
CERTAIN INVARIANT SEQUENCES OF POLYNOMIALS*

BY

E. T. BELL

We discuss certain sequences of uniform functions of one variable such

that the derivative of each term of a given sequence is equal to the preceding

term, and each term is changed by a linear transformation on the variable

into a multiple of itself, the multiplier being a function of the rank of the term

alone, and the linear transformation and the multiplier function being the

same for all terms. It is an interesting problem to determine all such se-

quences of a certain type, described presently, and to assign the corresponding

transformations and multipliers. This is done in the following sections; there

is an infinity of solutions. Although we consider only functions of one variable,

the method is general and applicable to functions of any number of variables.

The terms are necessarily polynomials. By linear transformations on

the rank and the variable, any number of distinct sequences having the stated

properties for any given linear transformations on their variables can be

replaced by new sequences, all of which are transformed alike by the same

linear transformation on the variable, and hence are instances of a single

sequence of the original kind. In this respect the theory of any number

of distinct sequences of the kind described can be unified.

The determination of all sequences of the general kind just mentioned,

presents no difficulty. The solution, if no restriction be imposed on the

numbers defined by the sequences, contains an infinity of arbitrary constants.

From our point of view, which is to extend in as simple a manner as possible

the existing instances of such sequences, the perfectly general solution is of

but slight interest; it is difficult to see how it could lead to interesting ex-

tensions of the known cases. This remark is the origin of §4, Theorem 3,

where the alternative condition \f/0^2 — ̂ i2 = 0 is rejected, and its contra-

dictory leads to a definite infinity of solutions, each of which contains only

a finite number of arbitrary constants. We have endeavored to construct

the theory so that its interest shall be arithmetical rather than algebraic.

There are four classic instances of such sequences. These will be derived

in §8 as immediate special cases, to provide checks on the general theorems.

The main points of the paper are the definitions of index and characteristic

in §1, and the Theorerhs 1-11.

* Presented to the Society, San Francisco Section, October 27, 1928; received by the editors in

September, 1928.
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Both in the classic instances and in their extensions, the sequences appear

as particular solutions of what is here called the functional equation of

invariant generators. This functional equation alone is not sufficient to

define a particular sequence. The manner in which particular solutions are

completely specified is explained in §§8, 9. For example, the Bernoulli

numbers being the coefficients in the successive polynomials of one classic

sequence, we use the even suffix notation B0, B2, 7?4, 7?6, • • ■ , in which,

if no further condition be imposed, Bi, B3, B¡,, ■ ■ ■ are entirely arbitrary. To

eliminate this undesirable infinity of arbitrary constants, we adjoin to the

functional equation another for the numbers 7?2n (w = 0, 1, • ■ • ), in a

perfectly definite manner, which completely defines the sequence, and so

in all cases.

1. Invariant sequences. Let n be an integer a; 0, and x a real or complex

variable. A statement involving n shall signify the totality of statements

obtained from the given one by taking « = 0, 1, 2,- • • , successively, so

that it will be unnecessary in formulas and elsewhere to indicate the range

of«.

The notation (ah ■ ■ • , ar) = (¿>., • ■ ■ , br) means a¿ = &,(í = l, • • • , r);

while (ai, ■ ■ ■ , a,)7¿(bi, • ■ • , br) means that at least one of fli = ô,- (* = 1,

• • • , r) is false.

Letfn(x) be a single-valued function of x defined for all x as above, and,

when necessary, impose the convention that/_i(z) is defined and finite for all

values of x considered. If/„(x) is a polynomial in x, its degree in x is by defi-

nition n. If y is a function of x, the derivative of /„(y) with respect to x

will be denoted by/n' (y). It is necessary to assume that/,,' (y) exists only in

what immediately follows; thereafter/„' (y) automatically exists.

It is well known and indeed obvious that the general solution of

(1) /.'W-»^iW

is the polynomial

n      / fl\

/»(*) = (* + «)n =   E (       )«»-.*',
»-o \s /

where, as indicated, (x+a)n is the symbolic nth power of x+a, and a is the

umbra of the sequence a0, a*., • • • , an, • ■ • of arbitrary constants. That is,

the general solution of (1) is the Appell polynomial of rank n with a as base.

Note that the coefficient of x" mfn(x) is aa. We may refer to a as the base of

the sequence fo(x),fi(x), ■ ■ ■ ,fn(x),

Let h be independent of both n and *, and let y(n) be a function of n

alone such that 7(0)^0, <x> ; the excluded values lead only to trivialities.
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Then if gn(x) is any solution of (1), the necessary and sufficient condition

that 7(«) g„(x) shall be a solution of

(2) *.'(*)-*-i(«),

is »7(«) = y(n — 1) ; hence y(n) = 7(0)/« !, and we have the following :

7/ k is an arbitrary constant which takes neither of the trivial values 0, °o,

and if fn(x) =gn(#) is the general solution of (1), the general solution of (2) is

(3) Ux) - kgn(x)/n\ ;

conversely, the general solution of (1) isfn(x) =n\ \j/n(x)/k..

We shall call \pn(x) the canonical polynomial of degree n with base a,

and, when necessary, say that rf/n(x) corresponds to the Appell polynomial

gn(x) from which it is constructed, and refer to a as the base of the sequence

to(x), M*), • • • , y¡/n(x),

Let t(«), called the multiplier, be a function of » alone which is finite

for all integers « = 0, and not identically zero. Then, if there exist constants

a, b, other than the trivial pair (a, b) = (l,0), such that

(4) fn(ax + b)=r(n)fn(x),

we shall call

fd(x) ,   fl(x) ,   •  ■  -   , fn(x)

an invariant sequence with respect to the transformation [x, ax+b], or briefly,

an invariant sequence. When there can be no confusion between the term

fn(x) and the sequence of which this is the nth term, we shall refer to the

sequence as fn(x). Note particularly that in this definition the terms are

not restricted to be polynomials.

If fn(x) for a particular (a, b, r(n)) is the general solution of (4), then

kfn(x)/n\, where k is an arbitrary constant, is also a solution. Hence the

simultaneous solutions, if any, of (2), (4) are canonical polynomials. Let

fn(x) for a particular (a, b, r(n)) be the general solution of

(5) fl (x) = U-i(x), Max + b)= r(n)fn(x).

Then we define

fo(x) ,   fl(x) ,   ■  ■ ■   , fn(x)

to be an invariant sequence of polynomials with the characteristic (a, b, r(n)),

or simply an invariant polynomial sequence, when the characteristic is

understood or otherwise indicated.

Our problem is to determine all invariant polynomial sequences. This

will be accomplished when we find the multiplier r(n), the constants a, b in
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the transformation [x, ax+b], and sufficiently define the bases of the Appell

polynomials corresponding to the canonical polynomials concerned for a

given characteristic. We shall first partially dispose of the multiplier. This

depends upon the index, next defined, which is the taproot of the whole

theory. When b is an integer, the sequences are of particular interest (§6,

Theorem 10).

Let <¡> be the umbra of the sequence of absolute constants <p0, <t>i, ' ' ' ,

</>„,-••. The least integer s ^ 0 such that 0,^0, will be called the index of <t>.

If <p is the base of the sequence/„(x), and s is the index of <j>, we replace

n by n+s in (5), differentiate the result n times successively, and get

anf,(ax + b) = r(« + s)f,(x).

Since f,(x) = (x+<p), = <j>,=f,(ax+b), we have r(n+s)=an. Again, since

/,■(*) =0 (j = 0, 1, • • • , 5 — 1), it is immaterial what finite values be assigned

to t(j) (j = 0, 1, • • • , s — 1). In particular we may take r(j) =a'~t(j = 0,

1, • • • , j —1). Hence

(6) r(n) = a"-'

is the value of the multiplier for the invariant polynomial sequence defined in

(5), in which fn(x) has base </>, and s is the index of ¡p.

The classic instances of (5) are given by the polynomials whose bases are

B, G, E, L, these being the umbrae of the sequences of the numbers of

Bernoulli, Genocchi, Euler and Lucas. The customary manner of proving

that these polynomials are indeed instances is somewhat fortuitous and

effectively conceals the root of the matter, which is the index of the numerical

sequence concerned in each case. Incidentally our general theorems give

much more than the classic results for these instances. It will be interesting

to observe the fundamental part played by the index in the general theory

and in its applications to the classic instances.

2. Equivalent sequences. This section refers to the functional equation

(4) in §1, so that fn(x) is not restricted to be a polynomial, and (6) does not

necessarily hold.

The invariant sequences/„(*), gn(x) are defined to be identical if and only

if fn(x)= gn (x); otherwise they are distinct. Distinct sequences invariant

with respect to the same given transformation [x, ax+b ] will be called equiva-

lent. We now assign necessary and sufficient conditions for invariant sequences

to be equivalent, and give the requisite formulas.

Let a9^0, «5^0, b, ß be constants other than (a, b) = (a, ß) = (1, 0) ; the

excluded values give only trivialities. Let r, s be constant integers =£0, and
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fnix), hnix) functions of x defined as in §1, beginning; also let t(«) be as in

(4), and a(«) a similarly defined function such that

fniax + b) = r{n)fnix),    Kiax + b) = ain)h„ix).

Let c?*0, y9^0, d, 8 be constants. If rin+r)?¿0, o-(»+5)?í0, we define

gnix), *«(*) by

gnix) = f^+ricx + d), k„ix) = hn+,iyx + 6) .

Then, as may be easily verified, the functional equations (4) for g, k are

(x      d — b — ad\ 1

a ac        /     rin + r)

I x      & - ß - aô\ 1
M - +-) = ——Mx).

\a ay        /     <r(« + s)

We require the conditions upon the functions r, o and the several con-

stants which shall yield two or more of the sequences

/»(*), gnix), Kix), Kix)

as solutions of a single functional equation of the type

£n(Xz + u) = p(« + j)£nix),

in which/ is a constant integer = 0,p(rc+/)is defined, finite and not identically

zero for all integers «^0; X, p are constants other than (X, p) = (1, 0), and

£nix) is single-valued and finite for all x considered.

Comparing the above functional equations for/, g, h, k, we find that there

are precisely two distinct non-trivial solutions. Writing (a, ß, 8) =• (a, p, t) in

the solutions thus found, we get the following:

Theorem 1.    If ap^O, and Tin+r)?±0, the equation

d- + p)= ,   ,  M*)
\a        /      rin + r)

has the solution

tf\ ^-/    ([d(i ~a)~ b]x i   Ä
£»(*)   =  gnix)  = fn+Á-h dj,

where d is an arbitrary constant, r an arbitrary constant integer ^0, andf„ix)

is any solution of

/„(ax + b) = t(»)/„(x) .
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Theorem 2. Ifac^O and d(l — a)^b, andij and only ifr(n+r) =o(n+s)

¿¿0, where r, s are integers ^0, the equation

/ x      d(l - a) - b\ 1
d- +-—) = -r-ri?*(*)

\a ac /     T{n + r)

has the solutions

£»(*)   = gn(x)   = fn+r(cX + d) ,

tt\     y i ^     *   (c[t(a-í) + p]x      \
£»(*) = kn(x) = hn+\—-———-h / ),

\   d{a — 1) + b /

where d, t are arbitrary constants and fn(x), h„(x) are any solutions of

fn(ax + b) = r(n)fn(x), hn(ax + p) = a(n)hn(x).

Thus if in Theorem 1 a solution of each of the equations for £, / be known,

g is a second solution of the ¿ equation ; if in Theorem 2 a solution for each

of the /, h equations be known, the £ equation has the two solutions g, k.

The solutions can be easily verified. In §5 we find the equivalents of these

theorems for invariant polynomial sequences and show how they are to be

applied.

3. Generators. If <p0, <pi, ■ ■ • , <p„, • • • is a sequence of numbers, real

or complex, and z is a parameter, we shall call

e*2 =£"*«(2"/»!)

the generator of the sequence whose umbra is <p. The generator of the sequence

of Appell polynomials in x with base <f> is e^e*', or e{x+'t')z. Generators e*', e*z

are defined to be equal, e*' = e**, when and only when <£n = \pn. The symbolic

or umbral calculus of such generators being well known, we may dispense

with further details, except to remark that this calculus has been founded

postulationally on an algebraic basis which renders all discussion of con-

vergence in the use of generators for deriving relations between elements of

sequences irrelevant.

Let /„ (x) be the sequence of Appell polynomials with <p as base.   Then

Let gn(x) be the sequence of canonical polynomials corresponding to/„(x).

If there exist constants a, b, c, k, other than the trivial sets (a, b, c, k) =

(1,0,1,1), (0,0,0,0), such that

gn(ax + b) = kcngn(x),
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we shall call e*z an invariant generator. If s is the index of <j>, by §1(5), (6)

we have

kcn = t(») = an~' ;

but it is more convenient in §4 to use kcn instead of either of its equivalents

r(n), an~'. From the definitions in §1 it follows at once that the problem

of determining all invariant polynomial sequences is identical with that of

finding all invariant generators.

4. Invariant generators. Let u, v be independent variables, and

T(u, v) a function of u, v such that T(z, e') is a generator as defined in §3.

Let the index of <p be s; define \[/ by

(n + s)l\¡/n m »!(£„+,,

and let the generator of \¡/ be T(z, ez).   Then the index of \p is zero, and

T(z,ez) = e*', z'T(z,e') = e*2.

If now there exist constants (a, b, c, k) different from (1, 0,1,1), (0, 0, 0, 0)

such that

e{-ax+b^T(z,e') = kc'ecx'T(cz,ez),

then and only then is e*2 an invariant generator, as is evident on comparing

the generators of/„(ax+b), kc"fn(x), the notation being as in §3. Multiply

throughout by e~cxz. Then the new left member must be independent of x,

since the new right is. Hence a = c, and we have

eb'T(z,ez) = ka'T(az,eaz),

as the necessary and sufficient condition upon T(u, v) in order that T(z, ez)

shall be an invariant generator. From the last,

W- + b)n = kan+,\l/n.

Conversely, this implies the preceding equality, and hence it also is necessary

and sufficient.

Reject the trivial cases ka = 0. Take « = 0, 1, 2 in the last.   Then we get

ka' = \,        b = (a - l)fi/to,        (fl!-l)(W!-W) = 0.

Excluding a = l, which yields merely the identical transformation [x, x],

and noting, as is easily seen, that iftofc — ipi = 0 leads only to trivialities, we

get the unique solution

(a,b,k) = (- 1,- 2<b,+i/[(s+ !)*.],(- 1)*).
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Theorem 3. There exists precisely one non-trivial characteristic (a, b, r(n))

such that the sequence of canonical polynomials fn(x) with the base <p has the

property

fn(ax + b) = r(n)fn(x) ;

if sis the index of<j> the characteristic is

(a,b,T(n)) = (- 1,- 2«p.+1/[(s + l)fa], (- 1)«+»),

and <p is generated by R(z,e'), where R(u,v) is any solution of the functional

equation

vbR(u,v) = (- 1)'R(- u,vx),

in which u, v are independent variables and b is as above.

From this we have

Corollary 1. When the index s of <p is given, the first 5+2 terms of <p

are necessary and sufficient to determine the transformation with respect to which

the invariant polynomial sequence with base <t> is invariant, and its characteristic.

Corollary 2. A particular invariant polynomial sequence and its charac-

teristic are uniquely determined by the generator of the base of the polynomials;

conversely, a particular generator determines precisely one invariant polynomial

sequence and its unique characteristic.

The distinction between the information furnished by these two corollaries

may be emphasized : the functional equations §1 (5), for a given characteristic

(a, b, r(n)), are determined by the first $+2 terms only of the base, and have

an infinity of solutions ; to select from this infinity a particular solution it is

necessary to know the generator of the base, not merely the first 5+2 terms

of the sequence which it generates.

Tc obtain an element of the solution of the functional equation of invar-

iant generators, we assume that R(u, v) is a sum of terms of the form v*b+liA (u),

where X, u are constants and A (u) is independent of v.

Theorem 4. The functional equation of invariant generators

vhR(u,v) = (- \)'R(- w,t>-i),

in which u, v are independent variables, b is an arbitrary constant and s is an

integer è 0, has the elementary solution, involving both u and v, or only v.

R(u,v) = v'wF(u) + !)-e+i)*-.(- i)'F(- u),

in which r, t are arbitrary constants and F(u) is an arbitrary function of u alone,

including the case F(u) constant.



1929] INVARIANT SEQUENCES OF POLYNOMIALS 413

By requiring given rational functions of v,vrb, Vth, • • ■ and solutions of the

equation to be further solutions, we easily obtain the following :

Theorem 5. All rational functions of given solutions of the functional

equation of invariant generators that contain both variables u, v and are again

solutions, can be constructed by repetitions of the operations indicated in

kR(u ,v),    Ri(u, v) + R2(u, v),

(1 + (- l)-)v""2Ri(u,v)[R2(u,v)]> (e = 1,- 1),

where b, s are as in Theorem 4, k is an arbitrary constant, and R(u, v), Ri(u, v),

R2(u, v) are given solutions.

In applying this and the next, the usual precautions regarding vanishing

functions as divisors are to be observed. The separable solutions are of some

interest, as the four classic instances of invariant sequences mentioned in §1

have generators of this type.

Theorem 6. All solutions of the functional equation of invariant generators

of the type A (u) B (v), where A(u),B (v) are functions of u alone, v alone, are given

by
A(u) = F(u) + (- 1)">F(- «),       B(v) = G(v)       (r, = 0,1),

where F(u) is an arbitrary function ofu, and G(v) is any solution of

G(iri) = (_ 1)^1) .„(£(„),

where the same value of r\ is to be used in both of A(u), B(v). The G equation

has the elementary solution

G(v) m vrb+t + (- l)('ri-l)»i,-Cr+l)fr-«)

where r, t are arbitrary constants; all rational functions of given solutions that are

again solutions can be constructed according to repetitions of the operations

indicated in

kG(v),   Gi(v) + G2(v),    (-!)<*■« 'v'O'VM [G2(v)]< (e = 1, - 1),

where k is an arbitrary constant, and G(v), Gi(v), G2(v) are given solutions.

Corollary 3. Solutions of the type A(u) exist only when b = 0;A(u) is then

as in Theorem 6 with rj = l. All solutions of the type B(v) are obtained from

Theorem 6 by taking r] = 0in B(v) as there.

The first part of this has some interesting consequences.   Since F(z) +
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( — 1)* F( — z) is here the generator of an invariant polynomial sequence whose

base 0 is of index s, we have the formal expansion

F(z) + (- 1)«F(- z) = f ¿4>2n+,     2"      ,
„=o       (2» + s) !

since the left is changed into ( — 1)* times itself when z is replaced by — z, and

(p2n+8+i = 0. The characteristic is here ( — 1, 0, ( — 1)"+*). If s is even, this be-

comes ( — 1,0, ( — 1)") which, as will be seen in §8, is the characteristic of each

of the invariant polynomial sequences whose respective bases are E, L

(cf. §1). Thus extensive tracts of the theories of the ¡p, E, L invariant

polynomial sequences will be identical. One respect in which they may differ

is more striking. By considering the special case in which the generator of <p

is a rational function of z of the most general type possible, we easily find the

following :

Corollary 4. Let a, ß be arbitrary constant integers, (a, ß)^(0, 0), and

thepi,qi (¿ = 0,1, • • ■ ,a; j = 0,1, • • ■ ,ß) arbitrary constants; (po,qo)^ (0,0).

Then <p defined by

^ 4>2n+3-j

4>in+B+i = 0,      1^1i~—;-:—r; = 6npn,
2=o    (2n + s — j)\

where 0„ = 1 or 0 according as n^a or n>a, is the base of an invariant poly-

nomial sequence with index (— 1, 0, ( — 1 )"+*).

Neither of E, L can be defined by a linear difference equation of constant

order, since otherwise certain general circular functions would be algebraic.

Continuing with the general theorems we exhaust the possibilities in

the next.

Theorem 7. All solutions of the functional equation of invariant generators

of the types A(u) R(u, v), B(v) R(u, v), where R(u, v) is any solution involving

both u and v, and A(u), B(v) are functions of u alone, v alone respectively, are

given by A(u) =F(u)+F(—u), where F(u) is an arbitrary function of u, and by

B(v) =H(v), where H(v) is any solution ofH(v_1) =H(v) ; the H equation has the

elementary solution H(v)=k(vr+v~r), where k, r are arbitrary constants, and

kH(u), Hi(u)+H2(u), Ei(u) H2(u), Ei(u)/Hi(u), where H(u), Hi(u), H2(u)

are given solutions, are further solutions.

5. Equivalent invariant polynomial sequences. Applying §4 Theorem 3

to §2 Theorems 1, 2 we get the complete solution of the problem of equiva-

lence for invariant polynomial sequences.
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Theorem 8. Let the Appell polynomials fnix), A„(x) have the respective

bases X, p whose indices are s, t, and let the corresponding canonical polynomials

be Fnix), H nix), so that

nlFnix) = pfnix),        n\Hnix) = qhnix),

where p5¿0,q¿¿0 are arbitrary constants. Then

F¿ ix) = Fn^ix), Fni-lx + b) = i- 1)-+'F„(«),

#„'(*)   =   Hn-lix), Hni-   X+ C)   -   (-   l)"+'Hnix),

b = - 2X,+1/ [{$ + 1)X8], cm- 2pt+1/ [it + l)pt].

Let i, j, m be arbitrary constant integers = 0. Then

(       b - a\
X„ix)  =Gnix)   =  Fn+2i+s+m[ x H-—J,

(c — a \
x-\-)

are solutions of

Xiix) = Xn-iix),    Xni- x + a) = (- i)"+mXnix),

where a is an arbitrary constant, being equal to — 2crm+i/[(m+l)<rm], where a

is the base of the general Appell polynomial in x and m is the index of a.

Thus, according to the definition in §2, the G, K sequences are equivalent.

Let us call the X sequence the equalizing sequence for G, K. The data in a

specific application.of Theorem 8 will be the/, h sequences. Without the

theorem the invariant properties of these sequences must be investigated

separately. The advantages of replacing/, h by F, H which are equivalent

are obvious. By successive applications we get the following general result:

Theorem 9. By repeated applications of Theorem 8 to the equalizing

sequences of pairs of sequences of Appell polynomials, and to an equalizing

sequence and a sequence of canonical polynomials corresponding to a given

sequence of Appell polynomials, any number of sequences of Appell polynomials

can be transformed into the same number of equivalent sequences, all equalized

with respect to one invariant polynomial sequence.

An example is given in §8.

Corollary 5. The equalizing sequence in Theorem 8 is unique, as also are

the equivalent sequences which it equalizes, up to an arbitrary constant a in the

argument of the equalizing sequence, and arbitrary constant integers = 0 in the

ranks of the polynomials equalized, and the arbitrary constant a in their argu-

ments.
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6. Rational invariant polynomial sequences. If the generator R(z, ez) of

<p is such that R(u, v) is a rational function of the independent variables u, v,

we shall call the invariant polynomial sequence with <p as base rational. The

base of a rational invariant polynomial sequence will be called rational. The

terms of a rational base are of course not necessarily rational numbers. The

determination of all rational invariant polynomial sequences is reduced by

the next theorem to that of all rational bases, which is done in §7. From §4

Theorem 3 we get the following:

Theorem 10. The set of all rational invariant polynomial sequences is com-

pletely and uniquely defined by the properties

f'(x) - Mi(x),    /„(- x + 2<b,+i/[(s + 1)«,]) = (- iy+'fn(x),

where <p, whose index is s, is generated by R(u, v), where R(u, v) is any rational

function of the independent variables u, v which is such that

v*R(u,v) = (- i)'R(- u,v-i),       b =■ - 2<b.+i/[(s + 1)^.],

and hence, for all such sequences, — 2<p,+i/ [(s + l)(f>, ] is an integer.

7. Rational bases. Write the R(u, v) of Theorem 10 in the form

R(u, v) = vcN(u, v)/D(u, v), where

a ß

N(u,v) =  XyA(«),      D(u,v) m  ^íi'D(m)
i—0 I—0

are polynomials in u, v with highest common factor unity, the A<(«), D,(u)

are polynomials in u alone of degree ^0, and c is a constant integer <0.

The trivial case in which R(u, v) is a constant is excluded. The case a =ß = c

= 0 was discussed in §4, Theorem 6, Corollary 4 ; it is included in the next

theorem. As the solution of the pertinent functional equation presents no

difficulty, we merely state the result, which can be verified by inspection.

Theorem 11. The general solution of the functional equation of rational

generators,

vbR(u,v) = (- 1) •*(-«, IT1),

in which b, s are arbitrary constant integers ç0, and R(u, v) is a rational func-

tion of the independent variables u, v is

R(u,v) = vcN(u,v)/D(u,v),

where

c is an arbitrary constant intger =;0;
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N(u,v) =   ¿[»W<(«) + í(- l)»V-Wi(- «)],

£>(«,») = Z[^I>i(w) + ■(- i)(*-1),s*-'Dí(-«)] ;

a, /3 are arbitrary constant integers such that

aß 5¿ O,    a ^ 0,    /3 ̂  0,    0 - a = b + 2c ;

wo one of N0(u), Na(u), D0(u), Ds(u) is identically zero;

Ni(u) (i — 0, ■ ■ • , a), D,(u) (j = 0, ■ • ■ , ß), with the exceptions just

noted, are arbitrary polynomials in u alone of any degrees ^0;

e is a definite one ofl, — 1, and r¡ a definite one of 0,1, and the same value of

(e, n) is to be used in both of N(u, v), D(u, v).

According to the values of (e, n), rational invariant polynomial sequences

fall into four mutually exclusive sets,each of which contains an infinity of

sequences. The like holds when the numbers of the base are restricted to be

rational, or to be in any given number field.

8. The classic instances. In the even suffix notation the sequences

whose umbrae are B, G, E, L (cf. §1, end), have all terms, except Bh Gi,

of odd ranks, zero, and the signs alternate after the first term (rank 0).

The initial values necessary and sufficient for our purpose are

(B0,Bi) = (1, - i),        (G0,Gi,Gt) = (0,1, - 1),

(£0,£1) = (1,0), (UM) - (i,0) ;

hence the indices 5 of B, G,E,L are 0,1,0, 0 respectively, and the correspond-

ing Appell polynomials are

ßn(x) m(x + BY, yn(x) = (x + G)\

Vn(x) s (* + £)", \n(x) m (x + L)n.

From the stated values of 5 and the first 5+2 initial values in each case we

find the values of ô (§4, Theorem 3) for ß, y, v, X to be 1,1, 0, 0 respectively.

Hence, by Theorem 3, we have

Theorem 12. The ß, y, n, X sequences of polynomials are solutions of the

respective pairs of functional equations

pV(x) = «pVi(*), /3n(- x + 1) = (- l)nßn(x) ;

7»'(*) - «Yn-i(*), 7»(- x + 1) = (- 1)"+1t„(x) ;

77„'(x) = nnn-i(x), nn(— x) = (— l)nJ?„(x) ;

\¿(x) = »X„_i(a:), X„(- x) = (- l)"X„(x).
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The known generators of B, G, E, L are (in the u, v form)

u 2m 2d uv

v - 1     v + 1     v2 + 1     d2 - 1

respectively, and these obviously verify §7, Theorem 11. [In particular, the

integers a, ß, b, c in Theorem 11 are here (there can be no confusion between

these a, ß and the umbrae)

(a,ß,b,c) = (0,1,1,0),        (0,1,1,0),        (0,2,0,1),        (0,2,0,1),

respectively (c=the exponent = 0 of the highest or the lowest power off divid-

ing the numerator; a=the degree of the numerator in v after the division;

ß=the degree in v of the denominator; b=the integer already used in writing

down the functional equations) ; the sign of c is so chosen that the denom-

inator is not divisible by v].

To equalize the ß, y pair by §5 Theorem 8, take ß=f, y=h, and hence

(s, t) = (0,1), c = b = 1, in the notation of §5. This gives

Theorem 13.   // i, j, m are arbitrary constant integers ^0, and p, q, a

arbitrary constants, and if

(n + 2i + m)\Gn(x) = pßn+2i+J x -)-—j,

/        1 - a\
(n + 2j + m + 1)! K„(x) = qyn+2j+m+il x -\-— J,

then Xn(x) =Gn(x), Xn(x) =Kn(x) are solutions of

Xn"(x) = Xn_i(x),      Xn(- x + a) = (- l)«+"Xn(x).

In the same way we find for the r¡, X pair

Theorem 14. // k, I, t are arbitrary constant integers 3ï 0, and r, g, b arbi-

trary constants, and if

(n + 2k + t)! Pn(x) =- rr,n+2k+t(x - —J,

(n + 21 + t)\Qn(x) =. g\n+2i+t(x - —\

then Y„(x) =Pn(x), Yn(x) = Qn(x) are solutions of

Fn' (x) = Yn_i(x),    Yn(- x + b) = (- l)"+'Fn(s).

We now apply §5, Theorem 9. First equalize X, Y.
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Theorem 15. If d, e, s are arbitrary constant integers ^0, and w, h, c

arbitrary constants, and if

(a — c\

(n + 2e + t + s) \Tn(x) s hYn+2e+t+, (x + ~~),

then Zn(x) =Sn(x), Zn(x) = Tn(x) are solutions of

Z:(x) - Zn-i(x),      Z»(- x + c) = (- iy+'Z„(x).

Replace Sn(x) by its equivalent in terms of ß, y as given by combining

the definitions in Theorems 13,15, and similarly for Tn(x), r¡, X and Theorems

14,15. Then finally we have the general equalization of ß, y, r¡, X.

Theorem 16. // i,j, k, l, s are arbitrary constant integers ^0, and p, q,

r, g, c are arbitrary constants, and if

(n+2i + s)\Bn(x) m pßn+2i+,(x + —r~Y

(n+2j + s+ l)\Gn(x) m qyn+2j+!+i(x + ~~),

(n + 2k + s)\En(x) m rr¡n+2k+, I x-J,

(n + 21 + s)\L„(x) m gXn+2l+, I x - — Y

then Wn(x)=Bn(x), Wn(x)=Gn(x), Wn(x)=En(x), Wn(x)=Ln(x) are solu-

tions of

W¿{x) = Wn-i(x),        Wn(- x + c) = (- iy+'Wn(x).

To exhibit the particular form of this current for Bn(x), G„(x) in the

literature, we state the following

Corollary 6. The equations

U:(x) = I7_i(*), Un(- x-l) = (- l)»Un(x)

have the solutions

Un(x) - »,(*) =. ßn(x + l)/n!, Un(x) = <§„(x) =. Vn(x + \)/n\,

Un(x) = ©„(*) - 7n+1(x + l)/(» + 1)!,      U¿x) = ?„(*) m X„(* + \)/n\.
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Glancing back over this section we see that everything in it, with the

exception of the u, v forms of the generators, is an immediate consequence

of the numerical values of the indices s and the first s+2 terms of the bases

of the polynomials. That this should be so, and that the like holds also in the

general case, is a remarkable simplification of the theory.

For those who may wish to pursue the ß, y, r¡, X, and hence also the

B, G, E, L, further by the methods of this paper, we add

2(1 - 2")B. = Gn, (1 - 2«~1)Bn = Ln,

i2G)n = 2n(E - l)"-\ 2nE»~x = (2G + 1)",

all of which are well known and follow at once from trivial algebraic identities

between the generators in their u, v forms.

9. Remarks on notation and method. Many writers on the Bernoulli and

Euler numbers prefer a notation which makes the use of the symbolic method

impossible, for example Nielsen in his Traite Elémentaire des Nombres de

Bernoulli (Paris, 1923, pp. 9+398). His (-l)"-1^, n(-l)»2l<l—>r,.

are our B2n, G2n (rc>0); his polynomials 2(»+l)! E„ix), nlB„ix) are our

(;t+G+l)n+1, ix+B+l)n. By ignoring the well established symbolic method

he is compelled (loc. cit., p. 46) to write his Enix) in the form

J     xn «<(n+l)/2 f  _   l\M-lftXn-2ê+l

~2~n~\ Zi     (2s - l)!(n- 2j + 1)!22«'

which seems less suggestive and less tractable than its equivalent

(*+G+l)»+V[2(«+l)!].

As Neilsen in his preface emphasizes that the use of the functional

equations is a "méthode élémentaire qui est beaucoup plus fondamentale

que la méthode symbolique, développée notamment par Lucas" iit was

invented and very extensively applied to the Bernoulli and Euler numbers by

J. Blissard fifteen years before Lucas' work was published), it is well to point

out what is indeed otherwise self-evident : neither method is more fundamental

than the other in any significant sense; they are abstractly identical. For, the

symbolic method, as we have shown, leads directly to the functional equa-

tions, and these are uniquely determined by the numerical values of s and

the first s + 2 terms of the respective bases, but not without them; conversely,

the functional equations, together with the numerical values of s and the

first s+2 terms of the bases, uniquely determine the generators, which are

the fundamental formulas of the symbolic method in any given particular

instances.  That is, each method implies and is implied by the other; they are
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thus formally equivalent in the sense of mathematical logic, or abstractly identical,

as the term is used in algebra. To select a particular sequence given by the

functional equations, the "elementary method" (to use Neilsen's name for it)

adjoins a difference equation; the symbolic method presents the generator

of the base, and again these procedures are abstractly identical.

Further, the symbolic method, including the generators, is no more transcen-

dental, as has been carelessly alleged by certain writers, than is the elementary.

For, the equality of generators is precisely matric equality, and this is exactly

as transcendental as is mathematical induction, without which no formula

inferred from the processes of the elementary method is proved, however ob-

vious it may appear that the tedious induction will sustain the inference.

Operations on generators are equivalent to the Cauchy addition, subtraction,

multiplication and division of one-rowed matrices or, if preferred, of se-

quences, and these operations are abstractly identical with those of the ele-

mentary method. Heuristically, however, the advantage is with the symbolic

method. This is abundantly evident on historical grounds, and is not affected

by "elementary" reconstructions of theorems already known.
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