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1. In reading papers on the theory of point aggregates one frequently

meets with the continuum C whose points are defined as follows: when

— l^a;<0 or 0<xgl, y = sin (1/x); when a; = 0, — l^y = l. This is perhaps

the most commonly cited example of a limited continuum irreducible be-

tween two points and having a continuum of condensation. If we regard the

concept of connectedness im kleinen as the analogue for continua of con-

tinuity in functions, we notice that the properties of this continuum resemble

those of pointwise discontinuous functions. The points where the continuum

is connected im kleinen form a set of the secondary category with respect to

C, while those of the second genre f form a set of the first category.

The question at once arises as to whether this similarity is of a general

character or is merely due to the nature of the example cited, and suggests

that a study of limited continua irreducible between two points with special

reference to the oscillation at the various points would be of interest. This

problem has been discussed in a paper by H. Hahn,f who has shown that such

a continuum is the sum of a set of sub-continua known as "prime parts,"

no two of which have common points. However, the fact that in many cases

a prime part itself can be subdivided indicates that the subject has not been

exhausted and it is the purpose of this paper to present some further results

along this line.

The first half of the paper (§§4-15) is devoted to the general properties

of the oscillation of a limited irreducible continuum. In the second half the

properties such continua have when the points of the first genre are every-

where dense are treated, and in particular it is shown that in this case there

is a correspondence between the points of such a continuum and those of a

linear segment analogous to that between the variables y and x when y =f(x)

is a pointwise discontinuous function of a certain type.

* Presented to the Society, September 10, 1925; received by the editors in October, 1925-

t A point of a continuum is of the first or second genre according as the oscillation of the con-

tinuum at the point is zero or not.   See S. Mazurkiewicz, Sur les lignes de Jordan, Fundamenta

Mathematicae, vol. 1, p. 170.

i H. Hahn, Über irreduzible Kontinua, Wiener Sitzungsberichte, vol.  130, pp.

217-250.
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2. In a previous paper,* of which this is in one sense a continuation, two

concepts were introduced which will be used throughout this work. The first

was an auxiliary function r(x), suggested as a definition of oscillation al-

ternative to that of Mazurkiewicz. f This is defined as follows. Let c be a

point of the continuum A, let V (c) denote those points of A whose distance

from c is less than ô and let Q be any sub-continuum of A containing V (c).

Then the lower bound of the diameters of all such sub-continua Cs for all

values of 5 >0 is denoted by r(c). The function r(c) will be called the oscilla-

tion of A at c.

The second concept was that of oscillatory sets. Let 5i>ô2> • • • ,

0¿—>0, and let {C5<} be a monotone decreasing sequence of sub-continua of

A irreducible about F0j(c). Then C(c)=Dv[C¡i] is called an oscillatory set

of A about c. It is obvious that, if A is limited, each oscillatory set is a con-

tinuum.

Among the general properties of these concepts derived in the paper

referred to, the following will be used.

(a) For limited continua there exist one or more oscillatory sets at each

point and r(c) is the lower bound of the diameters of the oscillatory sets of

A about c.

(b) If r(c) =0, the point c is one of the oscillatory sets of A about c.

(c) The function t(c) is related to Mazurkiewicz' oscillatory function

a(c) by the inequalities a(c)^T(c) ;£2a(c).

3. Notation. The ordinary notation of the theory of aggregates is

employed, with the following modifications.

The notation A CB means that A is a real part of B. If A is a part of B

and may be identical with B, we write A ç_B.

If A is the common part of the system of aggregates {C}, we write

A=Dv[C].
If A contains every element of each of the system of aggregates {C} and

no other elements, we write A = U[C].

When the notation A = B+C is used, it will be understood unless expressly

stated to the contrary that BC = 0.

The phrase "irreducible continuum ab" means a continuum which is

irreducible between the points a and b.

The symbol S¡(c) denotes an open sphere (or hypersphere) of center c

and radius S. If c is a point of the aggregate A, the symbol Vs(c) denotes the

the subset of points of A each of which has a distance from c less than ô.

* W. A. Wilson, On the oscillation of a continuum, these Transactions,vol. 27, pp. 429-440.

t Loc. cit.
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Then V3(c) = A- S¡(c) and V (c) is a region relative to A. In like manner, if

£ is a closed subset of A, the symbol V6(E) denotes the subset of points of

A each of which has a distance from E less than b.

4. In the following chain of six theorems, of which the first three are

essentially lemmas, certain general properties of a limited irreducible con-

tinuum ab are developed. It is shown that ab has about each point a unique

oscillatory set of diameter t(c), that at no point x of an oscillatory set of

diameter greater than zero is t(x) =0, and that t(c) is identical with Mazur-

kiewicz' oscillatory function a(c).

Theorem. Let ab be a limited irreducible continuum. Let A and B be true

sub-continua of ab containing a and b respectively and let AB = 0. Then there

is one and only one sub-continuum K of ab which is irreducible between A and B,

andK = ab-(A+B).

Proof. By a continuum K irreducible between A and B we mean a con-

tinuum containing points of both A and B such that no true sub-continuum

contains points of both these sets. Let L = ab — (A+B) and consider ¿.

Since ab is a continuum,

ab=A+L + B,       A-L^O,        1-B^O.

Now there is a partition of L into two closed sets C and D such that

CD = CB = DA =0, AC^O, and BD^O; or there is not.. In the former

case, ab = (A +C) + (B+D) and (A +C) (B+D) =0, which is contrary to the

fact that ab is a continuum.

In the latter case an easy generalization of two theorems of Janiszewski*

shows that L contains a continuum K joining A and B. Since ab is irredu-

cible, K O ab — (A+B)=L, whence K'DL. Thus Z is a continuum joining

A and B. Finally, any sub-continuum of ab irreducible between A and B

must contain L and consequently L, since ab is irreducible. Hence the

theorem. \

Corollary. Let ab be a limited irreducible continuum and A be a true

sub-continuum containing a but not b. Then there is one and only one

sub-continuumKof ab which is irreducible between A and b, and K = ab—A.

5. Theorem. Let C be a limited continuum. Let a and c be points of C and

let 6 <Dist (a, c). Let A be the saturated sub-continuum of C containing a, but

no point of Vi(c).   Then at least one point of A is a limiting point of V¡(c).

* Z. Janiszewski, Sur lies continus irreductibles entre deux points, Journalde l'EcolePoly-

technique, ser. 2, voL 16 (1912), pp. 109-111.

t The proof here given was suggested by the referee in lieu of a longer one in the paper as

originally submitted.
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Proof. Let Ss denote the interior of a sphere of center c and radius Ô.

Let Z denote the whole of the «-way euclidean space containing C, and

Gs be the complement of S$. Then Gs is closed and

Z = G, + St.

Let a < S and let V denote those points of Z whose distance from the closed

set A is not greater than a.   Then V is closed and does not contain c. Also

V = V-Gt + V-S,.

By a well known theorem of Janiszewski* there is a sub-continuum K of

C joining a point z of A to a point y of Front V and lying wholly in V. If

K ç F-G¡ then K would contain no point of S¡, while KA^O. This would

make KCA contrary to the fact that y is not a point of A. Thus K contains

at least one point in VS¡. But KcV. Hence at least one point of C in S3

has a distance from A not greater than a.

As this is true for every a, we have a sequence of points of V3(c) = CS¡

whose distances from A converge to zero. These therefore have at least one

limiting point on A.

6. Theorem. Let ab be a limited irreducible continuum and c be a point of

ab.   Then there is a unique sub-continuum of ab irreducible about any V¡(c).

Proof. Let C¡ be any sub-continuum of ab irreducible about Vs(c). There

are several cases to consider.

I. If Vs(c) contains both a and b, C0 obviously equals ab.

II. If V¡(c) contains b but not a, let A be the saturated sub-continuum

of ab containing a but no point of Vs(c) and let L = ab—A.

Since Cj 3 V¡(c), C¡ 3 Vs(c). Then, by §5, AC¡^0. As C¡ contains b

and a point of A, we have by §4, Corollary,

(1) Ct^L.

But

(2) L D ab - A 3 Vs(c).

Since C3 is irreducible about Vs(c), relations (1) and (2) give

C¡ = Z.

* See reference under 5 4, p. 100.
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III. If Vs(c) contains a but not b, we have essentially the same situation

as in Case II.

IV. If Vs(c) contains neither a nor b, let A be defined as in Case II and

let B have the same relation to the point b, while L = ab — (A+B). As in

Case II, A-d^O &ndB-C6^0. Hence, by §4,

(3) C03Z.

But

(4) L r> ab - (A + B) 2 V,(c).

Then relations (3) and (4) give

C¡ = L.

7. Theorem. Let ab be a limited irreducible continuum and let c be a point

of ab. Then the oscillatory set of ab about c is unique and its diameter is t(c),

and, if t(c) =0, it is the point c itself.

Proof. Let 0<o<r?, and let C{ and C„ be the sub-continua of ab irre-

ducible about Vs(c) and Vv(c) respectively. Obviously V¡(c) ç Vv(c) and

hence Vs(c) ÇC,.

Then C, has a süb-continuum D irreducible about V¡(c).   Since D C C„,

(1) DC ab.

But Ci is the only sub-continuum of ab irreducible about V¡(c). Hence (1)

gives CS = D and Cs Ç.C,.

This result shows that if {5¿} and {??<} are monotone decreasing se-

quences converging to zero, Dv[C¡i] = Dv[CVi¡. Hence the oscillatory set is

unique. That its diameter is t(c) follows from the fact that for continua in

general t(c) is equal to the minimum diameter of all the oscillatory sets

about c. (See §2.) Then if t(c) =0, the oscillatory set can contain no other

point than c itself.

For continua in general the oscillatory sets are not unique, as is shown

in an example given in the paper referred to in §2. The reader should note

the analogy of the oscillatory set to the aggregate of Umiting values of a

one-valued function of a real variable/(x) as x—»a. It is to the above theorem

that the oscillatory sets of a limited irreducible continuum owe most of their

value. A point of the second genre lies on a continuum of condensation and

in simple cases there is a greatest such continuum, but this is not always the

case.  On the other hand the oscillatory set of each point is unique.
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8. Theorem. Let ab be a limited irreducible continuum. Then for each point

c of ab, r(c)=a(c).

Proof.  It has been shown elsewhere (see §2) that

(1) °(c)£t(c).

Let cj±a, c¿¿b. Then by definition* of a(e) a»y two points x and y of

ab lying in a closed sphere S¡(c) whose center is c and whose radius 6 is

sufficiently small can be joined by a sub-continuum C(x, y) of ab such that

(2) DiamC(x,y) < a(c) + «,

where e is any positive quantity.

Now let Ss(c) denote the interior of Ss(c), and let 5 be so small that

5s (c) contains neither a nor b. Let A and B be the saturated sub-continua

of ab containing a and b respectively, but no point of V¿(c) = abS¡(c). By

§5, A contains a point x, and B a point y, on Front S s (c), and these points

satisfy relation (2).  Then

ab = A +C(x,y) + B,        A ■ C(x,y) ^ 0,        B ■ C(x,y) ^ 0.

Since A■ V¡(c)=B-V¡(c)=0, we have

Vs(c)£C(x,y).
Then relation (2) gives

t(c) = a(c) + e.

This with relation (1) gives the theorem for the case under consideration.

Similar reasoning applies to the cases that c = a or c = b.

9. Theorem. Let ab be a limited irreducible continuum. Let c be a point

of the second genre of ab and let C(c) be the oscillatory set of ab about c. Then

no point of C(c) is of the first genre.

Proof. Assume that there is a point x of C(c) at which t(x) =0, and let

?j=Dist (x, c). Then for any positive e<?7 there is a §>0, such that there

is a sub-continuum D of ab having the property

(1) Vt(x)£D£V.(x).

Let c be different from a and b and let ö be so small that V¡ (x) contains

neither a nor b. Let A and B be the saturated sub-continua of ab containing

a and b respectively, but no point of V¡(x). Then by §5 and relation (1)

ab = A+D + B,       AD 9^0,       BD^O.

* See S. Mazurkiewicz, Sur les lignes de Jordan, Fundamenta Mathematicae, vol. 1, p. 170.
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Since e<w, c is not a point of D; suppose that c is a point of A. Then

A has a sub-continuum irreducible about any V,(c), if a is so small that

V„(c) contains no point of D or of B. Since A c aZ>, this is the sub-continuum

of ab irreducible about V„(c) by § 6. Hence we have C(c)ç A. This is

a contradiction, since x is not a point of ^4.

The cases where c coincides with a or b are treated in a like manner.

Remark. The above theorem shows that the oscillatory set about a point

c is a part of the prime part containing c. That it need not be identical with

the prime part is seen from the example suggested in § 23.

10. It would be natural to surmise from § 9 that, if C(c) is the oscillatory

set of ab about c, then C(c) is the oscillatory set about each point z on C(c)

and that t(z)=t(c). This, however, is not true, as the following example

shows. Let ab be the continuum whose points are defined as follows: for

s = 0, -lúyúl; for 0<zgl, y = sin2 (1/x); for -1 ^x<0,y= -sin2(l/z).

The oscillatory set of ab about the point (0, 0) is the segment of the

y-axis between (0, —1) and (0, 1) and the oscillation is 2. For the point

(0, 5) the oscillatory set is the segment joining (0, 0) and (0, 1) and the

oscillation is 1.

In order to investigate this question more fully it is necessary to consider

the point set remaining when the oscillatory set about the point c is sub-

tracted from the continuum ab. The inference that the remainder is two

semi-continua, one containing a and the other b (or one semi-continuum if

C(c) contains either a or b) is seen to be false for the point (0, §) in the

example just given. The difficulty is that (0, 5) is a limiting point of only one

of the semi-continua containing the end points of ab. The inference is borne

out for (0, 0), however, as this point is a limiting point of both semi-continua.

The following notation will now be used. If x is a point of ab, the oscil-

latory set of ab about x will be denoted by X(x), or simply X. The saturated

semi-continua oiab—X containing a and b respectively will be denoted by

Xa and Xb. If b is a point of X, obviously Xb = 0 ; if a is a point of X, Xa = 0.

It is evident that

(1) Xa + X + Xb £ ab   and  Xa -Xb = 0.

By a theorem of Janiszewski* we know that XXa^0 and XXb^0;

hence

(2) ab = Xa + X + Xh,       XXa^O,       XXb^0.

Thus Xa+X and X+Xb are continua.  Analogous theorems hold, of course,

for the cases that Xo = 0 and Xb = 0.

*See reference under § 4, p. 123.
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It is also easy to sho"' that

(3) Xa-Xb = 0   and   Xa X„ = 0.

For, let A and B be the saturated sub-continua of ab containing a and b but

no points of V¡(x). Then ^4X6 = 0 and BXa = 0, since ab is irreducible. But

ab =A + Xi(x) + B,       A-Xi(x)9*0,       B-X,(x)^0.

Then
Xa £A + Xt(x),

and

XaXb £ A • Xb + Xb ■ X,(x) = Xb ■ Xt(x).
Hence

Xa ■ Xb £ Dv[Xb • Xi(x)\ - X • Xt - 0.

11. Theorem. Ze/ C 6e /Ae oscillatory set of the limited irreducible con-

tinuum ab about one of its points c and let C contain neither a nor b. Let c

be a common limiting point of Ca and Cb.   Then ab = Ca+C+Cb.

Proof. Owing to the hypothesis regarding c any sub-continuum Cs(c) of

ab irreducible about V¡(c) contains points of Ca and C„. Hence

ab = Ca + Ct(c) + Cb,       Ca • Ct(c) * 0,      Cb ■ Ct(c) * 0,

or
C,(c) 3 ab-(Ca + Cb).

Therefore

(1) C 3 ab- (Ca + Cb).

But

Ca + C + Cb £ ab,      CCa = 0,       C ■ C. = 0,
whence

(2) C£ ab- (Ca + Ct).

Relations (1) and (2) give the theorem.

Corollary 1. Let C be the oscillatory set of the hmited irreducible continuum

ab about the point c. Let abe a point of C and cbe a limiting point of Cb. Then

ab = C+Cb.

Corollary 2. Under the conditions of the above theorem the sets Ca+C

and C+Cb are continua.

For CaC6 = 0 by § 10, relation (3).
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Corollary 3.   If t(c)=0, ab = Ca+c+Cb = Ca+Cb = Ca+Cb.

For by § 10, relation (2), c is a common limiting point of Ca and Cb.

Corollary 4. Under the conditions of the above theorem, C is a continuum

of condensation of ab.

For c is a point of GrC¡>- Hence ab = Ca+Cb- Therefore CcCo+G,.

Analogous theorems hold for the oscillatory sets of the points a and b.

12. From § 11, Corollary 3, we can easily deduce the following well

known properties of irreducible continua.

(a) If c is a point of the first genre of the limited irreducible continuum

ab, then c divides ab into two unique irreducible continua ac and cb, and

accb = c.

(b) Ii x and y are two points of the first genre of the limited irreducible

continuum ab, then x and y divide ab into three unique irreducible continua;

if a; is a point of ay, ab = ax+xy+yb, and ax-xy = x, xy-yb = y, and ax-yb = 0.

(c) If c is a point of the first genre of the limited irreducible continuum

ab and a; is a point of ac, then every irreducible sub-continuum ax of ab is a

real part of ac and every xb contains cb as a real part.

It is also evident that analogous theorems can be deduced from the

partition ab = Ca+C+Cb of § 11. These we shall not go into, but we need the

two theorems immediately following.

13. Theorem. Let X be the oscillatory set of the limited irreducible con-

tinuum ab about the point x and let X contain neither a nor b. Let c be a com-

mon limiting point of Xa and Xb. Then the oscillatory set C about c contains X.

Proof. Any sub-continuum C¡(c) of ab irreducible about Vs(c) contains

points of both Xa and Xb. Hence

(1) C3(c) 3 ab - (Xa + Xb).

But

or Xtt + X + XbZ ab,

(2) X£ ab- (Xa + Xb).

Relations (1) and (2) give

C¡(c) 3 X.
Hence

C2X.

Analogous theorems hold for the oscillatory sets of a and b.
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14. Theorem. Let ab be a limited irreducible continuum. Let cbe a point of

ab and let C be the oscillatory set of ab about c. Let cbe a common limiting point

of the saturated semi-continua Ca and Cb of ab — C. Let x be any point of C

and X be the oscillatory set of ab about x.  Then X £ C.

Proof. Let {5j} and {5*} be two decreasing sequences of positive numbers

converging to zero. Let C< be the sub-continuum of ab irreducible about

V¡i(c), while Dx has the corresponding meaning for V¡k(x). Assume that C

contains neither a nor b.

Since c is a limiting point of both Ca and C„, for every i there is a sub-

continuum A i of C joining o to a point of F0<(c), and likewise a 2?< of analo-

gous properties.   Hence

ab = Ai + d + Bi,       Afd^O,      d-Bi^O.

Since CAi = CBi = 0, V¡k(x) contains no point of either A{ or B< if k

is sufficiently great. Thus V¡k(x) ç C< and so for every i there is a k such that

Dk £ Ci.

Since X=Dv[D¡¡] and C = Dv[d], this gives at once

X £ C.

The special cases where C contains a or b are treated in like manner.

Corollary. If in the above theorem x is a common limiting point of Ca

and Cb, then the oscillatory set X of ab about x is identical with C.

15. The example of § 10 shows that if a point x Ues on an oscillatory set

C(c), the oscillatory set X(x) may form only a part of C(c). In the example

mentioned the point (0, §) is an instance of this. This fact, coupled with

§ 14, suggests setting apart as a separate class the oscillatory sets satisfying

the hypotheses of that theorem.  Accordingly we have the definition

If C(c) is the oscillatory set of the limited irreducible continuum ab about

a point c, we shall call C(c) complete when it contains neither a nor b and c

is a common limiting point of the saturated semi-continua Ca and Cb ofab — C(c).

Likewise, if c is identical with a or b and c is a limiting point of Cb or Ca,

respectively, we shall call C(c) complete.

In addition to the properties already derived in §§ 11-14, we have

the following general theorem.

Let ab be a limited irreducible continuum and the oscillatory set C(c) be

complete. Let x be a point of Ca or Cb. Then the oscillatory set X(x) is a part

of C0 or C0, respectively.
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Proof. To fix the ideas let x be a point of Ca. Then it follows from the

definition of oscillatory sets that there is a ô>0 so small that, if C3 is the

sub-continuum of ab irreducible about Vs(c), C¡ does not contain x. Since

C(c) is complete, there is a sub-continuum E of Ca containing a and a point

in Vi(c).    Then

ab = E + Cs + Cb and E -Cb = 0,       E ■ Cs ^ 0,        C, ■ Cb 5* 0.

Since x is not a point of C« or C&, it is a point of £. Then for some r¡ >0.

F,(#) C £.   Then by the definition of oscillatory set,

X(x) £ E C Ca,

which was to be proved.

A similar theorem holds when the oscillatory set of a or b is complete.

16. Simple irreducible continua. From § 11, Corollary 3, we see that

each point of the first genre is a complete oscillatory set. We now turn to a

consideration of limited continua, irreducible between two points and con-

taining an everywhere dense set of points of the first genre. To save repeti-

tion in the statements of theorems, we shall call such continua simple

irreducible continua. It may be remarked here that it is evident that the

oscillatory sets of such continua about a and b are always complete. Further-

more, if x' and x" are two points of the first genre of ab and a complete

oscillatory set C is contained in the sub-continuum x'x", it follows from

§12 (b) and § 11, Corollary 4, that C is a continuum of condensation of

x'x".  The following lemmas are convenient in later work.

Lemma I. Let ab be a simple irreducible continuum and let C be a complete

oscillatory set containing neither a nor b. Then there are sequences of points

\xi\ and [xj] of the first genre converging to c and lying in Ca and Cb, respec-

tively, and C = Dv[XiX,].

Proof. If yi is any point of Ca, there is a 5< so small that ViJiyí) contains

no point of C or Cb. But every Vt(yî) contains points of the first genre.

Hence it is evident that any sequence {y,} of points of Ca converging to c

can be replaced by a sequence of points of the first genre belonging to Ca

and converging to c. Thus the sequences {xi} and {*,-} exist.

Now for any v, F,(c) contains an #,- and an #,-. Hence C 3 Dv {x¡x¡ ). On

the other hand, for any given #,• and Xj there is an r¡ so small that Vn(c) C x&¡.

Thus C CXiXj and hence C £ Dv[x{Xj].   Therefore C = Dv[XiX¿].

Lemma II. Let ab be a simple irreducible continuum and A be the oscillatory

set about a. Then there is a sequence of points {xt} of the first genre converging

to a and lying in Ab, and A =Dv[ax(].
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This and the corresponding lemma for the point b are proved in the same

way as Lemma I.

17. Theorem. Let ab be a simple irreducible continuum. Then (i) no

two complete oscillatory sets have common points; (ii) every incomplete oscillatory

set Y contains a point whose oscillatory set is complete and contains Y; (Hi)

every point lies on one and only one complete oscillatory set; and (iv) if two

oscillatory sets have common points, one is complete and contains the other, or

both are contained in the same complete oscillatory set.

Proof, (i) Let X be a complete oscillatory set and ab=Xa+X+Xb,

where either Xa or Xb may be void. Let Y = Y(y) be another complete oscil-

latory set. If y is a point of Xa or Xb, say the former, § 15 shows that Y CXa;

hence X- Y = 0. If y is a point of X, then § 14 shows that

(1) Y£X.

In this case we have ab = Ya+Y+Yb. If x is not a point of Y, then by

§ 15 X is a part of Ya or Yb, which is false, since XY 3 y. Then x is a point

of Y and hence

(2) X£Y.

Then either XY = 0, or by relations (1) and (2) X=Y.

(ii) Let Y be an oscillatory set which is not complete. If c is a point of

the first genre, Y c ac or Y C cb, by § 15. Then c is a point of Yb or Ya,

respectively. Thus all the points of the first genre are on_F0 and Yb. As

they are everywhere dense in ab, Y = Y-Ya+YYb, FFo^O, YYb^0.

Since F is a continuum, at least one point x of Y is a Umiting point of both

Fo and Yb.   Then, by § 13, F is a part of the oscillatory set X about x.

To show that X is complete, observe first that Xa £ Ya and Xb c Yb. Then,

as all the points of the first genre are on Xa and Xb, Xa contains all the points

of Fo that are of the first genre. Since by § 10, FaF¡> = 0, for every point

z of Ya any Vt(z) contains points of the first genre lying on Ya. Then, as

* is a limiting point of Ya, it is a limiting point of points of the first genre of

F0 and consequently a limiting point of Xa. Likewise it is a limiting point of

Xb.   Hence X is complete.

(iii) This follows from (i) and (ii).

(iv) If one of two oscillatory sets with common points is complete, it

contains the other by (i) and (ii). If neither is complete, each lies in a

complete oscillatory set by (ii). These complete oscillatory sets must be

identical by (i).
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18. The aggregate of complete oscillatory sets. Let X be any complete

oscillatory set of the simple irreducible continuum ab, and let K = {X} be the

aggregate whose elements are these complete oscillatory sets. From § 17

it follows that ab = U[X] and that no two sets X have common points.

The fact that ab = Xa+X+Xb permits us to order the aggregate K. For,

if F is another element of K, we have seen (§ 17) that either Y cXa or

Y C Xb. In the former case we say that Y precedes X and write Y<X; in

the latter, that Y follows X and we write Y > X. It is easy to show that X>Y

if Y<X and X<Y if Y>X, and that, if X, Y, and Z are three complete

oscillatory sets such that X<Y and Y<Z, then X<Z. Thus K is a simply

ordered aggregate. Furthermore K has a first and a last element, namely the

complete oscillatory sets containing a and b, respectively.

We shall now proceed to show that the order type of the set K is similar

to that of the aggregate whose elements are the points of a finite closed seg-

ment. Then by virtue of this similarity we shall determine a correspondence

between the points of ab and those of a linear segment.

19. Theorem. The aggregate of complete oscillatory sets of a simple irre-

ducible continuum ab has a dense order type.

Proof. We must prove that, if X and Y ave two complete oscillatory sets,

then there is a third lying between them. LetX<Y. Then

(1) aô = Xa + X + Xb,

and

ab = Ya + Y + F».

Since X < Y it follows that

Y + Yb£Xb.

If Y+Yb = Xb, relation (1) gives

ab = Xa + X + Y + Yt,

and

(Xa + X) ■ (Y + Yt) = 0.

This is an obvious contradiction, since ab is a continuum.

Hence Xb contains at least one point z not belonging to Y+Yb. There-

fore z is a point of Fu and the complete oscillatory set Z containing z is a

part of Ya. Thus Z<Y. But, as z is also a point of Xb, ZcXb and Z>X.

This proves the theorem.
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20. Theorem. Let ab be a simple irreducible continuum. Then the aggre-

gate K of complete oscillatory sets of ab has an open enumerable subset which is

dense in itself and also dense in ab.

Proof. Since the set of points of the first genre is dense in ab, there is

an enumerable subset of this which is also dense in ab; call it E. Also, if

a or b is of the first genre, we can assume that E contains neither of these.

Now let X and F be two elements of K and let X < Y. By § 19 there

is an element Z of K such that

X <Z <Y.

Then Z contains no points of the continua Xa+X and Y+Yb. Then if z

is a point of Z, for 5 sufficiently small

V,(z)<ZXb and  V,(z) C Ya .

But E is dense in ab; hence F„(z) contains a point e of E. As r(e) =0, the

complete oscillatory set containing e is e itself. Then the complete osciUa-

tory set of e is a part of both Xb and Ya. Hence

X <e < Y.

Therefore E considered as an aggregate of complete oscillatory sets is

dense in K and obviously dense in itself. It is also evident that it has no

first and no last element.

21. Theorem. Let ab be a simple irreducible continuum, and let K be the

aggregate of complete oscillatory sets of ab. Then the order type of K is that of a

finite segment.

Proof. Let K=P+Q be a partition such that every element of P precedes

every element of Q. Let X be any element of P and let Y be any element of

Ç;thenP={X} andC}={F}. Also B = U[X] and C = U[Y]. Thenwehave

ab = B + C.

Suppose now that P has no last and Q no first element. Let F be any

element of Q. Then there is an element Y' of Q preceding Y and every ele-

ment X of P precedes Y'. Then B = U[X] C YL and

B£Ya' + Y'c Fo.

Hence BY = 0 and no point of B Ues in C = U[Y].

In the same way we show that B- C = 0. Since BC+BC = 0, we have a

contradiction, as ab is a continuum.   Hence either P has a last, or Q has a



550 W. A. WILSON [July

first element. As it has been proved in § 19 that K is dense, this shows that

K is continuous.*

If we omit from K the complete oscillatory sets of a and b, the resulting

set K' is also continuous and by § 20 K' contains an open enumerable

aggregate dense in itself and dense in K'. Therefore the order type of K'

is that of the linear continuum f and K is similar to a finite closed segment.

22. The effect of the theorem just proved is to set up a uniform corre-

spondence between the points of a finite segment (0-¿t^l) and the complete

oscillatory sets of a simple irreducible continuum ab = {x}. This defines a

correspondence between the points of ab and those of the segment, which

need not be uniform. If we denote this by x =f(t), we have a function which

is in general multivalued. It is, moreover, but a slight extension of the

ordinary notion of continuity if we say that f(t) is continuous at a point

t' when f(t') is a single point x' and for every e>0, the aggregate of images

of all points t in some Vi(t') lie in Vt(x').

Theorem. Let ab = {x} be a simple irreducible continuum. Then there is a

correspondence x =f(t) between the points of ab and those of the unit segment

T = (0¿t^l) having the following properties :

(i) To each point t corresponds one and only one point of the first genre

or one and only one complete oscillatory set.

(ii) f(t) is continuous at each point t whose image is a single point.

(iii) At a point t0 whose image is not a single point the corresponding oscil-

latory set Xo= [xo\, x0=f(to), is the set of accumulation% of the sets x=f(t)

as í—>i0.

(iv) The images of 0 and 1 are the complete oscillatory sets of a and b,

respectively.

Proof. The correspondence in question is that defined by the similarity of

the aggregate of complete oscillatory sets K = {X} of ab to any finite closed

segment. This gives us (i) and (iv) at once. It remains to prove (ii) and (iii).

Let to be a point whose image is the single point x0. Then t(x0) =0 and

this fact, with § 16, shows that there are two points of the first genre, x'

and x", such that x'<x0<x" and the irreducible sub-continuum x'x" is a

* See F. Hausdorff, Grundzüge der Mengenlehre, p. 90.

t Ibid., p. 101.
% This notion is denned by Janiszewski (loc cit., p. 93) for the case of an enumerable system

of sets. The following is a natural extension. Let {/(/) J denote a system of sets depending on the

parameter t, which ranges over an interval and let /0 be any point in this interval. Let F be the

class of all points \x] such that, for every «>0, St(x) contains a point of some/(/) for at least one t

in every V¡(ta), 4>0. Then F is the aggregate of accumulation of the sets/(/) as t—*tv.
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part of Vc(xo) for a fixed positive e. Let x'=f(t') and x"=f(t"). Then

by similarity, t'<to<t". Now for 5 sufficiently small V¡(t0) C ft". Hence

the images of points in Vs(t0) lie in x'x", since x'<X<x", when t'<t<t".

But then they lie in Vt(x0) and we have continuity. The cases where /0 = 0

or to = 1 are treated similarly.

Now let to be a point for which the corresponding oscillatory set X0 con-

tains morethan one point. Let Xo be a point of X0 which is a common limiting

point of the saturated semi-continua Xa and Xb of ab — X0. Then, by § 16,

Xa and Xb contain respectively sequences {xi} and {#,} of points of the first

genre converging to x0 and Xo = Dv[xíXj]. Hence for any e>0 there is an x'

and an x", points of the first genre, such that

x' < Xo < x"   and   X0 C x'x" C Vt(X0).

Let x'=f(t'), x"=f(t"). Then t'<t0<t". For 6 sufficiently small,

then, the images of all points in V¡(to) will lie in x'x" and consequently in

V,(Xo). Hence, as t—>t0, the points of accumulation of the corresponding

points x will be contained in Xa.

Now let x be any point in X0. Let e>0. For any 5>0 there are points

ti and t,- in V3(to) such that ti<t0<tj and the images of /¿ and t¡ are points

of the first genre. Let #¿=/(/¿) and x,=f(t¡). By § 16, X0 is a continuum

of condensation of XiX,-; hence V, (x) contains at least one point x' of x&j

which is not on X0. But if x' =f(t'), then /' lies in V»(to)- Thus each point of

Xo is a point of accumulation of the points x =f(t) as /—>t0, by definition.

This, with the preceding paragraph, completes the proof of (iii).

23. The nature of the correspondence involved in the theorem just

proved is made clearer by relating it to the function theory. If x =f(l) is a

limited one-valued function defined for a set E of values of / everywhere dense

in the interval a = t = b and continuous at each point, it is well known that in

general there is no function continuous at every point of ab and equal to

f(t) at the points of E, for the reason that, at a point c not in E, lim ¡-cf(t)

may not exist. If, however, we agree to set F(t) =f(t) at the points of E

and to assign to F(t) at t = c the aggregate of limiting values oîf(t) as t—>c

over all possible sequences in E and for each point c this aggregate is a con-

tinuum, we have a multivalued function possessing many of the attributes

of continuity. The graph is easily seen to be a continuum and, for any point

c, all of the limits of F(t) as t—>c are values of F(c). Such a function is x =

sin(l/i) for / =¿0, — 1 = x = 1 for / = 0. If F(t) happens to be one-valued in ab,

it is an ordinary continuous function; if G(t) =F(t) at points where the latter

is one-valued and at other points G(t) has one of the values of F(t), then G(t)

is a one-valued pointwise discontinuous function.
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By the method of condensation of singularities* it is easy to build up

simple irreducible continua which have an everywhere dense set of points of

the second genre. The previous theorem therefore applies, although such

continua have only one prime part.

We now turn to the converse theorem.

24. Theorem. Let x =f(t) denote a correspondence of the set C = {x} to the

closed segment T= {t} having the following properties:

(i) To each t corresponds a point or a point set forming a limited continuum.

(ii) No point of C corresponds to more than one point of T.

(iii) f(t) is one-valued and continuous at a set of points everywhere dense

inT.
(iv) At points t' where f(t) is many-valued, f(t') is the aggregate of accumu-

lation of f(t) as t—*f.
Then C is a simple irreducible continuum.

Proof. That C is limited follows from the definition of the correspondence.

It is also easy to see that the image in C of a closed set in T is closed, and

vice versa.

It will now be shown that the image in C of a sub-continuum of T is a

continuum, and vice versa. Let F be a sub-continuum of T and let G be its

image in C. If G is not a continuum, there is a partition G = Gx+d, where

both sets are closed and GXG2 = 0. Suppose that Fx and F2 are the images in

T of Gi and G2 respectively. Fx and F2 are closed. They have no common

point t, for the image of t is a continuum or a point and hence must lie wholly

in Gx or G2. Thus FXF2 = 0, which contradicts the hypothesis that F is a

continuum.   Hence G is a continuum.

Conversely, let G be a sub-continuum of C and let F be the subset of T to

which correspond! points in G. The set F is closed. If F is not a continuum,

we have F = FX+F2, FxF2 = 0, and Fi and F2 are closed. Then G = GX+G2,

where Gx and G2 are closed and GXG2 = 0, contrary to the hypothesis. Hence,

if G is a continuum, so is F.

It will now be shown that, if the image of a point t0 of F is a single point

*o, then x0 is a point of the first genre. For every e>0 there is a 5>0 such

that a; is a point of V, (x0) for every / in Vs(to). Let t'<t0 and t" >t0 be points

in Vt(to) whose images are single points. Then the image in C of ft" is a

continuum contained wholly in Vt(x0) while the images of the intervals

* See E. W. Hobson, Theory of Functions of a Real Variable, p. 618.

f It should be noted that in general G will be only a part of the set of points of C corresponding

to points of F.
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0, t' and t", 1 are continua neither of which contains x0. Hence for r¡ >0

sufficiently small, V„(xo) is contained in the image of ft". Thus for any

e>0 there is an 77 >0 such that there is a sub-continuum of C lying in V,(xa)

and containing F,(x0). Therefore t(x0) =0.

Since the points of C are either unique images of points of T or are limiting

points of this set, this shows that the points of the first genre are everywhere

dense in C.

Now let a=f(0) and b=f(l). If D is a sub-continuum of C which con-

tains a and b, its image in T must be T itself since it is a continuum containing

the points 0 and 1. Hence D must contain all the points of the first genre of

C. As these are everywhere dense in C, D = C. Hence C is irreducible be-

tween a and b.

This completes the proof of the theorem.

Yale University,

New Haven, Conn.


