
ON A GENERALIZATION OF THE ASSOCIATIVE LAW*

BY
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1. In my investigations in group theory, I have observed that Lagrange's

theorem (that the order of a group is divisible by the order of any subgroup)

does not use for its proof the Associative Law in its whole extent; this law

can be replaced by a more general postulate, "Postulate A", as I shall call it.

We shall represent our elements by capital italic letters; the operation

upon them may be represented by a star *, so that A-kB signifies the result

of this operation performed upon A and B. A set of elements closed under

any operation • may be called "a group" ; this word is thus used in a more

general sense than is usual, since the operation * is arbitrary. The ordinary

groups with a special well known operation may be called "classic" to dis-

tinguish them from our generalised groups. Sets and groups will be denoted

by capital German letters.

Postulate A.  In the equation

(1) {X*A)*B = XicC,

the element C depends upon the elements A and B only and not upon X.

(We suppose here that X can be an arbitrary element of a finite group to

which A, B and C belong also.)

The Associative Law is obviously a special case of this Postulate A, viz.

if C = A+B.
I have investigated the finite groups that are obtained by replacing the

Associative Law in the system of postulates of Frobeniusf by Postulate A.

I have found the following properties of these groups.

I. Besides our operation • every group ® of our type has another opera-

tion that will be denoted by a little circle o and defined as follows: the equa-

tion (1) being given, we write

(2) C = AoB.

* Presented to the Society, October 27, 1928; received by the editors in July, 1927.

t Frobenius (Über endliche Gruppen, Berliner Sitzungsberichte, 1895) defines the classic finite

groups by the four following postulates: 1. The operation that will be considered is uniform (ein-

deutig) and applicable to any two elements. 2. This operation is uniformly reversible (eindeutig

umkehrbar), i.e. from AB = AC or BA=CA it follows that B = C. 3. The Associative Law is true

for it. 4. The operation is "limited in its effect" (begrenzt in ihrer Wirkung) ; that signifies the pos-

sibility of forming finite groups of our elements.
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It is easy to see, that © is also a group relative to the operation o; we

express this fact by writing © (o); (analogously, © (•)). I shall prove that

© (o) is classic.

II. The group © (*) has always a right unit (the same for all its elements).

III. If the group © (•) has also a single left unit for all its elements

(that must necessarily coincide with the right unit), then the Associative

Law is true for ® (•) ; in this case © (•) is classic and the operations • and o

are identical.

It follows that in the systems of postulates of Moore* and Dickson f for

the definition of classic groups the Associative Law can be replaced by Postu-

late A (or its left analogue).

IV. We associate with every element A of our group ® a substitution

*-(x y

\X-kAj

whereby X runs over all elements of ®. I prove that all those substitutions

A (corresponding to each element A of ®) form a substitution group ®

which is obviously classic and simply isomorphic with © (o). Conversely,

all such substitutions A form a group only if the Postulate A is true for © (*).

V. All groups of our type will be obtained from classic groups by making

any substitution in the head-line of Cayley's table of a classic group. More-

over, it is sufficient to make only such substitutions as do not alter the unit

of the classic group.   Such a substitution may be denoted by a.

VI. £> (*) being any subgroup of © (*), § (o) is also a subgroup of

© (o), i.e. relative to the operation o. The converse is not true. Every sub-

group § of © relative to o is also a group relative to •, if and only if the

substitution a, which corresponds to © (*), has the following form:

-a
the numbers / being relatively prime to the orders of corresponding elements

X.

2. We shall prove now all the assertions of §1.

I. The group © (o) is obviously uniformly reversible.  Again:

[(X+A)*B]*C = [X+(AoB)]*C = X*[(AoB)oC] ;

* Moore, A definition of abstract groups, these Transactions, vol. 3 (1902).

f Dickson, Definition of a group and a field by independent postulates, these Transactions, vol. 6

(1905).
% The sign — signifies that we denote a complicated expression more simply with a single letter.
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and on the other hand

[(JT*il)*B]*C = (X*A)*(BoC) = X*[Ao(BoC)] ;

and hence the Associative Law is true for © (o).

II. The classic group © (o) has always a unit E; it is such that

(X+E)-kA = X*(EoA) = X+A ;

and therefore

X+E = X for every X ;

E is thus the right unit for © (*).

III. Let E be a left unit of © (•); we have, then,

(E*A)-kB = E+(A*B) = A+B ;

and hence by virtue of Postulate A for every element X

(X+A)+B = X*{A*B),

i.e. the Associative Law; hence © (•) is classic, and AoB = A*B.

IV. It follows from (1), by virtue of Postulate A, that Xß = Ü; hence ©

is a substitution group simply isomorphic with ® (o) (see (2)).

Conversely, let © (•) be any finite uniformly reversible group and let

© be the set of corresponding substitutions, which form also a (classic)

group.  Let

\x*a)\x*b)~\x*c) '
since

( x W X*A )
\x+bJ    \(x+a)+b/'

it follows that

(X+A)*B = X+C

for each element X of © (*); hence Postulate A holds.

V. In the head-line of Cayley's table of © (*) we make the following

substitution:
..( x)

(E being the right unit of © (*))•   Let E-kX = X'.   We define the third

operation X as follows:

(3) A+B = AXB'.
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The operation X is uniformly reversible and also associative; in fact we

have from (1) and (3) :

(4) (XXA')XB'= XXC',

C' depending on A' and 5' only but not on X; let X=E; then (EXA')

XB'=EXC'; but we have EXX'=E+X = X'; hence C'=A'xB', and (4)
gives us the Associative Law for X ; thus © ( X ) is classic. Again it follows

from (2) that a gives an isomorphism between © (o) and © (X).

Conversely, let © (x) be now a given classic group; we make in the head-

line of Cayley's table of © (x) any substitution

'-©

and define a new operation * as follows:

A X B = A-kB.

The operation * is obviously uniform and uniformly reversible; the Postulate

A is also true for • ; in fact, if

(X+2)+B = A-*C,
we have

(X+A~)*B = (X X A) X B = X X (A X B) ;

and
X*C = X X C ;

hence A XB = C and thus C depends upon A and B only.

E being the unit of © (X), £ is the right unit for © (•); we have in fact

A+E=AXE=A.

I affirm that we can replace ß by another substitution a, which does not

alter E, and in this manner define a new operation, say O, so that the group

© (O) will be simply isomorphic with © (•) and have the right unit E. We

take for a

let EXX' = X; we can write then

a = (3(z') = (i);
and so we define

A XB = AOB'.
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We shall prove that the substitution

~£)

gives an isomorphism between the groups © (•) and © (O).  Let

(5) A-kB = € ;

we shall prove that we shall have also

(6) A'nB' = C.

It follows from (5) that AXB = C; but J = £X-4', C = EXC'; hence
(ËXA')xB=ËxC; and since © (X' is classic,

ËX(A'XB) = EXC ;

hence A'XB = C, and so (6) is established.

VI. Let §=Pi+Pi+P3+ •••,*$(•) being a subgroup of © (*). Let

(X-kP^-kPx^X-kP^; the elements PK and P\ of £> being given, the element

Pu exists also in &; by virtue of Postulate A we have P,oP\=P„; hence

¡Q (o) is also a group.

It follows, hence, that Lagrange's theorem is true for the groups © (*)

of our type.

Let £> be now a subgroup of © relative to o ; we shall analyse the condi-

tions by which fj is also a group relative to *. Let a be the same substitution

as in V, and

§' = P{ + Pi + P¿ + ■ ■ • .

(P{, P2, Pi, ' ' " are elements in ® corresponding to Pi,P2, Pa, ' ' ' , by

virtue of a.)   Since a gives an isomorphism between ® (o) and © (x) (X

being the operation defined by (3)), §' (x) is also a group (relative to X).

Let £> (•) be also a group; then

PK*Px = P« X Pi « P„.

If P\ runs over all elements of £>', then P„ runs over all elements of §,

and conversely.  Hence

P, X £' = §

(for each P, of &). Consequently § is one of the partitions of © (X)

relative to ^' (X)t- This condition is obviously also sufficient for § (*) to

be a group.

* The sign + signifies that the elements Pl} Pz, • • • form a set §.

t Hilton, An Introduction to the Theory of Groups of Finite Order, Oxford, 1908, p. 58.
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Since the substitution a does not alter the unit E of © (X), $ and £'

must be identically equal to each other, because both of them have a common

element E.

We shall now analyse the conditions by which every subgroup § (o) of

© (o) is also a group relative to •. Then we must have £' = § (our notation

remains as above) for every subgroup § (o). We take £' = § (X) = {P\,

a cyclic group, P being an arbitrary element of ®. Since {P ) must be also

a group relative to •, we have

(7) P*+P = P* X P' ;

consequently for each element X of © also,

(7') X-kP = X X P'.

More generally,

(8) X+P' = X X Px.

To every exponent k in (8) there corresponds one and only one exponent

X and vice versa. This must be true for each element P of ®; if we take P*

instead of P, we obtain, in the same manner as in (8),

(9) XicPk" = X X P1" ;

for every p there is a definite v and vice versa. Let m be the order of P, and

d the greatest common divisor of k and m; then m/d is the order of Pk and

each exponent kp and kv in (9) is divisible by d. Conversely, if one of the

exponents k, X in (8) is prime to m, the other is also prime to m. Consequently

the exponent I in (7) or (7') must be prime to m. Thus a has in this case the

following form :

"©■

where the numbers / are prime to the orders of corresponding elements X.

This condition is not only necessary but also sufficient: if it holds, then every

cyclic subgroup {P\ of ® (X) is also a group relative to •. But hence every

subgroup ^>(X)of®(X)is also a group relative to •. Q and P being any

two elements of £, we have in fact Q-kP = QxP'; thus Q*P belongs also to Jp.

We can take, in particular, a substitution a of the following form:

"©•

where t is the same for each element X and relatively prime to the order of

our group ®.
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3. We shall consider now a special case of Postulate A, that is, however,

more general than the Associative Law.

Postulate B. In the equation

(10) (X*A)*B = X*(A*Bi),

the elements B and Bi depend only upon each other; every B is completely

defined by the corresponding Bi, and conversely.

This postulate can be expressed in another form as follows:

Postulate B'. If

(11) A-kB = c*D

and if K is an arbitrary element, then

(12) Ak(B-kK) =Ck(DkK).

We prove first that Postulate B' follows from Postulate B. Let R be an

element such that

(13) A+(B*K) = (A*B)+R ;

R depends upon K only (by Postulate B).  Again it follows from (11) that

(14) (A+B)*R = (C*D)*R ;

and by Postulate B it follows from (13) that

(15) Ck(D*K) = (C-kD)*R;

hence, from (11), (13), (14), (15) it follows that (12) holds.

Second, we prove that Postulate B follows also from the Postulate B'.

For that purpose we shall prove the following lemma:

Lemma: If Postulate B' is true for a (uniformly reversible) group © (*),

there exists in © (•) a right unit (for all elements of © (*)).

If B is a given element, there always exists in © (*) an element E such

that

(16) BkE = B.

Let D be an arbitrary element of © (•) ; if A is also a given element, there

always exists an element C, for which

(11) A-kB = CkD ;

by virtue of Postulate B' we have, then,

(17) Ak(BkE) = Ck(D*E) ;
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and by virtue of (16) and (11) it follows from (17) that E is the right unit

for every element D.

Assume now that A-kB = C = C-kE; in the hypothesis of Postulate B' we

have, K being an arbitrary element,

A+(B+K) = C+(E+K) = (A+B)*(E+K) ;

and thus we have in (13) E+K=R; this shows that Postulate B holds for

our group.

Since the groups with Postulate B form a special case of groups with

Postulate A, they can be obtained in the same manner as groups with

Postulate A (§1, V). We must now examine what must be the substitution

a (§1, V), in order that we may obtain a group © (*) with Postulate B. The

answer is given by the following theorem:

Theorem. If the group © (•) is obtained from the classic group © (X) by

means of the substitution a, Postulate B is true for © (•) if and only if a is an

automorphism of the group © (X). In this case a is also an automorphism for

© (*), and the operations o and X coincide with each other.

Let © (•) be a group with Postulate B. The equation (10) gives a de-

pendence of 5 and 5i upon each other; this dependence is given by a substitu-

tion, that we denote symbolically by (£,). Let A -E (the right unit lof

@(*))in(10);then

X*B = X+iEtBO ;
and hence

(18) B = E+Bi.

Let

»©'

we have then

B = E*5i = E X (5i)' = W ;

and hence

Moreover it follows from (10), if we use the notation A^B^C, that

C = AoB = A-kBi = A X (By)' = A X B ;

thus the operations o and X coincide.
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Conversely, suppose that the operations o and X coincide.  Let

"©-©'

we have then

(19) X*A = XXA' ;

and
(X+A)*B = X+(A XB) = X*(A-kBi),

and that is Postulate B, because B and Bi depend only on each other. Again,

by (19),
(X*A)*B = X-kC = (X X A') X B' = X X C ;

and hence

A X B = C,    A'XB' = C;

this shows us that a is an automorphism of © (x).

Conversely, let a be an automorphism of © (X); then

(X*A)*B - (X X A') X B' = X X (A' X B')

= x x:(a:x by.= x*(a x b) = x*(a*bo -,

and thus Postulate B holds.

It remains to prove that a is in this case an automorphism of © (*) also.

We have in fact

(A*B)' = (¿IX B')' =-A' X (B'Y = A'kB'.

4. In the theory of uniformly reversible groups we can consider the

operations inverse to the operation of a given group. Since the operation of

our group is performed upon two elements (viz. X*Y), two inverse operations

exist according as the left or the right of these two elements is unknown to us.

If the commutative law is true for our group, such a group has only one

inverse operation and only one "inverse group" (i.e. the group relative to the

inverse operation). But although a general classic group has two "inverse

groups," it has only one inverse operation (abstractly considered), because

the properties of the operation of a classic group are "symmetric," i.e. the

same on both sides; two "inverse groups" of a classic group are simply iso-

morphic to each other (if our notations are conveniently chosen) ; this follows

from the fact that a classic group is always "anti-isomorphic" to itself, i.e.

there always exists such a substitution (x) of elements of a classic group,

that if A, B correspond respectively to A, B, then AB corresponds to BA;

we can take, for example, X = X~l.
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The operation of a finite classic group © may be denoted by X, the two

inverse operations by A and V; more precisely,

if   AXB = C,    then   CAB = A,    C\/A = B.

Both inverse groups © (A), © ( V) are finite and uniformly reversible

but not associative. Let us consider what influence the associative law of

the operation X makes on the operations A and V. Let (^4x5)xC

=AX(BXC) ^R; AXB^P; BXC^Q; then PXC = AXQ=R. Hence
PAB = A,QAC=B,RAC = P, RAQ = A; consequently

(RAC)AB = RAQ,    and   B X C = Q.

[Or PsjA=B, Q\/B = C, RyP = C, R\/A=Q,  (P. V¿) V5 = 2c VP, and
P = A XB.]   This is Postulate A, that is true for the operation A (and for

V). But the operations A and V are subject to still another postulate, viz.:

Postulate J. Every element X satisfies the equation

XAX = E    (or    X\?X = E),

where £ is a determined element (the unit of the direct operation X).

Theorem 1. A finite uniformly reversible group ® (•) is an "inverse" to

a classic group, if and only if it is subject to the postulates A and ].

Only one part of this theorem remains for us to prove. Let ® (*) be sub-

ject to the postulates A and J. We use the same notation as before; if

^4*5 = C, then CAB = A. We must prove that ® (A) is classic. Obviously

the operation A is uniform and uniformly reversible. Again, we have

(XicA)ifB=X-kC^Z; C depends upon A and 5 only; let X-kA^Y; then

Y+B = X*C = Z;ZAC = X,ZAB = Y, YAA=X;thus

(ZAP) A/1 =ZAC,

which is Postulate A for the operation A.  It follows from Postulate J, that

the group ® ( A) has a left unit E; and hence (see §1, III) ® ( A) is classic.

We consider a special case, when our classic group is abelian.  We obtain

then

Theorem 2. A finite uniformly reversible group ® (•) is an "inverse" to

an abelian group, if and only if it is subject to the postulates B and J.

Let © (•) be subject to the postulates B and J; by the preceding theorem

the inverse group © ( A) is classic; it remains for us to show that ® ( A) is

commutative.  We have

(10) (X+A)*B = XtiA-kBO,
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B and Bi depending only upon each other. Let A-kBi = C; then (as in the

preceding theorem) B AA =C, C ABi = A ; hence

(20) BAAABi = A.

We write this without brackets, because the Associative Law is true for A;

(20) is true for each element A; we take A =E (unit); then BABi = E;

Bi=B~l; and thus from (20) it follows that AAB=BAA; i. e., the

Commutative Law holds for A.

Conversely, let © (A) be an abelian group; we must prove that B and

Bi in (10) depend only upon each other. But (20) gives A*B~1 = B AA =C;

hence Bi = B_1 in (10), and Postulate B holds for *.

The postulates B and J are characteristic for the operation of division.

Thus it is possible, for example, to construct an abstract theory of pro-

portions.

Supplement

Example I. A group with Postulate A but not classic (see Table 1).

This group is obtained from the symmetric group of 6th order by making in

the head-line of Cayley's table of this group (see Table 2) the following

substitution :
/EABC DF\

\EC DAF b)'

Example II. A group with Postulate B but not classic (see Table 3).

This group is obtained from the same symmetric group by making in the

head-line of Table 2 the following substitution:

/EABC DF \

\EBACF DJ'

This substitution gives an automorphism of the symmetric group of 6th order.

EABCDF EABCDF EABCDF

E

A

B

C

D

F

ECF ABD

ADBEF C

BFC DEA

CEAFDB

DAEBC F

FBDC AE

Table 1

E

A

B

C

D

F

EABC DF

AEFDC B

BDEFAC

C F DEBA

DBCAFE

F C A BED

Table 2

E

A

B

C

D

F

EBACFD

AFEDBC

BEDFC A

CDFEAB

DC BAEF

F AC BDE

Table 3
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