
THE MULTINOMIAL SOLID AND THE CHI TEST*

BY

B. H. Camp

1. Introduction

Let Pi be the relative frequency of Xi(i = l, 2, ■ ■ ■ , m) in a frequency

distribution. If the number of elements in the distribution be infinite and a

sample of size n be drawn, the probability of obtaining exactly sx elements of

size Xx, and at the same time s2 of size x2, etc., is known to be

»!
(1) P = —,-;pl*>-  ■  ■ Pm'm, Pl + p2-\-\-pm=l,

sil ■ ■ ■ sml

where the s's are integers whose sum is n. P is a function of m — 1 inde-

pendent variables, and is called the multinomial solid. When m = 2, it

degenerates into the general term of the point binomial, (pi+p2)n. Although

much has been known about this solid, its usefulness has not been suffi-

ciently recognized. In this paper I shall point out certain of its properties

and two applications, one to a well known theorem in sampling, and one to

the x-test. The proof of the x-test here given may be thought of as supple-

menting Pearson's original prooff in that it replaces an assumed approxi-

mation by a demonstrated approximation. It is not related to Pearson's

second prooff which is a variant of Soper's.§

2. General properties t

(a) P may be written in the form P=Pi ■ ■ ■ Pm=Pi ■ ■ ■ Pm_i; where

Pi is a function of Si only, and is a point binomial; P2 is a function of Si, s2

only, and is a point binomial if Si be fixed; etc.; P, is a function oí sx ■ ■ ■ s,-

only, and is a point binomial if Si • • • s¿_i be fixed; Pm = 1 ; thus:

* Presented to the Society, December 29, 1926-, jeceived by the editors in June, 1928.

t K. Pearson, On deviations from the probable in random sampling, Philosophical Magazine, (5),

vol. 50 (1900), pp. 157-175.
Î K. Pearson, On the general theory of multiple contingency, Biometrika, vol. 11 (1916), pp. 145-

158.
§ Soper, Frequency Arrays, Cambridge University Press, 1922, p. 15, footnote.

This proof makes other approximations which do not conveniently lend themselves to measure-

ment. I shall be particularly interested here in the degree of approximation attained in the applica-

tion of the chi test to ordinary problems.

KThe properties grouped in this section are not essentially new.
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(b) The form (a) shows that equation (1) might have been derived

by the following reasoning: Find the probability of exactly Si successes

with Pi as probability and n as the number of drawings; multiply by the prob-

ability of exactly s2 successes with p2/(l—pi) as probability and (n—Si)

as the number of drawings; multiply, etc.

Definitions, (a) Any positive integrable function of (m— 1) independent

variables may be considered an (m— 1)-way frequency solid (or surface or

curve), and may be represented in m-dimensional space.

(0) If, in an (m— l)-way solid, r variables be fixed, there is left a function

of (m — 1 — r) variables, therefore an (m— 1 — r)-way solid; this is to be called

an (m — 1— r)-way array.

Example. If m = 4, the (m — l)-way solid is a 3-way correlation solid, say

a function of *, y, and z. If one fixes x and y, thus taking r = 2, the one-way

arrays resulting are straight lines or columns in the z-direction. If, further,

one added up the frequencies in each of these columns, one would arrive at

a set of totals which might be thought of as spread over the #y-plane, thus

comprising a two-way correlation table.

(7) If one adds the frequencies in each of the (m— 1 — r)-way arrays, the

result is a function of r variables; this is an r-way total.

(c) Totals. If, in P above, the variable Si be fixed, and if the frequencies

of each of the (m — 2)-way arrays thus determined be added, the one-way

total finally determined is Px. If both the variables sx and s2 be fixed, and if

the frequencies in each of the (m — 3)-way arrays thus determined be added,

the two-way total determined is PiP2. If si, s2, ■ ■ • , sm_2 be fixed, and the

totals of the one-way arrays be found, the (m — 2)-way total that results is

P\P2  ■   •   ■ -Pm-2-

These facts follow easily from the form (a). E.g., fixing $1,

£     Z   • 5>1 •  •  •  Pm-l =  P,( 2>2)       •      (   2>m-l) = Pi-

r-4
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(d) Means of totals. The mean of the one-way total of P in the Si

direction is pin; the mean of the two-way total in SiS2-space is (Pin, p2n)\

the general mean of the whole solid is (pin, p2n, ■ ■ ■ , pm-in).

These facts follow also from the form (a) and the well known theorems

that the coordinates of the general mean of a correlation solid are the

means of its one-way totals.

3. Regression surfaces

(a) The mean of the one-way array in the sm_i direction made by fixing

*1>  S2,  •   •   ■  , Sm-2 is

Pm-l
-(n — si — s2 — ■ ■ ■ — sm-2).
1 — Pi — ■ ■ ■ — pm-2

This may be thought of as a linear function of the m — 2 variables, Si, s2,

■ • • , im-2, and thus yields the equation of the regression surface, sm-i on

(im-2,   •   ■   •   ,  Si).

Use the form of §2(a). The one-way array isPiP2 • • • Pm-i, and its total

is, by §2(c), PiP2 • • • Pm-2- So its mean is

~-~-2^Sm-\P\  -   -   '  Pm-l   =     ¿rfîm-1-Pm-l.
Pi •  ■  •  Pm-2    •„_, »„-,

The last named sum is the mean number of successes in a point binomial

distribution in which pm-i/(\— Pi— ■ ■ ■ —Pm-2) is the probability of a

success, and (n—si— ■ ■ ■ —sn-2) is the number of drawings. This is well

known to have the value given above.

(b) Every partial regression is also a linear function. (For one needs only

to fix certain of the variables of the regression surface in (a) to obtain the

partial regression surface.) It follows from (a) and (b) that, for m = 4, this

solid is an example of the all linear case I have considered elsewhere.*

Application. Let m = 3. The mean of the one-way array made by fixing

Si is the following linear function of Si: p2(n—si)/(l—pi). This fact, now

proved to be true, was chosen by Pearson as a reasonable assumption in his

proof of a fundamental theorem in sampling,f viz.: that the coefficient

of correlation between two frequencies with which two fixed values of a

variable will occur is —(Pfa/iq^))1'3.

* Camp, Mutually consistent multiple regression surfaces, Biometrika, vol. 17 (1925), p. 450.

t K. Pearson, On the probable errors of frequency constants, Biometrika, vol. 2 (1902-3), p. 274.

It has been copied, as an unproved assumption, in several texts.
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4. The Laplace approximation

It has been generally assumed, specifically by Pearson in deriving the

X-test, that the multinomial solid just considered could be approximated

when n is large, by the normal solid. I wish to examine the measure of this

approximation, and to do so I shall also derive the normal solid from the

multinomial solid in a manner similar to that used by Laplace for the

one-dimensional case.

In (1) of §1, put Si=nPi+ki, i = l, 2, • • • , m.   Then P becomes

»!
(2) Pi. i     =  -*,nPl+*l  •   •   •   h   nPm+km

(npi + ki) ! • • • (npm + km) !

where

(3) Pi + • • • + pm = 1 ; ki + ■ ■ ■ + km = 0, since Si + • • • + sm = » ; or

(4) P = n\(ri- ■   rm),    where    r¡ = pin'i+k</(npi + £<)!•

Let

(5) e = l/(np),   u = ke = k/(np),   a = kco = k2/(np).

Use Stirling's approximation, and the symbol = to mean "is approximately

equal to," and drop the subscript from r temporarily:

log r s log p"f+k _ (np _j_ k + i) i0g (np + k) + (np + k) - log (2ir)1/2

= log(pnpil+a)/(2Tr)ll2)-[np(i+o3)+^][loSnp+u-u2/2-(o3/3- ■ ■ ■]

+ np(\ + w)

= log (in"(1+"V(2jr)1/2) - log («/»)»p(i-h.)+i«

- [»¿(I +«)+*][«- "72 + o>73-] + np(\ + o>)

= A + logpnp(1+u) - log (2nwp)ll2(np)n^-^''>,

where

^ = «¿(1 + w)(l - w + ü>2/2 - o>3/2 +...)+ i(_ w -L. w2/2 _ ws/3 +•••).

So

(6) r = e^[(2«7r/>)1/2w"i'(1-K'']-1)

and the relative error thus introduced into r is known* to be 1— e~,ni,

where 0<t < l/(np(l+co)). It is now necessary to impose certain restrictions

on e, u, a, m. These will seem arbitrary to the reader, and indeed they are.

* The usual statement is x\ = (2irx)inxxe~zeBl^2x'1, where0<9<l. Hence, if y is the approximate

value, y=*!e-*'(1,I>. The relative error in x\ is (-y-r-*!)/ac! = -yA!-|-l = -e-i'<11*>+l, where

0<6/x<l/x.
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They have been chosen after considerable experimentation so as to give re-

sults as favorable as possible to the general purposes of the x-test. Doubtless

more useful conditions might be found. Certainly it would be easy to

discover better conditions if one restricted his view to special cases. For

example, the point binomial case (m = 2) is a very special one. These con-

ditions are not chosen so as to measure well the closeness of the approxi-

mation in this case. Let

(7) (a)»*-|*|è3, (b) | *|/(ftf) = I» | <0.2,

(c)  k2/(np) = a < 6,       (d) w = 20.

It follows that np(í+ü))=np+k^3, and so f<l/(»/>(l+«)) <l/3; and

therefore the maximum relative error in r, as given by (6), is

(8) ôi = 1 - e-"12 = 0.09202/(»/> + k).

Now let A =np(l-u2/2)+B, where

/l WW2 \ 0)   / COO)2 \

(9) B = ««(-+-) + — (  - 1 +-+    •     )
\3-2     4-3      5-4 /       2 \ 2        3 /

= («/6)(a - 3)(1 - cu/2) + coa(co2/20 - a>3/30 + w4/42-)

+ (co3/2)(- 1/3 + co/4 - a>2/5 + •••)•

So

(10) eA = «»"«-"''«(e" = 1 + B),

and the error thus made in eB is (B2/2)(l+B/3+B2/12+ ■ ■ ■).

We can find an upper limit to this by the use of (9) and (7) (b) and (c) :

I *l < It(- - «C1 - t)+I"'{(b - t)
_„(«_l) + „,(i.i)_„.(«_I) + ...l|

\30      8/ \42      10/ \56      12/ j\

< | (co/6)(a - 3)(1 - ûi/2) |

+ | «» | {1/6 + | co/8 | + ««/IP + | «V12 ! + •••}

< (1/30)(3)(1.1) + 0.0014 < 0.1114.

(11) Let a = u(a - 3)/6.      By (7),     |a|<0.1.

(12) B2{\ + | B |/3)/2 < {a2(l - co/2)2

+ 0.000,308 +0.000,001,96} (1 +0.0372 + 0.00104 + 0.0001 + • • -)/2

< {a2(l - w/2)2 + 0.000,155} (0.520) = 0.52a2(l - co/2)2,
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which we shall take as the maximum absolute error made in eB by the approxi-

mation of (10). We shall now increase this error slightly by cutting off from

(10) a part of B, writing B = a. The additional absolute error thus made is,

by (11) and (9), at most equal to

| «a(- m/12 + «2/20 - co730 + w4/42-)

+ («/2)(«/2 - «2/3 + «74 - «75 + «76 - • • • ) |

I«2/ a\      «V«        1\      «V     «        !\      «Va        1\

< «74 +1 « |76 + «78 +1 « |yio + • • • .

From this inequality and (12) it follows that the maximum error made in

eB by writing

(13) <* = 1 + a

is

(14) 0.52fl2(l - «/2)2 + «2/4 + | « 176 + «78 H-.

We need, however, the maximum relative error in eB.  To get this we divide

(14) by the minimum value of eB, which is the series l-0.1114+(0.1114)2/2

— (0.1114)76+ • • • =0.8945. Hence the maximum relative error in eB

as given by (13) is

(15) 02 = 0.582a2(l - w/2)2 + 0.559(«2/2 + | « |«/3 + «74 + ■ ■ ■ )

<0.582(«74)(l+|«|+«2/4) + 0.559(«2/2+|«|73 + «74+ ■ • •)

- 0.425«2+ 0.332 |«|3+ 0.176«" + < 0.02.

By (6), (10), and (13) we have now made altogether the following approxi-

mation to r:
(1   _L   a)gnp(l-«2/2)

(16) r S :-1-
(2TTpnyi2nn^^>

By (8) and (15) the relative error in r thus made is at most

P = Si + S2 + diS2

< 0.094/(np~ | k |) +0.425«2 + 0.332|«|3 + 0.176«H-,

and we shall hereafter omit the terms not printed in this series. The following

known theorem has just been used and will be used again shortly: Let

ôi be the relative error in **,/"• 1, • • ■ ,m. The relative error in the product

»i • • • xm is

IX - Z H&¿i +EH ZW* - • • • , where i ?¿ j 9¿ k, etc.
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It now follows that the maximum absolute relative error in the product

ri • • • r m of equation (4) is

m

2~2p< + m(m - l)(0.0416)2/2 + m(m - 1)(» - 2)(0.0416)s/6 H-

(18) '

= Zp< + »(« - 1)(0.000,866) + m(m - l)(m - 2)(0.000,0120).
i

More terms must be added to (18) unless condition (7)(d), thatm^20,

is satisfied, but it usually is in practice, if the other conditions of (7) are.

In equation (4) we now write n\ = nne~n(2irn)in with a maximum relative

error of 1-r1«1'^ 1/(12«), so that, finally,

(19) Pk,...km = <t>a + a1)---(l + am),

where

<t> = *oe-x,/2, to = (2xn)t1—>'»(#! • • • ¿m)-1'2, Xs - ¿W/«#i ;
i

and the maximum relative error in P is numerically less than

m

7 =   Spi- + »(» - 1)(0.000,866)
(20) i

+ m(m - l)(m - 2)(0.000,012) + 1/(12«).

Up to this point we have derived in (19) an approximation to the Ordi-

nate of the point binomial solid at the point (kx, ■ ■ ■ , km-i). When m = 2

this reduces to Laplace's well known form for the point binomial. What

we really seek however is an approximation to the sum of such ordinates.

We shall accordingly find the sum of all Pkl...km's for all values of the k's

numerically less than a prescribed fixed set. This prescribed set we shall

now call (ki, ■ • ■ , km), using (k{, ■ ■ • , £„') for the sets of smaller numbers.

It is necessary to explain in more detail precisely what ordinates, and parts

of ordinates, our sum is to include. The case of the point binomial shall

serve as our model. Putting m = 2 for a moment we have

(Pl + Pi)" = Pf  +-H nCtpl'pt* +-h p2"   =  «0 4-+ U, -\-h Un.

Let us think of a histogram in which the base of each rectangle is unity and

the altitude one of the «'s. If it happens that the mean t, t=p2n, is the coordi-

nate of the middle or one end of one of these bases, then when we add a

positive number k so that we come to the middle of a base on the right of

the mean, it will also happen that when we subtract k we shall arrive at the

middle of a base on the left.   Then if we add all the ordinates at these two
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end points and at the intermediate points we shall have the same result

as if we added the corresponding rectangles of the histogram, i.e., we need

to add those rectangles which lie in the interval (t — k — l/2, t+k + 1/2).

But, if the mean is not so situated, then when we add k so as to arrive at the

middle of a base on the right it will happen that when we subtract k we

shall not arrive at the middle of a base on the left. The sum desired in this

case is defined to be the total area of those rectangles or parts of rectangles

included in the same interval as before. Now, in our general case when m ¿¿ 2

each base of unit length is replaced by a unit cube of m— 1 dimensions, and

the sum desired is the sum of volumes of parallelepipeds found by multi-

plying the volume of each of these cubes by the length of the ordinate P

supposed erected at the middle point of the cube. In case />i»i, p2n2, etc.,

are integers, as happens in our most important application, then whole

parallelepipeds only are included in our sum. If not, partial parallelepipeds

may be included; the summation in any event shall extend over the intervals

(pin - k - \, p{n+ k + \)       (i = 1, • • ■ , m - 1).

We now note from (11) that, if kit i^m — 1, is replaced by — ki, aki becomes

—aki, but <(> is unchanged. To obtain then the approximation corresponding

to (19) for any of the points whose coordinates, referred to the general mean

of the solid, are (±kly • ■ ■ , + km-i), we have only to change the signs

of certain of the a*/s, i^m—l, and then obtain akm from the formula

a*„ =-1-3 ),  km = - (¿i + • • • + km-i) ;
6npm \ npm        /

but we must be careful to insist here that both np{ and kt shall be integers,

for by (2) np{+ki was an integer and so now nPi — k{ would have to be. In

case these numbers are not integers we shall still assume that the formal

approximation holds for those ordinates which are at points having integral

coordinates and lying in unit cubes contiguous to the one enclosing the

point (±ki, ■ ■ ■ , ±km-i); for if n is fairly large the relative errors involved

at two such adjacent ordinates are almost exactly the same.

In forming our sum, we begin by adding the P's at all the 2 m~l vertices

of the outer parallelepiped, i.e., at the points (±ki, ■ ■ ■ , ±km-i), and

denote this sum by ?*,.. .*„. The coefficient of <t> in (19) is

(21)      1 +  Zg¿ +Z«tö; +2~2,aiaia™ + • • • + (ai • ■ • O, i 7e j 7e k, etc.

When we form our sum for all the vertices mentioned, certain of the terms

that appear like those of (21) will cancel in pairs. To prove this, we note

first that,  since km=—(ki+ ■ • • +£m_i), if we change all the signs of
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ki, k2, ■ • • , ¿m_i, we shall change the sign only of km, and hence the sign

only of akm; but that, if we change some only of the signs of ki, k2, ■ ■ ■ ,

km-i, we may change the numerical value of km and hence of Okm. It follows

that by pairing the vertices properly the terms of the type 2~la< wül vanish,

also, if m is odd, terms of the type* (ai • • • am). To see that this last group

vanishes, we note that, if (ki, ■ ■ ■ , ¿m-i) is a specified vertex, these k's

being positive or negative, there exists also a vertex (—ki, ■ ■ ■ , —km-i).

For the first vertex our term involves ai ■ ■ ■ am, and for the second it involves

(—oi) • • • ( — am), which equals — ax ■ ■ ■ am, if m is odd. By analogous

reasoning it may be shown now that, by proper pairing, all those terms of

the other types involved in (21) will cancel in pairs, except the first, and

except perhaps those that contain am. Now in Za>a> there are m_iCi terms

that involve am, in 2~laiaiak there are m-2C2 such terms, etc. Each of these

must be counted 2m~l times.   So, finally,

Pk,.-km = (2B-1)(1 + 0 + m_iCimax| amai\ + „-^maxl amaia¡\ + •••)<*>

^ ,,    .Y«   , m-1   ,    (w-D(«-2)   , (« - 1)(» - 2)(»-3) \
= (2m-i)  1+--]--]-^-U

\ 100 21000 3-2-10,000 /

and so

(22) 7kl...km = 2»-V,

with a maximum absolute error in P of

/       m — \      (m — i)(m — 2)      (m— l)(m — 2)(m — 3) \
■n = 2m-l<t>   y H-+--I-+        )

\ 100 2-1000 3-2-10,000 /

/        w-1      (m - i)(m - 2)(1.86)\
= 2"-1<M7 +-+ ---),

\ 100 2000 /

and therefore

(23) v ^ 2m-l4>{y + (m - 1)/100 + (m - \){m - 2)/1000}.

What we have just done for the parallelepiped ki ■ ■ ■ km we may repeat

for each of the smaller parallelepipeds k{ ■ ■ • km , obtaining a sum in each

case which we may denote by Pk[..-k'm- Then by adding all these P's

together we shall obtain the sum originally sought, viz. :

(24) e=I>oe-*2/2.

This is Pearson's expression which he has evaluated by means of a definite

integral and tabulated,! but his (1 — P) equals my Q, and his «' equals my m.

* This fact is important only when m = 3.

t Tables, loc. cit., pp. 26 ff.
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In order to obtain an estimate of the error in Q we might use the fact

that the absolute error in ?*;.. .k'm is no greater, relatively, than in ?»,...»„,

but this, although true, would lead us to an inequality too wide to be useful,

and so it is better to make an assumption. We shall assume that the ab-

solute error in Pk\...k'm is not greater than in ?*,.. .i„. This is a reasonable

assumption, and we know that when the k's are nearly zero, the error also is

nearly zero. However, it must be used with caution, for if the k's were allowed

to be quite large the value of <p would be so exceedingly small that the error 77

would also be exceedingly small, no matter what the other factors of 77 might

be, and we could not be sure that this absolute error would not be exceeded

at points nearer the general mean of the solid; but, as the k's have been

considerably restricted by (7), we are not in serious danger on account of

that possibility. We shall keep in mind the fact that from now on we are

only estimating our maximum error instead of computing it by using the

phrase "estimated maximum error." The estimated maximum absolute error

in Q as approximated by (23) is jE = »;(|£i|+£) • • • (|£m-i|+è); or, in a

form suitable for computation:

E = Ht, 6 = ( I h I + è) • • ■ ( I km-i I + J)2—»,
</, = <r**i'/D, D2 = (npi) • • • (npm_i)(pm)(2*y-\ x2 = £«/(»*<),

1
m

t »   Z>< + (m - l)(0.000,866w + 0.01)
1

(25) + (m - i)(m - 2)(0.000,012w + 0.001),

¿Pi = 0.094 ¿(npi - I *i|)-* + 0.425 ¿(¿,/(«/>0)2
1 1 1

m m

+0.332 Z I ki/(npi) I 3 + 0.176 E(V(«^))4-
1 1

Sometimes it is quite sufficient to know that always t<1.55.   If this gives

a sufficiently small value of E, the computation is greatly shortened. Finally,

it is necessary to notice that the conditions (7) need not be satisfied exactly

in order that the above expression for E may hold approximately,  small

changes in the conditions (except in (7)(d)) producing small changes in E;

but we must not depart from them widely.

5.  Numerical examples

The x-test may now be used to establish rigorously statements which

heretofore one could not be truly sure of.   As an example we choose the

first one used by Pearson in which he appeared to show a bias in dice.*   I

* Philosophical Magazine, loc. cit., p. 167.
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give below Pearson's figures and also a set of revised figures. My conditions

(7) were not nearly satisfied in his last two groups, and so in my proposed

revision I have lumped together his last three groups. This of course amounts

to a restatement of the whole problem, but the new problem thus created

will serve the general purpose Pearson had in view substantially as well as

the old one. In this new problem all my conditions are satisfied except for

the figures in parentheses, and in these cases they are nearly satisfied, and

so, as observed at the close of §4, we may be sure that our E is approximately

correct. The second column, marked /, consists of the "observed frequency

of dice with five or six points when a cast of twelve dice was made 26,306

times." The column marked np (Pearson's m) consists of the corresponding

theoretical frequencies. The first column, marked "dice", indicates the

number of dice in a cast which showed 5 or 6 points. Pearson found that

1 — Q was 0.000,016. This was the probability that a set of dice with no bias

would give results as far removed from the theoretical as those observed.

It is so small as to make one practically certain that there was bias. But,

since in this case we are not sure that it is proper to compute 1 — Q by the

use of the normal function, as he did, I have modified the problem slightly

so as to be sure. I find \ — Q = 0.000,086, and, although this is not so small

as Pearson's value, it is still small enough to be convincing.

Pearson's Problem Author's Revision

Dice np np-\k\

10

11
12

185
1149
3265
5475
6114

5194
3067
1331
403
105

14

4

0

203
1217
3345
5576
6273

5018
2927
1254
392
87

13

1
0

No Change

18 10

.0887

.0559

.0239

.0181

.0253

.0351

.0478

.0614

.0281

(.2069)

(.2857)

1.596
3.800
1.913
1.829
4.030

6.173

(6.696)
4.728
0.309
3.724

1.143

^ = 43.872, w=13,1-0=0.000,016. ^=35.941, >»= 11, 1-0=0.000,086. By (25)
£=0.000,004; by the shortened form of (25), taking

t<1.55, £<0.000,017.
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It is not always feasible to rephrase a problem in this fashion and still

keep the general purpose of the investigation in view. Sometimes, however,

another sort of revision is possible, which may as well be illustrated in a

further, though in this case needless, refinement of the example above. In

the revision of that example the last value of « was 0.2857, instead of the 0.2

permitted by (7), and accordingly we had to think of E and therefore of

1— Q as possibly a little larger than as stated. Let us now decrease this

co to less than 0.2 by arbitrarily changing the observed frequency opposite

it from 18 to 16 and compensating for this by adding arbitrarily 2 to the

frequency 6144, where np is large and k is negative. The total effect is again

to set up a new problem : Pearson's was the first, our revision a second, and

now we have a third; but, since no k has been numerically increased in passing

from the second to the third, the value of Q for the third is known to be

smaller than the value of Q sought in the second, since we would now be

adding up frequencies over a parallelepiped enclosed in the one used before.

We should thus arrive rigorously at a lower limit for the second Q, i.e., at

an upper limit for the second 1 — Q, and this might still be small enough

to support the general conclusion that there was bias in the dice. We do here

in fact obtain xJ = 34.983, l — Q = 0.000,13, and so we are sure that the

value of 1 — Q in the second problem was less than 0.000,13. E has very nearly

the same value as before.
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