CONCERNING NON-DENSE PLANE CONTINUA*

BY
J. H. ROBERTS

It has been shown by Mengert that a necessary and sufficient condition
that a plane continuum M contains no domain is that for each point P of
M and each positive number e there exists a simple closed curve J of diameter
less than € which encloses P, and such that M -J is totally disconnected.

In the present paper it is shown that if M is a continuum which contains
no domain then there exists a set G of simple closed curves filling the whole
plane and indeed topologically equivalent to the set of all polygons, such
that the common part of M and any curve of the set G is vacuous or totally
disconnected. Additional results are obtained for the special case where M
is a continuous curve.

I wish to acknowledge my indebtedness to Professor R. L. Moore, and
to thank him. Credit is due him for the suggestion of most of the theorems
of this paper, and for many helpful criticisms of the proofs.

Part I

In this paper I make frequent use of the notion of a double ruling.}
If, on the simple closed curve ABCDA, X, X, - - - , Xa, Y1, Y3, - - -, V',
X2, X, -, X{,Yd, Y, -+, Y{ are points in the order 4 X, X, - - -
X.BY\Y: - Y.CX!X). - - X{DVJV, - - -V{A and X, X{, XX, ,

-, X X!, and V V!, V.V, - - -, V.V, arearcs which, except for their
end points, lie entirely within ABCDA, and finally, for every 4, j(1<i=<n,
1<j<m) X.,X! has just one point in common with ¥;¥/ and no point in
common with X,;X/ (unless 2=7), then these two sets of arcs are said to
constitute a double ruling of the interior of ABCDA (or merely a double
ruling of ABCDA). The arcs X:X{, XoXJ, - - -, XX are said to be
parallel to BC and to AD, and the arcs V,V{, V.V{, - - -, ¥,V aresaid

* Presented to the Society, in part, December 28, 1927, and December 27, 1928; received by the
editors March 30, 1929.

t Uber die Dimensionalitit von Punktmengen, Monatshefte fiir Mathematik und Physik, vol. 33
(1923), pp. 148-160. In his paper Sur les multiplicités Cantoriennes, Fundamenta Mathematicae,
vol. 7 (1925), pp. 30-137, Urysohn obtained the slightly weaker result that for each point P of M
and each positive number e there exists a totally disconnected closed subset T of M such that M —T
is the sum of two mutually separated sets M, and M, such that M, contains P and is of diameter
less than e.

1 See R. L. Moore, Concerning a set of postulates for plane analysis situs, these Transactions,
vol. 20 (1919), p. 172.

6



NON-DENSE PLANE CONTINUA 7

to be parallel to AB and CD. Each of these two sets of arcs is a single ruling
of ABCDA. Two sets of arcs H and K are said to constitute a complete
double ruling of ABCDA if (1) every finite subset of the set of arcs H+K is
a single or double ruling of ABCDA,(2) through each point within ABCDA
there is an arc of H and an arc of K, and (3) each point of ABCDA (except
A, B, C and D) is an end point of some arc of H or of some arc of K. If P
is a point with both coérdinates rational, then P is said to be a rational point.
By a rational line is meant a line whose equation is ¥ =7 or y =7 where 7 is
some rational number.

As an obvious corollary of a theorem due to Fréchet* I state the following

THEOREM 1. If M is a point set containing no domain then there exists a
continuous transformation T of the plane S into itself such that if P is any point
of M then T(P) is not a rational point.

Schoenflies has proved the following theorem:t

If T, is a continuous one-to-one correspondence between the points of two
simple closed curves J, and J, such that T1(J1) =J,, then there exists a con-
tinuous ome-to-one correspondence T, between Jy plus its interior and J. plus
its interior such that To(P)=T.(P) for every point P on J,.

Therefore for every simple closed curve J there exists a continuous trans-
formation T which throws J plus its interior into a square plus its interior.
The truth of the following lemma is apparent in view of this fact and
Theorem I.

LeMMmA 1. Suppose M is a point set containing no rational point, and
A, B, C and D are rational points which are the vertices of a rectangle, and AB
is a horizontal interval. Suppose o is a double ruling of ABCD with arcs
Ry, hay - - -, ha parallel to BA and arcs vy, ve, - - -, Vm parallel to BC such that
(1) for each i [j] (i<n, j<m) the end points of hi[v;] have the same rational
y-codrdinate [x-coirdinate), (2) for every i and j (i Sm,j <m) the point common
to h; and v; is rational, and (3) the rational points are everywhere dense on h;
and on v; (1<n, j<m). Then there exists a continuous transformation T
throwing ABCD plus its interior into itself and such that (1) T reduces to the
identity transformation on the rectangle ABCD, (2) T(P) is not rational for
any point P of M, and (3) for every i[j) (i =n, j<m) the arc T(h;) [T(v;)] is
an interval of some horizontal [vertical] rational line.

* Mathematische Annalen, vol. 68 (1910), p. 159. See also Urysohn, loc. cit., p. 83.

t Beitrage zur Theorie der Punktmengen, Mathematische Annalen, vol. 62 (1906), pp. 286-328.

See also J. R. Kline, A new proof of a theorem due to Schoenflies, Proceedings of the National Academy
of Sciences, vol. 6 (1920), pp. 529-531.
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THEOREM II. If M is the sum of a countable number of closed point sets
containing no domain and lying in a euclidean plane S, then there exists a
continuous transformation T of S into itself such that if L denotes any straight
line of S the point set L-T(M) is either totally disconnected or vacuous, and no
point of T(M) is rational.

I will assume that M contains no rational point. In view of Theorem I
this is no essential restriction. Let A4, B, C, D and E be points with coordinates

Fic. 1
(0,1), (1,1), (1,0), (0,0) and (1/2, 1/2) respectively, and let R denote the
interior of the square ABCD. Suppose M =M+ M.+ M;+ - - - , where for

every n the set M, is closed. There exist five circles with centers 4, B, C, D
and E respectively, such that their interiors I 4, I's, I'¢c, I p and Iz are mutually
exclusive, and no one of them contains a point of the closed set M.

There exists a double ruling o; (see Fig. 1) of R consisting of four arcs
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hi, - - -, hy parallel to AB and four arcs v, - - - , v, parallel to BC such that
(1) the end points of the arcs A1, - - - , ks, 03, - - - , v, divide each side of the
square ABCD into five equal parts, (2) for each 7(:<4) the arc k; contains
three points, x;, y; and 2;, in the order x,y:3; from AD to BC which be-
long to the domains Ip, I, and I ¢ respectively, fori=1, 2, and to the domains
14, I's, and Ip respectively for :=3,4, (3) the points %1, %2, %3, X4, 21, 22, %3, %
are the points k;-vy, hy-vs, hs-ve, ha-v1, hi-v4, ha-vs, hs-vs, hy-v4, respectively,
(4) for each 7 (<4) v; contains a point of Iz between the arcs %, and /s,
and (5) for each ¢ the rational points are dense on %; and on v; and every
point k;-v; (<4, j<4) is rational. Since M does not contain any rational

A
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point it is easily seen that the hypotheses of Lemma I are satisfied by
M and the double ruling .. Let T, denote a transformation satisfying
the conclusion of Lemma I. It is easily seen that every straight line which
contains two points of the square ABCD contains a point not belonging to
T\(M,). (See Fig. 2.)

Let # be the set of all arcs k such that k=T)(g), where g is an arc of the
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double ruling ;. Obviously ¢# is a double ruling of R, the arcs of which are
horizontal and vertical rational intervals. There exists a positive number
e:(e1<1/2) such that if P and Q are points of R and §(P, Q)1=1/2, then
8[T:(P), T:(Q)]>e. Let Py, Py, Py, - - - denote the rational points on the
arcs AB and BC. Let B, denote a double ruling of R consisting of a finite
set of rational horizontal and vertical intervals such that (1) 8, contains an
interval through the point P;, and contains} #, and (2) every component§
of R minus the sum of the arcs of the ruling B, is of diameter less than e,.

Let F, denote the collection of all components of R minus the sum
of the arcs of the ruling 8, and let G denote any element of ;. The domain
G is the interior of a rectangle 4 ¢BsCsDg, where A ¢Bg is an interval of a
horizontal rational line, and all of the points 4 ¢, Bs, Cq, and Dg are rational.
Let E¢ denote the center of the rectangle and let 44, Iy, Icg, Ing, and I,
be mutually exclusive circular domains which contain no point of the closed
set T1(M,+M;) and whose centers are the points A ¢, Be, Cg, Dg, and Eg.
Clearly there exists a double ruling oz, of G having with respect to G,
T.(M,+M;), T.(M) and the above mentioned circular domains the same
properties which the double ruling a; has with respect to R, M,, M and the
domains I, Is, I¢, Ip and Ig. Let N, be the sum of all arcs £ where % be-
longs to some double ruling o, for some domain G of F,. The point set
N, is the sum of a finite number of arcs which constitute a double ruling v,
of R. Let a; be the double ruling consisting of all arcs of the rulings 8, and
v:. Since T:1(M) contains no rational point the hypotheses of Lemma I are
satisfied by 71(M) and the double ruling . There exists a transformation T,
satisfying the conclusion of Lemma I and reducing to the identity trans-
formation on the square A BCD and on the arcs of the ruling 8;. Let #; denote
the double ruling consisting of all arcs & such that 2 =T,(g), where g is an arc
of the ruling a..

Let » denote an interval of length 2¢, which is a subset of R. Clearly if r
is a subset of some arc of the ruling 3, then it contains a point not belonging
to T.T,(M,+M;). If ris not a subarc of any arc of 8; then there exists a rec-
tangle which is a subset of the sum of the arcs of 8, and which contains
exactly two points of r. With the assistance of Fig. 2 it can readily be seen
that 7 contains a point not belonging to the set T,T,(M1+M,). Hence if T
is any continuous transformation of R into itself such that T(P) =P for every
point P on ABCD or on some arc of the ruling #, then every interval in R

1 If P and Q are points, §(P, Q) will denote the distance from P to Q.
1 A double ruling 8 is said to contain a double ruling ¢ if every arc of ¢ is an arc of 8.
§ By a component of a point set G is meant a maximal connected subset of G.
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which is of length greater than or equal to 2¢; contains a point not belonging
to the set TT.T:(M,+M,). There exists a positive number e (e <1/3)
such that if 8(U, V)=1/3 and U and V belong to R, then 8[T:T:(U),
T,T:(V)] >e. Let B, denote a double ruling of R consisting of rational hori-
zontal and vertical intervals such that (1) some interval of 8, contains P, (the
second rational point on 4 BCD), (2) (. contains &, (3) every component of R
minus the sum of the arcs of the ruling B, is of diameter less than e;.

Let F; denote the collection of all components of R minus the sum of
the arcs of the ruling 8. and let G denote any element of F,. The domain G is
the interior of a rectangle composed of subsets of rational lines. There
exists a double ruling a3, of G having with respect to G, ToT1(M,+ M.+ My)
and T,T:(M) the properties which the double ruling oy has with respect to
R, M, and M. Let N, be the sum of all arcs k, where £ belongs to some
double ruling a4 for some domain G of F,. The point set N is the sum of a
finite number of arcs which constitute a double ruling v, of R. Let a3 be the
double ruling consisting of all arcs of the rulings 8; and .. Since T.T:(M)
contains no rational point the hypotheses of Lemma I are satisfied by
T,T:(M) and the double ruling o;. Hence there exists a transformation T
satisfying the conclusion of Lemma I and reducing to the identity trans-
formation on ABCD and on the arcs of the double ruling 8,. Let ¢ denote
the double ruling consisting of all arcs k such that k= Ts(g), where g is an
arc of the ruling ;. Each component of R minus the sum of the arcs of the
ruling B is of diameter less than e.. Hence it follows that if T is a continuous
transformation of R into itself which reduces to the identity transformation
on ABCD and on every arc of the ruling #; then every interval which is a
subset of R and is of diameter greater than or equal to 2¢, contains a point
not belonging to the set TTsT.T1(M,+M,+M;).

Proceeding in this way one can see that there exists a countable infinity
of double rulings #, &, - - -, and a countable infinity of continuous trans-
formations Ty, Ty, T, - - - of R into itself such that for every positive integer
n the following properties obtain: (1) #.4, contains ¢,, (2) ¢, is composed of
horizontal and vertical rational intervals and every component of R minus
the sum of the arcs of the ruling #.4, is of diameter less than 1/x, (3) if U™
denotes the point T'wT m—y - - - T1(U) and U and V are points of R such that
8(U, V)Z1/n, then for every integer m(m >n) the points U™ and V™ are
separated in R by some arc of the ruling ¢,, and, for every n, §(U»*!, Unr+¥)
<2/n (k=1,2,---), (4) the transformation T, reduces to the identity
transformation on ABCD and on all arcs of the ruling ¢,, (5) some arc of
! contains P, (the nth rational point on 4BCD), (6) no point belonging to
two arcs of £, belongs to the set T'wT,_; - - - T1(M), and (7) if T is any con-
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tinuous transformation of R into itself which reduces to the identity trans-
formation on ABCD and on the arcs of the ruling #,,: then every interval
which is a subset of R and is of length greater than or equal to 2/# contains
a point not belonging to the set T7T, 1Ty - - - To(Mi+Mo+ - - - + M),

From property (3) it clearly follows that for every point U of R the se-
quence U, Ut U? - - - has a sequential limit point. Let T be the transfor-
formation which carries U into this sequential limit point. In particular, if
for some integer # the point U" belongs to some arc of ¢, or to ABCD, then
Ur=Ur* (k=1,2,---)and T(U) is merely U». I shall now show that T
is a continuous one-to-one transformation of R into itself which satisfies
the conclusion of Theorem II with respect to R.

First, T is a one-to-one transformation of R into itself which reduces to
the identity transformation on ABCD. Let U and V denote distinct points
of R. We see at once from property (3) that there exist two mutually
exclusive intervals g; and g, which belong to some double ruling #, and each
of which separates U™ from V™ in R for every integer m(m >n). Then the
sequences U!, U2 U3 - --and V!, V2 V3 ... have distinct sequential
limit points. Hence for each point X of R there is not more than one point
Ux such that X =T(Ux). That for each X there is at least one point Ux
follows from properties (2) and (3).

Second, the transformation T is continuous. Let U be a point not be-
longing to a point set W. If U is not a limit point of W then there exists an
integer m such that any point of T, T, - - - T1(W) is separated from T'(U)
by some arc of the ruling ¢, for every # (n>m). Hence T(U) is not a limit
point of T'(W). If however U is a limit point of the set W then for every e
there is a point V. of W and an integer ». such that §(U™, V.™) < e for every
integer m greater than n.. Hence T(U) is a limit point of T'(W).

It follows from properties (2), (5) and (6) that if U is a point such that
T(U) is rational, then U does not belong to M.

Let L denote any interval which is a subset of R, and suppose that
L-T(M) contains a nondegeneratet connected set. Since no continuum is
the sum of a countable number of totally disconnected closed sets it follows
that there exists an integer # such that L contains a nondegenerate con-
nected subset of T(M,). Let r denote some interval which is a subset of
L-T(M,) and let € be its length. Let #, be an integer such that 2/#,<e
and n;>n. Now the transformation T reduces to the transformation
T.1T., - - - Tion ABCD and on every arc of ., (property 4). Hence if T*

t A point set containing but a single point is said to be degenerate.
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denotes the transformation such that T'(U) =T*T, 1T, - - - T1(U) then T*
reduces to the identity transformation on ABCD and on every arc of t,,.
Hence by property (7) the interval r contains a point not belonging to
the set T*T, Tn, - - - TW(M+ - - - +M,41). But this set is exactly

T(M,+ - - - +M,,1). Hence we have a contradiction which means that no
interval which is a subset of R contains a nondegenerate connected subset
of T(M).

I have now shown that T is a continuous one-to-one transformation of R
into itself such that if L is any straight line then the point set L-T(M) - R is
either vacuous or totally disconnected, and no point which beongs to T'(M)
is rational. Hence T satisfies the conclusion of Theorem II with respect to the
rectangle A BCD plus its interior. The extension to the whole plane is obvious.

ParT I1

In his papert Grundziige einer Theorie der Kurven, Karl Menger proves
that if M is a bounded continuum containing no domain then a necessary and
sufficient} condition that M be a continuous curve [regular curve§] is that,
for each positive number ¢, M is the sum of a finite number of continua all of
diameter less than e, such that the common part of any two of these continua
is vacuous or totally disconnected [finite]. The necessity of this condition
follows from Theorem III for the case where M is a continuous curve, and
from Theorem VI for the case where M is a regular curve.

TueoreM III. If M is any continuous curve which contains no domain
then there exists a continuous transformation T of the plane S into itself such
that (1) no straight line contains a nondegenerate connected subset of T(M) and
no point of T(M) is rational, and (2) if R is the interior of a rectangle composed
of intervals of lines with equations of the form x =r and y=r, where r is a rational
number, then the point set R-T(M) is the sum of a finite number of connected
sets and every point of M on the boundary of R is a limit point of R-T(M).

To help establish Theorem III I will first prove the following lemma.

t Mathematische Annalen, vol. 95 (1925), pp. 277-306.

1 For the case of a continuous curve the sufficiency of the given condition was proved by
W. Sierpinski, Sur une condition pour qu'un continu soit une courbe jordanienne, Fundamenta Mathe-
maticae, vol. 1 (1920), pp. 44-60.

§ A continuum M is said to be a regular curve if for each point P of M and each positive number e
there exists a domain of diameter less than e which contains P and whose boundary contains only a
finite number of points of M. See K. Menger, loc. cit.
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Lemuma I1. If M is a continuous curve containing no domain and J is a
simple closed curve EKFGLHE such that the arcs EKF and GLH of J contain
no point of M, then there exists a simple continuous arc KL lying, except for
K and L, within J, and such that (1) the arc KL contains no nondegenerate con-
nected subset of M, (2) every point of M on the arc KL is a limit point of M
from both sidest of KL, and (3) the point set M —M - KL is the sum of a finite
number of connected sets.

Proof of Lemma II. Let I denote the interior of J and let N be the point
set M- I+EH+FG. If N is not connected there exists an arc KL which
contains no point of M. I will therefore suppose that NV is connected. Then
N is a continuous curve. The set of junction] points of M is countable.}
With the help of this fact and Theorem I it is easily seen that there exists an
arc KZL which except for K and L is within J and which contains no junction
point of M and no nondegenerate connected subset of M. Let Sg and Sk
denote the components of N—N-KZL containing E and F respectively.
Let Sz* denote the component of N —S» which contains E. Let S#* denote
N-Sg.

Since N is a continuous curve, Sg* and S#* are mutually separated sets.
The common part of the two sets Sz* and S#* is a subset of N-KL and is
therefore totally disconnected. Now Sz* is connected, by definition. I will
show that S#* is also connected.

Suppose that Q is a point of Sr and P is any point of S7*—S#* -Sr. There
exists§ in NV a simple continuous arc PQ. Let P be the first point on this arc
from P to Q which belongs to the set Sg*+Sr. The point P; belongs to Se,
for otherwise the subarc PP, of PQ belongs to Sg*, which is contrary to the
supposition that P isin Sg*. If P,is not in Sz* then it isin S and the arc PP,
is connected to Q by an arc in S#*.

Suppose then that P; belongs to both of the sets S* and Sp. Then P is a

t If M is a point set and P is an interior point of an arc 4B then P is said to be a limit point of
M from both sides of AB if there exists a simple closed curve J containing 4B such that, Iy denoting
the interior of J, P is a limit point of M - Iy and of M - (S—1I).

1 Cf. R. L. Moore, Concerning triods in the plane and the junction points of plane continua,
Proceedings of the National Academy of Sciences, vol. 14 (1928). If P is a point of a continuous curve
N, and K is a domain containing P such that P is a cut point of the component of N - K which con-
tains P, and furthermore there exist three arcs PA4,, PA,, and PA; which lie in N and have only
the point P in common, then P is said to be a junction point of N. The continuum PA,+PA+PAs
is called a friod and the point P is its emanation point.

§ R. L. Moore, 4 theorem concerning continuous curves, Bulletin of the American Mathematical
Society, vol. 23 (1917), pp. 233-236. See also Mazurkiewicz, Sur les lignes de Jordan, Fundamenta
Mathematicae, vol. 1 (1920), pp. 166-209, and H. Tietze, Ueber stetige Kurven,Jordansche Kurven-
bogen, und geschlossene Jordansche Kurven, Mathematische Zeitschrift, vol. 5 (1919), pp. 284-291.
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limit point of each of the mutually separated connected sets Sg* and S¢.
Thereforef there exists an arc R.P; in Sg*+P,, and an arc T,P, in S¢+P,,
where R; and T are on the arcs EH and FG, respectively. (See Fig. 3.)
Since the point P, is an emanation point of the triod of N composed of the
three arcs R, P,, PP,, and T,P,, and is not a junction point of M, it is not a

F T, x T, G
P, 3
L
K
l
E. R, y R, H
Fi1c. 3

cut point of N. Therefore there exists an arc from P to Q which does not
contain the point P;. Let P, denote the first point of this arc in the order
from P to Q which belongs to the set S +Sr. Then as before either P and
can be connected by an arc in S#* or P, belongs to both Sz* and Sr. Suppose
the latter is true. Then P, does not belong to any of the arcs PP,, R,P, or
T\P,. In Sp+P; there exists an arc PyT,, where T is either on the arc FG
or on the arc P;T; and no other point of the arc P,T, belongs to either FG
or P,T;. In Sg*+P, there exists an arc P,R,, where R; is on EH or on R,P,,
and no other point of PyR; is on EH or R.P;,. Suppose for definiteness that
T, and R, are on the arcs FG and EH, respectively. Let X and ¥ be points

t See R. L. Wilder, Concerning continuous curves, Fundamenta Mathematicae, vol. 7 (1925),
pp. 340-377.
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on FG and EH between T, and T, and R, and R, respectively. Then the
simple closed curve & (k=T:XT.P.R;Y R\.P,T:) encloses the segments PP,
and PP,. Let R be a domain which contains the arc PP, but does not contain
the point P,. The component of N-R which contains P, contains subarcs of
PP,, R\P;, and T,P;. Since P, is not a junction point of N it is not a cut
point of this component. Hence there exists within R-(N —P;) a simple
continuous arc PW, where W belongs to one of the segments R,P, and T,P;.
Let P; be the first point in the order from P to W which the arc PW has in
common with the set Sg*+Sr. Assume that P; belongs to both Sz* and S».
Clearly P, is within the simple closed curve 4. There exists a segment of an
arc within % with P, and P; as end points which contains no point of Sg*+Sr.
This segment PP, divides the interior of % into two connected domains, one
of which contains P;. Now there exist arcs from P; to T, and from P; to R,
which lie in the sets Sr+P; and Sg*+P;, respectively. Since the simple
closed curve P.R\YR,P,P; contains no point of Sr+P; and the simple
closed curve P,T,XT.P,P, contains no point of Sg*+P; it is clear that we
have reached a contradiction. Hence every point P of S#*—S#* S lies in
the component of S#* which contains Sr, which means that S#* is connected.

We now have N =Sz*+S#* where Si* and S#* are connected and have no
point in common, and Sg*-S#* is totally disconnected. Let Xz and X be
the two continua obtained by adding to Sg* and S#*, respectively, all of their
bounded complementary domains. Now no point is in a bounded comple-
mentary domain of both Sg* and S#. Therefore the point set Xz- X is the
same as the set Sg*-S#*. Call this set 7. Then Xg—T is connected, and
neither Xz nor Xr separates the plane. As a result of a theorem of R. L.
Mooret it follows that there exists a simple closed curve k enclosing Xg — T,
containing 7', and not containing or enclosing any point of X —T. Clearly &
contains an arc whose end points lie on the segments EF and GH, respectively,
but which otherwise lies within J. This arc can be modified so as to have
K and L for end points and retain the property of separating Xg—T and
Xp—T as above.l I will show that this arc satisfies the conclusion of
Lemma II.

(1) Clearly the arc KL contains no nondegenerate connected subset of
M, for it contains no point of M not belonging to the totally disconnected
set T. (2) Every point of M on the arc KL is a limit point of each of the
sets Sg* and S#* and is therefore a limit point of M from both sides of KL.

t Concerning the separation of point sets by curves, Proceedings of the National Academy of
Sciences, vol. 11 (1925), pp. 469—476.

1 This follows readily from the fact that the segments EKF and GLH do not contain any point
of N.
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(3) Every component of M — M - KL contains a point either on the arc EH or
on the arc FG because of the fact that (M —T)+EH +FG is the sum of two
or less connected sets. Since not infinitely many components of M —T have
a point on EH or FG and also have a limit point on KL it follows that only a
finite number of such components can have a limit point on KL. But every
component of M —T has a limit point on KL. Hence the number of such
components is finite. This completes the proof of Lemma II.

Proof of Theorom III. Asin Theorem II there is no loss of generality in
assuming that no point with both cosrdinates rational belongs to M. Clearly
the plane S can be regarded as the sum of a countable infinity of rectangles
plus their interiors, the rectangles being subsets of irrational horizontal and
vertical lines. Let Ry, Ry, R, - - - denote the mutually exclusive interiors
of such a set of rectangles.

If € is any positive number and if we have any finite double ruling a of
R: (i being any positive integer) such that no arc of « contains a nondegener-
ate connected subset of M, then we can obtain a finite double ruling 8 which
contains the arcs of a and is such that every component of R; minus the sum
of the arcs of § is of diameter less than ¢, and every arc of 8 which does not
belong to « has properties (1), (2), and (3) of Lemma II, and such that no
point common to two such arcs belongs to M. Now the arcs of the double
ruling 8. defined in the proof of Theorem II were taken to be rational lines
so that no nondegenerate connected subset of T, T, - - - T1 (M) would be
a subset of an arc of 8,. In view of Theorem II, however, it can be seen that
transformations T, Ty, T3, - - - can now be chosen so that no nondegenerate
connected subset of T',T,y - - - Ty (M) is a subset of anmy straight line.
Hence some of the arcs of the rulings 8. can be taken as irrational horizontal
and vertical intervals. By obvious modification of the argument given in
the proof of Theorem II it can be seen that there exists a countable in-
finity of double rulings #, &, #, - - - of R;, and a countable infinity of con-
tinuous transformations T, Te, T3, - - - of R; into itself which, except for
(6) and a modification of (2) to allow ¢, to contain intervals of irrational
horizontal and vertical lines, have properties (1)-(7) as stated in the proof
of Theorem II, and the additional property that the double ruling ¢, contains
a double ruling ., every arc of which has properties (1), (2), and (3)of Lemma
IIand P, (the nth rational point on the boundary of R;)isan end point of
some arc of the ruling .. Let W; be the transformation corresponding to
the transformation 7 as defined in the proof of Theorem II. Let T be the
transformation of the plane S into itself which for every 7 reduces to W,
over R;.

Clearly then no straight line contains a nondegenerate connected sub-
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set of T(M), and no point of T'(M) is rational. The second conclusion of
Theorem III follows readily from the fact that every rational horizontal
and vertical interval with rational end points has properties (1), (2), and
(3) of Lemma II with respect to the continuous curve T'(}M). Hence Theorem
IIT is established.

The following is an example of a regular curve which contains an uncount-
able set H of points such that no arc containing a point of H has property
(3) of Lemma II. It therefore follows that Theorem III would be false if
the stipulation that the boundary of R is composed of intervals of rational
horizontal and vertical lines were omitted, or if the word rational were re-
placed by the word irrational.

ExampLE 1. (See Fig. 4.) Let H denote a nondense perfect point set
on the interval 0<x <1, and let K denote any acyclict{ continuous curve
such that H is the set of end pointst of K. Let Gy, Gs, G, - - - denote a

Frc.{4

t A continuous curve is said to be acyclic if it contains no simple closed curve. See H. M. Geh-
man, Concerning acyclic continuous curves, these Transactions, vol. 29 (1927), pp. 553-568. An end
point of an acyclic continuous curve is a point which is not an interior point of any arc of that curve.
See R. L. Wilder, loc. cit., or H. M. Gehman, loc. cit.
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contracting sequencef of mutually exclusive simple closed curves such that
every point of H is enclosed by infinitely many curves of the sequence
Gy, G, Gs, - - -, and for every # the curve G, has just one point in common
with K, and this point does not belong to H. Let M be the continuous
curve K+G,+G,+Gs+ - - -. Let P denote a point of K—H. Then
if Q is any point of H there is one and only one arc PQ from P to Q in M.
Let J denote a simple closed curve containing Q but not containing a non-
degenerate connected subset of M. Either (1) PQ—PQ-J is the sum of
infinitely many maximal connected subsets, in which case M —M -J is not
the sum of a finite number of connected sets, or (2) there exists a point
X on the arc PQ distinct from Q such that the arc XQ has only the point
Q on J. Suppose for definiteness that X is within J. There exist infinitely
many simple closed curves of M enclosing Q, having points within J and
points without J, and having only one point on the arc XQ of PQ. Since
no maximal connected subset of M —M -J which lies in the exterior of J
can contain a point of the arc XQ it follows that the number of components
of M —M-J is infinite.

In his paper} Concerning irreducible cuttings of continua, G. T. Whyburn
raises the question as to whether or not every open§ subset of a plane
continuous curve M contains an irreducible cutting of M. This question is
answered by the following theorem which is an application of Theorem III.

THEOREM IV. Every open subset of a plane continuous curve M contains
an irreducible cutting of M.

Let G denote an open subset of a continuous curve M. Clearly if G con-
tains a domain then it contains a circle which is an irreducible cutting of M.
If G contains no domain let R denote the interior of a circle such that R
contains a point of G but R does not contain a point of M —G. Let M,
denote any maximal connected subset of M - R which contains more than one
point. Then|| M; is a continuous curve which contains no domain. From
Theorem III it readily follows that there exists a simple closed curve J
which encloses some point of M, but does not contain or enclose any point

t If H is a sequence of point sets and for each positive number ¢ only a finite number of point
sets of the set H are of diameter greater than e then H is said to be a contracting sequence of point sets.
See R. L. Moore, Concerning upper semi-continuous collections, Monatshefte fiir Mathematik und
Physik, vol. 36 (1929), pp. 81-88.

1 Fundamenta Mathematicae, vol. 13, pp. 42-57.

§ An open subset of a continuum M is a set such that its complement with respect to M is closed.
An irreducible cutting of a continuum M is a point set K of M such that M — K is not connected, but
such that if G is any proper subset of K then M —G is connected. See G. T. Whyburn, ibid.

| H. M. Gehman, Concerning the subsets of a plane continuous curve, Annals of Mathematics,
vol. 27, p. 34.
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of M —M,, and such that the point set M -J is totally disconnected and
separates M, into a finite number (greater than 1) of connected sets. Clearly
then M -J has the same properties with respect to M. Thent the set M -J
contains a subset which is an irreducible cutting of M.

THEOREM V. A necessary and sufficient condition that a continuum M
(not the whole plane) bz a regular curve is that if R is a connected domain con-
taining two distinct points A and B not belonging to M then in R there exists a
simple continuous arc from A to B which contains only a finite number of points
of M.

The condition is necessary. Suppose M is a regular curve and R is a
connected domain containing two points 4 and B not belonging to M.
Let AB denote any simple continuous arc from A to B which lies in R,
and let A’ and B’ be points in the order AA’B’B such that no point of M
is on the arc 44’ or the arc BB’ of AB. Enclosing each point of the arc
A’B’ there exists a simple closed curve containing only a finite number of
points of M and not containing or enclosing 4 or B or any point not in the
domain R. There exists a finite set of such curves whose interiors cover the
arc A’B’. Call the curves of such a set J,, J5, - - -, J.. If H denotes the
continuous curve AA’+BB'+J,+J.+ - - - +J, then H contains only a
finite number of points of M. Let AX B denote an arc from A to B which is
a subset of H. Obviously this arc contains only a finite number of points of M.

The condition is sufficient. Clearly M cannot contain a domain. Suppose
P is any point of M and eis any positive number. Let J; and J, denote two
circles with P as center and radii ¢/2 and €/3, respectively. Let P, and P,
denote the extremities of a diameter of J;. Let D denote the domain bounded
by J1+J3, and let 4 and B denote two points not belonging to M and lying
in D on different sides of the diameter P, PP,. Let D, and D, be the connected
domains D—D-PP, and D—D-PP,, respectively. Let AX,B and AX,B
denote arcs lying in D; and D,, respectively, and containing only a finite
number of points of M. The continuous curve A X;B+A4X,B contains a
simple closed curve which encloses P, contains only a finite number of points
of M, and is of diameter less than e. Hence the point Pis a regular point and
M is a regular curve.

TeEOREM VI. If M is a regular curve (not mecessarily bounded) in a
euclidean plane S, then there exists a continuous transformation T of S into
itself such that (1) no straight line contains a nondegenerate connected subset
of T(M) and no point of T(M) is rational, and (2) each rational horizontal
or vertical line has in common with T(M) a point set which has no limit point.

t See G. T. Whyburn, loc. cit.
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The only essential difference between the proof of this theorem and that of
Theorem III is that here we require that the arcs of the double ruling r,
shall have only a finite number of points in common with M, instead of re-
quiring that they have properties (1), (2) and (3) of Lemma II. In case M
is a bounded regular curve the second conclusion of Theorem VI is equivalent
to the statement that no rational line contains more than a finite number of
points of M.

It follows that if R is the interior of a rectangle whose sides are intervals
of rational horizontal and vertical lines, then the point set 7(M)-(R—R)
contains only a finite number of points of M. However the following ex-
ample shows that it does not follow that the set R- T(M) is the sum of a finite
number of connected sets.

ExampLE 2. (See Fig. 5.) For each pair of positive integers #» and k(k <2")
let I, denote the interval with end points [(#—1)/2", 0] and [k/2", 0], and
let Cx, denote the semicircle above the x-axis with I, as diameter. Let H
denote the continuum which is thg sum of the interval 7J(0<x=<1) and all
semicircles I, (k<2" n=1, 2, 3,---). Let Py, Py, P, --- denote the
points of the x-axis which are extrenities of diameters of semicircles belonging

F16. 5.

to H, and for each # let @ia, azs, s, - - - denote a contracting sequence of
arcs all of diameter less than 1/, such that for each m the arc a., contains the
point P, but no other point of H and no other point of the arc ax. (k =m).
Let M be the continuum H+Y i, Y n-18in. Then M is a regular curve.
Now any arc which lies between the lines ¥ =0 and =1 and has a point above
and a point below the x-axis either contains the point'P, for some integer »
or it contains infinitely many points of M. In the first case it cuts M into
infinitely many components.

THEOREM VII. If every point of a bounded regular curve M in a euclidean
plane S is of finite ordert then there exists a continuous transformation T of S
into itself such that (1) no straight line contains a nondegenerate connected subset

1 If P is a point of a regular curve M and there exists an integer # such that for every positive
number e there is a domain of diameter less than e which contains P and whose boundary has not

more than » points in common with M then the point P is said to be of finite order. Cf. K. Menger,
loc. cit.
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of T(M) and no point of T(M) is rational, (2) the rational lines contain only a
finite number of points of T(M), and (3) if R is the interior of a rectangle com-
posed of intervals of rational lines, then R-T (M) is the sum of a finite number of
connected sets.

Let T be a transformation satisfying the conclusion of Theorem VI.
Since each point of M on a rational line L is of finite order it is not a limit
point of infinitely many components of T(M)—L. In view of this, and the
additional fact that the set of points of M on any rational line is finite, it is
clear that the transformation T satisfies the conclusion of Theorem VII.

TraEOREM VIII. If M is a bounded regular curve which contains only a finite
number of simple closed curves then there exists a transformation T satisfying the
conclusion of Theorem VII.

To help prove Theorem VIII I will establish the following lemma.

Lemuma III. If M is @ bounded regulgr curve which contains only a finite
number of simple closed curves, and R is a connected domain containing two
points A and B not belonging to M, then there exists a simple continuous arc
AB which lies within R, contains only a finite number of points of M, and is such
that M — M - AB is the sum of a finite number of connected sets.

Proof of Lemma III. Let H denote the set of junction points of M.
Let J be a simple closed curve enclosing 4 and B and lying in R, and let g
denote a simple continuous arc from 4 to B which lies within J, contains
no non-degenerate connected subset of M, and no point of H. But the outer
boundary of every bounded complementary domain of a continuous curve ist
a simple closed curve and} no two bounded complementary domains of a
continuous curve have the same outer boundary. Hence since M contains
only a finite number of simple closed curves it follows that only a finite
number of complementary domains of M +J have boundary points on the
arc g. If one of these domains contains both 4 and B the lemma is obviously
established. If not let P, be the last point of g in the order from 4 to B
which is on the boundary of that complementary domain of M +J which con-
tains 4. Then§ there exists an arc AP, which lies wholly in this domain ex-
cept for the point P;. Since P, is a limit point of the points of S—M on the

t R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15
(1922), Theorem 4 and p. 259.

1 R. L. Moore, Concerning paths that do not separate a given continuous curve, Proceedings of the
National Academy of Sciences, vol. 12 (1926), Theorem 1.

§ Schoenflies, Die Entwickelung der Lehre von den Punkimannigfaltigkeiten, zweiter Teil, Jahres-
bericht der Deutschen Mathematiker-Vereinigung, Erganzungsbinde, vol. 2 (1908).
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arc P,B of g it follows that P, is a boundary point of some complementary
domain of M +J which contains points on the arc P;B. Let P, be the last
point on the arc P,B belonging to the boundary of a complementary domain
of M +J which also has P, on its boundary. If P,is the same as P; then the
arc P, B contains no point of M +J. In either case there exists a simple con-
tinuous arc with P; and P; as end points which contains no point of M+J
except P, and P,;. Continuing this process a finite number of times one ob-
tains a simple continuous arc 4B which contains only a finite number of
points of M and no junction point of M. Clearly this arc satisfies the con-
clusion of the lemma.

A proof of Theorem VIII can now be given which is closely analogous
to the proof of Theorem III. The essential difference is that the arcs of the
double ruling 7, are here to be chosen so as to have the properties stated in
Lemma IIT rather than those stated in Lemma II.

TrEOREM IX. If A and B are distinct points of a continuous curve M then
M contains a simple continuous arc from A to B every subarc of which contains
a subarc which either lies on the boundary of some complementary domain of M
or lies in some domain which belongs to M.

(1) Suppose M contains no domain. Let 4 X B denote a simple continuous
arc from A to B such that the common part of AXB and M is totally dis-
connected. Let T denote the set M-AXB. Let Dy, D;, - - - denote the
complementary domains of M which contain limit points on the arc AXB
and for each ¢ let J; denote the boundary of D;. Let K be the point set
T+J+Js+Js+ - - - . Since Jy, Jo, J3, - - - is a contracting sequence of
continuous curves all containing points on the arc AXB it is readily seen
that the set K is closed. If P is an interior point of the arc A XB which does
not belong to K then there exists a connected subset of K containing the
last point of T which precedes P on the arc AXB and the first point of T
which follows P on this arc. Therefore K is connected. With the use of the
fact that the boundary of every complementary domain of a continuous
curve is itself a continuous curvef it readily follows that K is connected im
kleinen. Hence K is a continuous curve. Let 4B denote any arc which lies
in K] and let EF denote any subarc of AB. Since T is totally disconnected
the arc EF contains a subarc E’F’ which contains no point of 7. The arc
E'F'isasubsetof J;+Jo,+J3+ - - - ,and henceis equal to J,- E'F'+J,- E'F’
+Js-E'F'+ - - - . But the sum of a countable number of totally dis-

t R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15

(1922), p. 259.
1 See third footnote on p. 14.
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connected closed point sets is not connected. Hence there exists at least one
integer 4 such that the set J;- E'F’ contains an arc. Thus every subarc of AB
contains an arc belonging to the boundary of some complementary domain
of M.

(2) If A and B are distinct points of a continuous curve M which contains
a domain let M, be a continuous curve containing 4 and B which is obtained
by taking from M the interiors Iy, I,, I3, - - - of a contracting sequence of
circles such that (1) for every domain D which is a subset of M there is an
integer # such that I, contains at least one point of D, (2) for every #, I,
is a subset of some domain belonging to M and (3) I+I,=0(k>~n). Let AB
denote an arc satisfying the conclusion of the theorem with respect to M;.
Since the boundary of a complementary domain of M, which is not a com-
plementary domain of M belongs in a domain lying in M it is obvious that
A B satisfies the conclusion of the theorem with respect to M.

THEOREM X. If M is a bounded continuous curve which contains no domain
then there exists a continuous transformation T of the plane S into itself such
that (1) if AB is an arc such that T(AB) is a subset of a rational line then
AB-M=ci+cs+ - - - +cn where for each i (i <n) c; is an arc or a point and if
¢; is an arc then every subarc of c; contains a subarc lying on the boundary of
some complementary domain of M and (2) if AB is an arc such that T(AB) is a
subset of an irrational horizontal or vertical line then AB- M is vacuous or totally
disconnected.

To help establish Theorem X, I will prove several lemmas. To avoid
repetition I will say that an arc A B has property c. with respect to M ,or merely
that it has property c. if the common part of M and A B is the sum of a finite
number of connected sets such that each of these sets which is an arc is of
diameter less than e and has the property that every subarc of it contains
a subarc lying on the boundary of some complementary domain of M.

LeMMA IV. If I is the interior of a simple closed curve and M is a bounded
continuous curve containing no domain and A and B are distinct points lying
in I and e is any positive number, then there exists a simple continuous arc from
A to B which is a subset of I and which has property c..

With the help of Theorem II it can readily be seen that there exists a
simple closed curve J, lying in I, enclosing 4 and B, and such that (1)
J.1- M is totally disconnected, and (2) if I, denotes the interior of J; then no
component of M - I is of diameter greater than or equal to e. Let A XB denote
any simple continuous arc from A4 to B which lies in I; and let sy, 53, * + + , Sn
denote the components of M-I; which have points on AXB. For each 7
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(:=m) s;isT a continuous curve. In view of this fact and Theorem IX it fol-
lows that there exists an arc AB in I, such that M-AB is a subset of s;+s5;
+ - - - 4s.and is the sum of # or less connected sets such that each of these
sets which is an arc has the properties of the arc of Theorem IX with respect
to that one of the continuous curves s, sz, - - -, s, to which it belongs. Let
EF denote an arc belonging to M-AB. Since EF contains a subarc lying
wholly within J it can easily be shown that EF has the properties stated in
Theorem IX with respect to M. Since in addition EF is of diameter less than
¢ the lemma is proved.

LemmaA V. If J is a simple closed curve and KL is a simple continuous
arc which lies within J except that K and L are on J and KL is on the bound-
ary of a complementary domain D of M, then there exists a simple continuous
arc AB which lies within J such that (1) the common part of AB and KL is a
single point, (2) KL separates A from B within J, and (3) AB- M is either an
arc or a point, and if it is an arc it has property c..

Let C denote the interior of a circle which lies within J and encloses a
point of KL. There exists a point 4 in C-D and a subarc E'F’ of EF such
that for every point P of E’'F’ there exists an arc AP which lies in C-D
except for the point P. Let O denote some interior point of E’F’ and let C,
denote the interior of a circle J; which lies in C such that C; contains O but
contains no point of KL—E'F’. Let A’ and B’ denote points in C; lying
respectively on the A4 side and the non 4 side of KL and let B’A’ denote
an arc having property c. and lying in C;. Let Q denote the first point of
B’A’ on KL in the order from B’ to A’. Let AQ denote an arc lying in C-D
except for the point Q. Let QB denote a subarc of QB’ such that QB-M is
connected. The sum of the arcs AQ and QB gives an arc 4B which satisfies
the conclusion of the lemma.

LemMa VI. If M is a continuous curve containing no domain and lying
within a simple closed curve J whose interior is R, e and e are any positive
numbers and o is a double ruling of R such that every arc of a has property
Cey, then there exists a double ruling B of R such that every arc of o is also an
arc of B, every arc of B which is not an arc of a has property c., and every com-
ponent of R minus the sum of the arcs of the ruling B is of diameter less than .

With the help of a theorem of Schoenflies} it is easily seen that there
exists a continuous transformation T’ of the plane into itself which throws J
into a square ABCD and the arcs of « into horizontal and vertical inter-

t See H. M. Gehman, loc. cit.
1 Loc. cit.
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vals. Let o be the double ruling of T'(R) which is composed of all arcs T'(g)
where g is an arc of a. Since T is continuous it obviously follows that there
exist two finite sets of rectangles k, ks, - - -, k,, 11, v, - - -, v,such that (1)
for each ¢ (4 <), k;[v;] has no point in common with any arc of oy which is
parallel to AB [BC] and no point in common with %;[;] (j<n, i) but
contains at least one point of 4D and one point of BC [AB and CD], and
(2) if @ is any double ruling of R which contains all of the arcs of a; and in
addition contains arcs a; and b; such that T'(a;) lies in #; plus its interior
and T'(b;) lies in v; plus its interior (=1, 2, - - -, n) then every component
of R minus the sum of the arcs of &, is of diameter less than ¢. It is easily
shown with the help of Lemmas IV and V that a particular such ruling 8
can be obtained such that the arcs of 8 which do not belong to « have prop-
erty ce,.

LemMa VII. Suppose M is a continuous curve which contains no domain
and lies in the interior R of a square ABCD. Let a be any double ruling of
R and let P be a point of R not belonging to any arc of a. Then there exists
an integer k such that if n>k and B is any double ruling of R such that (1) B
contains a, (2) no arc of B contains P, (3) every component of R minus the
arcs of B is of diameter less than 1/n, and (4) every arc of B which does not be-
long to o has property cyjn, then if E denotes the component, containing P, of
R minus the arcs of B which are parallel to AB [BC), there exists in E an arc
ag with property ¢i/n+1y Which together with the arcs of B forms a double ruling
of R and such that no component of M -(E—ag) contains points in more than
two components of R minus the arcs of a. (See Fig. 6.)

Let €, be a positive number such that if ¢, and b, denote any arcs of «
which have no point in common then the distance from any point of a, to
any point of b, is greater than e;. Let ¢; be a positive number such that a
circle with P as center and e, as radius neither contains nor encloses any
point of any arc of a or of ABCD. Let k be any integer greater than both
1/€; and 1/e;. Suppose 3 is a double ruling of R with properties (1), (2), (3),
and (4) as given above. Let E denote the component, containing P, of R
minus the arcs of 8 which are parallel to AB (for example). In view of
property (3) and the additional fact that 1/# <e, it is obvious that @, and a,,
the arcs of B8 on the boundary of E, do not belong to . From (4) it follows
that both @, and @, have property ci/.. Since 1/7 <, it follows that between
each two distinct arcs of 8 parallel to BC the arc a;(i=1, 2) contains a point
not belonging to M. Hence if m+1 denotes the number of arcs of 8 which
are parallel to BC it is easily seen that there exist 2m circles lying in R with in-
teriors Cu, Clz, ey, Clm, Czl, C22, ey, C2n such that (1) Cik(i= 1, 2, k §m)
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contains no point of M and no point of any arc of «, and (2) for each two
adjacent arcs b; and b, of @ which are parallel to BC there exist integers ¢ and
7 such that C,; and C.; contain points of @, and a,, respectively, which lie
between b; and b,. With the help of Lemmas IV and V it is seen that there
exists in E an arc ag with property ci/+1 which together with the arcs of 8
forms a double ruling of R, and in addition contains a point in C;x(i=1, 2;
k=1,2,---,m). Obviously no component of M-(E—ag) contains points
in more than two components of R minus the arcs of a.
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Proof of Theorem X. Suppose M lies in the interior R of a square A BCD.
With the help of Lemmas IV, V, and VI one can readily see that there exists
a double ruling 8; of ABCD such that (1) every component of R minus the
arcs of B, is of diameter less than 1, (2) every arc of 8, has property ¢,, and
(3) between each two adjacent arcs of 8, parallel to BC there exists on each
arc of B parallel to A B a point not belonging to M. Let a; and a; denote any
two adjacent arcs of 8, parallel to 4B (or @, or a, may be AB or CD) and let
E denote the set of all points of R which lie between a; and as. If m+1
denotes the number of arcs of 8, which are parallel to BC it is clear that
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there exist 2m circles lying in R with interiors Cy, Cig, - - -, Cim, Coa,
Cas, - - -, Cam such that (1) Ci(¢=1, 2; £ =m) contains no point of M and
no point of any arc of 3, which is parallel to BC, and (2) for each two adjacent
arcs b, and b; of B, parallel to BC there exist integers 7 and & such that C,; and
C.i contain points of ¢, and a,, respectively, which lie between b, and b,.
With the help of Lemmas IV and V it is seen that there exists in E an arc ag
which together with the arcs of 8, forms a double ruling of R and such that
(1) ag contains points in the set Cyx(¢=1,2;k=1,2, - - - , m), and (2) ag has
property cy2. Obviously no component of M-(E—ag) contains points in
more than two components of R minus the arcs of the ruling 8,. Let a; be
the double ruling obtained by adding to 3, the arc ag for every component E
of R minus the arcs of 8; which are parallel to AB. Let 8, be a double ruling
which contains a; and is such that (1) every component of R minus the arcs
of B is of diameter less than 1/2 and (2) the arcs of 8; which do not belong
to 8, have property cys.

Now let E denote the set of all points of R which lie between two adjacent
arcs of B, which are parallel to BC. If there exists in E an arc a* which
together with the arcs of B, forms a double ruling of R and such that (1) no
component of M -(E—a*) has points in more than two components of R
minus the arcs of 8;, and (2) the arc ¢* has property cy/5, then let ag be such
an arc ¢*. If no such arc exists, but there does exist an arc a** having the
above properties except that in (1) the symbol B8, replaces the symbol 8,
then let ag denote such an arc a**. If neither a* nor a** exists let ag be any
arc in E which together with the arcs of 8, forms a double ruling of R and
which has property c¢ys. Let as be the double ruling obtained by adding to
B2 the arc ag for every component E of R minus the arcs of 8, which are
parallel to BC. Let B; be a double ruling which contains a, and is such that
(1) every component of R minus the arcs of B; is of diameter less than 1/3,
and (2) the arcs of 8; which do not belong to 8; have property ¢1s.

Proceeding in this way one can show that there exists an infinite sequence
of double rulings B, B3, 83, - - -, of R such that for every n the following
properties obtain: (1) 8,41 contains ., (2) every component of R minus the
arcs of B, is of diameter less than 1/#, (3) every arc of 8,,, which does not
belong to B, has property ¢i/(n+1, and (4) if a1, and as, are adjacent arcs of
B. which are parallel to AB for # odd and parallel to BC for 7 even, and E
is the set of all points of R which lie between a1, and as., then if there exists
a positive integer j(j <n—1) and an arc asx which lies in E such that (a) the
arc asp together with the arcs of 8, forms a double ruling of R, and (b) no
component of M - (E—a;g) contains points in more than two components of
R minus the arcs of g8;, then, kg denoting the largest such integer 7, Bat1
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contains an arc having the properties stated above for the arc a;z with j
replaced by kg.

Let P denote a point of R not belonging to any arc of any of the double
rulings B, B2, Bs, - - - . For each positive integer # let E, p denote the com-
ponent, containing P, or R minus the arcs of 8, which are parallel to AB
(for example). In view of properties (1), (2), and (3), and Lemma VII, it
can be seen that the integer # can be taken large enough so that the integer j
as qualified in property (4) does exist for E, p, and furthermore kg, p in-
creases indefinitely as # increases indefinitely. Hence it follows that for every
connected subset L of M there exists an integer # such that some arc of
Bn ., parallel to AB[BC] has a point in common with L. In view of properties
(1) and (2) it follows by methods employed in proving previous theorems
that there exists a continuous transformation T, of R into itself such that (1)
for every n, T, throws the arcs of 3, into intervals of rational lines, and (2)
if L is any rational line then there exists an integer # and an arc g of 8, such
that T:(g) is a subset of L. Obviously there exists a continuous transfor-
mation T of the plane S into itself which reduces to T, for points of R. Such
a transformation satisfies the conclusion of the theorem.

Now as shown in the proof of Theorem IX a continuous curve M which
contains a domain contains a continuous curve M, such that M, contains no
domain but does contain every boundary point of M, and such that if D is a
complementary domain of M, which is not a complementary domain of M
then D lies in a domain of M. In view of this fact and the previous theorem
the following corollaries may be easily established.

CoroLLARY 1. If M is a bounded continuous curve then there exists a con-
tinuous transformation T of the plane into itself such that if AB is an arc and
T(AB) is an interval of some rational line then (1) AB- M is the sum of a finite
number of connected sets, and (2) every arc which is a subset of AB- M contains a
subarc which either lies on the boundary of a complementary domain of M or lies
in a domain which belongs to M.

COROLLARY 2. If M is a bounded continuous curve and P is a point of M
which is not in a domain belonging to M then there exists a continuous trans-
formation T of S into itself such that if APB is any arc such that T(APB) is a
subset of a horizontal line, then the component of M - APB which contains P
is P, and if AB is an arc such that T(AB) is a subset of a rational horizontal
line then the number of components of AB- M is finite.

Let A be any point and for each # let C, be a circle of radius 1/# and
center A. Let AB be a unit interval and let M be the continuous curve
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AB+C,+Cs+ - - - . This example shows that it is not true that if M is any
continuous curve then there exists a continuous transformation T of the
plane S into itself such that if ABis an arc and T'(4 B) is a horizontal interval
then AB- M is the sum of a finite number of connected sets.

THEOREM XI. If P is a point of a bounded continuous curve M then there
exists an upper semi-continuous collectiont G of subcontinua of M whick fills
up M such that P is an element of G and G is a regular curve with respect to its
elements.

Suppose first that P is a point which does not belong to a domain which
belongs to M and let T denote a transformation satisfying the conclusion of
Corollary 2. For each point x of M let g, be the greatest continuum contain-
ing x such that T'(g.) is a subset of some horizontal line, and let G denote the
collection of continua g, for all points x of M. Clearly gp =P, and the collec-
tion G is upper semi-continuous. Now if M, is any continuum such that the
common part of any rational horizontal line and M, is a finite point set,
and the common part of any horizontal line and M, is totally disconnected,
then M, is a regular curve. Hence G is a regular curve with respect to its
elements.

Suppose P is a point lying in a domain D of M. There exists a set K of
mutually exclusive simple closed curves lying in D, all enclosing P, no two
having a point in common, and such that every point of D—P belongs to
some curve of the set K. Let G be the upper semi-continuous collection of
continua consisting of the curves of the collection K and the continua M —D
and P. The collection G is an arc with respect to its elements and one of its
elements is P.

t See R. L. Moore, Concerning upper semi-continuous collections of continua, these Transactions,
vol. 27 (1925), pp. 416-428. A collection G of continua is said to be an upper semi-continuous collec-
tion if for each element g of the collection G and each positive number e there exists a positive number
d such that if x is any element of G at a lower distance from g less than & then the upper distance
of x from g is less than e. If M is a point set and P is a point, then by /(PM) is meant the lower
bound of the distances from P to all the different points of M. If M and N are two point sets, then
by I(MN) is meant the lower bound of the values [I(PN)] for all points P of M, while by w(MN) is
meant the upper bound of these values for all points P of M. The point set M is said to be at the
upper distance #(M N) from the point set N and is said to be at the lower distance /(M N) from N.

UNIVERSITY OF TEXAS,
AvusTIN, TExAS



