
THE SECOND DERIVATIVE OF A POLYGENIC
FUNCTION*

BY

EDWARD KASNER

In previous papersf I have studied the first derivatives of a polygenic

function, especially from the geometric aspect. A polygenic function w

(in opposition to an ordinary or monogenic function) of the complex variable

z = x+iy, is any function of the form

(1) w = 4>(x,y) + iy(x,y),

where the components <p and yp are arbitrary functions (except for suitable

continuity assumptions) of the real variables x, y, the Cauchy-Riemann

conditions not being assumed.

The first derivative, which we denote by y = a+iß,

y = dw/dz = lim As->oAw/Az

of course then depends not only on the point z but also on the direction of

approach 8, that is, on the slope m = y' = dy/dx. The main theorem is that,

plotted in the a, ß plane, the locus of points 7, corresponding to a given point

z, is a circle (the derivative circlet), or more accurately a suitably parametrized

circle, which I have termed a clock (the derivative clock).

Various expressions for y are convenient, and are here given for reference :

dw       (yx + iyx) + m(yv + tyy)       wx + mwy

(2) y = — =-——:-• = ———:— ;
dz 1 + m» 1 + im

(2") y = ©(») + e-2i"$(w),

* Presented to the Society, April 6, 1928; received by the editors in February, 1928. I wish to

express appreciation for the assistance of Miss Lulu Hofmann in writing this paper, especially in

the discussion of the higher algebraic loci involved.

t A newlheory of polygenic functions, Science, vol. 66 (1927), pp. 581-582; General theory of poly-

genic or non-monogenic functions. The derivative congruence of circles, Proceedings of the National

Academy of Sciences, vol. 13 (1928), pp. 75-82; also L. Hofmann and E. Kasner, Homographie circles

or clocks and E. Kasner, Appendix on polygenic functions, Bulletin of the American Mathematical So-

ciety, vol. 34 (1928), pp. 495-503; E. Kasner, Note on the derivative circular congruence of a polygenic

function, the same Bulletin, vol. 34, pp. 561-565, and two papers to appear in the Proceedings of the

Bologna Congress.

t See a forthcoming paper by E. R. Hedrick, On derivatives of non-analytic functions, Proceedings

of the National Academy of Sciences, where the derivative circle is termed the Kasner circle and new

properties of it are studied.
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where the linear operators

3)    =    i(DX   -    iDy) ,     $    =   \(DX   +   iDy)

are introduced, the former defining mean differentiation, the latter the

phase operator, so that $)(w) gives the center, and ty(w) the phase, of the

derivative clock.

So far the real functions $ and \f/ are assumed to be continuous and to

have continuous partial derivatives. If we also assume <p and ^ to be analytic

(that is, real power series in two variables *, y) we may consider the poly-

genic function w to be a power series (with complex coefficients) in the two

variables (minimal coordinates)

z = x + iy   and   I = x — iy;

and then it is easily seen that

3)(w) = dw/dz = wz,   ty(w) = dw/dz = wt,

so that we have the simple formula*

(2'") y = wz + e-™wz.

The present paper is devoted chiefly to the study of the second derivative

dhv/dz2 of a polygenic function, and the appropriate geometry; higher deriv-

atives and polygenic functions of more than one complex variable are con-

sidered only briefly in the final section. The formulas and the results are

considerably more complicated. The general second derivative depends on the

curvature as well as the direction of approach. Differentiating (2) with regard

to z, that is, forming the ratio of the total differentials d(dw/dz) and dz, we

obtain

d2w     (1 + iy')(wxx + 2wxvy' + wyvy'2 + wvy") — (wx + wvy')iy"

~dz2~ (1 + iy')3

After simplifying this expression, and introducing for dhu/dz2 the complex

notation <r = ¡i+ii}, we have

Wxx + 2wxvy' + WyVy'2      wv — iwx

(3)     «r - f + «,-'y +     \   ,      y" =- ü(x,y,y',y").
(1 + iy')2 (1 + iy'Y

The second derivative of a polygenic function w of z is thus a function

of the point z at which it is formed and of the differential element of the

second order (y', y") along which this point is approached.   Corresponding

* See G. Calugaréono, Sur les fonctions polygènes d'une variable complexe, Comptes Rendus, vol.

■186 (1928), pp. 930-932. N. Nicolesco, Fonctions complexes dans le plan et l'espace, Paris thesis, 1928.

No geometry is given in these papers, and derivatives of higher order are considered only for recti-

linear approach, while in the present paper the path of approach is allowed to be an arbitrary curve.
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to the oo2 real elements of the second order existing at every point, d2w/dzz

assumes oo2 values for every value of z.* If we map these values of d2w/dz2 in

the complex plane a = £+¿77, the mapping points will therefore fill out a region

of this plane. It is not obvious, but will be proved as a special theorem later,

that this region covers the entire plane, so that every point in the o--plane

corresponds to at least one real curvature element (y', y") at the given

point z.

The general character of the correspondence between the elements

(y', y") and the points (£, 77) will be the same for all general points z. But

of course as z varies, different points (£, 77) will correspond to the same

values of (y', y").

We have seen that the second derivative of a polygenic function depends

in general on y" as well as on y'. If it is to be independent of y", that is,

if in (3) ß is not to contain y", the condition

wv — iwx = 0

has to be fulfilled. But this one complex equation splits up into the two

Cauchy-Riemann equations, so that (the converse being evident) the second

derivative of a polygenic function is independent of y" when and only when the

function is monogenic, which of course makes d2w/dz2 independent of y' also.f

Summary of results

In the following we shall first discuss the 00 1 values assumed by dhu/dz2

at a definite point z as this point is successively approached along the various

elements of the same constant curvature k. The point mapping these values

in the <r-plane describes an irrational curve of the eighth order as the slope

of the considered element at z is varied continuously. For the special curva-

ture k = 0, however, that is, for the approach of z along the straight line

elements, this curve of the eighth order becomes a limaçon described twice.

After this, the corresponding problem for the elements at z tangent to a

common fixed slope is discussed. The result is very simple. The locus of

points of the a-plane mapping the various values assumed by dhv/dz2 as z

is approached along all the elements with the same slope, is a straight line;

and this line is described (from a suitable initial point) at a rate proportional

to the rate at which the curvature of the considered elements varies.

* We wish to stress the point that we consider only real elements of the second order just as in

discussing the first derivative we considered only real elements of the first order.

t Similarly if we continue to higher derivatives of w, d"w/dzn will be a function of *, y, y',

y"> " " ' 1 y(n)) and wül be independent of y(n) when and only when w is monogenic. So that when

¿"w/dz" is independent of y(n) it is also independent of y', y ", • ■ • ,y(n-1).
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We then proceed to study the envelope of the ooJ lines corresponding in

the just described manner to the various slopes at z. This envelope proves to

be a cardioid.

Finally we investigate in two different ways the correspondence es-

tablished by d2w/dz2 between the elements at z and the points of the o--plane.

It is found to be one-to-one in that region of the o--plane formed by the points

inside of the just defined cardioid, while to a point outside the cardioid cor-

respond three curvature elements (y', y").

The different representations of d2w/dz2

In the following we shall discuss exclusively the properties of dhv/dz2

at a fixed point (x, y) of the z-plane so that wx, wy, wxx, wXy,wyy are to be

considered as certain complex constants and d2w/dz2 reduces to a function of

y' and y" only.

Since d2w/dz2=a is a function of the differential element of the second

order along which the point z is approached, we can represent it in different

ways by choosing different quantities to determine the element of approach.

Formula (3) gives a as a function of y' and y",

o- = Üi(y',y").

By substituting into Oi,
gU   _    g-íí

y" = (1 + y'2Yi2-K, y' = tan0 = - i-,
ew + e_,s

we obtain a representation of a as a function of the curvature k and the

direction angle 0 of the element of approach,

O"   =    Í[W»X    —    2ÍWXy   —    Wyy   +   2(WXX   +   Wyy)e~2Í>

+ (wxx + 2iwXy — Wyy)e~ia] — i(wx + iWy)e-sa-K.

The coefficients in this expression simplify, if instead of x and y we use

z = x+iy and z = x—iy as independent variables.  Then

WX   —    iWy   =    2WZ, WX   +   iWy   =    2WZ,        WXX   —    2ÍWXy   —   Wyy   =   40/„

and so forth, so that finally

a = w„ + 2wzze-2ie + wzle-iiS - 2iWie~iie-K = ü2(6,k).

A differential element of the second order at the point (x, y) is also de-

termined when the center of its circle of curvature is given. If X and Y denote

the coordinates of this center relative to the point (x, y), the well known

transformation formulas are
X X2 + Y2

y>  =-,        y"  =-
Y Y3
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The substitution of these expressions for y' and y" into Qi furnishes

WXXY2   -   2WXyXY +   WyyX2  +   (wy  ~   iW,)(Y +   ÍX)
a =

(Y - iX)2
= n3(x,Y).

By using as before z and z as independent variables and correspondingly

Z=X+iY and Z = X-iY, we obtain

wizZ2 - 2wzlZZ + wzzZ2 + 2w¡Z _
ff =-—- a4(z,z).

The main importance of the two last representations of a lies in the fact

that they convert the element-point correspondence between the elements at

the point z and the points of the o--plane expressed by fli and ^ into a point

correspondence between the Z-plane and the o--plane.

For the sake of easier reference, we put the four different representations

of <r that we have developed together:

w„ + 2w,yy' + wyyy'2     (wv - iw,)y"
ff =-= Oi(y , y ),

(l + ¿/)2 (l + ¿y03

ff = w„ + 2w„e-2ie + wzie-iia - 2iwze~m-K m ü2(8,k),

wx,Y2 - 2wxyXY -f WyyX2 + (thy - íw,)(Y + iX)(A)

(Y - iX)2

WiiZ2 - 2WUZZ + wzzZ2 + 2wiZ

= Q,(X,Y),

= n4(z,z).
z2

THE RECTILINEAR SECOND DERIVATIVE

As the fixed point z is approached along the different elements belonging

to a certain definite slope, dhv/dz2 assumes ool values. Among these we dis-

tinguish the value corresponding to the approach of z along the element of

curvature k = 0, that is, along the straight line element of that particular

slope, and term it the rectilinear second derivative of w belonging to that slope.

We abbreviate it by o-0, so that

wxx + 2wxvy' + wvyy'2

(1 + iy')2

= w„ + 2wzle~2V> + wue-™ m Q2(8,0).

The rectilinear second derivative is a function of the slope y ' or of the

direction angle Ô. As y' varies from 0 to oo, that is, as 0 varies from 0 to tt,

it assumes ool values, and the point o-0 mapping these values in the complex
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plané o- describes a curve.   This curve, which we call L, is most easily dis-

cussed by means of the second representation of <r0:

o-o = wzz + wlte-ii$ + 2wzze-2ie,

in which now 0 is a variable going from 0 to ir.

A point o"o of L is determined as the sum of the three vectors w«, wzze~iie

and 2wz¡e~2ií. As 0 varies, w„ remains fixed and the end points of Wue-*™ and

2wzze~2ii separately describe circles of radii \wzz\ and 2 \wz¡\ with the angular

velocities —40 and —20. Since the vector 2wzle~2ie is applied at the end

point of the vector wzz+wzze~iie and rotates with one half the angular

velocity of w^e-4*9, the lines Si and S2 carrying any two vectors 2w«e-2<91

and 2wzze~2ie' applied as described at the points o-i = wzz+wZEe~*<e^ and

o2 — wZE+w¡ze~iiBt must intersect at a fixed point P of the circle

o- = wzz+w¡ze~iie; for these lines form the angle — 2(02 —0i) and this is equal

to one half of the central angle — 4(02 — 0i) over the points <ri and <r2 of the

circle which lie on the lines Si and S2 respectively according to the construc-

tion. It follows from this discussion that the curve L is the locus of the points

lying on the lines through the point P of the circle a = w„+wae~ti' at the

distance 2 \wz¡ | in either direction from the second point of intersection of

these lines with the circle (in either direction since 0 goes from 0 to ir and

to the angles 0 and 0+7r/2 correspond the points o-0 = wzz+wize~ue ± 2w>«e_2i9).

This however is the ordinary definition of a limaçon with the basal circle

0 = wzz+wzze~iie, the pole P, and the determining length 2 \wzi \*

Our discussion not only characterises the curve L as a whole but also

indicates its parametrization with regard to 0. Let us distinguish on the

limaçon the point Q: o,o = wzz+wzz+2wZz corresponding to 0 = 0 as an initial

point. Then given the limaçon, the pole P and the point Q, the point cor-

responding to an arbitrary value of 0 is found by turning the fine PQ about P

through the angle — 20, as that point of the limaçon into which this continuous

motion carries the point of intersection of the rotating line with the limaçon.

The values of the rectilinear second derivative of a polygenic function w

belonging to the different slopes at the point z are represented in the complex

plane a of dhio/dz2 by the points of a limaçon L. When the direction angle of

the slope at z varies, the corresponding point on. the limaçon moves with twice the

angular velocity and in the opposite direction, the angular velocity being measured

from the pole of the limaçon as center.

* See Gino Loria, Spezielle algebraische und transzendente ebene Kurven, Leipzig, Teubner, 1902,

p. 136.
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Special types of polygenic function

The limaçon L specializes in certain noteworthy simple cases.

(a) When wzz = 0, so that

w = fi(z)+f2(z),

that is, what I have termed a harmonic polygenic function,* then L be-

comes a clock of rate — 4.f As 0 varies from 0 to w, the corresponding

point o-0 describes this clock twice, assuming equal values for two angles 8

differing by 7r/2.

(b) When 1*^ = 0,
w = /i(z) + zf2(z),

and L becomes a clock of rate —2.

(c) When wzz - 0,
w = fi(z) + zf2(z).

Then L remains a limaçon but is so far specialised in position as to have

the center of its basal circle at the origin.

(d) When wzz = 0 and w-zz = 0,

w = f(z) + Az,
and L reduces to a point.

(e) When wiz = 0 and w„ = 0,

w = A + Bz -f- Cz + Dzz,

and L becomes a clock of rate — 2 with its center at the origin.

(f) When w„ = 0 and wzz = 0,

w = f(z) + Az

and L becomes a clock of rate —4 with center at the origin.

(g) When wzz = 0, wzz = 0 and wzz = 0, w = A -f Bz -f Dz, and L reduces

to the point at the origin.

(h) When \wzi | = \wiz\, that is when the determining length 2 \wzi \ of

the limaçon is equal to the diameter 2 \wz¡ \ of its basal circle, the limaçon L

specialises into a cardioid.f

The converses of these eight theorems are also true, so that the geometric

properties stated are completely characteristic of these types of polygenic

function.

* A polygenic function w=F(z) =<¡>{z, y)-\-iv(%, y) is called harmonic when <j> and y separately

fulfill the Laplace equation. See Proceedings of the National Academy of Sciences, loc. cit., p. 81. The

mean derivative of such a polygenic function is a monogenic function.

t The circle o-0 = wIZ-\-wzze~Aie is parametrized with regard to 6 in such a manner that as 6 varies

the point o-0 on the circle moves with four times the angular velocity and in the opposite sense.

X A cardioid is denned as a limaçon for which the determining length is equal to the diameter of

the basal circle. See Loria, loc. cit., p. 142.
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The curvilinear second derivative corresponding to the elements

of a fixed curvature

After having studied the curve described by o-0,

<ro = 0,(0,0),

the points of which map the values of the rectilinear second derivative

corresponding to the different slopes at the point z, let us now study the curve

described by the point

(4) <r„ = wzz + 2wzze~2ie + wzze-iie - 2iwze~3U-K

as 0 varies and k remains constant. The point o\ maps the values of dhv/dz2

corresponding to the different elements of the fixed curvature k at z. If we

call the value assumed by dhv/dz2 as the point z is approached along an

element of a certain slope and a certain curvature k^O the curvilinear second

derivative of w corresponding to that slope and curvature, then o-, maps the

values of the curvilinear second derivative corresponding to the various

elements of the curvature k.

Obviously
o-, = ao — 2iwzKe~3i>.

The term added to a0 represents a point describing the circle of radius 2k \wt \

about the origin at the rate —3 as 0 varies. The points o\ can thus be de-

termined as the vectorial sum of a point describing the limaçon L at the

rate — 2 in the sense explained above, and a point describing a certain circle

about the origin at the rate —3.

The resulting curve is not rational. This is seen by substituting into

o- = fli(y',y")

y" = (1 + y'2)3'2K.

Then in

<r, = fc + ir>, = Qi(y', [1 + y'2]*'2-K),

£« and r\K are algebraic but not rational functions of y', since the irrational

expression (l+y'2)1/2 enters essentially and cannot be eliminated.

To determine the order of the curve described by aK it is necessary to

note that if this is to be a complete closed curve, we must let 0 vary from 0

to 2ir on account of the odd exponent —3 of the last term in (4). The reason

is obvious since as 0 goes from 0 to ir only, the element (0, a) at z is carried

by a continuous rotation into the element (ir, k) and these two elements are

not the same but lie on opposite sides of their tangent. Generally this

variation of 0 would not furnish all elements of the curvature k, but for every
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slope only that one element into which the above described rotation carries

(0,K).t

Equation (4) can be written in the form

ff, - wzz = wae-™^-" + A)(e-a + B),

where A and B are determined by wiz, 2wzz and — 2íwzk. This expression

has an algebraic limiting case

ff* = e-*».

Here the point <r* describes the unit circle about the origin four times as 8

goes from 0 to 2ir, so that the curve as a whole must be counted as a curve

of the eighth order. The curve (4) therefore will be at least of order eight. That

it is at most of order eight is shown as follows. Replace, in (4), e~i$ by

f = ft+¿ft, and assume for a moment that ft and ft are independent variables

instead of making them fulfill the relation ft2+ft2 = l which makes e~*s = ft

Then a,=^,+ri, assumes oo2 values as ft and ft vary and we have a point

correspondence between the ¿-plane and the ovplane which is superposed

over the <r-plane. Splitting up into real and imaginary parts, we see that £,

and a, are integral functions of the fourth degree of ft and ft, so that to every

line of the ovplane corresponds a certain curve of the fourth degree in the

ftplane. Now the curve described by <r« according to (4), is equal to that

curve of the ovplane into which the transformation just described carries the

circle ft2+ft2 = 1 of the ftplane. This circle is cut by one of the curves of the

fourth order corresponding to the lines of the ovplane in at most eight points

that vary with the chosen curve. Therefore, in virtue of the correspondence,

the curve described by a, is intersected by a line of its plane in at most eight

points. Thus in view of the fact that the order of this curve was above

shown to be at least eight, it is now proved to be exactly eight.

The values of the curvilinear second derivative of a polygenic function w

corresponding to the elements of a fixed curvature k at the point z are mapped

in the complex plane a of d'hv/dz2 by the points of an irrational curve of the eighth

orderX   The points of this curve are determined as the vectorial sum of a Point

t The variation of 0 from 0 to x only is sufficient to furnish all elements of the curvature x only

in the case <c=0.

X The seeming contradiction that for a general value of the curvature k, a, describes a curve

of the eighth order while for the special value <c = 0, o<¡ describes a limaçon, i.e. a curve of the fourth

order, is solved by the remark that the limaçon was obtained by varying 0 from Oto ir only. If also in

the case «=0 we let 9 go from 0 to 2jt, <ro will describe the limaçon twice so that the entire curve will

here also be a curve of the eighth order.
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of the limaçon L and a point of a certain circle about the origin, the point on the

limaçon moving at the rate —2 in the sense explained above as the slope at z

varies, and the point on the circle at the rate —3.

The curvilinear second derivative corresponding to the elements

with a fixed common tangent

So far we have examined the points mapping the values assumed by

dhv/dz2 for the approach of the point z along the elements of a certain fixed

curvature. We shall now investigate the case in which z is approached

successively along the elements of a certain fixed slope, that is, along the

elements with a common tangent. That means that we must study the curve

described by the point

(5) <r« = (w„ + 2wzie-2ie + wui-iie) - 2iw¡e~3ie-K,

as k varies from — oo to +<x> and 0 remains fixed; or, using the representa-

tion of a by means of ßi(y', y") and abbreviating y' by m, the curve described

by the point

wxx + 2wxym + WyVm2     wy — iwx
(6) Cm =-TTT^Xi-+ 77T^T3 'y" '

(1+im)2 (1 + im)3

as y" varies from — oo to +oo and w = tan 0 remains fixed.

Since the expression on the right of (5) is an integral linear function of k,

it follows that as k varies from — oo to + <x>, a$ describes a straight line and

describes this line at a rate proportional to the rate at which k varies. We

abbreviate this line by Se or Sm(m = tan 0).f

As (5) shows, Si is parallel to the line carrying the vector —2iw,e~3i>.

If therefore we construct two lines Se, and Se, which map thé values of

dhv/dz2 corresponding once to the elements with the common tangent of

slope 0i, once to the elements with the common tangent of slope 02, Se1 and

Se, form the angle — 3(02—0i), that is —3 times the angle (02 — 0i) formed

by the determining slopes at the point z. From the fact that when 0 varies

the direction angle of Se varies by the triple amount and in the opposite sense,

it follows that there are four real slopes 0 at z which are parallel to the cor-

responding lines Se. The proof of this mainly comes down to solving the

equation

tan(a + 0) = - tan(/3 + 30),

where a and ß are constant angles, for tan 0.  Obviously this equation is of

t As k varies it naturally also assumes the value <c=y" = 0. Thus the line L», goes through that

point of the limaçon L which maps the value of the rectilinear derivative belonging to the slope m.
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the fourth degree in tan 8; a short geometric consideration shows that the four

roots are real.

The values of the curvilinear second derivative of a polygenic function w

corresponding to the elements with a fixed common tangent of slope 8 at the point z,

are mapped in the complex plane cr of d2w/dz2 by the points of a straight line

S> or Sm. As the curvature of the elements at z varies, the mapping point de-

scribes the line Se at a rate proportional to the rate of variation of the curvature

itself. As the direction angle 8 of the slope at z varies, the direction angle of the

corresponding line Se varies by the triple quantity and in the opposite sense.

There are four real slopes al z which are parallel to the corresponding lines Se

in the a-plane.

The envelope of the lines Le

After discussing the individual lines Ls we proceed to consider them as a

totality and to study the curve which they envelop as 8 goes continuously

from 0 to ir. This envelope will be called E. To determine the character

of E it is necessary to obtain the real equation of the lines Le. For this purpose

we use the representation of a by means of (6) and abbreviate it by

(6') ffm = ffm£m + ir¡m = a(m) + b(m)y".

Let us split a and b into their real and imaginary parts a = ai+ia2 and

b = bi+ib2. According to (6'), Sm has the slope b2/h and goes through the

point (ai, a2)(ai+ia2 = Q2(8, 0), 0 = arctan m); it therefore has the equation

(7?m — a2)/ (£m — ai) = b2/ bi.

We write this equation in the form

Lm ■ p% + qri + r = 0 ;

a simple calculation furnishes the following values for p, q and r :f

P = Am3 - 3Bm2 - 3Am + B,

(7) q = Bm3 + 3Am2 - 3Bm - A,

r = m[Bg(m) + Af(m)] + Ag(m) - Bf(m),
where

A =<t>v + y„ B= -<p, + wv,

f(m) = yxx + 2m<t>,y + m2Vyy, g(m) = yxx + 2myxy + mhpyy.

By (7) the three homogeneous line coordinates of Sm are given as functions

of the parameter m. As A and B are constants (only depending on the point z)

and/(w) andg(m) are polynomials of the second degree in m, the three homo-

geneous line coordinates p, q, r of Lm are integral rational functions of the

t For the sake of greater convenience we here and in the sequel omit the factor of proportionality

by which the homogeneous coordinates p, q, and r should be multiplied in the parametric representa-

tion (7).
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third degree in the parameter m. The curve E was defined as the envelope of

the lines Lm. Therefore (7), as the parametric representation of these lines,

is the parametric representation of E as locus of its tangents. It follows from

the rationality and the degree three of p, q, and r with regard to m that the

envelope E is a rational curve of class three (the genus of a curve is the same

whether the curve be considered as locus of its tangents or of its points).

To determine the order of E we introduce the homogeneous point co-

ordinates £m*, r¡* and t for the points of E,

£m  ft = £m, r¡m /t=r¡m,

and derive the parametric representation of E as locus of its points from (7)

in the familiar manner. We have

(8){* = qr' - q'r, „* = rp' -r'p,t = pq' - p'q,

where the prime denotes differentiation with regard to the parameter m.

A rational curve of the third class is either of the fourth or of the third

order.f We easily find

(9) t= - 3(A2 + B2)(l +m2)2.

Since t is actually of the fourth degree, the curve E can be of a lower order

only if £*, v* and t have some polynomial in m as a common factor. According

to (9) this factor could only be m—i or m+i. A short calculation however

shows that £* and y* do not vanish for m = i or m = — i. Thus it is proved

that E is of the fourth order.

The singularities of a rational curve of the fourth order and the third

class consist in an ordinary double tangent and three ordinary cusps of which

one is real and two conjugate imaginary, f Without going into details about

the double tangent or the real cusp, we shall merely determine the position

of the imaginary cusps of E. The discussion which we give in detail later on

shows these cusps to lie at the cyclic points of the o--plane.

Under the assumption that this is proved, E is now characterised as a

rational curve of order four and class three with its imaginary cusps at the cyclic

points. This characterisation is sufficient to show that £ is a well known curve

of very special type, namely a cardioid. The proof is as follows.

There are oo8 rational curves of order four and class three.f The require-

f This follows immediately from the consideration of the well known dual curve, the rational

curve of the third order. A rational curve of the third order has either an ordinary double point or a

cusp. In the first case it is of class four, in the second of class three. Furthermore a rational curve of

the third order and fourth class has one real and two imaginary inflexion tangents, which together

with its double point make up all its singularities.

} This again follows from the fact that there are »8 dual curves of order three and class four.

For proof see Severi-Loeffler, Vorlesungen ueber Algebraische Geometrie, Leipzig, 1921, p. 161-162.
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ment that these curves shall have their imaginary cusps at the cyclic points

(or at any two definite points) represents a fourfold condition. Thus there are

oo4 rational curves of order four and class three with their imaginary cusps

at the cyclic points. We abbreviate this family of curves by (E). On the

other hand the properties characterising the curves (E) are, as is well known,

properties of the cardioids, so that the family of cardioids must be contained

among the curves (E). The cardioids themselves, however, form a four-

parameter family of curves, a general cardioid containing one parameter of

size and three of position. Then since the dimension of the family (E) is

equal to the dimension of the family of cardioids and at the same time con-

tains this family, the curves (E) must be identical with the cardioids.

Hereby it is proved that the envelope Eas a curve of (E) is a cardioid.

We now give the discussion referring to the imaginary cusps of E which

was postponed above.

Let us form the expression

(10) *{,* + Vm* + Xi,

where X is an arbitrary constant. Substituting for £,»*, 77 * and / their para-

metric expressions in m according to (8) and (7), where, however, t need not

be written out in full, we find for (10)

(10') (m - i)2[(A - iB){ -(m- i)r' + 3r] - 3\(A2 + B2)(m + i)2].

The equation obtained by putting (10) equal to zero represents a condition

on the coordinates £m*, 77 *, t; it will be fulfilled by the coordinates of only

those points of E which lie on the line

¿£ + 77 + X = 0,

that is, a certain line through the cyclic point Ii(C/r¡=i) of the o--plane.

The values of the parameter m determining these points of E are of course

obtained as the roots of (10') put equal to zero. But this equation obviously

always has the double root m=i, no matter what value X is given. That

means that all the lines through Ii cut E twice in the same fixed point,

namely the point corresponding to the parameter value m=i. Since, however,

the only point common to all the lines through Ii is h itself, it follows that E

must have this point for a double point.

The discussion for I2(^/r¡ = —i) is analogous. Since we know from the

preceding arguments that every double point of E is a cusp, it is thus proved

that E has cusps at the cyclic points of the o--plane.

Combining the results of this paragraph with those relating to the

ndividual lines Lm previously obtained, we have the following theorem:
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As the slope m at the point z varies, the corresponding line Lmin the o-plane

moves so that it envelops a cardioid E in general position. Given the cardioid

and, as an initial tangent, the line L0 corresponding to the slope m = 0 at z, the

tangent corresponding to an arbitrary value m = tan 0 of the slope m is determined

by letting the initial tangent glide along the cardioid in the negative sense till its

direction angle has grown by the quantity —30. There are four tangents to the

cardioid parallel to the determining slopes at z.

THE CORRESPONDENCE BETWEEN THE CURVATURE ELEMENTS AT Z

AND THE POINTS OF THE ff-PLANE

By means of the formula

* = W,y")
a certain correspondence is set up between the oo2 real elements (y', y") at

the point z and the points of the o--plane. Since öi is a rational function of y'

andy", it follows that to every element (y', y") corresponds one and only one

point a. The converse question, how many elements (y', y") correspond to

one point a, is answered by the following consideration.

We have in these last paragraphs grouped the oo2 real elements of the

second order at z into <x> ' groups each of which contained all the elements

tangent to the same slope. The corresponding grouping of the points a was

that according to the real tangents of the cardioid E.\ Thus a point a repre-

sents as many elements (y', y") as there are real tangents to E going through

it. And since a cardioid is a curve of the third class, this number is equal to

one for a point in the inside of E and equal to three for every other point.J

By means of the second derivative dhv/dz2 of a polygenic function w of z, a

certain rational correspondence is set up between the real elements of the second

order at a definite point z and the points a mapping the values assumed by

d2w/dz2 as z is approached along these elements. This correspondence is one-to-

one in that region of the a-plane which is formed by the points inside the cardioid

E and three-to-one in the rest of the o-plane. Thus every point a at the inside of

E maps one value and every other point a maps three values of dhv/dz2.

Since every point of the a plane maps at least one value of d2w/dz2, the

statement made at the very beginning of this paper is verified, that as

dhv/dz2 is calculated at a point z for all possible real elements (y', y") of ap-

proach, the mapping point a covers the entire o-plane.

t While discussing the lines Le we did not stress the fact that they are real, as being obvious since

we consider only real values of 0 and k.

X These tangents are distinct for a general point <r at the outside of E. For those points lying on

the double tangent of £ or on £ itself, two of them coincide; for the cusp of E and for the points of

contact of the double tangent, all three coincide.
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THE POINT CORRESPONDENCE BETWEEN THE Z- AND THE ff-PLANE

The results of the preceding paragraph can also be obtained without

taking the cardioid E into consideration. So far we have made use only of

the first two representations of a in system (A), p. 807. We now turn to

the remaining ones:

WXXY2-   2WXyXY   +   WyyX2  +   (Wy   -   iWx) (Y  +   iX)
(11) a--= Q3(X,Y),

(Y - iX)2 '     '

/ wt¡Z2 - 2w*ZZ + wz& + 2w¡Z
(HO ° =-*o*(z,z).

tie

These formulas express a point correspondence between the (X, Y)- or X

+¿F=Z-plane and the ^+¿77=o--plane, where X and Y are the center

coordinates relative to the point z of the circle of curvature of the element

(y',y")atz.

Since in (11) a is a rational function of X and Y there will be one point o-

corresponding to every real point (X, Y). We ask the converse question,

how many real points (X, Y) correspond to the same point <r. This is

identical with the question of how many values of d2w/dz2 are represented by

the same point a, since every point (X, Y) determines one element (y',y'')

which again determines one value of d'hv/dz2.

To solve our problem, we write (11) in the form

(12) (£ + ¿i7)(F - iX)2 = wxxY2 - 2wxyXY + wyyX2 + (wy - iwx)(Y + iX),

where £ and 77 are now assumed to have some definite values and X and Y

vary. Equation (12) represents a complex conic in the (X, F)-plane. There-

fore there will be as many real points (X, Y) corresponding to the fixed point

(£, 77), i.e., points (X, Y) whose coordinates fulfill equation (12), as there are

real points on the conic represented by (12). From this number, however, we

must naturally exclude such fixed real points as are common to all conies (12)

independently of £ and 77. Now the number of real points on (12) is equal to

the number of real intersection points of the two real conies obtained by

equating the real and imaginary parts of (12) separately to zero. Since the

total number of intersection points of these two conies is four, and since they

have the fixed intersection X = Y = 0 independently of (£, 77), the number of

their variable real intersection points is equal either to three or to one.

The discussion as to which points (£, 77) correspond to a complex conic

(12) with three real variable points and which to one with one real variable

point would of course lead to the cardioid E in a. We will not carry it through

but merely state the complete theorem as follows:
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By means of the second derivative dhv/dz2 of a polygenic function w of z

a certain rational correspondence is established between the points Z indicating

the centers of the curvature circles of the elements (y', y") at a fixed point z and

the points o mapping the values of dhv/dz2 as z is approached along these elements.

This correspondence is one-to-one in that region of the cr-plane formed by the

inside points of the cardioid E and three-to-one in the remainder of the a-plane,

so that to a point a in the first region corresponds one and to any other point o

correspond three points Z.

Derivatives of higher order

The »th derivative of a polygenic function is a complex quantity depend-

ing on the given point x, y and on the derivatives y', y", • • • , y(n) of the

curve of approach. If the highest derivative y(n) is to be absent it turns out

that all the other derivatives are absent and the function is necessarily mono-

genic.

The general form of expression for the third derivative of any polygenic

function is found to be

d*w/dz* = ßi + ß2y" + ß3y"2 + ß4y'",

where the coefficients involve x, y, y'.   Many geometric theorems may be

deduced from this. We mention only the simplest, namely that the locus cor-

responding to fixed values y', y", and variable y'" is a straight line.

The fourth derivative is

d*w/dz*= (Bi + B2y" + B3y"2 + B4y"3) + (B6 + B<,y")y'" + B3y"",

which is seen to be linear in the two highest derivatives y'", y"". Analogous

results are found for all higher derivatives but we shall not take up the de-

tailed theory here.

Polygenic functions of two or more independent complex variables will

be studied in another paper. If w is a polygenic function of Zi =Xi+iyi and

Z2=*2+iy2, the two partial derivatives of first order P = dw/dzi and

Q = dw/dz2 give rise to a pair of circles or clocks (for any given pair of points

zi and Z2). But on account of the essentially new feature dhv/dzi dz2 9a d2w/dz2dzi

(equality holding in fact only when w is an analytic function), there are

four distinct partial derivatives of second order. R = d2w/dzi2, S = dhv/dzidzi,

S* = dhv/dz2di, T = dho/dz22, and the corresponding geometry is of fascinating-

ly complicated structure.
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