dr,.
1

Let us suppose that this space admits a group G and let the general nature
of this group be left arbitrary for the time being, except that it does not
operate on z, = ¢, i.e., it is a group of the sub-space x, =— const. We
write thep

8 0
(14) vf =82 +s l+u 2l
The equations (3) are
Loy 5, da, & 0g
Z '*Bx +22 0‘18 =0 Z’ci CE +22“liaxl =0
&\ . Day S 6‘§l . Dag 3 0§,
Zé‘la—x)'-l-?lZazl—é;; = 0, %971—'_2;%)'3—%; = 0,
(15) s c .
. aazk A agl aél
Z:A dx Z’ ik axl_l—zald. 3 — 07
2 0, Zg, =0 gy

*The term “static” instead of “stationary’ has been used by G. D. Birkhoff in a recent
publication, Relativity and Modern Physics (Cambridge, Harvard University Press, 1923).
If we consider the hydrodynamic analogy, it would seem that the term ‘‘stationary” is
a better term. We do not speak of a ‘‘static” motion in hydrodynamics, when a stationary
or permanent motion is meant. The term “static” field is used by T. Levi-Civita to denote
a stationary field in which the coefficients g are absent. See T. Levi-Civita, La Teoria
di Einstein e il Principio di Fermat, Il Nuovo Cimento, ser. 6, vol. 16 (1918), pp. 105-114.
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Since the determinant |as| cannot vanish, the last three equations show
that the &s are independent of x,. The first of equations (15) becomes

235 8900 _
1 ° axl ,

which means that goo is of the form gy (9, 2) Where ¢ is an invariant
of the group G, or else a function of x, alone, in which case gy may be
reduced to a constant. In the first case, since G does not involve x,, goo
is itself an invariant of the group.

(@) goo an invariant of G. @G must be an intransitive group considered
as belonging to S;. But since G' does not contain x,, nor operate on x,,
it must be a group of motions in Sy; this is also clear when we consider
that the remaining equations in the system (15) are Killing’s equations
corresponding to the space S;. It should be noted that this does not
prevent G- from being a subgroup of a transitive group G of motions in Ss,
but @ will not belong to S, unless gy is a function of x, alone, or a constant.

(®) goo = const. In this case G' may be any group of motions in Ss,
transitive or intransitive; it may even be the maximum group G; in which
case S; is a space of constant positive or zero curvature. If G is a transitive
group in Ss;, it can belong to S, if, and only if, ¢, is a function of x,
alone or a constant. We shall state these results in the following

THEOREM III. If the space whose linear element s

3
ds® = goo da —‘1‘: ay, o, do,
admits a group of the form
Uf = & af+52 af4 af

the &'s are independent of xo, and the group belongs also to the subspace Ss. goo
is either an invariant of the group, or a function of x, alone. In the first case,
the group is intransitive. In the second case, goo may by a transformation be
reduced to a constant, and the group is either tramsitive or imtransitive.
A transitive group in Sy belongs to Sy if, and only if, goo s a constant.

4. The group of “rotations” in S;.* We shall suppose that S,
admits the intransitive group of “rotations” about the origin in Ss, viz.

af of of of af

X of A
(16) M om e M hay . P om B om M omy

* By a “group of rotations” we mean here a 3-parameter group in the variables x,, x,, x4
having the invariant x% + x% 4 x3; x,, 2,4, 5 are not cartesian coordinates.

14
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The sub-space S; is then said to be centro-symmetric.
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If in (15) we in-

troduce in succession the following values of the &s,

— Xz, .52
O, .Es
X3, :52

= 1, & = 0,
= — s, -E!l = Xg,
=0, &= —x,

we obtain a system of equations for determining the quantities goo and a:

9900 0goo __ 9900 9goo
(@) o 0y —n oz 0, = 0 xg dxs
a
2w, 90 .
* o, Yoy ’
auu 3au 3411 3“11 .
2 - O Le = T = N
I 275 + 2 a5 ) P e 0,
aau 04y, P
3 om 1o, 2ms = 0,
0ass 0 a3 0 ase 0 dgs
- ’_2 —_ ==
FPS I P oz, T2 =0,
0 ass 0 g,
s oy oxs
0ags 0 ass 0ags 0ass
— Xy ——— — 9 ‘—“'—_2 9y —
T 89:2 2 8:L‘1 O, - 81’3 8 31‘2 (e 0’
oa. 0 (g
an 0 D g,
®) 0y 0@y
oa oa oa oa
1'5;,: BTN ap+age =0, x5 8.11': — a3 8.’;: + a5 =0,
, 00,3 0ms
s Bxl t 3.’15‘3 sy = O’
, Oty Sy — AR, Mw
x a2, e ass = 0, x5 By +as = 0,
aam Bal
39:1 i Bx,., — g +an, = 0,
Oass 0asy 3 ags dass
18:02 '8‘ a3 =0, xzﬁx 8x2+a” ags =0
aags , aag_g_ B
T U g T =0
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If we suppose that goo is not a function of x, alone, the equations (a)
express the fact that goo is an invariant of the group G5, so that we may put

9o = (V2 +a2+a2, x,).

We proceed now to integrate (b). By elimination we easily find the
following relations:

X3 Tg
1 —_— 9 —— .
(18) A3 = s 13, g =— (T

The equations involving a4, a;3, @ss give, on integrating, keeping account
of (18),

(19) g = Xy Xp P2, Q3 = Xy X3 P2, Q33 — X3 X3 P2,

¢, being an arbitrary function of V'z2-+ 22+ a2 and z,. We also find
the relations

(20) ay— ayy = (2] —23) 9, gy — gy == (7 —23) ¢,
gy — @y, = (73— 2}) 9,
Integrating the equations in a,,, ass and ag; we have
4y = 93+ 23 9y, Uyy = 93+ T3 95, gy = 93+ 25 9,
We have thus obtained the following quadratic form,

xy dxy + x5 dxs + 25 day
R

12
4t — g, dai— By, | [ solaa + dag + aagy,

where B = V22 +a2+22. Introducing spherical coordinates

x; = R sin 6 cos ¢, 2s = R sin 6 sin ¢, x3 = R cos 6,
we have, remembering that ¢, and ¢; are arbitrary functions of R and ,,
(21) dst = ¢, dal— (9, + 9,) dR*— R?9,(d6?+ sin’0d ¢*).

The group G5 becomes, on introducing the new variables,

U = sinq>-21+cot0cos<pa—f,

@2) 26 dg
_ of o of _of
U; = cosog 56 cot g sin ¢ R Us = R
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This group is transitive considered as a group in the variables 6 and ¢,
and the variable B does not appear, as was to be expected according to
a theorem by Fubini.* We have thus proved the

THEOREM IV. A mecessary and sufficient condition that the space (13)
shall be reducible to the form (21) is that it shall admit the group Gs as
a complete group of motions.

For the purpose of further specialization we shall consider a few
invariants that play an important role in the classification of 3- and 4-spaces
and also in the general relativity theory.

5. The total curvature of S, (curvature scalar) is given by the formula

0---8

0--:3
(23) B = th’”’RM, Rp = 2 {hp,ip}.
X3 V4

If instead of the symbols {%p,ip} we introduce the Riemannian symbols
(hp,iq), we have

0---3 0-.-8

{hp,ip} = ggm (hp,ig) R = ngm (hp, iq),
y ) 4

wheret

. 2 . 62 . 2» . 2
i) — S 2 g Bl P o |
2 Lox;dxp  Oandxy Oapdxy  OxROX;

+z2m9’ A=)

and the quantities ¢gP? are the co-factors of ¢, divided by g. We now
define the following expressions:

1 ;
(24) Gin = ?,%‘hR — Rin,
and, introducing the mixed forms G?, we put
(25) G = 2 4Gy

J

We shall also recall here that for the empty space in an Einstein solar field
we must have R = 0, or, what is the same thing, Gr = 0. Calculating
the curvature tensors Ry for the space (21) which we write in the form

(21) —ds* = ¢, dR*+ 93 (d0*+sin®0dg®) — ¢, d ¢

* L. Bianchi, loc. cit., pp. 517-518. See also KFubini's memoir in vol. 3 of Annali di
Matematica.

T The non-vanishing Riemannian symbols (kp,iq) are given on p. 238, equations (58).
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= — %, Ju = 9Pz, Jse = Ps, gss = g5 sin’e,

_1_ q" — _1_. 33 __ __-1—— 900 =5 —-L :

9s’ k ¢s’ g3 sin*@’ ¢’

Ris = g**(13, 23) +¢*°(10, 20), R;s = ¢**(12, 32)+ ¢*™(10, 30),
(26a) Ry = ,(/11(217 31) +y°°(20, 30), R, = 9”(12; 02) +y”’(13, 03))
Rgo == 9‘1(21 y Ol) +938(23’ 03), .R30 == y“(gl, 01) +922(32’ 02),

(260)

Ry, = g*(12, 12) + ¢*° (13, 13) + 4 (10, 10),
R = ¢'1(21, 21) + ¢* (23, 23) + ¢°°(10, 10),
Ry = ¢'*(31, 31)+ ¢**(32, 32) 4 ¢ (30, 30),
Ry = ¢ (01, 01) 4+ ¢**(02, 02) 4 ¢%%(30, 30).

Calculating the Riemannian symbols (Ap, ¢q) and substituting in these
equations we find

Ry =

By, =

Ry =

Ry =

0, Ry =0, Ry = 0, Ry = 0, By = O>

_ 1 0% | 1 099309y 1 99s09s | 1 09109

gy 0rdt ' 2959y 0r 08t  2¢2 8r 8t = 29,93 0r 8t
Ryy :__1_ 2%9s 1 0y 095 1 095 09: 1 8%9s
sin?6 29, 0r® ' 4¢2 9r or 4¢2 0t 0t = 29, ot

1 [3_%‘8_9’&_8_91%]4(1
49,9, L 8t ot ar ar ’

1 2% 1 9% 1 0 1 99y 09y
ps 0r® ' 29, 9t* 29, 0r® ' 2¢.93 0r Oor

4L [M]z 1 092 095 1 922_]2_ L [MT

2¢2 Lor .95 0t 0f ' 4g g | 0t 492 L or
41 89289 1 995 B9y

49 0r 0t 499y Or 09t’
_ 1 2% 1 2%, 1 0%, 1395 091

gy 0fF 29y 088 ' 295 0r® ' 2¢,9s 0t 0t
1 [ogs]? 1 [ogs]? 1 0¢sdy; 1 0g¢s0
[_9’_3] 4+ L [L] 4. L 8930\ 1 99209

295 L 0t 492 L 0t 2¢.03 0r 07 4,9, 0t 0t
_Lﬁﬁéﬂ__}__[%i'2.
92 or or 4¢gs Lor ]’
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1
- 9ii B — R,
Gi= g Gi = 5 R—g" Ru, A = 4" Gn = —g" R,

Gr =0, 4, h3}1,0;

R = !}uRn +922R22 +933333+900R007 Gy =

G = g*¢*(23, 23) + ¢"¢*(20, 20) + ¢** (03, 03),
28) G5 = g ¢g* (18, 13) + g1 ¢%(10, 10) + g*¢°°(03, 03),
Gy = g"g™ (12, 12) +¢"¢" (10, 10) + 4*2 ¢ (02, 02),

Gy = ¢ g* (12, 12) + ¢ g% (13, 13) + g% 4% (23, 23);

11 [M]Z_ 1 [?&]2—_ 1 89y g1
9, 4g,92 L or 49 92| 0t 29,97 8t ot
1 99389, 1 ?d%s

2.‘/‘19’29’3 or or P 0%
0 dos T 1 dgs 1 0¢y 0¢y
G = _+ 4302% [Br] + 49 93 [W] + 2972973 ar or

1 gy Dys 1 3%gy
2919295 01 0 gyg5 07°

1 0%, I d%¢ 1 3%

h=6=3 o8 2 ot 2 or®
(29) P19 P19 Or P39 07

8?3 2 1 69)2.2 1 Bg‘pl 2 1 3?3 2
gl o] “angil ot *aaglor] “aagl
9’29’3 P92 PopiLOT 9193
1 09095 1 Bga 09 1 095 0o
49,95 0r 0r 4939, 0t 0t 4@1%91, or ar
1 093 09, 1 0ps _3_9’3+ ogs 091

—4¢§¢3W-6—{ 49,9:93 0t 0t 4901_(/), ar or

1 82933
29,95 0%’
1[1 0%9s 1 092095 1 8psdgs 1 By B9s)
1

G =

93 0r0t  2gspy 0t Or 295 0r 8t 29,9y 0r 0t

It is significant that these mixed tensors do not contain any of the
variables ¢, 6, while Ej3 contains 6.

6. We shall now suppose that the space (21') admits a one-parameter
group whose infinitesimal symbol is of the form

G,: Uf = & af+sl af
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where &, and & are functions of » and #. In order that this shall be the
case, the functions ¢,, 9, and ¢; must satisfy certain conditions which we
shall now proceed to find. The Killing equations (4) are in this case

39’2 39’2 08 « 091 091 | o, 08 __
(30) 5t + & + 29, 5y — 0 S0 +§1—a7, +2¢, 5 — O
. 39)3 3973 6151 a‘::-()
g e SALL Y p—
o=, & ar 0, P2 Y P1 ar 0

The third equation shows that ¢, must be an invariant of the group or
a constant. If ¢; is not a constant, we put

. M 0 py
31) =220 =200

Substituting the values of &, &, and their derivatives obtained from (31)
in (30) we have

O0gs 093 0@ _?is__l_? 9° gy

pe  or ot ot or ' “"orof
—9 8 __ T
ar 093
- (Y
B9y Bys  Dyu B9y 4y P
e _ ot or or ot ' " oraf
__2 o— = )
at 293
P1 ar
do B do B 3 0%y
(33) @, 0% __0C, 0% _ % + s

5

Tt ot T v P e

where ¢ = log 4. Taking account of (29), these equations may be written

20 2 g 29195 61
237, = o7 1089’1‘]’2‘]3“’ agp ’
at
(82 8o 0 291 s (1
__ o 29y g3 by
YR Y, log ¢, 9s 93 + 3%}. -
or

(33) 919590 (G — Gy — | 919G B0 oG des|
91 92 93 (011 0 395 91 ar D95 P .

ot or
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The conditions which must be satisfied by the functions ¢,, s and ¢; are
therefore, besides (33'), the following:

34) ee6] 2 lann6]
ot 093 or 093
ot or
We now put
(34) 9319)302___811’ ?I?SG(I)ZBIII
0 93 ar ’ g3 at '’
ot or

from which we derive the differential equation for ¥,

dg; 0w D9y W

ot or ar ot O

Hence, ¥ must be an arbitrary function of ¢; or else a constant. The
conditions (34) and (33') may now be written

. 0 0
(33) 9195 O = W (g0) 5 0,

(35) 91 92 93 (G1— Go) = &' (gs) [9’1 ( 8%) + 92 ( 8?8) J

These conditions being satisfied, the corresponding G, has the form

09 095

SPS TN VA 1 R

PV grgegs 0t Vg ggs 0T

We have then
The necessary and sufficient conditions that a centro-symmetric space with

linear element
(21") —ds® = ¢y dr®+ 93 (d6°+ sin®0 dg*) — ¢, dt?,

91, 93 and ¢y being arbitrary functions of + and t and 93 mot a constant,
shall admit a one-parameter group of motions Gy are

0 , 093 093
= Yr. =
(35) 9’19’301 ar ot

@ i =+ [0 (2] 4 ()],

where W is an arbitrary function of ¢y, or a constant.
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But we know that by a proper choice of variables this group may always
be reduced to the form 3 f79¢ (Theorem II). The transformation 7'= T'(r, ?),
R = R(r, t), where R and T satisfy the two partial differential equations
T

oT 0 R ;
(36) §oa—t+§1‘ﬁ~—1, §ow+§1

R )
F

(solved by two quadratures), will carry (21") into the form
37 —ds* = ¢y dr®+ ¢35 (d0° 4 sin*0d¢®)— g, dt?,

where ¢,, s and ¢z are functions of » alone. It should be noted that
the transformation may always be so chosen as to preserve the orthogonality
of the space S(r, 6, ¢) to the time-axis. We have therefore

THEOREM V. The necessary and sufficient conditions that a centro-symmetric
space (21') shall be reducible to the static form are given by the equations
(85) and (35").

If we choose the arbitrary function & = const., we have, as a corollary
of the above theorem,

If G = G and GY = 0, the centro-symmetric space (21') is reducible
to the static form.

Since for an Einstein solar field we have Gy = 0 it follows that the
Einstein solar field is necessarily static.™

For a class of spaces of importance in relativity theory the generalized
Einstein equations hold: G# = 1gi, where A is constant. We have there-
fore & = 0, Gi— G = 0. Hence, these spaces are also necessarily static.
Examples are De Sitter’s cosmological space and the gravitational field of
an electron.t

The case ¢; = const. needs special treatement, since

O9s _ 09y 0.

or ot
It will be convenient to transform (21') into the form
(21") —ds® = ¢, (dr*— d )+ 93 (d6*+ sin® 6d ¢*).

Integrating equations (30) on the hypotheses ¢; = ¢, and ¢; = const.

we find
8 -El a ':S() a ‘:S] ?EQ

G TR e T Mmoo t—o)

* For a different proof of this proposition see G. D. Birkhoff, loc. cit., pp. 253-256.
1 A. S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press,
1923, p. 100 and p. 185.
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hence
SE=0Q0U+)+¥0—1t), H=O00r+)—¥(F—1.

Without loss of generality we may put & = ¢, & = r, and the group is

of

pe g O 0
U =rae T gy

The integration of (36) will yield the transformation
r+t = R-eT, r—t=R.e T,

which will carry (21”) into the static form. We also tind

& =0 —@ = %_T;_ —o.
73 3

To this class belongs the space discussed by Levi-Civita (p. 238, footnote).
This space is also necessarily static.

The case where ¢; is a function of r alone, say g3 = 72, is not special,
since a transformation

REZ P3, T= (D(?,t)
will carry (21’) into

(21" —ds? = — 9, dT?*+ 9. dR*+ R2(d6*+ sin® 0 dg?).

@) = 0, since 9¢s/0T == 0 and (34') shows that % is a function of R
alone. The condition (35) becomes

(35") $:2(G1 — (o) = 4% (R).

7. We shall suppose that the linear element (21’) admits the groups
@, and G, all the transformations of which form a group G4, and that
it has been reduced to the form (37). If ¢y is not cor ‘tant, the trans-
formation

R= Vg, T=t ¢ =1+g
will reduce (37) to the form
(38) ds® = ¢, dt* — (14 ¢3) dr® — r*(d 6%+ sin® 0 d ¢®)

admitting the group of motions G,.
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We have now Rx =0, ¢ 1 k, and the mixed tensors Gﬁ, which we shall
substitute for the tensors Ry, become (equations (29))

- _1__[ _M] 0 _ ____1__[ _1gzé_]
G =Sl b = arple Tt h

’

39) @2 — @ — ¥ 99 9}
(39 ) ? 29, (14 9s) 4¢,(14 ¢5)? + 2(1 4 ;)27
+ 91> 91

41+ 9592 29, (1+go)r

Tt appears from these equations that while G = 0, the same is not true
of the difference G — G5. We find

P S PRSI (NS B 1

which vanishes if, and only if, ¢; (14 ¢s) = ¢. This ist he “Leithypothese”
of Kottler* which may be stated in the form of an equation as follows:

Ju G2 Gis 0 E yy Qe Qg3 0
0 | Az Qs @ 0
1) g= G2 Js2  Ye3 ; _ |t 22 Qg = |ax| (—e?),
913 Y23 Yss 0 | Qg U3 Ogs 0
0 O 0 —goo 0 0 0 —c

where the a’s are the coefficients of the linear element of a euclidean
space and ¢ is the velocity of light in “empty” space. In fact, we have

g = — ¢ (14 ¢g)r* sin? 9 = »* sin® 6 (—c?),
or
g (1+9s) = %
Consider the three sub-spaces ¢ = ¢, ¢ = ¢, 6 == ¢;, having the

respective linear elements

S : ds® = (1+g99)dr*+2*(d6*+ sin® 6dy*?),
(42) Ss: ds® = (14 g,)dr*+12de*— ¢, dt?,

Ss: ds® = (14 g)dr*+r®sin? 0dg®— ¢, d 2.

* F. Kottler, Uber die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,
Annalen der Physik, vol. 56, pp. 401-462. Kottler considers this hypothesis as a sub-
stitute in general relativity for the hypothesis of the constancy of the velocity of light
in Minkowski’s mechanics. The hypothesis holds for an Einstein solar field, but not
necessarily for spaces with a different mass-distribution. It does not hold for Einstein's
cosmological space, although it does for that of De Sitter.
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We shall calculate the principal Riemannian curvatures for each of them.
We find*

. g e
S S M D TCE=n
” ' r2
s K= Y ohof
» V= Siteg T ot T i ey
(43) ; ,
Kb = , Kie= —9%_
N 49’1(1+9’2) ’ 2r(1+g9,)*

Sg: K? == Kl, K'_; = Kg, K?, — K; = ,KQ S K3.
Comparing these results with (40) we have, at once,

@) (5 = Ki+ K+ K,
Gy = Gy = Ki+ Ky +Ks = Ki+Ki+ Ks.

Since in S; we have K; = K, the principal trihedron with respect to any
point P has one direction completely determined, namely the direction of
the tangent to the r-line, while the other two directions through P, normal
to it and to each other, may be chosen arbitrarily in the tangent plane
to the surface » = const. The space S; can therefore rotate freely about
the geodesic r.t

This is not the case with the spaces S3 and S3, since the three principal
curvatures are in general unequal. If, however, K3 — K3, S3, and also S3
will have the same property as Ss: At a point P the principal direction
along the r-line will be determinate, while the other two are albltrary
in the tangent planes to the surface » = const. The condition K3 = K3
imposes therefore a certain symmetry on the time space §;, namely

The three subspaces Ss, S, S3 possess, at any generic point P, “rotational
mobility” about the geodesic r-line which passes through the point.

It should be noted that, in the case of the subspaces S5 and S3, a
“rotation” about the »-line means a “hyperbolic” rotation, since these
spaces have an indefinite quadratic form as line-element. If with Minkowsky
we put it = t, the hyperbolic rotation becomes ordinary euclidean.

* L. Bianchi, Lezione di Geometria Differenziale, vol. 1, pp. 365-358, and also Lezioni
sulla Teoria dei Gruppi, pp. 546-547 by the same author.

T It should be observed in this connection that when we say “rotate freely about the
geodesic »” this does not imply that the -line is an axis. It would be a geodesic axis
only if K; = K; = 0, that is, if ¢, is a constant. The transformation ¥ = fl/ 14+ g dr
will make 7 a geodesic axis.
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Since K3 = K3 is equivalent to the condition @1 = G, or to the condition
(45) 9, (14 ¢,) = const.,

we see that Kottler's “ Leithypothese” is equivalent to the assumption of free
mobility of the subspaces Ss, Sz, S3 about the r-line.
With this assumption the linear element takes the form

(46) —ds* = (1+¢,) dr*+r*(d6?+sin?6 dg?) — —1-—:— at

and we also have, from (40),
47 Gl = G = K1+ KoK, G5 = Gy = Ki+K3-+Ks = K3+ K5 +K;.

8. We shall specialize further by assuming various values for the sum
of the three principal curvatures of S;, which is the space part of the
time-space ;.

(@) Ki,+K;+K; = 0. We have from (40)

P9, — 19 = 0,
or, since ¢, = /¢, —1,

ro, = c*r+C.
Putting ¢ = — «c*® we have

o 1
e R R

1-- -
r

which is Schwarzschild’s solution for the line-element of a static and
stationary space with centro-symmetric mass-distribution, viz.:

(48) —ds? =

2(d 6%+ sin®*0dg®) —? (1—-7—0")(“"’.
1— %
r

This space is characterized by the following three geometrical properties:
1. It admits the group of motions G, (Assumption L).
2. The three subspaces S, Ss, S; possess rotational mobility about the
r-line (Assumption M).
3. The sum of the three principal Riemannian curvatures of the space S,
is zero (Assumption N).
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Assumptions L, M, and N* are equivalent to the physical assumption
that in the gravitational field outside the mass the tensors.T%: all vanish.
In fact Einstein’s equations are

8mk

(49) G = =Ty = 0, x = —

where % is the Newtonian gravitation constant. But from (40) we have

G5 = g*Ga = 0, i+,

and since 21 K; = 0 and K} = K3, it follows that G = G = 0. If
the values of ¢, and 14-¢, are substituted in the expression for G5 and G
we find that they vanish also.

It will be noted that the principal Riemannian curvatures of the three

1 2
subspaces Ss, Ss, S35 are

o 2 o

K=Ki=Ki= & K= Ki=K;=K; = K§,=K3==—~-~27.

If, as has been suggested by Cesaro,t we put
1 1 1 1 2 1 2
K_—?’—ZKi, K _321(1-, K_-g—ZK,-,

and define K, K', K? as the mean curvatures of the respective spaces,
we have

TuroreM VI. The subspaces Ss, S3 and Si of a static time-space (48)
with centro-symmetric mass distribution have their mean curvatures equal
to zero, and the three principal curvatures of any subspace are respectively
equal to the corresponding principal curvatures of any other subspace.

() K,+K.+K; = const. = 3/R%. We have from (43)

g —r91 3
,.202 - RZ’
or
\ o, 3%t
CT1 T = —F;

* L, M and N are also equivalent to postulates I—V of Eisenhart’s paper The permanent
gravilational field in the Einstein theory, Annals of Mathematics, ser.2, vol. 22, No. 2;
December, 1920.

T Ernesto Cesaro, Lezioni di Geometria Intrinsica, Napoli, 1896, p. 223.
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integrating, we have
)2
(50) 1= - +¢ (1 —‘7{{) .

Let ¢ = 0; the linear element of S, is

2 2
(Bl) —ds* — ——d-”r, 2 (d6* + sin”odqﬁ)——c”(lwé—g) ae.
1—
R2

This solution applies to the space inside of a homogeneous sphere of matter
provided the inertial density (Tragheitsdichte) is assumed to be zero.*
It we calculate the Riemannian symbols (¢%, »%), we find

(ik, k) = 7;;— iy, (il rh) = 0, 1§ », k+1,

which means that the curvature K, = 1/R* (L. Bianchi, Lezioni, vol. I,
p. 344). The group of S, is therefore the maximum Gy, of non-euclidean
rotations and translations, and that of S is the corresponding Gs. G does
not belong to S;, while the group G, remains as a subgroup of Gyy. The
space (51) is usually referred to as De Sitter’s space.

(¢) If in (50) we let the constant C' differ from zero, we may put
C = *b*/R? and we have

2 3
0 g=ci-S+ 5] rhe=
I=mtr,

The space to which this solution applies is that of a shell of thickness
a—2b. R is supposed to vary between the limits b > R < a.t Since
the shell acts on the region outside of it like a Newtonian masspoint m
determined by the relation

2km _ a*—b®

(;2 R2 ’

* H. Weyl, Raum, Zeit und Materie, 4th edition, p. 232; F. Kottler, loc. cit., pp. 438-439.
Kottler assumes that the cohesion pressure equals the entire emergy of the mass, i. e.
p—=¢e—p = 0 where ¢ is the energy and p the cohesion pressure. See also H.Weyl,
loc. cit., p. 254, and p. 256.

1 F. Kottler, loc. cit., p. 493. He obtains this solution by assuming that the space has
no inertial mass, i.e. the cohesion pressure p = . Kottler's solution has not been accepted
by Einstein, who prefers the one obtained by Schwarzschild (equation 55).

15
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we have, for B > a,

(d) We shall consider the case where K, + K;+ K, is inversely pro-
portional to the fourth power of the “distance” r from the mass-center.
We have

(53) K=2h—"ri %

7 (}’ 7 ’

or, since we are still working under assumption M,

o

7.2 *

’
E—p—ry1 =

Integrating we have

;,—-c(l—“—l— ) and 1-+g¢,= - 1 .
1B + %
r rE
S, has therefore the linear clement
(B4) —ds, = ——-—~‘?—-a— +13(d6-+sin®0dg?) —? (1 ———l— )dt2
1=t

which has been obtained by Weyl.* He considers a sphere having a New-
tonian mass m and a static charge e. If we put 8 = 2a and « = ke¥/c*,
where a = km/c}, we get the identical form due to Weyl. The group
of the space (54) is G4, assumptions L and M hold, while for N is sub-
stituted (53). This space, and the two preceding ones, belong to a class
of spaces characterized by the property of having the sum of the three
principal curvatures of S; equal to a function of the distance from the
mass-center, assumptions L and M being valid. We find for the value of ¢,

e efi fra]

(¢) Let us retain assumption L. Instead of M, i.e. K3 = K3, we put

M Ki= K3,

* H. Weyl, loc. cit., pp. 236-237.
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and let, as before in case (b),
3
_EE .

9, and ¢ must now satisfy the following differential equations obtained
from (42):

N': K1+K2+Ks=

P2 + (& — _i.
CETSIIT (S Al
91 + 91 92 91 9% o

re,  2¢2 ' 2¢(1+9,) 9
Integrating the first equation, we find

: 1
1+gy = TTTE TS
1] ———

r R*
we let C be equal to zero and substitute the value of ¢, in the second
equation and integrate; the result is
1.2
lf 1=%

Vin = o e b B,

where ¢ and « are integration constants. If we determine the initial value
of ¢, in such a way that for »r = R we have

_ 3 A a?
V(pl - ?Cl/ ].—“F,

a? ]
I )/
Vq) - C 2

we get

and the linear element of the space S, is

dr® 2 2 2 2
r,——i—r (d6®+sin*0dg*)
1—

R?
a® I
. 3‘/1_'_2_1/1__’
_c

5 dtt,

(65) —ds* =

16*
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which is Schwarzschild’s solution for the gravitational space within a liquid
sphere of radius . The group of S; is obviously G, but G¢ does mot
belong to S;. The condition C'= 0 is equivalent to

P K=K =FK=;.

S, is therefore a space of constant curvature. Assumptions L, M’, and P
determine completely the Schwarzschild solution (55).
9. The case g,, = const. If gy is constant, the equations (43) become

9 : —‘(P’

— P2
K= "’2(1 + ‘fz) '

The group of S; is the systatic G4, and, since g is constant, the trans-
formation 0 f/0¢ is a translation (Theorem II). The space S, can therefore
rotate freely about the ¢-line as geodesic axis. We shall consider the
following cases:

() K, + K, + K; = 0. We have

92 (1 +¢5)+rg: = 0.

Integrating we find

where « is the integration constant. If ¢ = 0, the space is euclidean.
o F 0 does not correspond to any physical space, since the velocity of
light is constant.

(b) Ki+K;+K, = 3/R® This case gives us the Einstein-Schridinger
solution for a closed space with incoherent mass in static equilibrium,*

dr®

,’.2
1= %

(56) —ds? = +7'2(d02+ Sinﬂedq)Z)_goodt‘.’.

* B. Schrodinger, Uber die Lisungssysteme der allgemeinen kovarianten Gravitations-
gleichungen, Physikalische Zeitschrift, vol. 19 (1918), p. 20. See also F. Kottler,
loc. cit., p. 483, and H. Weyl, loc. cit., pp. 252-253.
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S is a space of constant curvature 1/R®. The group of S, is a Gy,
namely 8/9¢, and Gs which belongs also to Ss. @G is systatic, the systatic
spreads being the geodesic ¢-lines.

A general time-space (21’) which admits the group G; can be reduced
to the form (56); for since S, admits the group G, which is a transitive
group in Ss, ¢, must be constant (Theorem III). Hence, the group &
completely characterizes the Einstein-Schrodinger solution (56).

10. A somewhat interesting type of centro-symmetric spaces is obtained
from the form (38) by assuming ¢; = const. Let this constant be R2.
The transformation

Ro = o, Ry = ¢, Vit gsdr = dr
will carry the linear element into the form

57) —ds? = d7-2+d62+sm2—1% P2— g, d .

The principal curvatures of the sub-spaces Ss, S5, S3 are

K= =@ =0} K=K=0 Ki=K=0 K=EK=0
1 21 9% 1 (3%)2_ 2 8
K, = K; = 2?1 35:2—'—4?% Y3 —G2_‘G3°

Ss belongs to a type of L. Bianchi’s normal spaces, namely that one for
which the three principal curvatures are constant. If the mean curvature
K =D K; is positive, it is said to be of type B.* This is here the case.
The group of the space S, is G4 as before, but S; admits a 4-parameter
group of motions, namely G5 and the translation 8f/9r, the latter not
belonging to S; except when ¢, is constant.

A notable case is where the mean curvature of the space S, is zero.
We have then

3 \
__ i 2 10%, 1 (3% )2 .
M ozGl R ¢, 07? 292 \ o7 0,

which integrated gives

Vg, = @Bt ™R,

* L. Bianchi, Sugli spazi mormali a tre dimenzioni colle curvature principali costanti,
Lincei Kendiconti, ser. 5, vol. 25, 1st semester 1916, pp. 59-63.
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This space has been obtained by T. Levi-Civita. He assumes that the
physical space S; is supplied with an electrical potential ¢ = —Cr. The
intensity of the force is |C'|V g™ and is directed mormal to the surfaces
r = const.*

11. Class of a centro-symmetric space. It follows from a theorem
due to E. Kasner that the special Einstein 4-dimensional spread (48) cannot
be immersed in a flat 5-space. In other words, the linear element (48)
is at least of the second class.t The necessary and sufficient conditions
that a differential form ds® in n-space shall be of the first class are

1. It must be possible to find a doubly symmetric system of quantities b
(coefficients of the second differential form) such that

(@) (rk,2h) = byi b — Ori brn.

2. The system b; must satisfy the differential equations

®) _3_139'___3@1»_[_2]1 zlb ;{r h}bzt—o

oxp

Equations (a) and (b) are known as the generalized equations of Gauss
and Codazzii for a euclidean n-space.

Starting with the general centro-symmetric space (21') we shall proceed
to find the conditions (a). Calculating the Riemannian symbols (rk,:k)
we find that they all vanish except the following:

_ 1oy 1 39’2 6% 8%)" 1 09s 095
(13, 13) = (12, 12) sin’o;
. 1 3¢y | 1 %, 1 39’3)2 1 o9 09
(68) (10,10) = —5 — +5 5,3 49 ( at ) 49, or or
1 (39’1)2 1 09 09y
49, \0r/) " a9, ot ot
_| 1 m)?_ 1 (asp)] s
(23’ 23) - [?3+ 49)1 ( at 4?2 or sm 0’

* T. Levi-Civita, Realtd fisica di alcuni spaci normali del Bianchi, Lincei Rendiconti,
ser. 5, vol. 25, 1st semester 1917.

+ E. Kasner, The impossibility of Einstein fields immersed in a flat space of five dimen-
sions, American Journal of Mathematics, vol. 43, pp. 126-129. For the definition
of class see Ricei and Levi-Civita, Méthodes de calcul différentiel absolu, Mathematische
Annalen, vol. 54, p. 160.

1 L. Bianchi, Lezioni di Geometria Differenziali, 2d edition, vol. 1, p. 462.
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_ 1 3’ 09, 3.‘!’3 39’3)9
(02,02) = — +4? < +4%(

1 9 0
+ $1 093 |

49, ot 0t "’
(03, 03) = (02, 02) sin6;

(58)

1 89 1 09 O¢g 0gs 0ys
12,02) =
(12, 02) 2 6r8t+4qp, ot 8r+4cp3 or ot
1 09, 09
+49)1 or ot ’

(13,03) = (12, 02) sin®9.
Equations (a) are now
bog = bos = big = by = byy = 0? bor bee = (12, 02),
(59) bo1 bss = (13, 03), boo bss =. (03, 03): boo bss = (02; 02); i1 bgs = (13, 13)7
beg bss = (23, 23)» b bes = (12, 12), boo b1 — ng = (Ola Ol)’
from which we derive the relations

b (12,12)  (02,02) (12, 02)
by  (13,13)  (03,03) ~ (13,03)’

that is, we have the following two conditions:

(ay) (12, 12) (03, 03) = (02, 02) (13, 13),
(as) (12, 12) (13, 03) = (13, 13) (12, 02),

which are satisfied by (58). We also find the following values for the non-
vanishing b’s:

(02, 02)* 3 (12, 12)*
— D '™ D

(12, 02)?
D ’

bao = , bh= D, b= Dsin%0, bjo=

where D = (23,23)/sin®0. Substituting in the last equation of (59), we
obtain the condition
(as) (02, 02) (13, 13) = (01, 01) (23, 23) + (12,02) (13, 03),

which is not satisfied for a general space (21').

Suppose now that the condition (as) is satisfied. A rather long, but
not difficult, calculation will show that the b’s also satisfy the Codazzi
equations (). We have thus proved the
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THEOREM VII. A necessary and sufficient condition that the general centro-
symmetric space (21") shall be of the first class is

(as) (02, 02) (13, 13) = (01, 01) (23, 23) + (12, 02) (13, 03).
Let the space (21’) be static, and reduced to the form
(38) —ds* = (14 ¢5) dr’++*(d6° 4 sin*60 dg®) —o, dt*.

The condition (as) becomes

o — _3_ [ P192 n (q;) ]

which integrated gives

E (91)?
60 g = —— ———,
(60) Ps i

This condition being satisfied, the spread (38) may be represented in a flat
5-space, the coordinates being

x, == rsin0 sing, a3 = rsin 6 cos g, a3 = 7 cos 6,

=
e = kV ¢, cos —, = kV g, sin

k k’

where ¢ = i¢. Hence

A mecessary and sufficient condition that the static centro-symmetric
space (38) shall be immersible in a flat H-space is

_ R (9)?
(60) P — 1 o1 .

12. Particular spaces which occur in the theory of relativity and for
which the condition (60) is satisfied are the following:
1. De Sitter’s space (51); ¢, = ¢* (1—7»¥R?), *1-+ 9, = 1/(1—r* R?).
2. All spaces for which go = ¢, is constant (Einstein’s cosmic space).
3. The Schwarzschild solution for a space inside a liquid sphere of radius a,
(equation (55)). The coordinates of the 4-spread are

x, = rsin @ sing, Iy = rsind cosy, xg = 7 coso,

¢t . ct
Xy = 1[3ao—V1——]cos VR [Sao—-l/ g ]smﬁ-
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This surface is a 4-dimensional torus generated by revolving the 3-dimensional
sphere

@2—3apr)?’+ai+al+tal = »*

in such a way that the center describes the circle x2-+ 22 = (3ao7)®. The
equation of the torus is

[lixf——rz(l + 9a§)]2= 3642 r* [r’—zla:wf].

Since @y > %,* we have 3apr >» so that the generating sphere does not
intersect the z;, x5, 3 and x,-axes. The space inside the liquid sphere
in 8; is represented by a 3-dimensional spherical cap on the generating
sphere defined by the limit >2? << a2 <<7?(1—a2), and the corresponding
time-space by a 4-dimensional zone on the torus generated by the revolution
of the cap.

13. We have seen that the space of an Einstein solar field is at least
of the second class. We shall prove the following general

TueoreM VIIL.  The linear element (21') for which the condition (as) is
not satisfied is of the second class.

The transformation

gs(r,t) = R, YO, ) =T

will carry (21') into the form

@)  —ds* = —g,dT*+ g, AR+ R*(d 6+ sin*6 d ¢*)
or
Gy = A0S = =5 AT (G DR

+ (dR?*+ R?d 0>+ R*sin? 6 d¢?).
Consider the linear element

(62) do® = —¢, dT°+ (9o—1)d R®.

By the general theory of surfaces, if the Gaussian curvature of the 2-spread
(62) differs from zero, it is always possible to find three functions x,, x5,
and xz; of B and T such that

dat+ da? + dag = do?,

* H. Weyl, loc. cit., p. 242; ao = 7, and » = a in Weyl’s notation.
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and the linear element (61) may be put in the form

—ds* = da?+dx)+dai+ dad + dai+ dad,
where
z; = Rsinfsing, xy; = Rsinfcosy, x; = Rcosé.

The 2-spread whose coordinates are x,, x;, and x; we shall call the auxiliary
surface.

If the Gaussian curvature of the 2-spread (62) is zero, it will be possible
to express do? in the form do?= da?+ dx?, that is, the linear element (61)
is of the first class. We find

K — — 1 { 0 ( 1 o afpg)
2V P1— 91 P2 oT V‘}’x—%% oT
3% (== _.8%)}
OB \Vg—g19: OE/[

or, putting K equal to zero and simplifying,

%9, g, 1 09, 99, 1 (3?71)2
o.R® o1 2¢, 8T 2T 29, \0R

1 662)2_8% 0p1|
+2(§52—])'{(6T 5k oR|

But this is precisely the condition (as), as is easily seen on calculating the
requisite Riemannian symbols for the form (61).

In the exceptional case ¢; = const. no transformation is necessary;
(as) reduces to (10, 10) = 0, that is, the Gaussian curvature of the
2-space do? = — ¢, dt*+ ¢ dr® must be zero. This condition is not satis-
fied for the space (21'), ¢; being a constant; it is therefore of the second
class. Hence, the space (57) is also of the second class.

A necessary and sufficient condition that a 2-space (u,v) shall be of
class zero is that it shall admit an abelian group 3f/dw, 8f/8v as a group
of motions. This is the group-property which characterizes all surfaces
of zero Gaussian curvature. The condition (as) reduces, in the case of
the transformed element (21"'), to the simpler form

(63)

(02, 02) (13, 13) = (01, 01) (23, 23),

which by (63) is equivalent to the condition that the sub-space ¢ = const.,
6 = + iR+ const.,, or the space (62), shall admit an abelian group G.
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of two parameters as a group of motions. Theorems VII and VIII may
therefore be stated thus:

A mecessary and sufficient condition that the space (21'") shall be of the
first class is that the sub-space (62) shall admit an abelian group Gs as
a group of motions. A 4-space which admits the group G, i.e. the space
(21"), is at most of the second class.

A similar statement holds for spaces (21’) for which ¢; = const.

14. Let the space be static and its linear element written in the form

—ds® = dR*+ R*(d6*+ sin®0dg®) + gy dR:+ ¢, d T,

where 7'=¢t. The spread has the codrdinates

z, = Rsindsing, xs = Rsinf cosg, x3= Rcosb,
(64) Ty 2 L
Ty = fl/ —k—@)l) dR x5 =Lk V ¢, cos f’[" xe="kVg sm%

The auxiliary surface is a surface of revolution generated by revolving

the curve
2 ol\2 .
2 — fl/ 7(2 (9’1) dR, x5 =k V‘Pl

about the x,-axis. The surface 2, = Rsing, 2, = Rcosg, 2, = V ¢s dR
is a generalization of Flamm’s quartic surface.*

If in (64) we put (¢1)®= (4/k?) ¢, ¢,, x, = 0, and the linear element
is of class 1. If we put 9o=a/(R— a), 9, = *(1— «/R) and k =1,
we get the representation of the Einstein solar field in a flat 6-space which
was obtained by Kasner in a slightly different form.t

15. Static spaces which are not centro-symmetric are in general of a class
higher than 2. Thus the general static space

(65) —ds* = g,dxi+g,dx?+ g,dai+ g dak, x, = it

* H. Weyl, loc. cit., p. 236.

T E. Kasner, Finite representation of the solar gravitational field in a flat space of six
dimensions, American Journal of Mathematics, vol. 43, pp. 130-133. It follows as
a corollary from Theorem VIII that a general space (21') can be conformally represented
on a flat 5-space, and, when (as) is satisfied, on a flat 4-space. The space of an Einstein
solar field can therefore not be represented conformally on a euclidean 4-space.
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is of the fifth class, or one less than the maximum. To prove this we
shall write the element in the form

(65) — ds* = g, [dxg+ %: dz? + Z—z clxj—l—gz dxg] — go(da2 + do?).

But a general curved 3-space may be immersed in a euclidean 6-space
so that we have

6
— st = goldag+ Sy,

the »’s being functions of a2, x,,2s. The space (65) is thus represented
conformally on a euclidean T7-space. Suck a space may be immersed in
a euclidean 9-space; for, write

2, = Vg_og-o’ 25 =:-l/5;‘7/” ceey 7 = V%yﬁy
6
ztz = ‘—V!]o, Zg T2y = Vﬂo(ny‘Fxg),

and an easy calculation shows that
: a
—ds® = go (da% + Zdyf) =" dei+dz—dz.
1 1

Since a 4-space which admits a group G, as complete group of motions
can always be reduced to the form (65) it follows that such a space s of
the fifth class.

If 8f/8x is a translation, g, is const. and (65) is of the third class.
If, in (65'), the sub-space do® admits the group 2f/0s, ¢1/90, g2/90, 9s/90
are functions of z, and x, alone. As will be proved in § 16, a 3-space of
this kind is of the first class, i. e. it can be immersed in a euclidean 4-space.
(65) is therefore of the third class.

16. Let the space (65) admit the abelian group 0f/0xy, 0f/0xs as
complete group of motions, in which case the ¢’s are functions of x; and x,
alone. We shall prove that (65) is of the third class. We write (65)
in the form

—ds* = do®+g,dai;

de® is the line-element of a 3-spread in a euclidean 4-space. To prove
this we calculate the Riemannian symbols, of which the following are
non-vanishing:

(10, 10), (20, 20), (12, 12), (10, 20),
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and set up the Gaussian equations for the calculation of the d’s. We find

boo b1y = (10, 10), boo bgy = (20, 20), boo by = (10, 20)7
biz by — bl = (12, 12).

These equations determine the b’s and they also satisfy the four Codazzi
equations, which we shall not take the trouble of writing here. The line-
element is now
—ds® = dyi+dyi+dy;+dy;i+ g, das.
If we put
Yoty = V.qs, Yo — Y1 = — a3 V!]s, Ys = V.f/s 23,

we have the final result
6

(66) —ds* = X dy — dy.
1

It 8f/0x; is a translation, g; is constant and the 4-spread belongs to
a euclidean 5-space. Its class is 1.

A notable space of this kind is Weyl’s cylindrical and static space

2 2
—ds® = h(d+ dr?) +-"——%’———fdti
which is of the third class and admits the group 8 //9¢, /06 as a com-
plete group of motions.* If Af =1 we have the static centro-symmetric
space of class 2 which admits a Gy.

17. Let the 4-space admit the group 8f/9x, 8f/0xs, 3f/0xs; it is found
that no reduction in class takes place. The space is of the third class
as in the preceding case.

It thus appears that the complete group of a 4-space (65) determines its
class, at least in the case of the abelian group, the group G5 of “rotations”
and the group of ‘“translations.” Whether this is true for all the groups
of motions in a 4-space is an open question that might be worth while
answering. Fubini’s classification of 4-spaces (vols. 8 and 9, Annali di
Matematica) would here render a notable service. It should however be
noted that the group of certain sub-spaces will also play a réle in the deter-
mination of the class.

*H. Weyl, Annalen der Physik, vol. 54, pp. 134-137.
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