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It has been shown by Mengerf that a necessary and sufficient condition

that a plane continuum M contains no domain is that for each point P oí

M and each positive number e there exists a simple closed curve / of diameter

less than e which encloses P, and such that MJ is totally disconnected.

In the present paper it is shown that if iW is a continuum which contains

no domain then there exists a set G of simple closed curves filling the whole

plane and indeed topologically equivalent to the set of all polygons, such

that the common part of M and any curve of the set G is vacuous or totally

disconnected. Additional results are obtained for the special case where M

is a continuous curve.

I wish to acknowledge my indebtedness to Professor R. L. Moore, and

to thank him. Credit is due him for the suggestion of most of the theorems

of this paper, and for many helpful criticisms of the proofs.

Part I

In this paper I make frequent use of the notion of a double ruling.%

If, on the simple closed curve ABCDA, Xi, X2, ■ ■ ■ , Xn, Yx, Y2, ■ ■ ■ , Ym,

Xñ, Xn'_i, ■ ■ ■ ,X{, Y m , Ym-i, • ■ • ,Y{ are points in the order AXiXt ■ ■ ■

XnBYiYt ■ ■ ■ YmCXn-Xn1-! ■ ■ • X{DY ¿i Fm'_, ■ ■ -Y{A, and XiX{ , XiXi ,
■ ■ ■ , XnXñ, and YiY{, Y2Y2, ■ • ■, FmFm' are arcs which, except for their

end points, lie entirely within ABCDA, and finally, for every i, jil —i^n,

lûjikwî) XiXl has just one point in common with Y ¿Y} and no point in

common with XjXj (unless i=j), then these two sets of arcs are said to

constitute a double ruling oí the interior of ABCDA (or merely a double

ruling of ABCDA). The arcs XiXÍ, X2X¿, ■ • ■ , X„Xn are said to be

parallel to BC and to AD, and the arcs YiYl, YtYi, ■ ■ ■ , YmYJ are said

* Presented to the Society, in part, December 28,1927, and December 27,1928; received by the

editors March 30, 1929.
t Über die Dimensionality von Punktmengen, Monatshefte für Mathematik und Physik, vol. 33

(1923), pp. 148-160. In his paper Sur les multiplicités Cantoriennes, Fundamenta Mathematicae,

vol. 7 (1925), pp. 30-137, Urysohn obtained the slightly weaker result that for each point P of M

and each positive number e there exists a totally disconnected closed subset T of M such that M — T

is the sum of two mutually separated sets Mi and Mz, such that Mi contains P and is of diameter

less than e.

Î See R. L. Moore, Concerning a set of postulates for plane analysis situs, these Transactions,

vol. 20 (1919); p. 172.
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to be parallel to AB and CD. Each of these two sets of arcs is a single ruling

of ABCDA. Two sets of arcs H and K are said to constitute a complete

double ruling of ABCDA if (1) every finite subset of the set of arcs H+K is

a single or double ruling of ABCDA,(2) through each point within ABCDA

there is an arc of H and an arc of K, and (3) each point of ABCDA (except

A, B, C and D) is an end point of some arc of H or of some arc of K. If P

is a point with both coordinates rational, then P is said to be a rational point.

By a rational line is meant a line whose equation is x = r or y=r where r is

some rational number.

As an obvious corollary of a theorem due to Fréchet* I state the following

Theorem I. // M is a point set containing no domain then there exists a

continuous transformation T of the plane S into itself such that if P is any point

of M then T(P) is not a rational point.

Schoenflies has proved the following theorem :f

// Ti is a continuous one-to-one correspondence between the points of two

simple closed curves Ji and J2 such that Ti(Ji)=J2, then there exists a con-

tinuous one-to-one correspondence T2 between Ji plus its interior and J2 plus

its interior such that T2(P) = 7\(P) for every point P on J\.

Therefore for every simple closed curve J there exists a continuous trans-

formation T which throws / plus its interior into a square plus its interior.

The truth of the following lemma is apparent in view of this fact and

Theorem I.

Lemma I. Suppose M is a point set containing no rational point, and

A, B,C and D are rational points which are the vertices of a rectangle, and AB

is a horizontal interval. Suppose a is a double ruling of A BCD with arcs

hi, h2, ■ ■ • , hn parallel to BA and arcs Vi, v2, ■ ■ ■ ,vm parallel to BC such that

(1) for each i [j] (i¿n, júm) the end points of hi[vj] have the same rational

y-coördinate [x-co Ordinate], (2) for every i andj (i^n,j^m) the point common

to hi and v¡ is rational, and (3) the rational points are everywhere dense on h(

and on v¡ (i^n, j^m). Then there exists a continuous transformation T

throwing ABCD plus its interior into itself and such that (1) T reduces to the

identity transformation on the rectangle ABCD, (2) T(P) is not rational for

any point P of M, and (3) for every i[j] (i^n,j^m) the arc T(h¡) [T(v¡)] is

an interval of some horizontal [vertical] rational line.

* Mathematische Annalen, vol. 68 (1910), p. 159. See also Urysohn, loc. cit., p. 83.

f Beiträge zur Theorie der Punktmengen, Mathematische Annalen, vol. 62 (1906), pp. 286-328.

See also J. R. Kline, A new proof of a theorem due to Schoenflies, Proceedings of the National Academy

of Sciences, vol. 6 (1920), pp. 529-531.
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Theorem II. If M is the sum of a countable number of closed point sets

containing no domain and lying in a euclidean plane S, then there exists a

continuous transformation T of S into itself such that if L denotes any straight

line of S the point set L-TiM) is either totally disconnected or vacuous, and no

point of F(M) is rational.

I will assume that M contains no rational point.  In view of Theorem I

this is no essential restriction. Let A, B, C, D and E be points with coordinates

Fig. 1

(0,1), (1,1), (1,0), (0,0) and (1/2, 1/2) respectively, and let R denote the

interior of the square A BCD. Suppose M = Mi+M2+M3+ ■ ■ ■ , where for

every n the set Mn is closed. There exist five circles with centers A, B, C, D

and E respectively, such that their interiors IA, Ib, ¡c, Id and IE are mutually

exclusive, and no one of them contains a point of the closed set Mi.

There exists a double ruling cti (see Fig. 1) of R consisting of four arcs
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hi, ■■ -, hi parallel to AB and four arcs Vi, ■ ■ ■ , u4 parallel to BC such that

(1) the end points of the arcs hi, ■ ■ ■ , ht, Vi, • • • , vt divide each side of the

square ABCD into five equal parts, (2) for each i(i^i) the arc h{ contains

three points, xu y i and z¿, in the order ;tiy¿z¡ from AD to BC which be-

long to the domains ID, IE, and 7C respectively, for i = 1, 2, and to the domains

I a, Ie, and 7B respectively for ¿ = 3,4, (3) the points xi, x2, x3, x4, zit z2, z3, z4

are the points hi-Vi, h2-v2, h3v2, ht-Vi, hi-viy h2v3, h3v3, hi-Vt, respectively,

(4) for each i (i^4) i>t- contains a point of IE between the arcs h2 and h3,

and (5) for each i the rational points are dense on A,- and on Vi and every

point hi-Vj (¿s=4, /^4) is rational.   Since M does not contain any rational

Fig. 2

point it is easily seen that the hypotheses of Lemma I are satisfied by

M and the double ruling ai. Let 7\ denote a transformation satisfying

the conclusion of Lemma I. It is easily seen that every straight line which

contains two points of the square ABCD contains a point not belonging to

Ti(Mi).   (See Fig. 2.)

Let h be the set of all arcs k such that k = 7\(g), where g is an arc of the
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double ruling ai. Obviously h is a double ruling of R, the arcs of which are

horizontal and vertical rational intervals. There exists a positive number

€i(ei<l/2) such that if P and Q are points of R and 5(P, Ç)fèl/2, then

ô[TiiP), 7\(())]>ei. Let Pi, Pi, P3, ■ • • denote the rational points on the

arcs AB and BC. Let ßi denote a double ruling of R consisting of a finite

set of rational horizontal and vertical intervals such that (1) ßi contains an

interval through the point Pi, and containsf h and (2) every component §

of R minus the sum of the arcs of the ruling j3i is of diameter less than «t.

Let Fi denote the collection of all components of R minus the sum

of the arcs of the ruling ßi and let G denote any element of Fi. The domain

G is the interior of a rectangle AqBqCgDg, where AqBq is an interval of a

horizontal rational line, and all of the points Aa, Bg, Cq, and Dg are rational.

Let EG denote the center of the rectangle and let Ia0, Ib0, Ica, Idg, and IBo

be mutually exclusive circular domains which contain no point of the closed

set TiiMi+Mt) and whose centers are the points A a, Bq, Cq, Dg, and Eg-

Clearly there exists a double ruling a2g of G having with respect to G,

TiiMi+M2), TiiM) and the above mentioned circular domains the same

properties which the double ruling ai has with respect to R, Mi, M and the

domains I a, Ib, Ic, Id and IE- Let A7i be the sum of all arcs k where k be-

longs to some double ruling a2g for some domain G of Fi. The point set

A7i is the sum of a finite number of arcs which constitute a double ruling 71

of R. Let a2 be the double ruling consisting of all arcs of the rulings ßi and

71. Since TiiM) contains no rational point the hypotheses of Lemma I are

satisfied by T^M) and the double ruling a2. There exists a transformation T2

satisfying the conclusion of Lemma I and reducing to the identity trans-

formation on the square A BCD and on the arcs of the ruling ßi. Let h denote

the double ruling consisting of all arcs k such that k = T2Çg), where g is an arc

of the ruling a2.

Let r denote an interval of length 2ex which is a subset of R. Clearly if r

is a subset of some arc of the ruling ft then it contains a point not belonging

to T2TiiMi+M2). If r is not a subarc of any arc of ßi then there exists a rec-

tangle which is a subset of the sum of the arcs of ßi and which contains

exactly two points of r. With the assistance of Fig. 2 it can readily be seen

that r contains a point not belonging to the set T2TiiMi+M2). Hence if T

is any continuous transformation of R into itself such that T(P) =P for every

point P on A BCD or on some arc of the ruling t2, then every interval in R

t If P and Q are points, S(P, Q) will denote the distance from P to Q.

X A double ruling ß is said to contain a double ruling / if every arc of t is an arc of ß.

§ By a component of a point set G is meant a maximal connected subset of G.
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which is of length greater than or equal to 2ei contains a point not belonging

to the set FF2Fi(j17i+1í2). There exists a positive number e2 (e2<l/3)

such that if 8iU, 7)^1/3 and U and V belong to R, then 8[T2TiiU),
F2Fi(F)] >e2. Let ß2 denote a double ruling of R consisting of rational hori-

zontal and vertical intervals such that (1) some interval of ß2 contains P2 (the

second rational point on A BCD), (2) ß2 contains fc, (3) every component of R

minus the sum of the arcs of the ruling ß2 is of diameter less than e2.

Let F2 denote the collection of all components of R minus the sum of

the arcs of the ruling ß2 and let G denote any element of F2. The domain G is

the interior of a rectangle composed of subsets of rational lines. There

exists a double ruling a3g of G having with respect to G, T2TiiMi+M2+M3)

and T2TiiM) the properties which the double ruling ai has with respect to

R, Mi and M. Let N2 be the sum of all arcs k, where k belongs to some

double ruling aig for some domain G of F2. The point set N2 is the sum of a

finite number of arcs which constitute a double ruling y2 of R. Let a3 be the

double ruling consisting of all arcs of the rulings ß2 and y2. Since F2Fi(Af)

contains no rational point the hypotheses of Lemma I are satisfied by

T2TiiM) and the double ruling a3. Hence there exists a transformation F»

satisfying the conclusion of Lemma I and reducing to the identity trans-

formation on A BCD and on the arcs of the double ruling ß2. Let f3 denote

the double ruling consisting of all arcs k such that k = T3ig), where g is an

arc of the ruling a3. Each component of R minus the sum of the arcs of the

ruling ß2 is of diameter less than e2. Hence it follows that if F is a continuous

transformation of R into itself which reduces to the identity transformation

on A BCD and on every arc of the ruling f3 then every interval which is a

subset of R and is of diameter greater than or equal to 2e2 contains a point

not belonging to the set TT3T2TiiMi+M2+M3).

Proceeding in this way one can see that there exists a countable infinity

of double rulings h, f2, • • • , and a countable infinity of continuous trans-

formations Fi, T2, T3, ■ ■ ■ of R into itself such that for every positive integer

n the following properties obtain: (1) fn+i contains f„, (2) fn is composed of

horizontal and vertical rational intervals and every component of R minus

the sum of the arcs of the ruling f„+i is of diameter less than 1/«, (3) if Um

denotes the point FmFm_i • • • Fi(t/) and U and V are points of R such that

S(Í7, V)'=l/n, then for every integer m(m>«) the points Um and Vm are

separated in R by some arc of the ruling <„, and, for every n, 5(i/n+l, Un+k)

<2/n ik = l, 2, ■ ■ ■ ), (4) the transformation Fn+i reduces to the identity

transformation on ABCD and on all arcs of the ruling f„, (5) some arc of

f„ contains P„ (the nth rational point on ABCD), (6) no point belonging to

two arcs of f„ belongs to the set F„F„_i • • • Fi(M), and (7) if F is any con-
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tinuous transformation of R into itself which reduces to the identity trans-

formation on A BCD and on the arcs of the ruling tn+i then every interval

which is a subset of R and is of length greater than or equal to 2/n contains

a point not belonging to the set TTn+iTn ■ ■ ■ ri(Mi+M2+ ■ • • +Mn+i).

From property (3) it clearly follows that for every point U of R the se-

quence U, U1, U2, ■ ■ ■ has a sequential limit point. Let T be the transfor-

formation which carries U into this sequential limit point. In particular, if

for some integer n the point Un belongs to some arc of /„ or to A BCD, then

Tjn = un+k (k = l, 2, ■ ■ ■ ) and 7\£7) is merely Un. I shall now show that T

is a continuous one-to-one transformation of R into itself which satisfies

the conclusion of Theorem II with respect to R.

First, T is a one-to-one transformation of R into itself which reduces to

the identity transformation on ABCD. Let U and V denote distinct points

of R. We see at once from property (3) that there exist two mutually

exclusive intervals gi and g2 which belong to some double ruling tn and each

of which separates Um from Vm in R for every integer mÇm>n). Then the

sequences U1, U2, U3, ■ ■ ■ and V1, V2, V3, ■ ■ ■ have distinct sequential

limit points. Hence for each point X of R there is not more than one point

Ux such that X = TiUx)- That for each X there is at least one point Ux

follows from properties (2) and (3).

Second, the transformation T is continuous. Let U be a point not be-

longing to a point set W. If U is not a limit point of W then there exists an

integer m such that any point of T„Tn-i • • ■ TiÇW) is separated from T(i/)

by some arc of the ruling tn for every n Çn>m). Hence TÇU) is not a limit

point of TÇW). If however U is a limit point of the set W then for every e

there is a point V( of W and an integer nt such that h(JJm, Vtm) < e for every

integer m greater than nf. Hence T{U) is a limit point of TÇW).

It follows from properties (2), (5) and (6) that if U is a point such that

TÇU) is rational, then U does not belong to M.

Let L denote any interval which is a subset of R, and suppose that

LTiM) contains a nondegeneratef connected set. Since no continuum is

the sum of a countable number of totally disconnected closed sets it follows

that there exists an integer n such that L contains a nondegenerate con-

nected subset of TiMn). Let r denote some interval which is a subset of

L-TiMn) and let e be its length. Let «i be an integer such that 2/»i<«

and ni>n. Now the transformation T reduces to the transformation

J„1+irni • • • Ti on ABCD and on every arc of tni (property 4).  Hence if T*

t A point set containing but a single point is said to be degenerate.
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denotes the transformation such that T(U) = T*Tni+iTni ■ ■ ■ Ti(U) then T*

reduces to the identity transformation on ABCD and on every arc of tni.

Hence by property (7) the interval r contains a point not belonging to

the set T*T„l+iTni ■ ■ ■ Ti(Mi+ ■ • - +Mni+i). But this set is exactly

T(Mi+ ■ ■ ■ +M„1+i). Hence we have a contradiction which means that no

interval which is a subset of R contains a nondegenerate connected subset

of T(M).

I have now shown that F is a continuous one-to-one transformation of R

into itself such that if L is any straight line then the point set L ■ T(M) ■ R is

either vacuous or totally disconnected, and no point which beongs to T(M)

is rational. Hence T satisfies the conclusion of Theorem II with respect to the

rectangle A BCD plus its interior. The extension to the whole plane is obvious.

Part II

In his paperf Grundzüge einer Theorie der Kurven, Karl Menger proves

that if M is a bounded continuum containing no domain then a necessary and

sufficient! condition that M be a continuous curve [regular curve§] is that,

for each positive number e, M is the sum of a finite number of continua all of

diameter less than e, such that the common part of any two of these continua

is vacuous or totally disconnected [finite]. The necessity of this condition

follows from Theorem III for the case where M is a continuous curve, and

from Theorem VI for the case where M is a regular curve.

Theorem III. If M is any continuous curve which contains no domain

then there exists a continuous transformation T of the plane S into itself such

that (1) no straight line contains a nondegenerate connected subset of T(M) and

no point of T(M) is rational, and (2) if R is the interior of a rectangle composed

of intervals of lines with equations of the form x = r and y = r, where r is a rational

number, then the point set R T(M) is the sum of a finite number of connected

sets and every point of M on the boundary of R is a limit point of R ■ T(M).

To help establish Theorem III I will first prove the following lemma.

t Mathematische Annalen, vol. 95 (1925), pp. 277-306.

X For the case of a continuous curve the sufficiency of the given condition was proved by

W. Sierpinski, Sur une condition pour qu'un continu soit une courbe jordanienne, Fundamenta Mathe-

maticae, vol. 1 (1920), pp. 44-60.

§ A continuum M is said to be a regular curve if for each point P of M and each positive number t

there exists a domain of diameter less than e which contains P and whose boundary contains only a

finite number of points of M. See K. Menger, loc. cit.
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Lemma II. // M is a continuous curve containing no domain and J is a

simple closed curve EKFGLHE such that the arcs EKF and GLH of J contain

no point of M, then there exists a simple continuous arc KL lying, except for

K and L, within J, and such that (1) the arc KL contains no nondegenerate con-

nected subset of M, (2) every point of M on the arc KL is a limit point of M

from both sides^ of KL, and (3) the point set M — M ■ KL is the sum of a finite

number of connected sets.

Proof of Lemma II. Let / denote the interior of J and let N be the point

set M I+EH+FG. If N is not connected there exists an arc KL which

contains no point of M. I will therefore suppose that N is connected. Then

N is a continuous curve. The set of junctionf points of M is countable.%

With the help of this fact and Theorem I it is easily seen that there exists an

arc KZL which except for K and L is within / and which contains no junction

point of M and no nondegenerate connected subset of M. Let Se and Sp

denote the components of N — N KZL containing E and F respectively.

Let Se* denote the component oí N—Sf which contains E. Let SF* denote

N-Se*.
Since N is a continuous curve, SB* and SF* are mutually separated sets.

The common part of the two sets Se* and Sf* is a subset of N ■ KL and is

therefore totally disconnected. Now Se* is connected, by definition. I will

show that Sf* is also connected.

Suppose that Q is a point of Sf and P is any point of SF* — SF* • Sf- There

exists§ in N a. simple continuous arc PQ. Let Pi be the first point on this arc

from P to Q which belongs to the set Se*+Sf- The point Pi belongs to Sf,

for otherwise the subarc PPi of PQ belongs to Se*, which is contrary to the

supposition that P is in SF*. If Pi is not in Se* then it is in Sf and the arc PPi

is connected to Q by an arc in Sf*.

Suppose then that Pi belongs to both of the sets Se* and Sf- Then Pi is a

t If M is a point set and P is an interior point of an arc AB then P is said to be a limit point of

M from both sides of AB if there exists a simple closed curve J containing AB such that, Ij denoting

the interior of /, P is a limit point of M ■ Ij and of M ■ (S—lj).

X Cf. R. L. Moore, Concerning triods in the plane and the junction points of plane continua,

Proceedings of the National Academy of Sciences, vol. 14 (1928). If P is a point of a continuous curve

N, and K is a domain containing P such that P is a cut point of the component of N ■ K which con-

tains P, and furthermore there exist three arcs PA,, PA¡, and PA3 which lie in N and have only

the point P in common, then P is said to be a. junction point of N. The continuum PAi+PAt+PAt

is called a triod and the point P is its emanation point.

§ R. L. Moore, A theorem concerning continuous curves, Bulletin of the American Mathematical

Society, vol. 23 (1917), pp. 233-236. See also Mazurkiewicz, Sur les lignes de Jordan, Fundamenta

Mathematicae, vol. 1 (1920), pp. 166-209, and H. Tietze, Ueber stetige Kurven, Jordansche Kurven-

bogen, und geschlossene Jordansche Kurven, Mathematische Zeitschrift, vol. 5 (1919), pp. 284-291.
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limit point of each of the mutually separated connected sets Se* and Sp -

Thereforef there exists an arc RiPi in SB*+Pi, and an arc 7\Pi in SF+Pi,

where jRi and 7\ are on the arcs EH and FG, respectively. (See Fig. 3.)

Since the point Pi is an emanation point of the triod of A7 composed of the

three arcs RiPi, PPi, and TiPi, and is not a junction point of M, it is not a

Fig. 3

cut point of A7. Therefore there exists an arc from P to Q which does not

contain the point Pi. Let P2 denote the first point of this arc in the order

from P to Q which belongs to the set S*+Sf- Then as before either P and Q

can be connected by an arc in SF* or P2 belongs to both Se* and Sf- Suppose

the latter is true. Then P2 does not belong to any of the arcs PPi, TciPi or

T-iPi. In Sp+Pt there exists an arc PtT2, where T2 is either on the arc FG

or on the arc PiT/ and no other point of the arc P2T2 belongs to either FG

or Pi TV In SE*+Pt there exists an arc P2Rt, where R2 is on EH or on 7?iPi,

and no other point of P2R2 is on EH or R1P1. Suppose for definiteness that

Tt and Rt are on the arcs FG and EH, respectively.  Let X and F be points

t See R. L. Wilder, Concerning continuous curves, Fundamenta Mathematicae, vol. 7 (1925),

pp. 340-377.
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on FG and EH between 7\ and T2, and 7?i and R2, respectively. Then the

simple closed curve h (A = TiXTiP2R2Y RiPiTi) encloses the segments PPi

and PP2. Let R be a domain which contains the arc PPi but does not contain

the point P2. The component oí NR which contains Pi contains subarcs of

PPi, iciPi, and 7\Pi. Since Pi is not a junction point of A7 it is not a cut

point of this component. Hence there exists within RiN—Pi) a simple

continuous arc PW, where W belongs to one of the segments 7?iPi and Z\Pi.

Let P3 be the first point in the order from P to W which the arc PW has in

common with the set Se* +Sf- Assume that P3 belongs to both Se* and S p.

Clearly P8 is within the simple closed curve h. There exists a segment of an

arc within h with Pi and P2 as end points which contains no point of SB*+Sp.

This segment P1P2 divides the interior of h into two connected domains, one

of which contains P3. Now there exist arcs from P3 to 7\ and from P3 to Ri

which lie in the sets Sf+P3 and 5/+P3, respectively. Since the simple

closed curve PiRiYRtPtPi contains no point of Sp+P3, and the simple

closed curve PiTiXTtPiPi contains no point of SE*+P3 it is clear that we

have reached a contradiction. Hence every point P of Sf*—Sp*Sf lies in

the component of Sp* which contains SF, which means that Sp* is connected.

We now have N=Se*+Sf* where Se* and Sp* are connected and have no

point in common, and Sb*Sf* is totally disconnected. Let XE and XF be

the two continua obtained by adding to SB* and Sp*, respectively, all of their

bounded complementary domains. Now no point is in a bounded comple-

mentary domain of both Se* and Sp*. Therefore the point set XE ■ XF is the

same as the set Sb*Sf*. Call this set T. Then XB — T is connected, and

neither XB nor Xp separates the plane. As a result of a theorem of R. L.

Mooref it follows that there exists a simple closed curve k enclosing XB — T,

containing T, and not containing or enclosing any point of XF — T. Clearly k

contains an arc whose end points lie on the segments EF and GH, respectively,

but which otherwise lies within J. This arc can be modified so as to have

K and L for end points and retain the property of separating XB — T and

Xp — T as above.% I will show that this arc satisfies the conclusion of

Lemma II.

(1) Clearly the arc KL contains no nondegenerate connected subset of

M, for it contains no point of M not belonging to the totally disconnected

set T. (2) Every point of M on the arc KL is a limit point of each of the

sets SB* and Sf* and is therefore a limit point of M from both sides of KL.

t Concerning the separation of point sets by curves, Proceedings of the National Academy of

Sciences, vol. 11 (1925), pp. 469-476.
X This follows readily from the fact that the segments EKF and GLH do not contain any point

oiN.
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(3) Every component of M—M ■ KL contains a point either on the arc EH or

on the arc FG because of the fact that (M — F) +EH+FG is the sum of two

or less connected sets. Since not infinitely many components of M — T have

a point on EH or FG and also have a limit point on KL it follows that only a

finite number of such components can have a limit point on KL. But every

component of M — T has a limit point on KL. Hence the number of such

components is finite.  This completes the proof of Lemma II.

Proof of Theorom III. As in Theorem II there is no loss of generality in

assuming that no point with both coordinates rational belongs to M. Clearly

the plane 5 can be regarded as the sum of a countable infinity of rectangles

plus their interiors, the rectangles being subsets of irrational horizontal and

vertical lines. Let Ru R2, R3, • ■ ■ denote the mutually exclusive interiors

of such a set of rectangles.

If e is any positive number and if we have any finite double ruling a of

Ri (¿ being any positive integer) such that no arc of a contains a nondegener-

ate connected subset of M, then we can obtain a finite double ruling ß which

contains the arcs of a and is such that every component of R< minus the sum

of the arcs of ß is of diameter less than e, and every arc of ß which does not

belong to a has properties (1), (2), and (3) of Lemma II, and such that no

point common to two such arcs belongs to M. Now the arcs of the double

ruling ßn defined in the proof of Theorem II were taken to be rational lines

so that no nondegenerate connected subset of F„F„_i • ■ • Fx (M) would be

a subset of an arc of /?„. In view of Theorem II, however, it can be seen that

transformations Tu T2, T3, ■ ■ ■ can now be chosen so that no nondegenerate

connected subset of FnFn_i ■ • • T\ (M) is a subset of any straight line.

Hence some of the arcs of the rulings j3n can be taken as irrational horizontal

and vertical intervals. By obvious modification of the argument given in

the proof of Theorem II it can be seen that there exists a countable in-

finity of double rulings fi, f2, t3, ■ ■ ■ of Rit and a countable infinity of con-

tinuous transformations Ti, T2, T3, ■ ■ ■ of R{ into itself which, except for

(6) and a modification of (2) to allow f„ to contain intervals of irrational

horizontal and vertical lines, have properties (l)-(7) as stated in the proof

of Theorem II, and the additional property that the double ruling f„ contains

a double ruling rn every arc of which has properties (1), (2), and (3) of Lemma

II and P„ (the «th rational point on the boundary of Rt) is an end point of

some arc of the ruling rn. Let Wi be the transformation corresponding to

the transformation F as defined in the proof of Theorem II. Let F be the

transformation of the plane S into itself which for every i reduces to Wi

over Ri.

Clearly then no straight line contains a nondegenerate connected sub-
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set of T(M), and no point of T(M) is rational. The second conclusion of

Theorem III follows readily from the fact that every rational horizontal

and vertical interval with rational end points has properties (1), (2), and

(3) of Lemma II with respect to the continuous curve T(M). Hence Theorem

III is established.

The following is an example of a regular curve which contains an uncount-

able set 77 of points such that no arc containing a point of 77 has property

(3) of Lemma II. It therefore follows that Theorem III would be false if

the stipulation that the boundary of R is composed of intervals of rational

horizontal and vertical lines were omitted, or if the word rational were re-

placed by the word irrational.

Example 1. (See Fig. 4.) Let 77 denote a nondense perfect point set

on the interval O^x^l, and let K denote any acyclicf continuous curve

such that 77 is the set of end pointsf of K.   Let Gi, G2, G3, • ■ ■  denote a

Fig.[4

t A continuous curve is said to be acyclic if it contains no simple closed curve. See H. M. Geh-

man, Concerning acyclic continuous curves, these Transactions, vol. 29 (1927), pp. 553-568. An end

point of an acyclic continuous curve is a point which is not an interior point of any arc of that curve.

See R. L. Wilder, loc. cit., or H. M. Gehman, loc. cit.
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contracting sequencef of mutually exclusive simple closed curves such that

every point of H is enclosed by infinitely many curves of the sequence

d, G2, G3, • • • , and for every n the curve Gn. has just one point in common

with K, and this point does not belong to H. Let M be the continuous

curve K+Gi+G2+G3+ • • • . Let P denote a point of K — H. Then

if Q is any point of H there is one and only one arc PQ from P to Q in M.

Let / denote a simple closed curve containing Q but not containing a non-

degenerate connected subset of M. Either (1) PQ—PQJ is the sum of

infinitely many maximal connected subsets, in which case M — MJ is not

the sum of a finite number of connected sets, or (2) there exists a point

X on the arc PQ distinct from Q such that the arc XQ has only the point

Q on /. Suppose for definiteness that X is within /. There exist infinitely

many simple closed curves of M enclosing Q, having points within / and

points without /, and having only one point on the arc XQ of PQ. Since

no maximal connected subset of M—MJ which lies in the exterior of J

can contain a point of the arc XQ it follows that the number of components

of M — M J is infinite.

In his paperj Concerning irreducible cuttings of continua, G. T. Whyburn

raises the question as to whether or not every open§ subset of a plane

continuous curve M contains an irreducible cutting of M. This question is

answered by the following theorem which is an application of Theorem III.

Theorem IV. Every open subset of a plane continuous curve M contains

an irreducible cutting of M.

Let G denote an open subset of a continuous curve M. Clearly if G con-

tains a domain then it contains a circle which is an irreducible cutting of M.

If G contains no domain let R denote the interior of a circle such that R

contains a point of G but R does not contain a point of M—G. Let Mi

denote any maximal connected subset of M ■ R which contains more than one

point. Then|| Mi is a continuous curve which contains no domain. From

Theorem III it readily follows that there exists a simple closed curve /

which encloses some point of Mi but does not contain or enclose any point

t If B is a sequence of point sets and for each positive number t only a finite number of point

sets of the set H are of diameter greater than e then H is said to be a contracting sequence of point sets.

See R. L. Moore, Concerning upper semi-continuous collections, Monatshefte für Mathematik und

Physik, vol. 36 (1929), pp. 81-88.

Î Fundamenta Mathematicae, vol. 13, pp. 42-57.

§ An open subset of a continuum M is a set such that its complement with respect to M is closed.

An irreducible cutting of a continuum M is a point set K of M such that M—if is not connected, but

such that if G is any proper subset of K then M—G is connected. See G. T. Whybum, ibid.

|| H. M. Gehman, Concerning the subsets of a plane continuous curve, Annals of Mathematics,

vol. 27, p. 34.
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of M — Mi, and such that the point set M J is totally disconnected and

separates Mi into a finite number (greater than 1) of connected sets. Clearly

then MJ has the same properties with respect to M. Thenf the set M J

contains a subset which is an irreducible cutting of M.

Theorem V. A necessary and sufficient condition that a continuum M

(not the whole plane) be a regular curve is that if R is a connected domain con-

taining two distinct points A and B not belonging to M then in R there exists a

simple continuous arc from A to B which contains only a finite number of points

of M.
The condition is necessary. Suppose M is a regular curve and P is a

connected domain containing two points A and B not belonging to M.

Let AB denote any simple continuous arc from A to B which lies in P,

and let A' and B' be points in the order AA'B'B such that no point of M

is on the arc A A' or the arc BB' of AB. Enclosing each point of the arc

A'B' there exists a simple closed curve containing only a finite number of

points of M and not containing or enclosing A or B or any point not in the

domain R. There exists a finite set of such curves whose interiors cover the

arc A'B'. Call the curves of such a set Ji, J2, ■ ■ ■ , Jn- If H denotes the

continuous curve AA'+BB'+Ji+J2+ ■ ■ ■ +Jn then H contains only a

finite number of points of M. Let AXB denote an arc from A to B which is

a subset of H. Obviously this arc contains only a finite number of points of M.

The condition is sufficient. Clearly M cannot contain a domain. Suppose

P is any point of M and e is any positive number. Let Ji and J2 denote two

circles with P as center and radii e/2 and e/3, respectively. Let Pi and P2

denote the extremities of a diameter of Ji. Let D denote the domain bounded

by /1+/2, and let A and B denote two points not belonging to M and lying

in D on different sides of the diameter Pj PP2. Let Di and D2 be the connected

domains D-D PPi and D-D PP2, respectively. Let AXiB and AX2B

denote arcs lying in Di and D2, respectively, and containing only a finite

number of points of M. The continuous curve AXiB+AX2B contains a

simple closed curve which encloses P, contains only a finite number of points

of M, and is of diameter less than e. Hence the point P is a regular point and

M is a regular curve.

Theorem VI. // M is a regular curve (not necessarily bounded) in a

euclidean plane S, then there exists a continuous transformation T of S into

itself such that (I) no straight line contains a nondegenerate connected subset

of T(M) and no point of T(M) is rational, and (2) each rational horizontal

or vertical line has in common with T(M) a point set which has no limit point.

t See G. T. Whyburn, loc. cit.
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The only essential difference between the proof of this theorem and that of

Theorem III is that here we require that the arcs of the double ruling r„

shall have only a finite number of points in common with M, instead of re-

quiring that they have properties (1), (2) and (3) of Lemma II. In case M

is a bounded regular curve the second conclusion of Theorem VI is equivalent

to the statement that no rational line contains more than a finite number of

points of M.

It follows that if R is the interior of a rectangle whose sides are intervals

of rational horizontal and vertical lines, then the point set T(M)-(R — R)

contains only a finite number of points of M. However the following ex-

ample shows that it does not follow that the set R • T(M) is the sum of a finite

number of connected sets.

Example 2. (See Fig. 5.) For each pair of positive integers wand k(k^2n)

let Ikn denote the interval with end points [(k —1)/2", 0] and [k/2n, 0], and

let Cjfc„ denote the semicircle above the z-axis with 7*„ as diameter. Let 77

denote the continuum which is th£ sum of the interval l(0=x^l) and all

semicircles Ikn(k = 2n, n = \, 2, 3, ■ ■ ■). Let Pi, P2, P3, ■ ■ ■ denote the

points of the #-axis which are extremities of diameters of semicircles belonging

Fig. 5 .

to 77, and for each n let ai„, a2n, a3n, ■ ■ ■ denote a contracting sequence of

arcs all of diameter less than 1/m, such that for each m the arc amn contains the

point Pn but no other point of 77 and no other point of the arc akn (k^m).

Let M be the continuum 77+2^12r=i0¡n- Then M is a regular curve.

Now any arc which lies between the lines x = 0 and x — 1 and has a point above

and a point below the z-axis either contains the point*P„ for some integer n

or it contains infinitely many points of M. In the first case it cuts M into

infinitely many components.

Theorem VII. If every point of a bounded regular curve M in a euclidean

plane S is of finite order} then there exists a continuous transformation T of S

into itself such that (1) no straight line contains a nondegenerate connected subset

t If P is a point of a regular curve M and there exists an integer n such that for every positive

number e there is a domain of diameter less than t which contains P and whose boundary has not

more than n points in common with M then the point P is said to be of finite order. Cf. K. Menger,

loc. cit.
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of TiM) and no point of TiM) is rational, (2) the rational lines contain only a

finite number of points of TiM), and (3) if R is the interior of a rectangle com-

posed of intervals of rational lines, then R • TiM) is the sum of a finite number of

connected sets.

Let T be a transformation satisfying the conclusion of Theorem VI.

Since each point of Ai on a rational line L is of finite order it is not a limit

point of infinitely many components of T(M)—L. In view of this, and the

additional fact that the set of points of M on any rational line is finite, it is

clear that the transformation T satisfies the conclusion of Theorem VII.

Theorem VIII. If M is a bounded regular curve which contains only a finite

number of simple closed curves then there exists a transformation T satisfying the

conclusion of Theorem VII.

To help prove Theorem VIIII will establish the following lemma.

Lemma III. If M is a bounded regular curve which contains only a finite

number of simple closed curves, and R is a connected domain containing two

points A and B not belonging to M, then there exists a simple continuous arc

AB which lies within R, contains only a finite number of points of M, and is such

that M — M AB is the sum of a finite number of connected sets.

Proof of Lemma III. Let H denote the set of junction points of M.

Let / be a simple closed curve enclosing A and B and lying in R, and let g

denote a simple continuous arc from A to B which lies within J, contains

no non-degenerate connected subset of M, and no point of H. But the outer

boundary of every bounded complementary domain of a continuous curve is|

a simple closed curve andj no two bounded complementary domains of a

continuous curve have the same outer boundary. Hence since M contains

only a finite number of simple closed curves it follows that only a finite

number of complementary domains of M+J have boundary points on the

arc g. If one of these domains contains both A and B the lemma is obviously

established. If not let Pi be the last point of g in the order from A to B

which is on the boundary of that complementary domain of M+J which con-

tains A. Then§ there exists an arc APi which lies wholly in this domain ex-

cept for the point Pi. Since Pi is a limit point of the points of S—M on the

t R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15

(1922), Theorem 4 and p. 259.
X R. L. Moore, Concerning paths that do not separate a given continuous curve, Proceedings of the

National Academy of Sciences, vol. 12 (1926), Theorem 1.

§ Schoenflies, Die Entwickelung der Lehre von den Punktmannigfaltigkeiten, zweiter Teil jahres-

bericht der Deutschen Mathematiker-Vereinigung, Ergänzungsbände, vol. 2 (1908).
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arc PiB of g it follows that Pi is a boundary point of some complementary

domain of M+J which contains points on the arc PiB. Let P2 be the last

point on the arc PiB belonging to the boundary of a complementary domain

of M+J which also has Pi on its boundary. If P2 is the same as Pi then the

arc PiB contains no point of M+J. In either case there exists a simple con-

tinuous arc with Pi and P2 as end points which contains no point of M+J

except Pi and P2. Continuing this process a finite number of times one ob-

tains a simple continuous arc AB which contains only a finite number of

points of M and no junction point of M. Clearly this arc satisfies the con-

clusion of the lemma.

A proof of Theorem VIII can now be given which is closely analogous

to the proof of Theorem III. The essential difference is that the arcs of the

double ruling rn are here to be chosen so as to have the properties stated in

Lemma III rather than those stated in Lemma II.

Theorem IX. If A and B are distinct points of a continuous curve M then

M contains a simple continuous arc from A to B every subarc of which contains

a subarc which either lies on the boundary of some complementary domain of M

or lies in some domain which belongs to M.

(1) Suppose M contains no domain. Let AXB denote a simple continuous

arc from A to B such that the common part of AXB and M is totally dis-

connected. Let F denote the set M AXB. Let A, D2, • • • denote the

complementary domains of M which contain limit points on the arc AXB

and for each i let /,- denote the boundary of 7><. Let K be the point set

F+/i+/2+73+ • • • • Since Ji, J2, /»,••■ is a contracting sequence of

continuous curves all containing points on the arc AXB it is readily seen

that the set K is closed. If P is an interior point of the arc AXB which does

not belong to K then there exists a connected subset of K containing the

last point of F which precedes P on the arc AXB and the first point of F

which follows P on this arc. Therefore K is connected. With the use of the

fact that the boundary of every complementary domain of a continuous

curve is itself a continuous curvef it readily follows that K is connected im

kleinen. Hence K is a continuous curve. Let AB denote any arc which lies

in K% and let EF denote any subarc of AB. Since T is totally disconnected

the arc EF contains a subarc E'F' which contains no point of F. The arc

£'F'isasubsetof/i+/2+/3+ • • • , and hence is equal to Ji-E'F' +J2E'F '

+J3E'F'+ ■ ■ • .    But the sum of a countable number of totally dis-

t R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15

(1922), p. 259.
Î See third footnote on p. 14.
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connected closed point sets is not connected. Hence there exists at least one

integer i such that the set Ji • E'F' contains an arc. Thus every subarc of AB

contains an arc belonging to the boundary of some complementary domain

of M.
(2) If A and B are distinct points of a continuous curve M which contains

a domain let Mi be a continuous curve containing A and B which is obtained

by taking from M the interiors Ih I2,13, ■ ■ • of a contracting sequence of

circles such that (1) for every domain D which is a subset of M there is an

integer n such that /„ contains at least one point of D, (2) for every n, 7„

is a subset of some domain belonging to M and (3) /*J„ = 0(¿7¿«). Let AB

denote an arc satisfying the conclusion of the theorem with respect to Mi.

Since the boundary of a complementary domain of Mi which is not a com-

plementary domain of M belongs in a domain lying in M it is obvious that

AB satisfies the conclusion of the theorem with respect to M.

Theorem X. // M is a bounded continuous curve which contains no domain

then there exists a continuous transformation T of the plane S into itself such

that (1) if AB is an arc such that TiAB) is a subset of a rational line then

ABM = Ci+c2+ ■ ■ ■ +cnwhere for each i Ci ̂ n) Ci is an arc or a point and if

Ci is an arc then every subarc of c¿ contains a subarc lying on the boundary of

some complementary domain of M and (2) if AB is an arc such that TiAB) is a

subset of an irrational horizontal or vertical line then AB M is vacuous or totally

disconnected.

To help establish Theorem X, I will prove several lemmas. To avoid

repetition I will say that an arc A B has property ct with respect to M,or merely

that it has property ct if the common part of M and AB is the sum of a finite

number of connected sets such that each of these sets which is an arc is of

diameter less than e and has the property that every subarc of it contains

a subarc lying on the boundary of some complementary domain of M.

Lemma IV. If I is the interior of a simple closed curve and M is a bounded

continuous curve containing no domain and A and B are distinct points lying

in I and e is any positive number, then there exists a simple continuous arc from

A to B which is a subset of I and which has property cf.

With the help of Theorem II it can readily be seen that there exists a

simple closed curve Ji lying in I, enclosing A and B, and such that (1)

Ji-M is totally disconnected, and (2) if It denotes the interior of /i then no

component oí M h is of diameter greater than or equal to e. Let AXB denote

any simple continuous arc from A to B which lies in Ii and let Si, s2, ■ ■ ■ , sn

denote the components of M h which have points on AXB.   For each i
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(i^n) Si ist a continuous curve. In view of this fact and Theorem IX it fol-

lows that there exists an arc AB in Ix such that M AB is a subset of Si+s2

+ ■ • • +sn and is the sum of n or less connected sets such that each of these

sets which is an arc has the properties of the arc of Theorem IX with respect

to that one of the continuous curves Si, s2, • • • , sn to which it belongs. Let

EF denote an arc belonging to M AB. Since EF contains a subarc lying

wholly within J it can easily be shown that EF has the properties stated in

Theorem IX with respect to M. Since in addition EF is of diameter less than

e the lemma is proved.

Lemma V. If J is a simple closed curve and KL is a simple continuous

arc which lies within J except that K and L are on J and KL is on the bound-

ary of a complementary domain D of M, then there exists a simple continuous

arc AB which lies within J such that (I) the common part of AB and KL is a

single point, (2) KL separates A from B within J, and (3) AB M is either an

arc or a point, and if it is an arc it has property ct.

Let C denote the interior of a circle which lies within J and encloses a

point of KL. There exists a point A in CD and a subarc E'F' of EF such

that for every point P of E'F' there exists an arc AP which lies in CD

except for the point P. Let O denote some interior point of E'F' and let G

denote the interior of a circle /i which lies in C such that Ci contains O but

contains no point of KL — E'F'. Let A' and B' denote points in G lying

respectively on the A side and the non A side of KL and let B'A' denote

an arc having property ct and lying in G. Let Q denote the first point of

B'A ' on KL in the order from B' to A '. Let AQ denote an arc lying in CD

except for the point Q. Let QB denote a subarc of QB' such that QBM is

connected. The sum of the arcs AQ and QB gives an arc AB which satisfies

the conclusion of the lemma.

Lemma VI. If M is a continuous curve containing no domain and lying

within a simple closed curve J whose interior is R, ei and e2 are any positive

numbers and a is a double ruling of R such that every arc of a has property

cei, then there exists a double ruling ß of R such that every arc of a is also an

arc of ß, every arc of ß which is not an arc of a has property c,2 and every com-

ponent of R minus the sum of the arcs of the ruling ß is of diameter less than e2.

With the help of a theorem of Schoenfliesf it is easily seen that there

exists a continuous transformation Ti of the plane into itself which throws J

into a square ABCD and the arcs of a into horizontal and vertical inter-

f See H. M. Gehman, loc. cit.

X Loc. cit.
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vals. Let «i be the double ruling of T(R) which is composed of all arcs T(g)

where g is an arc of a. Since 7\ is continuous it obviously follows that there

exist two finite sets of rectangles hi, h2, ■ ■ -, hn, vh v2, • • •, u„such that (1)

for each i (iUn), hi[vi] has no point in common with any arc of «i which is

parallel to .47? [BC] and no point in common with h,-[u,-] (jún, j^i) but

contains at least one point of AD and one point of BC [AB and C7?], and

(2) if a2 is any double ruling of R which contains all of the arcs of ax and in

addition contains arcs a, and ¿>, such that T(a¡) lies in hi plus its interior

and T(bt) lies in p< plus its interior (i = 1, 2, ■ ■ • , n) then every component

of R minus the sum of the arcs of a2 is of diameter less than é2. It is easily

shown with the help of Lemmas IV and V that a particular such ruling ß

can be obtained such that the arcs of ß which do not belong to a have prop-

erty c„.

Lemma VIL Suppose M is a continuous curve which contains no domain

and lies in the interior R of a square ABCD. Let a be any double ruling of

R and let P be a point of R not belonging to any arc of a. Then there exists

an integer k such that if n>k and ß is any double ruling of R such that (1) ß

contains a, (2) no arc of ß contains P, (3) every component of R minus the

arcs of ß is of diameter less than 1/w, and (4) every arc of ß which does not be-

long to a has property Ci/„, then if E denotes the component, containing P, of

R minus the arcs of ß which are parallel to AB [BC], there exists in E an arc

aE with property Ci/<„+i) which together with the arcs of ß forms a double ruling

of R and stich that no component of M-(E — aE) contains points in more than

two components of R minus the arcs of a.  (See Fig. 6.)

Let ei be a positive number such that if ai and ¿>i denote any arcs of a

which have no point in common then the distance from any point of ai to

any point of bi is greater than ei. Let «2 be a positive number such that a

circle with P as center and €2 as radius neither contains nor encloses any

point of any arc of a or of ABCD. Let k be any integer greater than both

1/ei and l/e2. Suppose ß is a double ruling of R with properties (1), (2), (3),

and (4) as given above. Let E denote the component, containing P, of R

minus the arcs of ß which are parallel to AB (for example). In view of

property (3) and the additional fact that 1/w <e2 it is obvious that ai and a2,

the arcs of ß on the boundary of E, do not belong to a. From (4) it follows

that both ai and a2 have property Ci/n. Since \/n <ei it follows that between

each two distinct arcs of ß parallel to BC the arc a¿(¿ = 1,2) contains a point

not belonging to M. Hence if m + \ denotes the number of arcs of ß which

are parallel to BC it is easily seen that there exist 2m circles lying in R with in-

teriors Cn, Ci2, ■■• • . C im, Cu, C a, ■ ■ ■ , C2m such that (1) Cik(i = l, 2;Bm)
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contains no point of M and no point of any arc of a, and (2) for each two

adjacent arcs &i and b2 of a which are parallel to BC there exist integers i and

j such that Cu and C2,- contain points of oi and a2, respectively, which lie

between bi and b2. With the help of Lemmas IV and V it is seen that there

exists in E an arc aB with property Ci/c+i) which together with the arcs of ß

forms a double ruling of R, and in addition contains a point in C<*(î = 1, 2;

k = l, 2, ■ ■ ■ ,m). Obviously no component of MiE — aB) contains points

in more than two components of R minus the arcs of a.

Fig. 6

Proof of Theorem X. Suppose M lies in the interior 7? of a square ABCD.

With the help of Lemmas IV, V, and VI one can readily see that there exists

a double ruling ßi of ABCD such that (1) every component of R minus the

arcs of ßi is of diameter less than 1, (2) every arc of ßi has property Ci, and

(3) between each two adjacent arcs of ßi parallel to BC there exists on each

arc of ßi parallel to AB a point not belonging to M. Let ai and a2 denote any

two adjacent arcs of ßi parallel to AB (or ai or a2 may be AB or CD) and let

E denote the set of all points of R which lie between <Zi and a2. If m+1

denotes the number of arcs of ßi which are parallel to BC it is clear that
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there exist 2m circles lying in R with interiors Cu, Ci2, ■ ■ ■ , Cim, Cn,

C22, • ■ ■ , C2m such that (1) C<»(i = l, 2; k = m) contains no point of M and

no point of any arc of ßi which is parallel to BC, and (2) for each two adjacent

arcs ¿»i and b2 of ßi parallel to BC there exist integers ^ and k such that Ci,- and

C2* contain points of ai and a2, respectively, which lie between bi and b2.

With the help of Lemmas IV and V it is seen that there exists in E an arc aB

which together with the arcs of ßi forms a double ruling of R and such that

(1) aB contains points in the set dicÇi = 1, 2; k — 1, 2, ■ ■ ■ , m), and (2) aE has

property Ci/2. Obviously no component of M-iE — aB) contains points in

more than two components of R minus the arcs of the ruling ßi. Let ai be

the double ruling obtained by adding to ßi the arc aB for every component E

of R minus the arcs of ßi which are parallel to AB. Let 182 be a double ruling

which contains «i and is such that (1) every component of R minus the arcs

of ß2 is of diameter less than 1/2 and (2) the arcs of ß2 which do not belong

to ßi have property Ci/2.

Now let E denote the set of all points of R which lie between two adjacent

arcs of ß2 which are parallel to BC. If there exists in E an arc a* which

together with the arcs of ß2 forms a double ruling of R and such that (1) no

component of M-iE — a*) has points in more than two components of R

minus the arcs of ß2, and (2) the arc a* has property Ci/3, then let aB be such

an arc a*. If no such arc exists, but there does exist an arc a** having the

above properties except that in (1) the symbol ßi replaces the symbol ß2,

then let aE denote such an arc a**. If neither a* nor a** exists let aB be any

arc in E which together with the arcs of ß2 forms a double ruling of R and

which has property Ci/3. Let a2 be the double ruling obtained by adding to

ß2 the arc aE for every component E of R minus the arcs of ß2 which are

parallel to BC. Let ß3 be a double ruling which contains a2 and is such that

(1) every component of R minus the arcs of ß3 is of diameter less than 1/3,

and (2) the arcs of ß3 which do not belong to ß2 have property Ci/3.

Proceeding in this way one can show that there exists an infinite sequence

of double rulings ßh ß2, ß3, ■■ ■ , oí R such that for every n the following

properties obtain: (1) ßn+i contains ß„, (2) every component of R minus the

arcs of ß„ is of diameter less than 1/n, (3) every arc of j3n+i which does not

belong to ßn has property Ci/in+i), and (4) if ain and a2n are adjacent arcs of

ßn which are parallel to AB for n odd and parallel to BC for n even, and E

is the set of all points of R which lie between ain and a2n, then if there exists

a positive integer jij = n-l) and an arc a3E which lies in E such that (a) the

arc a3B together with the arcs of ßn forms a double ruling of 7?, and (b) no

component of MiE—a3B) contains points in more than two components of

R minus the arcs of ßh then, kE denoting the largest such integer / ßn+i
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contains an arc having the properties stated above for the arc a3E with j

replaced by kg.

Let P denote a point of R not belonging to any arc of any of the double

rulings ßi, ß2, ß3, ■ ■ ■ . For each positive integer n let En¡P denote the com-

ponent, containing P, or R minus the arcs of ßn which are parallel to AB

(for example). In view of properties (1), (2), and (3), and Lemma VII, it

can be seen that the integer n can be taken large enough so that the integer/

as qualified in property (4) does exist for En,P, and furthermore ken,P in-

creases indefinitely as n increases indefinitely. Hence it follows that for every

connected subset L of M there exists an integer ni such that some arc of

ßnL parallel to AB [BC] has a point in common with L. In view of properties

(1) and (2) it follows by methods employed in proving previous theorems

that there exists a continuous transformation Fi of R into itself such that (1)

for every n, Ti throws the arcs of ßn into intervals of rational lines, and (2)

if L is any rational line then there exists an integer n and an arc g of 0„ such

that Tiig) is a subset of L. Obviously there exists a continuous transfor-

mation F of the plane S into itself which reduces to Fi for points of R. Such

a transformation satisfies the conclusion of the theorem.

Now as shown in the proof of Theorem IX a continuous curve M which

contains a domain contains a continuous curve Mi such that Mi contains no

domain but does contain every boundary point of M, and such that if D is a

complementary domain of Mi which is not a complementary domain of M

then D lies in a domain of M. In view of this fact and the previous theorem

the following corollaries may be easily established.

Corollary 1. If M is a bounded continuous curve then there exists a con-

tinuous transformation T of the plane into itself such that if AB is an arc and

TiAB) is an interval of some rational line then (1) AB ■ M is the sum of a finite

number of connected sets, and (2) every arc which is a subset of AB M contains a

subarc which either lies on the boundary of a complementary domain of M or lies

in a domain which belongs to M.

Corollary 2. If M is a bounded continuous curve and P is a point of M

which is not in a domain belonging to M then there exists a continuous trans-

formation T of S into itself such that if APB is any arc such that TiAPB) is a

subset of a horizontal line, then the component of M APB which contains P

is P, and if AB is an arc such that TiAB) is a subset of a rational horizontal

line then the number of components of AB M is finite.

Let A be any point and for each n let C„ be a circle of radius 1/w and

center A.   Let AB be a unit interval and let M be the continuous curve
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AB+Ci+C2+ ■ ■ ■ . This example shows that it is not true that if M is any

continuous curve then there exists a continuous transformation T of the

plane S into itself such that if A B is an arc and T(AB) is a horizontal interval

then AB -M is the sum of a finite number of connected sets.

Theorem XL // P is a point of a bounded continuous curve M then there

exists an upper semi-continuous collection^ G of subcontinua of M which fills

up M such that P is an element of G and G is a regular curve with respect to its

elements.

Suppose first that P is a point which does not belong to a domain which

belongs to M and let T denote a transformation satisfying the conclusion of

Corollary 2. For each point x of M let gx be the greatest continuum contain-

ing x such that T(gx) is a subset of some horizontal line, and let G denote the

collection of continua gx for all points x of M. Clearly gP =P, and the collec-

tion G is upper semi-continuous. Now if Mi is any continuum such that the

common part of any rational horizontal line and Mi is a finite point set,

and the common part of any horizontal line and Mi is totally disconnected,

then Mi is a regular curve. Hence G is a regular curve with respect to its

elements.

Suppose P is a point lying in a domain D of M. There exists a set K of

mutually exclusive simple closed curves lying in D, all enclosing P, no two

having a point in common, and such that every point of D—P belongs to

some curve of the set K. Let G be the upper semi-continuous collection of

continua consisting of the curves of the collection K and the continua M—D

and P. The collection G is an arc with respect to its elements and one of its

elements is P.

t See R. L. Moore, Concerning upper semi-continuous collections of continua, these Transactions,

vol. 27 (1925), pp. 416-428. A collection G of continua is said to be an upper semi-continuous collec-

tion if for each element g of the collection G and each positive number e there exists a positive number

d such that if at is any element of G at a lower distance from g less than d then the upper distance

of x from g is less than e. If M is a point set and P is a point, then by l(PM) is meant the lower

bound of the distances from P to all the different points of M. If M and N are two point sets, then

by l(MN) is meant the lower bound of the values [l(PN) ] for all points P of M, while by u{MN) is

meant the upper bound of these values for all points P of M. The point set M is said to be at the

upper distance u{MN) from the point set N and is said to be at the lower distance 1{MN) from N.
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