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Introduction

In 1835 Duhamel in his thermo-mechanical studies discussed the integro-

differential system |

d2u rb
-1- p2u = cp2x I    u(x)xdx,
dx2 Ja

u(a) = 0,    u(b) = 0,

where p denotes a parameter and c a given constant. Since then the problems

of this kind do not seem to have attracted much attention, in spite of, or

perhaps because of, the great development of the general theory of integral

and integro-differential equations by Volterra, Fredholm, Hubert and their

followers. In 1914, however, there appeared an interesting paper by

L. Lichtensteint, which contains an independent treatment of the boundary

problem

d r       dy(x)l      . . c"
-   P(x)-i~-   + [q(x) + \k(x)]y(x) + X     Af(x,£)y(£)d£ = A(x),
axL ax  J Jo

y(0) = 0,    y(7r) = 0,

by means of the theory of quadratic forms in infinitely many variables. It

was remarked by the author in 1917 § (without knowledge of Lichtenstein's

* Presented to the Society, January 1, 1926; received by the editors in October, 1926. Part

IV added in May, 1927.
t Sur les phénomènes thermo-mécaniques, Journal de l'Ecole Polytechnique, vol. 15 (1835),

cahier 25, pp. 1-57; pp. 44-48.
î Ueber eine Integro-Differential Gleichung und die Entwickelung willkürlicher Funktionen nach

deren Eigenfunktionen, Schwarz's Festschrift, Berlin, 1914, pp. 274-285. Cf. also L. Koschmieder,

Anwendung der Integralgleichungen auf eine thermo-elastische Aufgabe, Crelle's Journal, vol. 143

(1913), pp. 285-293.
§ On some general problems of the theory of ordinary linear differential equations and expansion of

an arbitrary function, Petrograd, 1917 (in Russian). This paper contains as special cases most of the

results of M. Stone's important paper A comparison of the series of Fourier and Birkhoff, these Trans-

actions, vol. 28 (1926), pp. 695-761, concerning the theory of equiconvergence and convergence of

Birkhoff series and obtained by Stone without knowledge of author's paper. The theory of the

derived Birkhoff series successfully treated by Stone was not touched in our paper in question.
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paper) that Duhamel's problem may yield to treatment by the method

used by G. D. Birkhoff* and by the author (loc. cit.) in the theory of ordinary

differential boundary problems. Some special cases of integro-differential

boundary problems (mostly with constant coefficients) have been recently

treated, f
The present paper sketches a more or less general theory of the integro-

differential boundary problem originated by Duhamel. The characteristic

feature of the paper lies in the constant use of the notion (which appears to

be new) of the Green's function of the integro-differential problem. This

function is closely related to the Green's function of a certain corresponding

differential problem. It is found that the treatment of the integro-differential

problem requires no methods other than those which have been used in the

treatment of the differential boundary problem ; from certain points of view

the two problems are equivalent. The general theory as developed in Parts

I-III admits of an interesting application to Fredholm integral equations

with discontinuous kernels (Part IV).

A detailed discussion of the differential boundary problem and of the

properties of the corresponding Green's function is embodied in the previous

papers by the author, f The second of these (reference to which will be

indicated merely by the symbol "D") contains the proofs of some proposi-

tions which are merely stated in the present paper.

I. Definition of the Green's function

1.    We consider the integro-differential equation

(•)     «<*>(*) + ri(x)u«-»(x) +■■■ + rk(x)u(x) = r(x) £       M«(|)d££,(x,|)
o-—0 Ja

in which the integrals are of the Stieltjes type, and in which the functions

Kc(x, £), together with their partial derivatives (to a certain order) with

respect to £ are continuous in £, except along a finite number of lines

£ = constant = a

* Boundary value and expansion problems of ordinary linear differential equations, these Trans-

actions, vol. 9 (1908), pp. 373-395.
t W. Jaroshek, Entwickelung willkürlicher Funktionen (Diss.), Breslau, 1918; H. Laudien,

Entwickelung willkürlicher Funktionen bei einem thermo-elastischen Problem, Crelle's Journal, vol. 148

(1918), pp. 79-87; A. Kneser, Die Integralgleichungen, 2d edition, Braunschweig, 1922, pp. 199-214;

R. Krzenziessa, Thermo-elastischen Randwertaufgaben, Mathematische Zeitschrift, vol. 25 (1926),

pp. 209-260; the last paper discusses some cases of variable coefficients, which are reducible to Bes-

sel functions.

% Loc. cit. and Some general problems of the theory of ordinary linear differential equations and

expansion of an arbitrary function in series of fundamental functions, Mathematische Zeitschrift.
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and possibly, along the line

£ = x.

The discontinuities are all to be of the first kind. Under these hypotheses the

equation (■*) may be reduced by a suitable number of integrations by parts

to the form

(I) L(u) = f(x) + ¿ lAu^Ax) +  f A(x,f)«(É)d£
Í-1 J a

where L(u) is a linear differential operator

(1) L(u) = «<»> -|- ¿i(x)m<"-1> 4- • • • + pn(x)u,

the lj(u) are linear forms in u and its derivatives taken at the points a, b, a,

and <pi(x), h(x, £) are known functions.

In the following we confine the discussion to the equation (I) either in

the form above or in the form

(I')    £(•>(«) = f(x) + ti h(u)<Pi(x) +    fh(x,Ç)u(ï)dt + £<»(«),
i~l Ja

where Z,(1>(«) is any linear differential operator of order (» —1),

(2) L<»(«) =. px™ (xV-1' 4- ■ • • + pnm (x)u,

and

£<">(«) =L(u) -£<»>(«).

The boundary conditions to be imposed on the unknown function m(x) are

(ID Li(u)=0 (i = 1,2, ••• ,«)

where

Li(u) = Ai(u) + Bi(u) +   I ai(x)u(x)dx,

Ai(u) m   ¿ aihu^-Ha) ;   Bt(u) ■ ¿ &««<*"»(»).•
*=i *-i

The integro-differential problem consisting of (I) and (II) we shall designate

as "problem (*)". The problem obtained by setting in (I')

*,(x) = h(x,0 = L<«(n) = 0

we shall designate as the "differential problem (■*■)."

* The boundary operators used in D, 5, are somewhat more general than those used here.
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The hypotheses on the functions involved in (I') and (II) are as follows:

i.    The functions

Pi(x),    pP(x)

possess continuous derivatives to order (n—i) on (a, b).

n.   The functions

/(*),    */(*) (j- 1,2, ••• ,m)

are integrable (in the sense of Lebesgue) on (a, b).

iii. The function h(x, £) is bounded and is integrable as a function of

both variables as well as in x, for every value of £, and in £, for every value of

x.

iv.   The functions
oti(x)

are integrable on (a, b).

v.   The operators

Ai(u) + Bi(u),     h(u)

are linearly independent, and the operators l,(u) contain no derivatives of

order higher than (« — 1).*

2. Theorem 1. Under the hypotheses (i-v), two alternative cases are possible

as follows :
(1) The non-homogeneous problem (-*) admits of a uniquely determined

solution]' for an arbitrary f(x), and this solution can be represented inform of a

definite integral

(HI) u(x) =   fr(x,t)f(t)dt.
Ja

The function T(x, t) is called the Green's function of the problem (ir).   It is

uniquely determined at its points of continuity.

(2) The non-homogeneous problem (■*-) is not possible for an arbitrary f(x).

In this case the Green's function T(x, t) does not exist, but the homogeneous

problem (-A-) admits of at least one solution not identically zero on (a, b).%

* This excludes the cases in wjiich some of the operators L¡(u) reduce to the integral terms only.

It is obvious also that condition (v) implies the linear independence of the operators L,-(w) and /,(«).

t The term "solution" is to designate a function u(x) which possesses an absolutely continuous

derivative of order («— 1) and which satisfies (I') (almost everywhere) and (II).

% In this case we shall say simply that the homogeneous problem (p;) is possible. If the homo-

geneous problem (jr) admits of no solution other than u(x) m0, we shall say the problem is impossible.
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3. We may assume without loss of generality that the Green's function

G(x, t) of the differential problem (*■) exists, namely that

Lx(yx) ■ ■ ■ Lx(yn)

L„(yi) ■ ■ • £„(y„)

where yi(x), • • • , y»(x) is a fundamental system of solutions of the equation

L<°>(y) - 0.

This assumption is permissible since we may alter Z,(0)(y), if necessary, by

drawing into it any portion of the operator L(1)(y) without thereby changing

the content of equation (I')-

4. It is well known (D, 5-8) that the solution of the non-homogeneous

differential problem

(4) L<°>(«) = *(*), Li(u) = 0 (i = 1,2, • • ■ ,«)

is given by

(5) u(x) =   \G(x,t)(p(t)dt.
Ja

Replacing </>(x) in this by the right-hand member of (I') we obtain for that

equation the form

(6) m(x)=F(x)4- ¿/,(«)*,(*) 4-   ftf(x,£)«(£)# 4-   fG(x,t)LW(u)tdt*
7—1 Ja Ja

where

(7) F(x) =   ÇG(x,t)f(t)dt ; *,(x) =    ÇG(x,t)*,(t)dt
Ja Ja

and

(8) H(x¿) =   í' G(x,t)h(t,S)dt-
Ja

Under the hypotheses concerning the functions Pi(x), the Green's function

G(x, t), as function of t possesses a continuous derivative of order (« — 2)

and a derivative of order (» —1) which is continuous except along the line

x = t, where it has a discontinuity of the first kind (D, 11). By a suitable

number of integrations by parts the final integral in (6) may be thrown into

the form

XH'(x,t)u(t)dt + l(u,x)

' The subscript t on Lm is used here to indicate the variable in which the operator is written.
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where l(u, x) is a linear form in u(x) and its derivatives to order (« — 2)

taken at the points x = a and x = b, the coefficients of the form being functions

of x. Portions of this form may possibly be eliminated by the use of relations

(II), and others may be expressible in terms of the quantities

h(«) (j= 1,2, •• • ,p).

Thus we obtain finally

(9) u(x) = F(x) + ¿ /,(«)*/ (x) +   f K'(x,ï)u(S)dÇ (v*p),
Í-1 Ja

where the operators

h(u) (j = P+l,--- ,v)

are of the same type as those in (I') and the set

(10) h(u),    ls(u), ■ ■ ■ ,h(u)

may be considered as linearly independent and independent of 7,,(m). In

other words, if u(x) is considered arbitrary subject to (II), the quantities

(10) may assume any prescribed set of values.

The functions $',0*0, K'(x, £) obviously possess the same properties of

integrability as the functions *,•(*), H(x, £) respectively.

On setting

(11) li(u)=c, (j= 1,2, ••■ ,v),

(12) F(x)+   TaC^I(x) =P(x),
j-i

we reduce our problem to the Fredholm integral equation

(13) u(x)=p(x)+   f K'(x,Ç)u(m.
Ja

5. We suppose, in order to include the general case, that the corresponding

homogeneous integral equation

u(x) =    f K'(x,Ç)u(m
Ja

admits of a linearly independent solutions

(14) o>i(x),    co2(x), • • • , co„(x).

In this case the associated integral equation
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v(x) =    f K'(i,x)v(Qdi
Ja

has the same number of linearly independent solutions :*

(15) coi'(x), co2'(x), ••• , «„'(*).

Either of the sets (14), (15) may be supposed to be orthogonal and normal-

ized. The necessary and sufficient condition that (13) have a solution is given

by the system of equations

(16) f p(x)o>i (x)dx = 0 (A - 1,2, • • • ,<r)
J a

and if these conditions are satisfied, the most general solution of (13) is

(17) u(x) = p(x) -  f £'(*,£)*(£)# 4-¿ <*'«*(*)
Ja *=1

where the c¿ are arbitrary constants, and Ä'(x, £) is a so called "pseudo-

resolvent kernel" of the kernel K'(x, £).

The case where the kernel K'(x, £) possesses a reciprocal, may be con-

sidered as the special case in which

cot(x) = wt'(x) = c¿ = 0 (A = 1,2, • • • ,cr)

and $'(x, £) coincides with this reciprocal.

6. The constants c,-, ck remain to be determined. This can be done by

substituting (17) into (11) and eliminating ^(x) from the resulting equations

and the relations (12) and (16). Thus we obtain a system of (v+a) linear

equations for the (v+a) unknowns c,-, ck as follows:

(18)

X,(c) = iAf(x) - j r(x,!)F(|)d£ | (j = 1,2, • • • ,v),

X*'(c) = -   f F(x)ui(x)dx (A = 1,2. • • • ,a).

The \j(c) and X* (c) are linear forms in c's and c"s whose coefficients are con-

stants which do not depend upon the function f(x). Denoting by D0 the

determinant of this system, we must consider the two cases

Do * 0 ;       Do = 0.

* E. W. Hobson, On the linear integral equation, Proceedings of the London Mathematical

Society, (2), vol. 13 (1914), pp. 307-340. The classical results of the Fredholm theory are extended

in this paper to more general kernels, of which ours is a particular case. Cf. also our paper On

Fredholm's integral equations whose kernels are analytic in a parameter, Annals of Mathematics,

(2), vol. 28 (1927), pp. 127-152.
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(a) Suppose that D0?¿0. In this case system (18) determines uniquely

the constants c,-, c¿, and each of these constants is a Unear combination of

integrals of the form

J f(t)ß(t)dt.

Substituting these values into (17), we obtain the required expression for

u(x):

(III) u(x) = fT(x,t)f(t)dt.

Conversely, the preceding operations being reversible, it is readily shown that

(17) represents a solution of the problem (*). This solution is uniquely

determined and by familiar reasoning it is proved that the function T(x, t)

is uniquely determined at all its points of continuity.

Under the following supplementary restrictions:

iii'. The discontinuities of the function h(x, £) are regularly distributed,

i.e., h(x, £) is continuous with respect to £ for almost aU values of x, and

continuous in x for almost all values of £,*

v'. The operators /,•(«) involve the values of u(x) and its derivatives only

at the end points x = a, x = b,

it can be shown by means of some results of Hobson that T(x, t) is

continuous everywhere on (a, b), except, possibly, along the line x = t,

where it may have a discontinuity of the first kind.

7. (b) Suppose now that 7?0 = 0. We shaU prove first that the homogene-

ous problem (*) has at least one solution which is not identically zero on

(a, b). The homogeneous system

(19)       \,(c) = 0    (j - 1,2, • • - ,p) ;       U(c) = 0 (k - 1,2, • • • ,«r)

admits of at least one solution in which not aU the constants c,-, c¿ are

zero.   We substitute these values of c,, c¿ into (17) and set/(x)=0.   The

corresponding function u0(x) is certainly a solution of the homogeneous

problem (*), and it only remains to prove that u0(x) ^0.

Suppose that u0(x) =0.  Then from (11) it foUows that

Cj = lj(u0)=0 (j = 1,2, • • • ,"),

and, substituting in (12)

_ Ci = 0,    F(x) m 0,

* In this case the solution of the problem (if), with continuous/(at) and </>,(*), possesses a con-

tinuous derivative of order n and satisfies (I') everywhere.
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we have ^(x) =0.  Hence

a

2Z c¿uk(x) = uo(x) = 0,    ck'=0     (A = 1,2, • • • ,cr),
k-l

contrary to our supposition.

8. We shall prove now that the right-hand members of equations (18)

may assume any given set of values if f(x) is suitably chosen. Since this linear

system (18) will admit of a solution for the c's only for special values of the

right-hand members, it will follow that no solution for a general/(x) is possible

and that in this case the Green's function T(x, t) does not exist.

It follows from the classical theory of the Green's function G(x, t) that,

if F(x) is an arbitrary function which possesses a continuous derivative of

order « and satisfies the boundary conditions

(20) L((F) = 0 (i= 1,2, ••• ,«),

then the function

satisfies the relation

f(x) m £«»(F)

F(x) =    f G(x,t)f(t)dt.
Ja

The question is reduced, therefore, to the proof that there always exists a

function F(x) which satisfies conditions (20) and for which the expressions

li\F(x) - f*$t'(x,Ç)F(l;)dz}lAF(x) -      ®'(x,£)F(S)d¡:} (j - 1,2, • • • ,v) ;

IF(x)w¿(x)dx (A = 1,2, •••, <r)

take on arbitrary prescribed values. Let x(x) be a function subsequently to

be determined and determine F(x) from the integral equation

X(x) = F(x) -   f ®'(x¿)F(i-)dl;.
Ja

This is always possible, if we use the special form of the pseudo-resolvent

kernel ®'(x, £) as given by W. A. Hurwitz.* This kernel Ä'(x, ¿) is defined as

the reciprocal of the function

K'(x,Z) -   ¿co*'(x)co*(i).
k-i

* On the pseudo-resolvent to the kernel of an integral equation, these Transactions, vol. 13 (1912),

pp. 405-418; pp. 405-409.
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Hence this latter function is in turn the reciprocal of the kernel $i'(x, £) and

we have

F(x) = x(x) -   f K'(x,Ç)x(Z)dt+\Îtoi(x)  f x(£)"*(£)d£-
Ja *-l Ja

On multiplying this by w¡ (x) and integrating, we obtain in virtue of the rela-

tion

w,'(|) =    f K'(x,Q»!(x)dx
Ja

the result

f F(x)o>: (x)dx =   j x(£K(£)d£      (s - 1,2, • • • ,<r).

Now, as functions of x, G(x, t) and therefore H(x, t), H'(x, t) and K'(x, t)

satisfy conditions (II), so that

Li(F) = Li(x) +   ¿ Li(to¿ )  f x(£)"*(£)d£.
*-l Ja

It is readily seen that, under the conditions (v), § 1, imposed upon the

operators Li(u), l,(u), the function x(x) can always be chosen so that

Li(F) = 0 (i= 1,2, ••• ,«)

while the expressions

f x(£)<o*(£)d£
Ja

h(x)      (j= 1,2, ••• ,v); x(Ö«*(£)d{ (k = 1,2, ••• ,cr)

assume the prescribed values.   This completes the proof of Theorem 1.

9. Theorem 2. Suppose that, under the conditions of Theorem 1, the

coefficients of the operators of the problem (ir) depend on a parameter p and are

analytic in an open region (©) of the p-plane. Suppose that the Green's function

T(x, t, o) of the problem (*•) exists for an infinite set of values of p, which possesses

at least one limiting point interior to (©). Then T(x, t, p) is a meromorphic func-

tion in (2)). The homogeneous problem (ir) is possible when and only when p is

equal to one of the poles of T(x, t, p) (characteristic values of the problem (■*■)).

For such values of p the non-homogeneous problem (it) is not possible with an

arbitrary f(x), and the Green's function does not exist.
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To prove this theorem, we shall use another method for obtaining the

Green's function T(x, t, p).* We observe that a particular solution of the

equation

(21)

is given by

where

g(x,t) - +
25«)

£(«> = 4>(x)

Y(x) =  j g(xM(t)dt

yi(x)    , • • • ,y»(x)

yi(B-S)W, ••• ,ynln~2)(t)
( + iix>t,

\- if * <t,

8(t) =

and yi(*), • • • , y„(*)t denotes any fundamental system of solutions of the

equation £(«)=0.

The general solution of (21) is then

«(*) =   Y,Ci"yi(x) + Y(x),
i-l

where c{', ■ ■ ■ , c„' are arbitrary constants. If we set

lj(u) = c, (j' = l,2, •■

*(*) =   HtfyÁx) +   S c, I g(xMi(t)dt+   I g(x,t)f(t)dt,
i—1 j=l Ja Ja

fl"(*,Ö = J g(x,f)h(t,W,

we easily obtain from (I) the following integral equation for u(x) :

,p),

u(x)=P(x)-   f H"(x,Z)p(l;)dZ.
Ja

* For the sake of brevity the letter p sometimes will be omitted.

t The fundamental system yi(x), • • • ,yn (x) may always be chosen so that S(f), which depends

on p, is ?í0 for all values of p.
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The kernel H"(x, £) is a function of p, which is analytic in (£)), and by the

classical Fredholm theory it possesses a reciprocal S&"(x, £) which is mero-

morphic in ( J)). Suppose that p is not a pole of &"(x, £). Then we have

u(x) = p(x) + J $' (*,£)«(£)<*£ ,

and it only remains to determine the constants c¡, ci' from the equations

7w(«)=0       (i= 1,2, •••,«) ; h(u) = Ci     (j = 1,2, • •• ,p).

The determinant D(p) of this system is ameromorphic function in (!D),and

if it is not identicaUy zero the resulting expression for T(x, t, p) shows that

T(x, t, p) is also a meromorphic function in (£>). Thus we obtain the solu-

tion of the non-homogeneous problem (ir) for all values of p which are dif-

ferent from the poles of either of the functions &"(x, t), T(x, t, p) in the form

(22) u(x) = j T(x,t,p)f(t)dt.

Expression (22) represents a solution of the problem (*) :

(I) L(u) = f(x) +   ¿ IjMtp^x) +    f Â(s,£)«(£)d£,
7=1 «/ a

(II) Li(u)=0 (i= 1,2, ••• ,«),

even if p is a pole of the function §"(#, £) but not a pole of the function

T(x, t, p), for if we exclude from (©) the immediate vicinities of the poles of

T(x, t, p) the left and right-hand members of equations (I), (II) are analytic

throughout the remaining region. Since they have been proved to be equal

in a part of this region it follows that they must be equal throughout the

whole of it. Now, under the conditions of Theorem 2, we can prove that the

determinant D(p) cannot be identically zero in (5)), for if it were, the homogene-

ous problem (•) would have a solution for all values of p which are not poles

of f£>"(x, £). By virtue of Theorem 1, then the Green's function of the

problem (*) would not exist, except possibly for p one of the excepted values.

Since this set of values has no limiting point in the interior of (£>) the conditions

of Theorem 2 would be contradicted. This completes the proof of Theorem 2*

* There are examples where the Green's function T(x, t, p) exists for no values of p, for instance

the system u'+pu=f(x)+pf0 udx; u(V)=u(0). In this connection it would be of interest to deter-

mine whether the requirement of Theorem 2 concerning the set of points of existence of T(x, I, p)

might be replaced by a less restrictive one, as for instance that the Green's function T(x, I, p) exist

at a finite number of points, or, even, at a single point of the region (33). This can be done in the case

of a differential problem.
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II. The Green's function of the differential problem

10. We shall specialize our problem (*•) now by introducing certain re-

strictions upon the coefficients of the operators involved. Under these

restrictions, which will be enunciated as they become necessary, we have at

hand established facts from the theory of differential equations. With the

use of these we shall derive formulas which reveal the structural features of

the Green's function G(x, t, p). Thus we make the following assumptions :

(A) i. The operators of the differential problem (■*) are polynomials in p,

i.e. our problem is of the form

£(«) = «oo 4- JPi(x,p)«<'-1' 4- • • • 4- Pn(x,P)u,

n p b

Li(u) m   2Z P'U'Ku) = Ai(u,P) + Bi(u,p) +   I   a,(x,p)«(x)cix
<— 0 Ja

where
i

Pi(x,p) = pi^ZiP^PiAx),

(i= 1,2, ••• ,»),

j-0

Li>>(u) = A(»(u) + Bl'\u) +    f ai.(x)u(x)dx,
Ja

Af)(u) m   ¿ a,fa«<»-»(a) ;    £/•>(«) -   ¿ »«.«<*-»(*),
k-l k=l

Ai(u,p)m   ¿pM/•>(«);    Bi(u,p)=   ¿p'Bi •>(«),
*=0 »-0

n

ai(x,p) =   X) P'otu(x).

ii. The functions

Pu(x)      (i = 1,2, • • • ,«;;' = 0,1, • • • ,i)

are of bounded variation on (a, b) and possess continuous derivatives of

order (n—i).  The functions

d2pi0(x)         dpn(x)
-,      -

dx2 dx

are of bounded variation on (a, b).

iii. The "characteristic" equation

8(0) = 6" + Pio(x)e--1 + •■• + pno(x) = 0
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has simple roots for all values of x in (a, b). These roots

9i(x), ■ ■ ■ Mx)
are of the form

(1) 6i(x) = 7T<(7i(x)    (wi constant ; i = 1,2, • • • ,«)

where either

TTj = ± 7To    (iro real or complex and ^ 0) and q,(x) — t/0 > 0 on (a,b),

or else

in j* 0 and qx(x) be q2(x) ==••• = a„(x) = q(x) = ç/0 > 0 on (a,i).

iv. The operators

Ai(u,p) + Bi(u,p) (i = 1,2, •••,«)

are linearly independent for all values of p.

v. The functions

aie(x)

possess continuous derivatives of the first order which are of bounded

variation on (a, ¿).*

11. It is well known under the conditions stated that the complex p-plane

may be divided into a finite number of sectors (9Î), such that, in each sec-

tor the numbers

/» 6 n b

(2) Wi =    j  Bi(x)dx = tí j   qf(x)dx      (i = 1,2, • • • ,«)
J a Ja

may be ordered as follows :f

(3) Repwi g • • • = Repw, ^ 0 = Repwr+i = • • • = Repw„ in 9Î,

and further that there exists a fundamental system of solutions of the equa-

tion L(y) =0, which, in any 9Î, is of the formf

* The integral terms of the boundary operators used in D(17-19, 26) are fa a,- (x, p)ü<n_1> (x)dx

while those here are/a a¡ (x, p) u(x) dx. This ejqalains a slight difference between the following re-

sults and those of D.

t These sectors may always be so constructed that none of them contain more than one of the

rays Repoi, = Repwt, and none of these rays serve as a boundary.

t The symbol E, E(p), E(j>, ■ ■ ■ ) is used as a generic notation to designate functions of p

(and other variables), which remain bounded for large \p\. The symbol t, e(p), <(p, • • • ) will be used

to designate functions of p (and other variables) which tend uniformly to zero as p becomes infinite.
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(4)

pf,ei(x)dx (                1                  E\         pf'e^xux f               E\
yi(x,p) = e <Vi(x)-\-Vio(x) +—> = e " <Vi(x)-\->,

d"yi(x,p)        Pf*»i<,x)dx
- = e a p'

dx"
{6i(x)}'Li(x) + — vx»(x)+— |

(i = 1,2, •••,«; s = 0,1, ••-,«- 1).

The functions*
Vi(x)

possess derivatives of the second order, and the functions

Vi.(x)

possess derivatives of the first order which are continuous and of bounded

variation on (a, b).

Lastly it is known that if Yk(t, p) denotes the cofactor of y*(n-l)(i, p)

in the determinant

S(t,P)

y¿-l)(t,P)---y¿n-1)(t,p)

yi(t,p)     ■■■yn(t,p)

then the adjoint equation 7/(y)=0 admits of a fundamental system of

solutions

Yk(t,P)
Zk(t,p)   = (k= 1,2, • • • ,«),

and in any 9Î

Zh(t,p) = e
—pf 6¡l(x)dx I

(5)
d'Zk(t,p)      -pf'e^x)d

dt"
= e

where

S(t,P)

p-"+1 Uk(t) + -ho(0 + -2\>

p-n+1+,{r*w + -u(t) + -,} (-!)•{*&)}'

(k = 1,2, •••,«; s = 0,1, •••,«-!),

Ut) = (vk(t)%'{ek(t)})-1

* It can be proved (D, 2) that

where

S'W - S ; 3i(«)=iiiWön_1 + • ■ • + P—.* M» + #-i(*)-
d(0)
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and where f k(t), f *.(0 possess the same properties of continuity as r¡i(x),

r¡i.(x) respectively.

12. The Green's function of the differential problem (*■) is given by

(6)

where

(7)

(8)

(9)

(10)

G(x,t,p) =
(-l)"A(x,i,p)

A(p)

A(p) =
«ll(p) •  •  • «ln(p)

«nl(p) •  ■   • Unn(p)

Uik(p)   = Li(yk) ,

yi(x,P) • • • yn(x,p)   go(x,t,p)

uu(p) • ■ ■ uXn(p)      gi(t,p)

Unl(p) •  •  • U„n(p) gn(t,p)

A(x,t,p) =

go(x,t,p) =

(11)

r

2Z, yk(x,p)zk(t,p)iix > t,
k-1

n

-  2~L yk(x,p)zk(t,p)iix < t,
k-T+1

n T

gi(t,p) = -   Z Ai(yk)zk(t,p) +   J! Bi(yk)zk(t,p)
k-T+1 k-1

n *%t

-   HI Zk(t,p)   I   ai(x,p)yk(x,p)dx
k—r+1 Ja

t s* b

+   2~1 Zk(t,p)   I   o!i(x,p)yt(x,p)dx.
*-l J t

Let lu denote the greatest value of the index / for which, with / and s fixed,

at least one of the coefficients a,(8, bu, is different from zero, so that

an. = 0,    bu. = 0 if I > lit,

UtiiI 4- \bii.\ > 0 if I = h..
If

au, = bu. = 0 for / = 1,2, •••,»,

we set li, = 0.

Also let h be the greatest number of the set

k. + s-l (s = 0,1, ■ ■ • ,«)
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with /,«>0. Then obviously

(12) Ai(yk) = pl<[Aik] ; Bt(yk) = p!<e>»*[3«]*

where

Aik = Vk(a) £ «ii.{0*(a)}'o-1,

(13)

Bik = vt(b) £ b». {Bk(b)} '*-»,       I = lu,
(•)

and the summation is taken over all values of s for which lu+s — 1 =/<. We

have further

rb l
(14) ai.(x)yk(x,p)dx-{[ - ai,(a)Vk(a)6k(a)-1] + e""*[a,.(o)»,t(&)<?t(&)-1]}

Ja P

which may be easily proved by integration by parts, if we take into account

condition (A, v) and the fact that if c is any constant different from zero,

and yp(z) is any function of bounded variation on (0, Z), then

Cz E      E
(15) I    e«"yp(z)dz =-1-e"*.

Jo P        P

In the same way we obtain

(16)
pf'kix)

■\ [- ai,Wi¡kWt>ky\o)--¡-t-e
P

(ai,(x)yk(x,p)dx-{ [- au(a)vt(a)ek(a)-l]+/J',ti'U'[au(t)vk(^ek(t)-i]},
Ja P

b i r'

fau(x)yk(x,p)dx = —e">{[au(b)vk(b)ek(b)-*]-e'*^^^
Jt P

13. We shall now make the following assumptions:

(B) i. If Si denotes the greatest value of the index 5 for which «,-,(*) f^O,

so that

xx%,(x) = 0 if s > Si ; au(x) = aw(x) já 0 on (a, b) ii s = Si,

then

Si<h+ 1 (i- 1,2, ■ • • ,«).

Under this condition we find immediately that

(17) Uik(p) = pl'{[Aik] + e^[Bik]].

* The notation [¡t>] is due to G. D. Birkhoff and designates the expression of the form <p+E/p.
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Hence from (7)

(18) A(P) = p«

where

J. D. TAMARKIN

[An] 4- e^[Bu] ... [Au] + e^"[BXn]

[Am] + e^[BnX] . . . [Ann] + e"°»[Bnn]

I = h + h + ■ ■ ■ + In

[October

and, if we denote by Aik(p) the cofactor of uik(p) in the determinant A(p) we

have
( pi-hePvEjÚp) if i = 1,2, • • • ,t,

(i9)      àji(p) = \p      ';;'...  '(pi-hep^-^^Eji(p) if t = T + 1, •••,«,

where

W  =   WT+X +   Wr+i +'••+»...

For the sake of brevity we set

(20)   X,- =    J  qi(x)dx ; |< =    |  qt(x)dx ; X¡ «■    |  ç<(x)dx ; w< = iriX«.
•'o •'O va

A simple computation gives then

(21)

go(x,/,p) =

A                  (                     Hk(x,t)       E )
p-n+l 22 e~kl*k-tk)} T)k(x)Çk(t) 4-4- — >if X > /,

k=l \ p p2)

2~2 e"Ik(«■
k-T+1

-*h)Uk(x)ïk(t) +

H*(*,0       £
+ 7/ÍfX</'

where the functions H*(x, t) are polynomials in

Vi(x), Vio(x), f¿(/), iio(t),

and, a fortiori, possess derivatives of the first order which are continuous

and of bounded variation in each of the variables x and /, the total variation

being uniformly bounded on (a, b).

Also

(22)

gi(t,p) = p'«—"{ -   ¿ e-^k[AikU(t)]
V. k=T+l

+   2Ze^Xk-ik)[BikU(t)]+-\^~\\
fc-l P   Lpno(t) A)

* In deducing (22) from (11), (12), (16) we use the relations which are satisfied by the roots

*ii zt, •••, z„ of any algebraic equation

p(2)   „ g» + Al zn-l  _|-+ Anl   Z  +  An   =   0,

namely
/ 0 if i = 0,1, •••,»— 2,

D (pi)'/(p'(ti)) = \nt j-w-i,
«-1 l-l/il,ifi=-l.
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where

(23) Oi(t) = i
a<*'(0 if Si = h

0    if Si < h.

A further restriction now is the following:

(B) ii.   If a is the largest integer for which Re pw,<0 throughout (9î)

then all the constants

Mi =

M2 =

^4n -41*

-<42i .<422

•<4nl An2

Au Ais

A2i A2s

Anl   A„s

Ai, Bic+i

A2„ B2a+i

Ana   Bnc+1   .

-4ir   Bit+1   .

A2r Bst+i ■

Bi„

Bsn

■ Bnn

■ Bin

■ B2„

Bnr+1    .  .  .    Bn

are to be different from zero.*

Under the conditions (A), (B) there exist infinitely many poles of the

Green's function G(x, t, p) which are the characteristic values of the dif-

ferential problem (*) (D, 20-26). Moreover, if the interiors of small circles

with a common radius S around these roots are all excluded from the

p-plane, then in the remaining part (?R0) of the sector (9î)

(24) |A(p)e-""p-! | = N,> 0

where Ns is a positive constant which does not depend on p, and may be

taken the same for all the sectors (dt).

14. These results we shall apply now to the discussion of the behavior of

the Green's function G(x, t, p) for large values of p in (9J{). We have from

(6), (7), and (9)

(25) G(x,t,p) = go(x,r,p) +   £
».7—1

Hence if we set

&ji(p)yi(x,p)gj(t,p)

A(p)

(26)
gprixi = ffl/(j = 1,2, ■ ■ ■ ,;

eprHXi-U) = 0i"   (¿=1,2,

e-,THXi-xi) = a>   (i = T + I,

,T) ;*-»•*•-■/'   (¿ = r+l,

,»),

,«),

(31).

It should be noted that the constants t, a, An, Bik and hence M, and Af2 depend on the sector
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we obtain

(27) G(x,t,p) = go(x,t,P) + p-»+iQo(x,t,p) + p-"Ro(x,t,p).

Here Qo(x, t, p) is a bilinear form in two sets of quantities o,' and »/' ; i.e.,

n

(28) Qo(x,t,p) =   Y1Qiko(x,t,p)a<a¿',
t,fc=l

the coefficients Qao being of the form

(29) Qiko(x,t,P) = [coiko(x,t)]Eik(p).

The quantities Eik(p) depend only on p and remain bounded in (9îj), while

the functions cciko(x, t) depend only on x and /, each being a sum of products

of a function of # by a function of t whose second derivatives are continuous

on (a, b).

Ro(x, t, p) is a bilinear form in ©/ and at(t) :

n

(30) R0(x,t,p) =   E Riko(x,t,p)aiak(t),
». fc= i

(31) Riko(x,t,p) = [rio(x)/Pno(t)]Eik(P),*

where the functions ri0(x) depend only on x and possess second derivatives

which are continuous on (a, b).

If Si<li(i = l, 2, • • ■ , «), all the functions a,-(0 vanish and the form

Ro(x, t, p) reduces to zero.

In exactly the same fashion it can be proved that

(32) ^ÇfAP_ = gUx¡t¡p) + p-n+s+iQtrx¡t)p) + p-n+*Rt(x>ttP)
dx"

where

d'go(x,t,p)
gos(x,t,p) =

(33)
-n+i+l

dx'

Hk.(x,t) , EA ( Hk,(x,t)     E )
E e<"^«-M{ (ek(x))'nk(x)Ut) + —^-^ + -}
k-i ( p p2)

A                 Í                                  H*.(x,<)      E)
- p-"+'+1 E «"*<*-«*>< (Ok(x))'t,k(x)Ut) +--11 + — >

t-T+l l P P     >

Hk.(x,t)      E

k=T+l

according as a;>i or x<t;

* The coefficients £,t(p) are of course not the same as in (29).
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n

(34) Q.(x,t,p) =   2~lQi>u(x,t,P)aiak"; Qik.(x,t,p) = [ù3ik,(x,t)]Eik(p),
i,k-l

n

(35) R,(x,t,p) =   Y, Rik.(x,t,P)alak(t) ; Rik,(x,t,p) = [n.(x)/pno(t)]Eik(P),
i,k-l

and co,i,(x, t), ris(x) are functions analogous to uíu>(x, t), ri0(x).

15. Let us suppose now that conditions (A), (B) are satisfied and set

(36) Ti(f,x) m p-1 C G(x,t,p)pno(t)f(t)dt,
Ja

(37) r2(/,/) - p-1 J* G(x,t,p)Pno(x)f(x)dx.

Further let us denote by (®4) that part of the p-plane which is outside (or

on the boundaries) of the circles with a common small radius 8 around the

poles of the Green's function G(x, t, p). Then the representation (27) of the

Green's function G(x, t, p) enables us to prove the following

Lemma 1. (1) If f(x) is any function integrable on (a, b), then the integrals

(36) and (37) tend to zero uniformly on (a, b), as p becomes infinite, remain-

ing in (£)j). The same is true of the product

Md'Ti(f,x)
p--—- (s = 1,2, •••,«- 1).

dx'

(2) Iff(x) is any function of bounded variation on (a, b) we have in (3)a)

NVf NVf
(38) | Tx(f, x) | < -j-{ ; | Tt(f, t)\<-r-f

\P\ \P\

where N denotes a positive constant which depends only on 8 (and on the coef-

ficients of the problem (•)) and Vf is the greater of the two numbers, namely the

upper limit off(x) and the total variation off(x) on (a, b). The same is true of the

product
d>Tx(f,x)

P~'- (s = 1,2, •••,»- 1).
dx'

(3) Iff(x) is any function which possesses a first derivative of bounded varia-

tion on (a, b), we have in (£)j)

(39) Tx(f,x) = —/(*) + —Ai(o/) 4- ->
P P P

(40) Tt(f,t) = -/(/) + -A2(ffl/') 4--,
p p p'
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where Ai(o,'), As(a") are linear forms in a¡, »/' respectively:*

n

Ai(Oi) = E [««(*) ]oi^iO>),
i-l

a2(¡»/') = E k»(*)]»/'£,(p),
i-l

tóe coefficients tûn(x), Wis(x) being continuous and of bounded variation on (a, b).

16. The proof is based upon the following two simple lemmas:

Lemma 2. If yp(t) is any function integrable on (a0, b0), and c is any con-

stant ?^0, then the integral

f e",tp(t)dt (0 ^ a0 á a á d á io)
Ja

tends uniformly to zero, as p—»oo remaining in the half-plane Re cp ̂ 0 (D, 38).

Lemma 3. If yp(t) is any function of bounded variation on (a0, b0) and c is

any constant ¿¿0, then in the half-plane Re cp^O,

*' Y*
p

where E is a bounded function whose upper bound does not depend on \p, a or d.

e^P(t)dt-E (0 = a0ua = ß = bo),
Ja P

The proof of Lemma 3 follows immediately from the second Law of

the Mean, if we represent the function yp(t) (or its real and imaginary parts

in case it is complex) as a difference of two monotonie functions.

17. To prove Lemma 1, we use (27) and (32). These give

/» b ** b

(41) Ti(f,x) =p"-1  I   go(x,t,p)pn0(t)f(t)dt+   I   Qo(x,t,p)Pno(t)f(t)dt
%/ a va

i  rb
+ —      Ro(x,t,p)Pno(t)f(t)dt,

P   Ja

(42) p--i-^- = p»—i f go,(x,t,p)Pno(t)f(t)dt+  f Q,(x,t,p)Pno(t)f(t)dt
Oa •/ a xl7 a

1    rb
+ —      Ra(x,t,p)Pno(t)f(t)dt.

P   Ja

* In the following, the symbol A will be used to designate any linear form in S>i or üi, of the type

Ai or Aj.
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The statement (1) of Lemma 1 follows immediately from Lemma 2 and the

statement (2) follows from Lemma 3. In order to prove the statement (3),

we observe first that, by virtue of Lemma 3, the sum of the second and the

third terms in (41) is of the form

1 E
-A(al) + -.

p p2

On substituting (21) into the first term of (41) we can rewrite it in the form

X

e>*k<*k-WVk(x)tk(t)pno(t)f(t)dt

-   ¿    f e^xk-^r)k(x)U(t)pno(t)f(t)dt
k=r+l J x

+ — ¿    f e"'k^-^mk(x,t)Pno(t)f(t)dt
P    ¡fc=l    J a

- — Ê   f e<"k^k-ikmk(x,t)Pno(t)f(t)dt + — .
P k~r+l Ja P

The application of Lemma 3 shows that the coefficient of 1/p here is also

E/p.
An integration by parts in the two first terms yields

1    "  Vk(x)h(x)pno(x)f(x)        1
- - E-ryr-+ -A(o/)

p  k-i Ok(x) p

-I—2J     e""'Hi)iii(i)7-ttt:-dt
P    k—l    Ja

T f.X

k-1    Ja

r
T+l'

P  *-i  Jo dt 6k(t)

1 ^ rh  , «, , vd f*w#.o(o/(o .,
-52        e^*(l*-ft)r/i(a;)-*,

P   Jfc_T+l   J X áí 0*(<)

which by virtue of the footnote on page 772 and Lemma 3 is equal to

1 1 E
-/(*) +-A(o/) + -.
P P P2

On collecting this material we have the complete proof of (36).  An analo-

gous proof may be carried through for (37).

Lemma 4. If fi(x) and /2(x) are any two functions whose first derivatives

are of bounded variation on (a, b), then under the conditions of Lemma 1,
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(43) p- j   J G(x,t,p)fi(x)fs(t)pno(t)dxdt  = I" J fi(x)fs(x)dx~\,

(44) p» J   J G(x,t,p)fi(t)fs(x)Pno(x)dxdt = I" J /i(*)/2(*)a-*] .

The proof is given by (39) if we observe that, by virtue of Lemma 3,

rb e
Ai(ai')fi(x)dx = — on (£)6).

Ja P

18. Remark 1. Lemmas 1 and 4 hold true if the functions f(x),fi(x), f2(x)

depend on any number of other variables, provided that they are uniformly

bounded or else that their total variation or that of their derivatives is

uniformly bounded.

Remark 2. It follows immediately from (27) and (32) that, in (£>„■),

\d>G(x,t,p)
\G(x,t,p)\ <N\p\-"+l; <N p- n+l+»

dx'

where N may be taken the same as in (38).

III. The eqtjiconvergence theorem

19. We return now to the general problem

(I) L(u) = f(x) +   E *,(«)*/(*,P) +    f Ä(s,£,pM£)d£,
i-l J a

(II) Li(u) = o (i= i)2, ... ,«).

In addition to the conditions (A), (B) we assume also the following:

(C) i. The functions

h(x,£,p), tpj(x,p) (j = 1,2, • • • ,p)

are polynomials in p, of at most the degree (« — 1).

ii. The operators

IK«) 0' = i,2, •••,«)

do not depend on p.

iii. If Mj denotes the degree of </>,(*, p) and X,- denotes the order of the

highest derivative which occurs in the operator /,(«), then

(1) X* + w, = «-l (k,j = 1,2, ■ ■ • ,p).

iv. If X*+m,' = « — 1, then the coefficient of the highest power of p in

tf>i(x, p) is of bounded variation on (a, b). The coefficient of pB_I in h(x, £, p)
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is of bounded variation in £ for each value of x, the total variation being

uniformly bounded on  (a, b).    The remaining coefficients in A(x, £, p),

<f>i(x, p) are integrable on (a, b), with respect either to x, or to £, or with

respect to x and £.

v. The operators

/,(«), Ai(u) + Bi(u) (j = 1,2, • ■ • ,p ; i = 1,2, • • • ,»)

are linearly independent for all values of p.

20. We see at once that the conditions of Theorems 1 and 2 are fulfilled

in this case, and now we proceed to the explicit expression of the Green's

function T(x, t, p) of the problem (*■).

Using the method indicated in §§4-6 we set

(2) F(x,p)m   f G(x,t,p)f(t)dt,
Ja

(3) *Ax,p)=   f G(x,t,p)(bi(t,p)dt,

(4) #(*,£,p) m j G(x,t,p)h(t,k,P)dt,

(5) h(«)=ci (j= 1.2, ••• ,P),

(6) *(*,p)=   ¿cy *,(*,p) + F(x,p).
j=i

Suppose for a moment that p is not a pole of G(x, t, p), nor of §(x, £, p), the

reciprocal of the kernel H(x, £, p). The problem (•) is equivalent to the

integral equation

(7) u(x,p) = ¥(x,p) 4- J H(x,{,p)«(í,p)di,

together with the conditions (5). Hence

(8) u(x,p) = *(x,p) -   f §(x,£,p)*(£,p)# = fi(x,p) +   ¿ cA(x,p),

where

(9) i2(x,p)=F(x,p) -    f $(*,£,p)F(|,p)¿í,
•/o

(10) Í2,(x,p) = $,(x,p) -  f $(*,Í,p) */tt,p)d{.
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If we set

( -   h(Qk) if k 5¿ i ;
(11) x*(p) - \ t      ,,   '    .       .      xKp) - li(0)       (»,* = 1,2, • • • fM),

11 — h(tii) if jfc = * ;

equations (5) can be written as follows:

(12) E CkXik(p) = Xi(p)l (i = 1,2, • • • ,p).
i=i

Denote by 7J(p) the determinant of the system (12) and by

(13) Da(p)

the quotient of the cofactor of the element xa(p) in D(p) by D(p) (supposing

of course that D(p) ¿¿0). Then

(14) Ci =   E ¿>w(p)x*(p) 0" = 1,2, • • • ,p)
i=i

and substitution in (8) gives

w(*,p) = U(x,p) + E ^*í(p)xt(p)í2;(a;,p)
*,í-i

=   J «*/(*) |g(*,í,p) - j §(*,£,p)G(£,',p)¿£

+   E  Dki(p)^i(x,p)h\G(x,t,p)   - J £(*,£,p)G(£,i,P)dA  }•

Hence

r(*,/,p) =G(x,t,P)  -    f §(*,£,p)G(£,*,p)d£

+   ¿íMp)oK*,p)I*(g(*,*,p) -   f §(*,£,p)G(£,í,p)d£)  -
(15)

21. We shaU justify these formal operations by proving that, for suf-

ficiently large values of \p | in (S)s), the reciprocal &(x, £, p) exists and the

determinant D(p)?^0. By virtue of Theorem 2, then, it will foUow that the

Green's function T(x, t, p) is meromorphic in p, and that the poles of

T(x, t, p), for p sufficiently large, if there are such, must lie within a distance

less than ô from the corresponding poles of G(x, t, p). The justification in

question is based on the fact that in (3)j) the function H(x, £, p) is of order

* The subscript x indicates the independent variable of the operation /*.
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0(1/p). This follows immediately from Lemma 1. Let R> be chosen so large

that for p in (35«) and |p | =Äj

\H(x,i,p)\ = A. <1.

The Neumann series for the reciprocal of the kernel H(x, £, p), i.e.

oo

S(*if.p) = -   E H,(x,S,p) ;

(16)

p)cfr)#o(*,f,p) = H(x,$,p) ;  H,+x(x,Z,p) =   J  H(x,n,p)H,(ii,$,

converges uniformly in x, £ on (a, £>) and p in (35«) and |p | =^R¡. In the follow-

ing (35) will designate that part of (35«) which is outside the circle \p | = Rt.

Expression (16) shows that in (35)

(17) $(x,t,p)-
P

Further we observe that $,•(*, p) is a combination of integrals of the type Tx

of Lemma 1, whence an easy application of this Lemma shows, by virtue of

conditions (C, i—iv) and formula (17),

*,-(x,p) = Ep-n+m¡ ;  üj(x,p) = Ep-n+m¡,

(18)
E r    , ("O if i 5¿ k,

h(Ük) = — ; xik(p) = [8a] ; 8ik = <        . (i,*,j = 1,2, • • -,p).
p (1 if i = k,

Hence D(p) tends uniformly to 1, as p becomes infinite in (35). Taking R¡

sufficiently large we have then

(19) \D(p)\ = Nt>Oin(T>).

Lastly we see that all the Dik(p) are bounded in (35). Thus the following

theorem is proved :

Theorem 3. Under the conditions (A), (B), (C), the Green's function

T(x, t, p) of the problem (■*■), which is given by (15), is meromorphic in p, and

in (35) we have

T(x,t,p)-G(x,t,p) =0(l/p").

22. The preceding evaluations enable us to prove the following funda-

mental proposition:
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Theorem 4. Under the conditions (A), (B), (C), if (Cr) denotes a circle

\p\=R in (35), the difference of the two Birkhoff integrals

Ir(Í)=—A     Pn-'dp f T(x,t,p)Pno(t)f(t)dt
2m J (Cr) J a

(20)

-— f     Pn~xdp f G(x,t,p)Pno(t)f(t)dt
2irt J (Cr) J a

corresponding to the integro-differential and the differential problems (ir) tends

to zero as R-^<x> ,for any integrable function f(x), and uniformly in x on (a, b).

Using the notation of §15 we obviously have

In(f) = -^fdpf $(x>Z>p)Ti(f>ÜdZ
(21)

1    "     C (
+ —E dpDkj(p)Sli(x,p)lk{Ti(f,x)

2irlk,j-lJ(CR) (.

- j $(x,i,P)Ti(f,i)ds} ■

The application of Lemma 1 and the preceding inequalities show that each

term under the sign of integral /(cB) is of the form* e(x,p)/p.    Hence

C       X:(x,p)
IR(f) = —'—pd -> 0 as R -» oo .

J (Cr)     p

Thus, the "equiconvergence theorem" for the integro-differential and dif-

ferential problems (+) is established; in other words it is proved that both

problems are equivalent in so far as questions of the conditions of convergence,

uniform convergence, divergence, or summability by any regular method are

concerned.

23. Theorem 5. Under the conditions (A), (B), (C) the problem (*)

possesses infinitely many characteristic values and fundamental functions. If

5 is any positive number, arbitrarily small, each characteristic value of the problem

(ir), which is sufficiently large in absolute value, is distant by less than bfrom a

characteristic value of the differential problem (ir).

* See third foot note, p. 768.
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The second assertion of the theorem has already been proved.  To prove

the first, let us suppose that the function T(x, t, p) has but a finite number of

poles

Pi,P2, • • • ,   Pm-

Let

ri(x,¿),r2(x,<), • • • ,rm(x,/)

be the corresponding residues of the function p"~T(x, /, p).   The integral

— f     p-Hp f T(x,t,p)Pno(t)f(t)dt
2iriJ(CR) Ja

has, then, the same value for all values of R sufficiently large. Hence, in

virtue of Theorem 3,

— f     p^dp f T(x,t,p)Pno(t)f(t)dt
2itiJ{Cr) Ja

m        pb

-   E        Tr(x,t)Pno(t)f(t)dt
t-1    J a

= lim   — f     pn-Hp ( G(x,t,p)Pno(t)f(t)dt=f(x),
R->*    2irlJ(CR) Ja

f(x) being an arbitrary function satisfying certain conditions of continuity.

On setting

m

k(x,t)  S     2Z   T,(x,f)Pno(t)
v-1

this relation takes the form of an integral equation

f(x) -  J k(x,t)f(t)dt

whose kernel is bounded and integrable and which is possessed of infinitely

many linearly independent solutions, which is in contradiction to the

classical Fredholm theory.

24. Theorem 6. Assuming that the problem (+) satisfies the conditions

(A), (B), (C), let (*■*■) be any differential problem of the type (*) which satisfies

the conditions (A) and (B) and whose coefficients pio(x), pn(x), Aik, Bik and

indices U. are the same as those of the problem (*•). Denote by G'(x, t, p) the

Green's function of the problem (-kir). Let f(x) be any function integrable on

(a, b) and
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(22) !*'(/)= — f     Pn~xdp  f {T(x,t,p)-G'(x,t,p)}Pno(t)f(t)dt.
2mJ(cB) Ja

Then, as i2—>°o,

0 if a < x < b,
n nb

2Z   j   {aiW-<*/«}©«W/(0«ft */ x = a,
i=l    J a

Ê    f {ai(t) - a!(t)}®bi(t)f(t)dt if x=b,
i=l    J a

(23) /*'(/)

wAere a¡ (x) are the coefficients of the problem (-k~k), which correspond to the

coefficients a¿(x) of the problem (+) and@ai, ®bi are known functions which de-

pend merely on the coefficients of the problem (*•) and do not depend on f(x).

The convergence of Ir (f) to zero is uniform on every interval interior to (a, b).

If the functions a,(x), a{ (x) coincide, then

U(f) -*0 as 2c-* oo,

uniformly on (0, 1).

It is readily proved that the characteristic values of the differential

problem (**) are asymptotic to those of the differential problem (it) in the

sense that if 5 is any fixed positive number, arbitrarily small, an R¡ is available

which is so large that outside of the circle \p \ = 2?« all the characteristic values

of (■*•*) lie in the interiors of the circles of radius S around the character-

istic values of (*) and vice versa (D, 26). Hence the integral

- f     po-Hp f G'(x,t,p)Pno(t)f(t)dt
m J(Cr) Ja2iri

exists, and Theorem 6 is proved if the assertions of the theorem are proved for

the integral

j*(f)=—.(    Pn-Xdp   f \G(x,t,p)-G'(x,t,p)]pno(t)f(t)dt.
2iri J (Cr) J a

Now, it is readily seen that in the expressions of the Green's functions

G(x, t, p) and G'(x, t, p), as given by Part II, (27), the exponential factors

and the leading terms are the same, provided the conditions of Theorem 6

are satisfied. Hence the integral js(f) reduces to a sum of terms of the form
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f — (Xe^'"-^[fi(t)]E(p)dt (k = 1,2, • • • ,t),

(24) J   P J\
f —   f ^*<«-«*>l/i(i)]JB(p)<ß (* = r + 1, • • • ,«) ;

(25) f--dp f ak"[fi(t)]E(p)dt (i,*- 1,2, •••,»);
J      P Jo

(26) f —-dp f [a4(fl - a¿(t)]®ik(t)f(t)dt
J    P       J" (i,k= 1,2, •••,»).

The integration with respect to p is taken over those parts of (Cr) which are

cut off by the various sectors (dt) andfi(t) designates an integrable function.

In virtue of Lemma 2, integrals (24) and (25) —»0 as R-^><x>, uniformly on

(a, b). Integrals (26) are absent if the last condition of Theorem 6 is satisfied.

Otherwise integrals (26) —><» as R—»°o, uniformly on every interval interior

to (a, b), as is shown by

Lemma 5. Let (y) be any part of the circle \p\=r which lies in the half-plane

Re cp = 0 (c is a constant ¿¿0). If e(p, z) tends uniformly to zero as r assumes

a given set of values tending to <x>, the integral

f  e(p,z)ec'''dp
J M

tends to zero uniformly on every interval 0 <a = z^ß*

Finally, if x = a or x = b, integrals (26) obviously tend to limits of the

type indicated in (23).

25. Corollary. Let

pi,ps, ■ ■ ■ ,p,, • • ■ (\pi\ Ú \ps\ = • • •)

be the set of the characteristic values of the problem (ir). Under the conditions

(A), (B), (C) the series
rh

E    I     Res{p»-iT(x,t,p)}pno(t)f(t)dt
(v)     Ja    P—Pv

converges, for any function f(x) of bounded variation on (a, b), to the values

\{f(x + 0) + f(x - 0)}   if a<x<b,

Aaf(a + 0) + Baf(b - 0) +   E   I   ®ai(t)ai(t)f(t)dt if x = a,
i=l    Ja

Abf(a + 0) + Bbf(b - 0) +   ¿   f %bi(t)ai(t)f(t)dt if x = b,
t-l    Ja

* See D, 38.
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where Aa, Ba,Ab, Bb are constants which depend merely on the coefficients of the

problem (ir) but not on f(x). The convergence is uniform on every interval of

continuity off(x), which is interior to (a, b).

This follows immediately from Theorem 6 and from the known properties

of the integral*

— f     p»-Hp { G'(x,t,p)Pno(t)f(t)dt.
2tI J (Cr) J a

Better results concerning the uniformity of convergence on the whole of

(a, b) and the values of the series at the end points a, b may be obtained by

using another integral in place of the Birkhoff integral. We shall return to

this question elsewhere.

26. Theorem 7. In addition to (A), (B), (C) let us assume that the operator

L(u) is of the form

L(u) = «(n> 4- px(x)u<-n~1'> + ■ ■ • + \pn(x) + pn]u

and the operators A i(u)+B¡(u) (i = l, 2, ■ ■ ■ , «) are independent of p. Suppose

furthermore that all the poles of the Green's function G'(x, t, p) which are suf-

ficiently large in absolute value are simple.

Then the characteristic values of the integro-differential problem (ir) are

asymptotic to those of the differential problem (ir) (and also to those of any of the

problems (-kit)) in the sense above.

Let po be any one of the poles of the function G(x, t, p) (in the region

\p | >R¡). Denote by (c) the circle of radius S around p0. We suppose i?« so

large that all the poles (in the region \p \ >Rt) of either of the functions

T(x, /, p), G'(x, t, p) are interior to the circles (c). To prove that T(x, /, p)

has at least one pole in each of the circles (c) it is sufficient to prove that the

integral

(27) /c(r) = —: ( dx f T(x,x - 0,p)dp
2lTl J a J (c)

is always different from zero, for if T(x, t, p) has no poles in any one of the

circles (c), the integral (27) must vanish. Now, Theorem 3 shows, on the one

hand,

|/e(r - G) | < Ar~\

* We may take as the problem (ink) the differential problem whose operators are L(u) and

A,(u)+Bi(u).
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where A is a positive constant which depends only on 5, and r denotes the

shortest distance from the origin to the contour of (c). On the other hand,

we see from Part II, (27), that

G(x,t,P) -G'(x,t,p) = 0(r~»)  on (c),

\JC(G-G')\ <Ar—.

Hence if we suppose that

J,(T) = 0,
then

(28) \JC(G') | g  \JC(G) | + | J.(G -G')\= \JC(T - G) \

+ \JC(G - G') | < 2Ar~».

Now, under the conditions of Theorem 7, it has been proved* that the residue

of the function G'(x, t, p) corresponding to any simple pole p' is

E Uk(x)Vk(t)
»(p')-1 bTi

where the sets

(29) ui(x), • ■ • ,u,(x) and vi(x),Vs(x), ■ ■ ■ ,v„(x)

are composed respectively of the fundamental functions of the problem (-*-*■)

and of the adjoint problem (ir-k) and are biorthogonal and normalized.

Supposing that the pole p' is within the circle (c) we see that

Jc(G')=x—^--,
«(p)n_1

which is in contradiction to (28). We know, however, that no poles of

F(x, t, p) (greater than Rs in absolute value) are outside the circles (c).

Hence Theorem 7 is proved, f

27. The method used above can be considerably generalized.  It can be

immediately applied to the case where the function h(x, £, p) is replaced by

pnhn(x,Ç) + h(x,i-,p)

where h„(x, £) is the sum of a finite number of products of a function of x by

a function of £. The method can be extended further to the general case where

hn(x, £) is any function of the two variables x and £, which satisfies certain

* Birkhoff, these Transactions, vol. 9 (1908), pp. 377-380; D, 15.
t It is very probable that Theorem 7 holds true under the more general conditions of Theorem 4.

This question, however, requires more detailed knowledge of the structure of the Green's function

G(x, t, p) in the vicinity of a pole, than that which is available in D.
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conditions of continuity and possesses a reciprocal.* This extension (which

includes L.Lichtenstein's case) will be treated in another paper by the author.

It is sufficient to remark here that Theorem 3 is true in this more general

case, but that in Theorem 4, the Birkhoff integral must be replaced by the

following one:

— f    p-W  f f(t)dt(r(x,t,p)Pno(t)
lwlJ(CR) (   Ja \

-    J   T(x,^p)hn(^,t)Pno(^)d^\\   •

IV. An application to the theory of Fredholm's integral equations!

28. The general theory as indicated above admits of an important ap-

plication to the theory of Fredholm's integral equations with discontinuous

kernels. J
Let us first develop the formal side of the method; it will be then an easy

matter to state all the conditions under which our formal operations are

justified.

Consider the integral equation

(1) y(t) = X  f k(t,r)y(r)dT
J a

whose kernel k(t, r) has a finite jump along the line r = t:

k(t,t+) - k(t,r) = k(t,r)     = <p(t) j± 0.

* This condition is essential. For instance, in the example of the foot note on p. 766 all values of

p are characteristic values of the integro-differential problem (-fr) while the corresponding differential

problem admits only p = 2kic. Another curious example is the following: w"+p2m=p2/Ô £«(£)</{;

m(0)=0, flu(t;)d£ = 0. The characteristic values of the integro-differential problem are asymptotic

to the roots of the equation cos p= 1/3, while those of the differential problem are p = 2kir(k = ± 1,

• • • ). The characteristic values of the integro-differential problem u"-\-phi = 2p* /J£m(£)¿£;

M(0) =0,/ô «<(|)d£=0, are, however, asymptotic to those of the problem

u" + pht = 0 ; «(0) = 0, f «({)<# = 0.

j This chapter was added during the revision of the paper, in May 1927.

X An independent treatment of this question has been recently given in the interesting paper

by R. E. Langer, On the theory of integral equations with discontinuous kernels, these Transactions, vol.

28 (1926), pp. 585-639; in the sequel this paper is denoted by "L." The method which we propose

here appears to present some advantage of greater simplicity and generality. We consider here

the case only where the kernel itself is discontinuous. The general case of a kernel which is continu-

ous but possesses discontinuous partial derivatives is discussed in a joint paper by Langer and the

author.
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We assume that, except on the line T = t, k(t, t) is continuous on the square

(@o) a = t^ß;a = r = ß,

together with its partial derivatives up to a certain order which will be speci-

fied later on, and that all these functions tend to finite limiting values as the

point (/, t) tends to any point on the line r = t, without crossing this line.

It is readily seen that equation (1) can be "normalized" by means of the

substitutions (L, Chapter 2)

Ix =    f tb(t)dt ; Z£ =   f tp(T)dT ; I =   f tp(t)dt ¿¿ 0 ; W = p ;

U(x,0 = k(t,r)/tp(r) ;    P(x) = Q,(*,ö] +,

K(x,Z)& Q(x,&eJi*l')d' ,

u(x) = y(t)e

This brings (1) to the form

(2) u(x) = p f Z(*,£)w(£)d£.
Jo

The function K(x, £) possesses the same properties of continuity on the

square

(©) OásáliOátál,

as the function k(t, t) on the square (®o).  But, in addition we have now

(3) K(x,t)T = 1 ;   Kx(x,£)Y_= 0.

So far the function Kx(x, £) is denned for x^.  On setting

Kx(x,£) \t=x = Kx(x,x~) = Kx(x,x+)

we obtain a function which is defined and continuous on the whole of the

square (©).

From now on we shall deal exclusively with the normalized equation (2)*.

29. If we differentiate (2) we get, on account of (3),

(4) u(x) = - u'(x)/p +   f Km(x,Qu(Qdt.
_ Jo

* The normalization of (1) is not at all necessary for our purposes; we might discuss (1) without

any transformation as well. It is only for the sake of simplicity of computations that we prefer to

deal with the normalized equation (2).



790 J. D. TAMARKIN [October

Here we consider —u'(x)/p as a known function and assume that the kernel

Kx(x, £) possesses a reciprocal, (S(x, £), which is defined by

(5) Kx(x,0+   <8(*,*)-   fK.(x,s)<&(s,l)ds-   f <&(x,s)K,(s,Qds.
Jo Jo

The function (§(x, £) has on (©) the same properties of continuity as the

function Kx(x, £); in particular, (S(x, £) is continuous on (©). We see at

once that

pu(x) = - u'(x) +   f <S(*,0«'(í)«*É,
Jo

and an integration by parts gives the integro-differential equation which is

satisfied by u(x) :

(6) u'(x) + pu(x) = «(1) (S(x, 1) - «(0) (g(x,0) -    f <íi(x,t)u(t)dl;.
Jo

It remains now to find the boundary condition which is satisfied by u(x).

This can be done by substituting x = 0 into (2):

«(0) = p f is:(0,£)«(f)#.
Jo

The parameter p may be eliminated from here by means of (6). If we sub-

stitute pu(x) from (6) and integrate by parts, we easily find

(7) a«(0) + bu(l) =    f a(H)u(t-)dl;
Jo

a=l-K(0,0+)+    f #(0,l)®(£,0)á£,
Jo

b = K(0,l)-    f K(0,0m,l)d^,
Jo

«(£) = K((0,S) -   f K(0,s)®((s,£)ds.
Jo

Thus we have proved that every solution of (2) is a solution of the homogene-

ous integro-differential problem (*) consisting of (6) and (7). The complete

equivalence of those two problems will be proved if we can show that, con-

versely, every solution of (6), (7) is a solution of (2).

where

(8)
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30. It is desirable to answer a more general question, namely, what is

the integral equation which is satisfied by a solution of the system consisting

of the non-homogeneous integro-differential equation

(9) u'(x) +pu(x) =f(x) + u(l)<&(x,l) - «(0)<S(*,0) -   f <Sf(*,£)«(£)<*£,
Jo

and the boundary condition (7),f(x) being an arbitrary continuous function.

First, we have from (9)

u'(x) = f(x) - pu(x) +   f (S(*,£)«'(£)d£,
Jo

whence, Kx(x, £) being the reciprocal of (S(x, £),

u'(x) = f(x) - pu(x) -    f Kx(x,t){f(t) - P«(£)}d£,
Jo

or else

u'(x) = /(*) -  j Km(x,i)f(&di + P { - «(*) + f K,(x,&u(&dè \

= -\p f K(x,Qu(i)dA -—{   f K(x,t)f(i)dt 1 '
dx\   Jo )      dx\ Jo 1

and finally

u(x) = -    f K(x,S)f(i)dt + p f K(x,t)u(Qdt + C,
Jo Jo

where C is a constant.

Now, to find C, we rewrite (7) as follows :

«(0) = -    f isT(0,£K(£)d£ -    f «(£)d£   f K(0,s)<Sf(s,&ds
Jo Jo Jo

+ u(l)   fis:(0,£)(S(£,l)d£ - «(0)  f K(0,Q<i(i,0)di,
Jo Jo

and, substituting —«'(£) from (9),

«(0) = p f K(0,t)u(t)dt -    f tf(0,£)/(£)d£.
Jo Jo

Hence, C = 0 and u(x) is a solution of the non-homogeneous integral equation

(10) u(x) = F(x) + p f Z(*,£)M(£)d£
Jo
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where

(11) F(x) = -    f K(x,Qf(Qdî.
Jo

On setting/(x)=0, we obtain the desired proof of the equivalence of the

integral equation (2) and of the homogeneous integro-differential problem

(*)•
31. Using the results of §30 we can establish the important fact that the

Green's function T(x, t, p) of the integro-differential problem (-*■) and the

resolvent kernel $t(x, t, p) of (2) are identical. The function p$t(x, t, p) is

defined as the reciprocal of the kernel pK(x, £) so that*

K(x,S) + «(*,{,p) = p f K(x,s)®(s,Z,p)ds = p  f ®(x,s,p)K(s,£)ds.
Jo Jo

The homogeneous problems (2) and (*-) being equivalent, they have the same

set of characteristic values, say

Pl,P2,P3,   ■ ' •  ,pp,   ' ' '  .

Let p be different from any p„. The solution of the non-homogeneous problem

(ir), then, is uniquely determined and given by

u(x) =    f T(x,t,P)f(t)dt.
Jo

On the other hand, from (10), (11) we have

u(x)=F(x) - p [  fi(*,f,p)F(Ödf
Jo

= J"/«)<«{ - K(x,t) + pj &(x,S,p)m,t)di}

=   f ®(x,t,P)f(t)dt,
Jo

which, in view of the arbitrariness of f(x), shows that

lW,p) s  ä(*,/,p).

This being stated, the integral

— f     Pn~ldp ( T(x,t,p)Pno(t)f(t)dt
2ttiJ(Cr) Jq

* Cf. Lalesco, Introduction à la Théorie des Equations Intégrales, Paris, 1912, pp. 23-24. It should

be noted that our kernel K(x, £) corresponds to the kernel — N(x, J) of Lalesco.
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used in Part III reduces in the present case to

(12) — f    dp f ®(x,t,p)f(t)dt =   E   f f(t)Res®(x,t,p)dt
2tiJ(Cr)     Jo r-i  Jo        p"*p'

where pi, ps, ■ • ■ , pn are the characteristic values of (2) within (Cr). It is

well known, however, that the principal part of $(x, t, p) corresponding to a

pole po, of multiplicity m, is

tbm(x,t) 4>i(x,t)

(p - Po)m P - PO

where

<Pi(x,t) =   E $i(x)*i(t)
<>)

and
$i(x), ■ ■ ■ ;  *i(x), ■ ■ -

are respectively the fundamental functions of the equation (2) and of the

associated equation

(13) v(x) = p f K(t,x)v(&dÇ
Jo

corresponding to the pole po.* The functions $i(x), ^i(x), • • • constitute a

biorthogonal system of function which reduces to that of the fundamental

solutions of (2) and (13), when and only when the pole p0 is simple. Now, let

ui(x), vi(x) ; u2(x), v2(x) ; • ■ • ,u„(x), vv(x), • ■ ■

be the complete set of fundamental functions of the equations (2) and (13)

which, as we know, is biorthogonal. Let p, denote the pole of $i(x, t, p)

which corresponds to the pair of functions uv(x), v,(x), each pole being counted

as many times as there are linearly independent fundamental functions cor-

responding to this pole, and

E(/)=. ¿«,(«) f f(t)v.(t)dt.
y=l Jo

The integral

3(f) ̂  — f    dp ( T(x,t,p)f(t)dp
2ttiJ(Cr)     Jo

becomes then

E u,(x)    f f(t)v,(t)dt m    E (/)
(Cr) Jo (Cr)

* Lalesco, loc. cit., pp. 46-55.
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which is exactly the sum of the Nr first terms of the expansion of the arbitrary

function/(x) in the series related to the integral equation (2), Nr denoting the

number of poles p, within (Cr) . Our expansion above includes as a special

case that discussed by Langer (L, Chapter 12); it reduces to the latter one

when and only when all the poles of the resolvent kernel $(x, £, p) are simple.

32. So far our work has been of more or less formal character. Now it

is obvious that the reasonings of §§28-30 can be carried through if we as-

sume that the partial derivatives of K(x, £) of the second order are con-

tinuous on (©), except on the line £ = x, and that they tend to finite limiting

values when the point (x, £) tends to any point on the line £ = x in (@),

without crossing this line. After this, we have to take care of the conditions

(A), (B) and (C), §§ 10, 13, 19. Conditions (A) in the present case reduce to

the requirement that neither of the coefficients a, b in (7) is zero, and that the

function a(£) is possessed of a continuous derivative which is of bounded

variation on (0,1). To meet the latter of these conditions it suffices to assume

that the partial derivatives of K(x, £) of the third order are continuous on

(©) except on the line £=x, and that they are of bounded variation in £ for

fixed x, as well as in x for fixed £, the total variation being uniformly bounded

on (0, 1). Let us turn now to the conditions (C). Equation (9) is not of the

form required by (C, v) since the operators w(0),w(l), au(0)+bu(l) are not

linearly independent. However, we can bring (9) to the desired form by

eliminating one of the arguments u(0), u(l) by means of (7) which is possible

since a¿¿0 and 05^0. Then, under the assumptions previously made, all the

conditions (C) are satisfied.

33. On collecting our results we may now formulate the following pro-

position :

Theorem 8. Given the integral equation

(2) u(x) = p f K(x,t)u(S)di
Jo

whose kernel K(x, £) satisfies the following conditions:

(D) i. K(x,£) is continuous on the region

0.^ xû 1 ;0 á í ¿ 1 ; xi* {

together with its partial derivatives up to the third order inclusive.

ii. The partial derivatives of the third order are of bounded variation in £

for fixed x, and in x for fixed £, the total variation being uniformly bounded on

(0, 1).*

* Restrictions i-ii ensure the finiteness and even the continuity of the limiting values of K{x, |)

and of those of its partial derivatives up to the second order inclusive on the line x = £.
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iii. The kernel K(x, £) is normalized, that is

K(x,x+) - K(x,x~) = 1 ; Kx(x,x+) - Kx(x,x~) = 0.

iv. The kernel Kx(x, £), where

Kx(x,x) = Kx(x,x+) = Kx(x,x~),

is possessed of a reciprocal, S(x, £).*

v. The constants a and b defined by

a=l- K(0,0+) +  (lK(o,&m,o)dt,
(14) Jo

b = K(0,1)-    f  iT(0,£)(g(£,l)d£,
Jo

are different from zero.

Under these hypotheses we have the following conclusions:

(I) The integral equation (2) has infinitely many characteristic values.  Let

(15) Pi = log ( - b/a) + 2kTi (k = 0, ± 1, ± 2, • • •)

be the characteristic values of the differential boundary problem

(••) u'(x) + Pu(x) = 0 ; au(0) + bu(l) = 0.

Then, if 5 is any positive number arbitrarily small but fixeti, an R¡ is available

which is so large that, outside the circle \p \ =R¡, all the characteristic values of

(2) lie in the interiors of the circles of radius 5 around the points (15), each

circle containing one and only one characteristic value of (2).

(II) Outside the circle \p\=R¡ all the characteristic values of (2) are simple

poles of the resolvent kernel ®(x, £, p) awd to each of them there corresponds a

single pair u(x), v(x) of the fundamental solutions of (2) and of the associated

integral equation (13).

(III) Let

(16) ui(x), vi(x), u2(x), v2(x), ■ ■ ■ ,Uy(x), vr(x), - - -

be the complete biorthogonal set of the fundamental functions of (2), (13) and

u¿l)(x), vP(x) (k = 0, ± 1, ± 2, • • •)

the complete biorthogonal set of the fundamental solutions of (-kir) and of the

adjoint problem

(••') v'(x) - pv(x) = 0 ; bv(0) + av(l) = 0.

*This condition is somewhat less general than the corresponding Langer's condition (v) (L,

p. 592). We expect to discuss in another paper the case where Kx(x, £) has no reciprocal.
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Let f(x) be any function integrable on (0, 1).  If we set

(17) E(/) =■ E «»(*)   ff(t)v,(t)dt ; z»W - E «.(*)   Cf(t)v,(t)dt,
r—i Jo v-i Jo

(18) 5(/) » E «/»(*)  ()(t)vF>(t)dt; SN(f) s E «.(1)«  ff(t)uP(t)dt,
y^—x, Jo r—W Jo

the series 2~l(f) and S(f) are equiconvergent on the interior of (0, 1), that is

(19) 2>(/) - S*(/) -» 0 a* 2V -> oo ,

uniformly on every interval interior to (0, 1). .4¿ the end points 0, 1 the difference

(19) te»¿s respectively to

(20) Co  f f(t)a(t)dt,        Cx  f f(t)a(t)dt
Jo Jo

where

(21) a(l) = K((0,Q -    f K(0,s)<Si(s,i)ds,
Jo

and Co, Cx are constant factors which depend only on K(x, ¿j) and do not depend

on f(x).

(IV) No modifications are necessary in the statements (I) and (II) if the dif-

ferential problem (irk) is replaced by

(•••) u'(x) + pu(x) = 0 ; a«(0) + A«(l) =    f «({)«({)#.
Jo

Let G(x, t, p) be the Green's function of the problem (kkk) and

,r» ,(22) Pi", pt', ■ ■ ■ ,P;

the set of the characteristic values of (kkk).  Let

(Cr) \p\=R

be a circle around the origin, which does not pass through any of the points

p„ pi, pi'. If px, p2, • • • , pu are the characteristic values of (2) within (Cr),

then

(23) im i 2Zf(f) - A f    dp ÇlG(x,t,P)f(t)dt 1=0,
Ä-°° I 2m J(Cr)     Jo )

uniformly on (0, 1).
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34. The second part of the statement (IV) follows immediately from

Theorem 4 since the integro-differential problem (it) satisfies the conditions

(A), (B), (C) and the Green's function T(x, t, p) of this problem coincides

with the resolvent kernel $t(x, t, p).

In order to prove the statements (I), (II) and the first part of (IV) let

Po' be any pole of G'(x, t, p) outside \p \ =R¡. If R¡ is sufficiently large, then

to each p0' there corresponds one and only one pole p0" of (-kick) which is

within the circle (c) of radius S around p0' and vice versa. Let G'(x, t, p)

be the Green's function of (**■). Take the integrals

/e(D, /.(GO, J.(G)

which have been used already in § 26. The principal part of G'(x, t, p)

corresponding to the pole p =p0' is

Uo(x)V0(t)/(p - po') ;   f U0(x)Vo(x)dx = 1,
Jo

where UQ(x), V0(x) are respectively the fundamental solutions of the problem

(-*■■*•) and of the adjoint problem (**') for p =p0' (D, 15). Hence

JC(G') m  1.

On the other hand, the same argument being applied to T(x, t, p)s®(x, t, p)

shows
Jc(T) = tr

where a denotes the total number of pairs ur, v, in (16) which correspond to the

characteristic values of (2) within (c). We have, however,

o - 1 = /c(r - G') = JC(T -G)+ JC(G - G') = 0(l/r),

where r is the shortest distance from the origin to the contour of (c) (§ 26).

Hence <r = l, provided R¿ is sufficiently large. Thus the statements (I), (II),

(IV) are proved.

The statement (III) follows immediately from Theorem 6; we observe that

in the present case

i = 1, ai(x) = a(x) ; a'i(x) = 0 ;

the functions ©„.-, ©6< in (23) reduce to constants. Finally, the expressions

— [    dp f G'(x,t,p)f(t)dt and SN(f)
2mJ(CR)     Jo

may differ but by a finite sum of terms of the form

± «v(1) (x) f f(t)vP (t)dt
Jo
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for which either \pl \ >R or \v \ >N, and whose number does not exceed the

number of the characteristic values (15) within \p \ =R¡. It is readily seen

that each of these terms —»0 as R—*<», uniformly on (0, 1).

35. Theorem 9.  Under the conditions of Theorem 8 the resolvent kernel

$(x, £, p) of (2) admits of an expansion (p is not a characteristic value)

00

(24) ®(x,S,p) =   E ®>(x,S,p)
r—l

where ®,(x, £, p) denotes the principal part of $(x, £, p) corresponding to the

pole p„. Accordingly, for the kernel K(x, £) itself we have

(25) K(x,0 = -   J! ®'(x,H,0),
v-l

the series of the left-hand member of (24) and (25) being uniformly convergent

in (x, £) o» every closed part of the square (©), which does not contain any of

the points (0, 1), (1, 0) and has no points in common with the line x = £.

The solution of the non-homogeneous integral equation

(26) u(x) = f(x) + p f K(x,Ç)u(Ç)d$
Jo

admits of the expansion

(27) u(x) = f(x) - p ¿   f Ä,(*,E,p)/(Öd6
v—l    Jo

which is uniformly convergent on (0, 1) for any integrable f(x).

An easy application of the Cauchy fundamental theorem shows

$(*,£,p) -G(x,£,p) -   E $,(x,£,p) 4-   EG'(*»f.p)
(28) {Cr) {Cr)

J{C

T(x,i,t) -G(x,£,r)
—dt

'{Cr) f — P

where G,(x, £, p) denotes the principal part of G(x, £, p) corresponding to

the pole pi'. Since on (Cr)

r(x,{,f) -G(x,£,f) =0(l/f)

(Theorem 3) the right-hand member of (28)—>0 as 22—»», uniformly on

(0, 1). It is known from the general theory of the Green's function (D, 27)

and may be proved directly in the present case that

G(x,£,p) =   EGp(*,£,p),
(»)
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the series of the right-hand member being uniformly convergent on any

region of the type mentioned in the statement of Theorem 9. Hence the

same is true of the expansion (24). Expansion (25) follows from (24), for

p = 0, since K(x, £)=-$(*, £, 0).

Now, let f(x) be any integrable function.  For any fixed p which is not a

characteristic value of (26), the solution of (26) is given by the formula

(29)    u(x) = f(x) - p f f (*,£,p)/(£)d£ =/(*) - pT,   f *.(x,i,p)f(&di,
Jo »—i   Jo

the term by term integration being permissible by virtue of a known theorem

of Lebesgue. To prove the uniform convergence of (29), take the difference

u(x) - f(x) + pY,    C ic,(z,£,p)/(£)d£
(Cr) Jo

1    c       df      r1

2« J(Cr) f — p Jo

" -T-- Í    -^— fW.É.r) -G(x,U)\f(QdH
2m J(Cr) f — p Jo

if     dr    rl
- — I    —— I G(*,£,r)/(£)d£.

2« J(CB) f — p Jo

On account of Theorem 3 and Lemma 1 each term of the right side here is of

the form

f       f¿r
J(Cr) f - P

and hence —»0, as R-><*>, uniformly on (0,1).

It should be noted that, in the case where all the poles of St(x, £, p) are

simple, formulas (24), (25), (27) reduce to well known expansions

-   «,(*K(Ö
Ä(*,i,p) =   E-'

r-l       P — Pr

K(x,& =  ¿-«K*>KÖ.
v-1   P»

«(*) = /(*) - p E ̂ ^-)-, /, =   r/(£K(£)d£,
»-i   P — P» Jo

which, however, never before have been proved under our general conditions

concerning the kernel K(x, £).
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We may leave to the reader the computation of the approximate expres-

sions for the fundamental functions u,(x), vy(x) for v large, as well as the

applications of the results above to the integral equation (1).

36. To illustrate our general theory take the integral equation

r1 (mx2£2 + 2 if £ > x,
(30)        u(x) = p      K(x,&u(&dt ; K(x,& = \      J, , '

Jo (wx2£2 4- 1 if { < x,

which is analogous to that considered by Langer (L, pp. 638-639). An easy

computation gives

4mx£2                                 2 + m 8mx
<S(x,£) = --; a - - 1 ; b - 2--; «(x) =

2 — m 2 — m 2 — m

Hence our theory can be applied to (30) unless m= ±2.

A direct computation shows that the characteristic values of (30) are

the roots (^0) of the transcendental equation

e"{ (6 - 3wi)p4 4- 4wp3 4- 24w(p - l)2} = p4(6m + 12) + 4w(2p3 - 3p2 - 6p + 6)

and hence they are asymptotic to the roots of the equation

24-OT b
e" = 2- = - —       (m ^ ± 2)

2 — m a

which agrees with Theorem 8.

The situation changes substantially if m = + 2. In this case the character-

istic values of (30) are determined by the equations

e" =  p   —    if m = 2,

e" = —-if m = - 2.
P

The asymptotic formula for p„ involves logarithmic terms which are absent

in the case where m= ±2. It should be noted that Langer's method also

fails when m= ±2, since the asymptotic formula for p, as given by Langer

does not contain logarithmic terms either.*

* It was not until recently that we noticed that a problem in some respects more general than

that of Lichtenstein was treated by Mrs. Anna Pell-Wheeler in 1910. Cf. Applications of biortho-

gonal systems of functions to the theory of integral equations, these Transactions, vol. 12 (1911), pp.

165-180 (p. 176, Ex. 4). However, Mrs. Pell-Wheeler's problem does not include our problem (ir)

as a special case.
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