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1. Introduction. The principal object of the following paper is the dis-

cussion of a Neumann problem, with reference to a potential of a single

layer which is based on a general distribution of matter on a simple closed

plane boundary. Such potentials were introduced by Plemelj.f The result

obtained here is of the same order of generality for these boundaries as that

obtained by G. C. Evans with the aid of conformai transformations!, but

the present method is entirely different, and simpler. The problem is equiva-

lent to a Stieltjes integral equation, which is solved by reduction to the classi-

cal Fredholm type.

Consider the function

(0 viM) =   (logil/r)dpiP),

where p(P) is a function of limited variation on the simple closed curve C.

The notation p(P) is used as synonymous with pÇsp). For the measurement

of angles the length r = MP is regarded as directed from M to P, where M

is a point which remains fixed in the integration. It is assumed that the direc-

tion of C changes continuously as we go along the curve, and that the curva-

ture exists at each point.

Let n, or, more particularly, nQ, be the normal at a point Q of the curve,

directed toward the interior, and M a point on nQ.  The derivative

dviM) f   cos Çnq,r)
(2) ~~-=-~--dpiP)

dn J c r

generally fails to be continuous as M passes over the point Q. We shall

investigate this discontinuity.

The integral (2) converges when M is coincident with Q. In order to

prove this statement, it suffices to examine the integrand in the neighborhood

* Presented to the Society, April 7, 1928; received by the editors June 2, 1928.

t Potentialtheoretische Untersuchungen, Leipzig, 1911, p. 17.

t The Logarithmic Potential.  Discontinuous Dirichlet and Neumann Problems, New York, 1927,

p. 84.
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of Q. Set up a system of rectangular coordinates, with origin at Q, and axes

along the positive tangent and inner normal, respectively. Measure s from

Q.  In the neighborhood of Q, the equation of C may be written in the form

y = x2fix),

where, as may be verified from the hypotheses for C, fix) and xf'Çx) are

continuous except at x = 0, and bounded in a suitable interval containing Q.

Denote by 6 the angle measured in the positive direction from the normal

atÇtoÇP. We have then

coso      y fix)

r     ~ r2"  1 + x2[fix)]2 '

which is therefore continuous except at Q as a function of x, and bounded

in the neighborhood of Q. Hence it has the same properties as a function

of Sp when P^Q.   The statement is therefore proved.

From what has been said of the function (cos 6)/r, we obtain immediately

the following corollary, which will be useful later. We state the result as a

lemma.

Lemma. If p(P) is continuous at Q, and C is an arc of C, containing Q,

and of length < 8, then

r  cosô r      cosö
--dpiP) =lim -dpiP).

Je     r a-o Jc-c    r

2. Boundary values of the normal derivative. For convenience we de-

note by dviQ+)/dn the value, where it exists, of dv/dn as M approaches Q

along n from the inside; we define similarly dviQ — )/dn with reference to

the exterior of C.  With this notation, we have the following theorem:

Theorem 1.  If »(if) is given by (1), then

J C (¿r

-2tp'ÍQ),

dvjQ +)     dvjQ-) = 2  Ç  cosJttQ^QP)

dn dn Jc QP

dviQ+)     dviQ-)

dn dn

provided p'ÇQ) exists.

Denote by C a small arc HK containing Q as an interior point. We may

write (2) in the form

dviM) r f   coso
---= +        --dpiP) = Ii + I2.

dn Jc-c      Je MP



192 E. R. C. MILES [January

Consider 72. Construct the osculating circle C at Q. Let p be the distance

from its center to M, P that point of C for which x = xP. Let f = MP, and 0

the angle from nQ to MP, measured in the positive direction. We shall show

that
C  Tcos 0     cos 0~|

JÄ-r—rr» <e,

uniformly with respect to M, provided that the length of C is small enough.

For this purpose it suffices to show that (cos B)/r — (cos Q)/f is bounded

uniformly with respect to M. In fact, yu(P) is of limited variation in the neigh-

borhood of Q, and continuous at Q.   The conclusion is apparent if we write

cos 0      cos 0      iy — y) cos (0 + 0)

r f rf

and note (a), that y—y is of order higher than the second with respect to x,

and (b), that \x | <r, f. The details are as follows:

y = R - iR2 - x2) 1/2

where R is the radius of curvature of C at Q.   But the preceding equation

may also be written

'-'O-o-sn
x¿

=-h x*fax).
2R

Then

y- y = x2ïfix) - —1 + ***(*),

where the expression in brackets is bounded. Moreover cos(0+0) is obviously

continuous as a function of *, and uniformly bounded with respect to M.

The statement is therefore proved.

Consider therefore the integral

r cos0 d   r        1
h =    I    -dpiP) = - \    log-dpiP)

Je    f dn Je        f

= -7Í-, log (*2 + P2 - 2RP cos tfdpiP)
2   dp Je

1    r    - 2p2 + 2Rp cos yp
=-—dp(P),

2p Jc' R2 + p2 - 2RP cos yp
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where p is the angle subtended by QP at the center O of the circle, and where

p is the segment OM, directed from O to M. Hence

r   1 1   c R2 - p2
- h +   \   —dp(P)=—   _-dp(P).

Jc' 2P 2P JC R2 + p2- 2RP cos p

If the length of C is sufficiently small, we have, therefore,

i r
I* + -   -, „. .    .    „■„--dp(P)

2pJc'
But*

2p Jc' R2+ p2 -2RP cos p
< e.

i   r       r2 - p2
lim-       -dp(P)=p'(Q).
,-*R 2ttR Jc' R2 + p2 - 2Rp cos 0

Hence, taking account of the lemma of §1,

dv(Q+) IM        r  cos (nQ,QP)C  cos {no,QP)
= -tp'(Q)+ K*'V   -dp(P),

Jc UPdn Jc QP

and similarly

dv(Q-) „^   ,    r  cos (nQ,QP)C  cos (nQ,QP)
= *m'(Ö)+ -nV        dfl^-

J c UPdn Jc QP

From these equations we have the result stated in the theorem.

The foregoing analysis presupposes that the curvature at Q is not zero.

In the latter case, we may replace the arc of the osculating circle by the

corresponding segment C of the tangent at Q, and observe that the integrals

along C and along C differ by a quantity which is uniformly small with the

length of C. In fact, (cos 0)/r — (cos B)/f is uniformly bounded with respect

to M, since y is of order higher than the second with respect to x. Therefore

consider the integralf

X
*• cos 9

-dp(x)

C x> cos 0 r °   y Cx" y
= p'(Q)       -dx- \    ~d(xr,(x))-       -d(xn(x)),

J_In   r J-x.r2 Jo    r2

where p(x) =xp'(Q)+xt](x), the last term being a function of x of limited

variation, such that if r)0 denotes the upper bound of |tj(x) | in the interval

— Xo^x^Xo, we have limIo^0 »7o = 0.

* Evans, loc. cit., pp. 39, 40.

t This integral is essentially the Poisson Stieltjes integral for the straight line considered as an

infinite circle.
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Now since y/f2 decreases with x, x>0, we have

rx' y y rx' ( y\
I      — dixriix)) = — xonixo) -   I     xr¡ix)d[ — ),

Jo    f2 r2 Jo \f /

where

and

y
— Xoriixo) \ < Vo,
f2

I/>K¿)|S -"/>(?)
= Wo   — + ^o I      —- dx

Lf2Jx-x, Jo    r2

s«(i+f).
Hence the integral considered is made arbitrarily small with Xo, uniformly for

M.  The same remark applies to

X
0       y

—dixvix)).
■xtr2

But fx_'t¡¡ (cos 6)/f dx = 2(ô0—tt)- Hence, by first taking x small enough, and

then taking M near enough to Q, we can make

X
x» cos d

--—dpix)

differ by as little as we please from wp'ÇQ), which is what we wished to show.

3. The Stieltjes integral equation. We consider again the class of func-

tions which can be expressed in the form (1). It is assumed now that the

discontinuities of p.(P) are regular. If we also denote by C the total length

of the curve, we may extend the definition of pisp) beyond sp = C by means

of the relation
pisp + C) = pisp) + m,

where

m =        dpisp) = p(C).
J c

The problem now to be considered is expressed in terms of the condition

1 + X rB*dv 1-X rBsdv
(3)

2X    «-0+

/•*« dv 1-X r"sdv
lim — dst-~— lim —-ds¡ = giB) - giA),
-o+ JAz dn 2X    {-*o-  Ja6  dn
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where g(s) is a given function of limited variation, with regular discontinui-

ties, and where A, B are points of G We shall regard A as fixed and 73 as

variable on C. In the first integral s¡ is an arbitrary simple regular curve

lying entirely within C, and joining the points At, B¡. The latter points are

at the distance 8 from A, 73, measured along the respective inner normals.

In the second integral s¡ lies entirely outside C; the points A¡, Bt are on the

outer normals at A, 73, respectively.

That the curve C has a unique normal at each point is implied in the

preceding statements. Specifically, it is assumed that C is a simple regular

closed curve; moreover C shall be a curve of class Y* i.e., there shall exist

a positive number Y, independent of M, such that

cos(nP,MP)\

X -dsp < T,
MP

uniformly for all M.

Theorem 2. There is a unique function of class (1) which satisfies the con-

dition (3) unless X belongs to a certain set of characteristic values. These values

are independent of the given function g(B), and depend merely on the form of the

curve C.

The value X = — 1 is not a characteristic value. The corresponding problem

is a generalized Neumann problem for the exterior region:

rB>dv
lim -dst = g(B)-g(A).
»-.o- Já¡ an

The value X = +1 is a characteristic value. A necessary and sufficient con-

dition that there exist a solution v(M) of class (1) is that

Ldg(B) = g(C) = 0.
c

The corresponding problem is a generalized Neumann problem for the interior

region:
J'Btdv

—dss = g(B)-g(A).
Ax  dn

'B¡dv

♦0+ JAs

The solution is unique except for an arbitrary additive constant

Consider the condition (3).  We have

,B¡dv CBi dwçBi(Lv rB<ldw
lim   I     —dst = — lim   I      -ds¡ = lim [w(Ax) — w(B¡)\,

t->o+JAt  dn t->o+JAi   dst J-.0+

* G. C Evans, The Rice Institute Pamphlet, vol. 7 (1920), p. 261.
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where w is a function conjugate to v :

C           yp — y m
wiM) = -        tan-1-— dpiP).

J C Xp —  Xm

The function under the integral sign being multiple valued, we write

wiM) = -   f 6iM,P)dpiP),
de

where 0(M, P) is the angle from MA to MP measured in the positive direc-

tion. Then, taking A as the initial point of the integration, 8 varies continu-

ously as P traces the curve.

Integrate by parts:

wiM) =- [piP)6iM,P)\

ddiM,P)
(4) piP)     \ ds

r d6{M
KP)-~-

J c asp

- faM) + uiM).

We shall take piA) =0, since this can be effected by the addition of a con-

stant.  Then

( — 2irm, M inside C,
faM) = \

{ 0,  M outside C.

The function w(Af) is a double layer potential with density a function of

limited variation. The integral converges when M is a point on C, since

m(P) is bounded, and C is of class T.

Consider w(Q+) as M approaches a point Q of C along the normal:

r        ddiM,P) r cos inP,MP)
uiM) =      piP) dsP =      piP)-—1--dsp.

J c dsp Je MP

In order to study the behavior of uiM) in the neighborhood of Q, we need

to extend the traditional analysis to cover the case where piP) has a regular

discontinuity at Q.

Wnte r CQ      FK        cos inP, MP)
uiM) = +        +       piP)-\' dsP,

J C-C J H J Q MP

where C denotes a small arc HK, of which Q is an interior point.

The first of the preceding integrals is continuous at Q, since Q is not on

C.   Then
cos(«p,AfP) r cos inp,QP)

PÍP)-dsP.
QP

r cos Utp, MP) r
lim piP)-—-dsP= f
m^q Jc-c MF Jc-c



1929] POTENTIALS OF A SINGLE LAYER 197

The second integral may be written

rQr 1cos(»p,Af7>) rQ cosÇnp,MP)
[ß{P)-^Q-.)]—±-J-—±dsP + piQ-)       -\^—J-dsp = Il + l2,

JH MP Jh MP

where limp,o pÇP) =piQ — ), the limit existing since p(P) is of limited varia-

tion. Hence 77 may be taken near enough to Q so that \pÇP) —pÇQ — ) | <e/T,

where e >0 is arbitrarily small. By hypothesis, C is of class T. Consequently

if sHq is sufficiently small, and uniformly with regard to M.

Write 72 in the form

J'e d             Vv — yp
— tan"1 --—dsp

H

«m«?-)[

ds xM — xp

y m - ya             y m - y«
tan-1-tan-1-

Xm  —   Xq Xm —  Xu.

The quantity within brackets is the angle from MH to MQ, measured in

the positive direction. As M approaches Q along the normal, this angle ap-

proaches as its limit the angle from the chord QH to the (outer) normal at

Q. Hence if 77 is taken near enough to Q, the limiting angle may be made as

near ir/2 as we wish.  That is,

lim hiM) = %iQ-) + viH),
M-Q+ 2

where lim.n-Q tj(77) =0.

By a similar process we obtain

J*k        cosinP,MP)

rKr , cos ÇnP,MP) r¡
=       biP) - ÁQ +)]-—-dsp + piQ +)

Jo MP Jo

, cos Çnp,MP) t ^    v   fK cos inp,MP)
-dsp

'q mi- ¿q MP

= h + I

By taking K sufficiently near to Q, \l31 can be made arbitrarily small, uni-

formly with respect to M. Also

lim I¿M) = — piQ +) + n'iK),     lim v'iK) = 0.
M-Q+ 2 K-.Q
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If M approaches Q along the outer normal at Q, the corresponding limits

are givenby

lim/VW = -ï-p(Q-) + v"(H),
MI-Q- 2

lim IJ(M) = - ^-p(Q +) + r,'"(K),
U-Q- 2

limr)"(B) = ]imi¡'"(K) = 0.
B-Q K-*Q

We have, therefore,

C cos (np,QP) t r , .
u(Q+)=       p(P)-'   D        dsP + -[p(Q+) + p(Q-)\

Je U" ¿QP
d yo — yp

tan"1 ——t-dsp + rfl(Q)t
'c       dsp xq — xp

C à

J c        aSp

since the discontinuities of p(P) are regular.   Similarly

C d ya — yp
u(Q-)=     p(P)-- tan-» -—-dsP - *p(Q).

J C dSp Xq —  Xp

If now we take M as Bt, we obtain from (4)

Ç d Vb — Vp
w(B +) + w(B -) = - 2rm + 2     p(P)-tan"1-—dsP,

J c       dsp xb — xp

w(B +) - w(B -) = - 2irm + 2wp(B).

Taking M as At,

w(A +) + w(A -) = -2irm + 2 f p(P)-tan"1 — ̂ ^-dsP,
Jc        dsp xa — xp

w(A +) — w(A —) = — 2irm.

We have, therefore,

rB¡dv
lim   I     — ds, = w(A +) - w(B +)

i-»o+ J At   dn

= -tp(B)-   fp(P)--H(A,B;P)dsp,
Jc       dsp

where
. ya — yp , y a — yp

H(A,B; P) = tan-1 --tan"1-
xb — xp xa — xp

Also
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^•Be dvft dv
lim    I     —ds¡ =wiA — ) — wiB — )

«-.o- J At   dn

= MB) -   fpiP)—HiA ,B;P)dsP.
Jc        dsp

d

' c        dsp

Equation (3) may now be written in the form

x. x r
PÍB) = - -[giB) - giA)] - - fpiP)~HiA,B;P)dsP.

IT T J c dsp

Integrate by parts:

PÍB) = - -[giB) - giA)] - -[piP)HiA,B;P)]c
ir ir

+ - i'HiA,B;P)dpiP)
ir Je

= --[giB)-giA)]-mX + - fHiA,B;P)dpiP).
ir ir Je

Hence we have the following equation:

(5) PÍB) = GiB) +- ChíA ,B;P)dpiP),
ir Je

where C7(73) = - ÇX/w) [giB)-giA)]-mX.

If »(A7) is a function of class (1) which satisfies (3), the function piB), of

limited variation and with regular discontinuities, satisfies the Slieltjes integral

equation (5). Conversely, if p(73) is a solution of (5), of limited variation and

with regular discontinuities, the function »(17) given by (1) will satisfy (3).

4. The equivalent classical equation. We now proceed to show that

this equation may be solved by means of one of classical form.  Write

(6) piB) = GiB) + RiB).

We shall prove that if p(73) is of limited variation, then 7?(73) is absolutely

continuous.

Substitute the value of p(73) from (6) into (5):

(7) GiB) + 72(73) = GiB) + — f HiA ,B;P)dGiP) + — f HiA ,B;P)dRiP).
W   J c T   JC
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It suffices to consider one of the above integrals, say the first.  We have

B   d yQ- yp
tan-1-dsQ

rB   d
H(A,B;P) = -

Ja    dsdSçj Xq — Xp

fB   cos (nQ,QP)
'L —w~dSQt

JC            rB   cos (nQ, OP)
H(A,B;P)dG(P) =     dG(P) -" Q'V      dsQ.

c Jc Ja <¿r

We shall prove that we may invert the order of integration in the right hand

member.*

Let [hk(Q, P)} denote a sequence of continuous functions such that

, .        I cos (no,QP) I1**0,7») | < J-V «'*   n (k = 1,2, • • •),

cos (nQ,QP)
\imhk(Q,P)=-——■
*-.« QP

We have

(8) f dG(P)  f   hk(Q,P)dsa=    f âsQ f   hk(Q,P)dG(P).
Je Ja Ja       Je

We shall show first that as ¿—>°o the right hand member of this equation

approaches the limit

J*B        r    cos (nQ,QP)

For this purpose we define a sequence {qm(Q, P) ) as follows:

| cos (»«,ÇP) |            \ cos (nQ,QP)\
qUQ,P)-—-.  if -—-< m,

= m,    otherwise.

The sequence

(qm(Q,P)dT(P),
Jc

* The proof is essentially that in Evans, The Rice Institute Pamphlet, vol. 7 (1920), p. 263,

but is given here in more detail, for the sake of clearness.
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where T is the total variation function of G(P), is non-decreasing with m.

Also

(8') f   dsQ f qmiQ,P)dTiP) =   f dTiP)  f  qmiQ,P)dso < VTiC)
Ja Je Je Ja

and is therefore bounded for all m.   Consequently

r r    I cos (»g,OP)
lim       qmiQ,P)dTiP) =        -¡-^-
«-»« Je Je QP

exists nearly everywhere on C, and is a summable function.   Moreover,

from (8'),

7j Jfr OP Je JaÇP 7C J¿ QP

by the fundamental properties of the Lebesgue and Daniell integrals.

Consequently, from the definition of hkÇQ, P), we have

r C    cos ÇnQ, QP)
lim       hkiQ,P)dGiP)=        -    „ dGiP),
*->« Je Je QP

the integral on the right being a Daniell integral, which by (8') represents

a summable function.  Moreover

r I        r     |cos(«Q,OP) I
hhiQ,P)dGiP)\ú-~'^-^-dTiP),

Je Je QP

|cos(«o,QP)

QP

a summable function.  Hence, by the Lebesgue limit theorem,

cB     c rB     c cos (»o,op)
lim   I    dsQ       hkiQ,P)dGiP) =        dsQ       --~^-=-—¿G(P).
*-»" Ja Je Ja Je QP

As for the left hand side of (8),* we have

CB CB   cos inQ,QP)
lim    I     hkiQ,P)dsa =-dsç
*-. JA       KV' JA QP

In fact fcdTiP)fBhkiQ,P)dsQ exists for all A. Moreover fcdTiP)

■Ja[\ cos(«(}, QP) \/iQP)]dsn exists, since, as we have seen, the inside in-

tegral is a summable function.  Finally

f    \hkiQ,P)\dsQ<  f
Ja Ja

cos inQ,QP)\
-dso.

QP

* Evans, The Rice Institute Pamphlet, vol. 7 (1920), p. 257.
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Consequently /c¿G(F)/f [cos (w<¡, QP)/iQP)]dsQ exists and

c       cB c       rB cos i^Q,QP)
lim      dGiP)        hkiQ,P)dsQ =     dG{P) --^—dsQ
il—a   Je "A de ¿A QP'c ^a de Ja QP

We obtain therefore from (8), as k—*<x,

JCB  cos(reQ,QP) rB        C
dGiP) --—- dsQ -I    dsQ

c Ja QP Ja Je

cos(«g,Ç}P) rB        r   cos inQ,QP)
-OSq   =     I       dSn    I-

QP Ja Je QP
dGiP).

The right hand side, being the indefinite integral of a summable function, is

absolutely continuous. So therefore is the left hand side. Similarly for the

remaining integral in (7). Hence RiB) is absolutely continuous. If then we

write (7) in the form

RiB) = - ('HiA,B;P)[dGiP) + dR(P)],
ir Jc

the derivative nearly everywhere of RiB) is

X   C cos ins, BP)
KB)

X   r cosinB,BP)   .
= -        —4^-[dGiP) + dRiP)}.

w Je BF

Let ä(5) = (X/tt)/c[cos («b, BP)/iBP)]dGiP). Then, since RiB) is abso-

lutely continuous:

RiB) =   f  KQ)ds0,
Ja

we have

X   r    cos (reB, BP)
(9) KB) = KB) + -        -+¿-J-riP)dsP.

ir J c BP

Thus (9) is a consequence of (5). Conversely, if (9) has a summable solution

KB), then /¿(7?) given by (6) is of limited variation and a solution of (5).

But (9) has a unique solution unless X is one of a set of characteristic

values, since (9) is the classical integral equation for the Neumann problem.

Moreover it is known that X = — 1 is not a characteristic value for this

equation.

We know that X = +1 isa characteristic value, and that a necessary and

sufficient condition that (9) have a solution is that

(10) fhiQ)dsQ = 0.
Jc

But
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Jl    r         C   cosinB,BP)
KQ)dsQ = —      dsB-dGiP).

c                    k J c      J c          BP

By changing the order of integration,

1   r r cos inB,BP) 1   Ç
—     dGiP)--dsB = —     rdGiP) = GiC) = 0.
x J c J c BP it Jc

Hence gÇC) =0. Conversely, if G(C) =0, the analysis may be retraced, and

we have (10). The condition g(C)=0 is therefore necessary and sufficient

in order that (5) have a solution for X = +1.

The function »(M) determined by (1) is therefore that belonging to a

particular solution of (5) by means of (1) plus the function determined by

(1) where the pÇP) is a solution of the homogeneous equation corresponding

to (5).  But in this case

ßiQ) =   f MP)dsp,
Ja

where ^(P) is a solution of the homogeneous equation corresponding to (9).

But we know the functions »(M) =/c log il/iMP))\¡/CP)dsP to be constant.

Theorem 2 is therefore proved.

In §§3, 4 we have assumed only that C is of class T, and have not required

the existence of a curvature as in §§1, 2.*

The foregoing methods may be applied to obtain analogous theorems for

potentials of a double layer, not only for the plane, but also for the three-

dimensional case. The latter case, both for the single and the double layer,

is to be discussed in a paper which the author is writing in conjunction

with Professor Evans, who suggested the present investigation.

* If the curve has a curvature which is bounded for all points of the curve, then it is automa-

tically of class T.

The Rice Institute,

Houston, Texas


