ON A GENERALIZATION OF THE ASSOCIATIVE LAW*

BY
ANTON SUSCHKEWITSCH

1. In my investigations in group theory, I have observed that Lagrange’s
theorem (that the order of a group is divisible by the order of any subgroup)
does not use for its proof the Associative Law in its whole extent; thislaw
can be replaced by a more general postulate, “Postulate A”, as I shall call it.

We shall represent our elements by capital italic letters; the operation
upon them may be represented by a star «, so that AxB signifies the result
of this operation performed upon 4 and B. A set of elements closed under
any operation x may be called “a group”; this word is thus used in a more
general sense than is usual, since the operation « is arbitrary. The ordinary
groups with a special well known operation may be called “classic” to dis-
tinguish them from our generalised groups. Sets and groups will be denoted
by capital German letters.

PosturaTE A. In the equation
1) (XxA)xB = XxC,

the element C depends upon the elements A and B only and not upon X.
(We suppose here that X can be an arbitrary element of a finite group to
which 4, B and C belong also.)

The Associative Law is obviously a special case of this Postulate A, viz.
if C=AxB.

I have investigated the finite groups that are obtained by replacing the
Associative Law in the system of postulates of Frobeniust by Postulate A.
I have found the following properties of these groups.

I. Besides our operation » every group ® of our type has another opera-
tion that will be denoted by a little circle o and defined as follows: the equa-
tion (1) being given, we write

2) C = Ao B.

* Presented to the Society, October 27, 1928; received by the editors in July, 1927.

t Frobenius (Uber endliche Gruppen, Berliner Sitzungsberichte, 1895) defines the classic finite
groups by the four following postulates: 1. The operation that will be considered is ubiform (ein-
deutig) and applicable to any two elements. 2. This operation is uniformly reversible (eindeutig
umkehrbar), i.e. from AB=AC or BA=CA it follows that B=C. 3. The Associative Law is true
for it. 4. The operation is “limited in its effect” (begrenzt in ihrer Wirkung); that signifies the pos-
sibility of forming finite groups of our elements.
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It is easy to see, that ® is also a group relative to the operation o; we
express this fact by writing ® (o); (analogously, & (x)). I shall prove that
® (o) is classic.

II. The group ® (x) has always a right unit (the same for all its elements).

III. If the group ® (x) has also a single left unit for all its elements
(that must necessarily coincide with the right unit), then the Associative
Law is true for @ (x); in this case ® (%) is classic and the operations % and o
are identical.

It follows that in the systems of postulates of Moore* and Dicksont for
the definition of classic groups the Associative Law can be replaced by Postu-
late A (or its left analogue).

IV. We associate with every element A of our group @ a substitution

= (sua)

whereby X runs over all elements of ®. I prove that all those substitutions
4 (corresponding to each element A of ®) form a substitution group &
which is obviously classic and simply isomorphic with @ (0): Conversely,
all such substitutions 4 form a group only if the Postulate A is true for & ().

V. All groups of our type will be obtained from classic groups by making
any substitution in the head-line of Cayley’s table of a classic group. More-
over, it is sufficient to make only such substitutions as do not alter the unit
of the classic group. Such a substitution may be denoted by a.

VI. § (x) being any subgroup of & (x), © (o) is also a subgroup of
® (0), i.e. relative to the operation o. The converse is not true. Every sub-
group $ of © relative to o is also a group relative to «, if and only if the
substitution «, which corresponds to & (%), has the following form:

"= ()

the numbers / being relatively prime to the orders of corresponding elements
X.

2. We shall prove now all the assertions of §1.

I. The group & (o) is obviously uniformly reversible. Again:

[(X%A4)xB]xC = [Xx(40B)]xC = Xx[(40B)oC] ;

* Moore, A definition of abstract groups, these Transactions, vol. 3 (1902).

t Dickson, Definition of a group and a field by independent postulates, these Transactions, vol. 6
(1905).

$ The sign =< signifies that we denote a complicated expression more simply with a single letter.
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and on the other hand
[(Xx4)%B]*C = (X%A)%(BoC) = X«x[40(BoC)] ;

and hence the Associative Law is true for @ (o).
II. The classic group & (o) has always a unit E; it is such that

(XxE)xA = X%x(EoA) = Xx4 ;

and therefore
X*E = X for every X ;

E is thus the right unit for & (x).
III. Let E be a left unit of & (x); we have, then,

(ExA)*xB = Ex(A%B) = AxB ;
and hence by virtue of Postulate A for every element X
(X%A)xB = Xx(AxB),

i.e. the Associative Law; hence @ (x) is classic, and AoB=A4xB.

IV. It follows from (1), by virtue of Postulate A, that ZB=C; hence ®
is a substitution group simply isomorphic with ® (o) (see (2)).

Conversely, let  (x) be any finite uniformly reversible group and let
® be the set of corresponding substitutions, which form also a (classic)

group. Let
—_— = X X X
-2 o (0 as) ()
Xx4 /\ XxB XxC

<X}:B> - ((X)i:‘)I*B)’
(XxA4)xB = XxC

for each element X of & (x); hence Postulate A holds.
V. In the head-line of Cayley’s table of @ (x) we make the following

( >
a =<

(E being the right unit of & (x)). Let ExX=X’. We define the third
operation X as follows:

3 AxB = A4 X B'.

since

it follows that
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The operation X is uniformly reversible and also associative; in fact we
have from (1) and (3):

4 (XXA4A)XB =XXC,

C’ depending on A’ and B’ only but not on X; let X=E; then (EXA")
XB'=EXC’; but we have EXX’'=ExX=X'; hence C'=A4’XB’, and (4)
gives us the Associative Law for X; thus @ (X) is classic. Again it follows
from (2) that o gives an isomorphism between'® (o) and @ (X).

Conversely, let @ (X) be now a given classic group; we make in the head-
line of Cayley’s table of ® (X) any substitution

-

and define a new operation « as follows:
A X B = AxB.

The operation « is obviously uniform and uniformly reversible; the Postulate
A is also true for x; in fact, if

(X%A)xB = XxC,
we have
(Xxd)xB= (X X A) XB=XX (4 X B);
and -
XxC =X XC;

hence A X B=C and thus C depends upon 4 and B only.

E being the unit of @ (X), E is the right unit for ® (x); we have in fact
AxE=AXE=A.

I affirm that we can replace 8 by another substitution «, which does not
alter E, and in this manner define a new operation, say 7, so that the group
® () will be simply isomorphic with @ (x) and have the right unit E. We
take for «

= (DE-GED-GE)

let EXX’=X; we can write then

-(H()- )

AXB=A0B.

and so we define
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We shall prove that the substitution

)

gives an isomorphism between the groups @ (x) and ® (7). Let
(5) AxB=C;

we shall prove that we shall have also

(6) A'OB =C'.

It follows from (5) that AXB=C; but A=EXA’, C=EXC’; hence
(EXA'YXB=EXC’; and since & (X" is classic,

EX A" XB)=EXC(C;
hence A’ XB=C’, and so (6) is established.

VI. Let §=P1+Py+P;+ - - - * § (x) being a subgroup of @ (x). Let
(X%P,)xP,=XxP,; the elements P, and P, of § being given, the element
P, exists also in §; by virtue of Postulate A we have P,oP,=P,; hence
9 (o) is also a group.

It follows, hence, that Lagrange’s theorem is true for the groups & (x)
of our type.

Let $ be now a subgroup of ® relative to o; we shall analyse the condi-
tions by which $ is also a group relative to x. Let a be the same substitution
asin V, and

O =Pl +P{ + P +---.
(P{, Py, P{, - are elements in @ corresponding to P,,P,, Ps, " ", by
virtue of @.) Since « gives an isomorphism between ® (o) and ® (X) (X
being the operation defined by (3)), ' (X) is also a group (relative to X).
Let © (x) be also a group; then

P‘*P)\=P‘XP)‘,2P”.

If PY runs over all elements of $’, then P, runs over all elements of ,
and conversely. Hence

PX® =9

(for each P, of ©). Consequently § is one of the partitions of & (X)
relative to ' (X)t. This condition is obviously also sufficient for (%) to
be a group.

* The sign + signifies that the elements Py, P,, - - - form a set 9.
t Hilton, An Introduction to the Theory of Groups of Finite Order, Oxford, 1908, p. S8.
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Since the substitution a does not alter the unit E of ® (X), § and §’
must be identically equal to each other, because both of them have a common
element E.

We shall now analyse the conditions by which every subgroup $ (o) of
©® (o) is also a group relative to x. Then we must have ' =9 (our notation
remains as above) for every subgroup § (o). We take =9 (X)={P},
a cyclic group, P being an arbitrary element of ®. Since {P} must be also
a group relative to x, we have

@) P*xP = P* X P};
consequently for each element X of @ also,
) XxP = X X Pt
More generally,

8) XxPc= X X P

To every exponent « in (8) there corresponds one and only one exponent
A and vice versa. This must be true for each element P of ®; if we take P+
instead of P, we obtain, in the same manner as in (8),

9 XxPk = X X P*;

for every u there is a definite » and vice versa. Let m be the order of P, and
d the greatest common divisor of ¥ and m; then m/d is the order of P* and
each exponent ku and kv in (9) is divisible by d. Conversely, if one of the
exponents «, \ in (8) is prime to m, the other is also prime to m. Consequently
the exponent / in (7) or (7’) must be prime to m. Thus « has in this case the

following form:
(=)
a = )

where the numbers / are prime to the orders of corresponding elements X.

This condition is not only necessary but also sufficient: if it holds, then every

cyclic subgroup {P} of ® (X) is also a group relative to x. But hence every

subgroup $ (X) of ® (X) is also a group relative to . Q and P being any

two elements of §, we have in fact QxP =(Q X P?; thus QxP belongs also to .
We can take, in particular, a substitution « of the following form:

“ ()

where 7 is the same for each element X and relatively prime to the order of
our group ©.
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3. We shall consider now a special case of Postulate A, that is, however,
more general than the Associative Law.
PosTuLATE B. In the equation

(10) (X%4)xB = Xx(4A%B)),

the elements B and B, depend only upon each other; every B is completely
defined by the corresponding B,, and conversely.

This postulate can be expressed in another form as follows:

PosturATE B’. If

(11) AxB = CxD
and if KX is an arbitrary element, then
(12) Ax(BxK) = Cx(DxK).

We prove first that Postulate B’ follows from Postulate B. Let R be an
element such that

(13) Ax(BxK) = (AxB)xR ;

R depends upon K only (by Postulate B). Again it follows from (11) that
(14) (AxB)xR = (CxD)xR ;

and by Postulate B it follows from (13) that

@15) Cx(DxK) =(CxD)xR;

hence, from (11), (13), (14), (15) it follows that (12) holds.
Second, we prove that Postulate B follows also from the Postulate B’.
For that purpose we shall prove the following lemma:

LemMA: If Postulate B’ is true for a (uniformly reversible) group & (x),
there exists in & (x) a right unit (for all elements of @ (x)).

If B is a given element, there always exists in @ (x) an element E such
that

(16) BxE = B.

Let D be an arbitrary element of & (x); if 4 is also a given element, there
always exists an element C, for which

(11) AxB = CxD ;
by virtue of Postulate B’ we have, then,

an Ax(BxE) = Cx(DxE) ;
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and by virtue of (16) and (11) it follows from (17) that E is the right unit
for every element D.

Assume now that AxB=C=Cx«E; in the hypothesis of Postulate B’ we
have, K being an arbitrary element,

Ax(BxK) = Cx(ExK) = (A%B)x(ExK) ;

and thus we have in (13) ExK =R; this shows that Postulate B holds for
our group.

Since the groups with Postulate B form a special case of groupswith
Postulate A, they can be obtained in the same manner as groups with
Postulate A (§1, V). We must now examine what must be the substitution

a (§1, V), in order that we may obtain a group @ (x) with Postulate B. The
answer is given by the following theorem:

THEOREM. If the group © (x) is obtained from the classic group & (X) by
means of the substitution o, Postulate B is true for ® (x) if and only if o is an
automorphism of the group © (X). In this case o is also an automorphism for
® (), and the operations o and X coincide with each other.

Let ® (x) be a group with Postulate B. The equation (10) gives a de-
pendence of B and B, upon each other; this dependence is given by a substitu-
tion, that we denote symbolically by (%). Let A=E (the right unit lof
® (x)) in (10); then

XxB = Xx(ExB)) ;
and hence

(18) B = ExB;.

Let
()
a = , )5

B = ExB, = E X (B) = (BY';

= (x)-()

Moreover it follows from (10), if we use the notation AxB;=:C, that

we have then

and hence

C=AOB=A*Bl=AX(B1),=AXB,

thus the operations o and X coincide.
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Conversely, suppose that the operations o and X coincide. Let

(-G
a = , = 5
we have then

19 Xxd =X XA4";

and
(X%A)xB = Xx(4 X B) = Xx(AxB)),

and that is Postulate B, because B and B, depend only on each other. Again,

by (19),
(XxA)%B = X#C = (X X A) X B' = X X C';

and hence
AXB=C, AAXB =(C,;

this shows us that « is an automorphism of @ (X).
Conversely, let a be an automorphism of & (X); then

(Xad)xB = (X X A') X B'=X X (4’ X B’
= X X{(4:X B).= Xx(4 X B) = Xx(A%B) ;

and thus Postulate B holds.
It remains to prove that « is in this case an automorphism of & (%) also.
We have in fact

(AxB)' = (A’X B')' =7A" X (B’)’ = A’xB'.

4. In the theory of uniformly reversible groups we can consider the
operations inverse to the operation of a given group. Since the operation of
our group is performed upon fwo elements (viz. Xx¥), two inverse operations
exist according as the left or the right of these two elements is unknown to us.

If the commutative law is true for our group, such a group has only one
inverse operation and only one “inverse group” (i.e. the group relative to the
inverse operation). But although a general classic group has two “inverse
groups,” it has only one inverse operation (abstractly considered), because
the properties of the operation of a classic group are “symmetric,” i.e. the
same on both sides; two “inverse groups” of a classic group are simply iso-
morphic to each other (if our notations are conveniently chosen); this follows
from the fact that a classic group is always “anti-isomorphic” to itself, i.e.
there always exists such a substitution (§) of elements of a classic group,
that if 4, B correspond respectively to 4, B, then AB corresponds to B4;
we can take, for example, X = X1
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The operation of a finite classic group ® may be denoted by X, the two
inverse operations by A and V; more precisely,

if AXB=C, then CAB=A, CVA = B.

Both inverse groups @ (A), & (V) are finite and uniformly reversible
but not associative. Let us consider what influence the associative law of
the operation X makes on the operations A and V. Let (4XB)XC
=AX(BXC)=R; AXB==P; BXC=(Q;then PXC =4 XQ=R. Hence
PAB=A4,QAC=B, RAC=P, R AQ=A; consequently

(RAC)AB =RAQ, and BXC =0Q.

[Or PVA=B, QVB=C, RVP=C, RVA=Q, (RVA)VB=RVP, and

P=AXB.] Thisis Postulate A, that is true for the operation A (and for

V). But the operations A and V are subject to still another postulate, viz.:
PosturaTE J. Every element X satisfies the equation

XAX=E (or XvX=E),
where E is a determined element (the unit of the direct operation X).

THEOREM 1. A finite uniformly reversible group & (x) is an “inverse” to
a classic group, if and only if it is subject to the postulates A and J.

Only one part of this theorem remains for us to prove. Let & (x) be sub-
ject to the postulates A and J. We use the same notation as before; if
AxB=C, then CAB=A. We must prove that & (A) is classic. Obviously
the operation A is uniform and uniformly reversible. Again, we have
(Xx4)xB=XxC=Z; C depends upon A and B only; let Xx4 =Y ; then
YxB=XxC=2;ZAC=X,ZAB=Y,Y AA =X, thus

(ZAB)AA =ZAC,
which is Postulate A for the operation ‘A. It follows from Postulate J, that
the group ® (A) has a left unit E; and hence (see §1, III) @ ( A) is classic.

We consider a special case, when our classic group is abelian. We obtain
then

THEOREM 2. A finite uniformly reversible group ® (x) is an “inverse” to
an abelian group, if and only if it is subject to the postulates B and J.

Let & (x) be subject to the postulates B and J; by the preceding theorem
the inverse group & ( A) is classic; it remains for us to show that ® (A) is
commutative. We have

(10) (XxA)*B = Xx(A%B1),
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B and B, depending only upon each other. Let AxB,=C; then (as in the
preceding theorem) B A4 =C, C AB,=4; hence

(20) BAAAB,=A4.

We write this without brackets, because the Associative Law is true for A;
(20) is true for each element 4; we take A =E (unit); then BAB,=E;
B,=B"'; and thus from (20) it follows that A AB=BAA; i. e., the
Commutative Law holds for A.

Convei'sely, let ® (A) be an abelian group; we must prove that B and
B, in (10) depend only upon each other. But (20) gives AxB-'=B A4 =C;
hence B;=B-!in (10), and Postulate B holds for .

The postulates B and J are characteristic for the operation of division.
Thus it is possible, for example, to construct an abstract theory of pro-
portions.

SUPPLEMENT

Example I. A group with Postulate A but not classic (see Table 1).
This group is obtained from the symmetric group of 6th order by making in
the head-line of Cayley’s table of this group (see Table 2) the following
substitution:

(E ABCDF )

ECDAF B
Example II. A group with Postulate B but not classic (see Table 3).
This group is obtained from the same symmetric group by making in the
head-line of Table 2 the following substitution:

EABCDF
(EBACFD)'
This substitution gives an automorphism of the symmetric group of 6th order.
EABCDF EABCDF EABCDF
E|ECFABD E|\EABCDF E\EBACFD
A|ADBEFC A|AEFDCB A|{AFEDBC
B|BFCDEA B|BDEFAC B|BEDFCA
C|CEAFDB C|CFDEBA C|CDFEAB
D|\DAEBCF DIDBCAFE DI DCBAEF
F|FBDCAE F|FCABED F|FACBDE
TasLE 1 TaBLE 2 TaBLE 3
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