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1. Introduction. In this paper it will be shown, among other things,

that the set G of all the cut points of any continuum M in a locally compact,

metric, and separable space is a G¡„ i.e., the sum of a countable number of

Gi sets.f From this result, with the aid of a well known theorem of W. H.

Young's, it follows that if the set G is uncountable it must contain a perfect

set.î Thus the set of all cut points of any continuum is either vacuous,

finite, countable, or of the power of the continuum.

The customary notation and terminology of point set theory will be

employed. For example, X = X+X\ where X' is the set of all limit points

of the set X; KcH means that K is a subset of H or that H contains K;

KH denotes the set of points common to K and H; p(X, Y) denotes

the distance from X to Y when X and Y are points, and denotes the mini-

mum distance between X and Y when X and ¥ or either contains more than

one point, i.e. the greatest lower bound of the aggregate of numbers

[p(*,y)j, where * and y are points of X and Y respectively; and 8(M) denotes

the diameter of the set M, i.e., the least upper bound of the aggregate

[p(x,y) ], where * and y are two points of M. In addition, if X is a cutting of

a connected set M, unless otherwise stated, the equation M—X=Ma(X) +

Mb(X) is to be interpreted as meaning that M—X is the sum of the two

mutually separated sets Ma(X) and Mb(X) containing the sets A and B

respectively. When this equation is true, X is said to separate A and B

in M.

AU point sets considered are assumed to lie in a locally compact, metric,

and separable space.

2. Cut points and regular points.   We prove the following theorem:

* Presented to the Society, December 27, 1928. Received by the editor of the Bulletin in De-

cember, 1928, accepted for publication in the Bulletin, and subsequently transferred to the Trans-

actions.

t It has been shown by C. Zarankiewicz that the set of all cut points of any continuous curve

is an F„ but that this is not true of continua in general; see Sur les points de division dans les ensembles

connexes, Fundamenta Mathematicae, vol. 9 (1927), pp. 124-171; see pp. 163, 164.

Î According to results due to F. Bernstein (Leipziger Berichte, vol. 60 (1908), p. 325), there

exist uncountable sets, even uncountable linear sets, which contain no perfect set. The theorems in

this paper show, however, that such a set cannot be the set of cut points of any continuum.
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Theorem 1. If A and B are any two mutually exclusive closed subsets of

a connected set M and K is the set of all those points of M which separate A

and B in M, then K+A+B contains every point P of T£ which is a regular

point* of M+P.

Let P be any limit point of K which is not in A +B and which is a regular

point of M+P. As shown in my paper Concerning connected and regular

point setst either there exists a sequence XX,X2,X3, • • • of points of K having

P as its sequential limit point and such that, for every positive integer i,

<-i •
M - Xi = Ma(Xi) + Mb(Xi),   £x„ c Ma(Xi), and   £x„ c Mb(Xt),

n—1 n—i+l

or such a sequence exists such that, for each *,

,_i «
2>n c Mh(Xi) and   £ Xn c Ma(X().
n—1 n—t+1

The two cases are alike so we shall consider only the former. Let E =

22Ma(Xi), and let F = M-E. Then F=TlMb(Xi), i.e. F is identically
the set of points common to all the sets [Mb(Xi)]. Thus no point of £ is a

limit point of F, because each point of E belongs to a set Ma(Xk), and

FcMb(Xk) for every k. I shall now show that no point of F except pos-

sibly P (in case P belongs to M) is a limit point of E. Suppose, on the con-

trary, that such a limit point Q of E does exist. Let « be a positive number

which is <p(P, Q+A+B). Since P is a regular point of M+P, there exists

a finite subset U of M which «-separates P in M+P, i.e., (M+P) — U —

Mp+Mo, where Mp and Mo are separated, Mpz>P, and h(Mp) <e. NowJ

Mo+U is the sum of a finite number of mutually separated connected point

* The point P of a connected point set M is called a Menger regular point of M, or simply a

regular point of M, if for each t>0, P can be eseparated in M by some finite subset U of M, i.e., a

finite subset U of M exists such that M — U=MP(U)+M(U), where M„(U) and M(U) are mutually

separated, M„(U)0 P, and S[Mr(U)]<e. If the eseparating set U can, for every e>0, be chosen of

power a» but cannot, for every t, be chosen of power <n, then P is a point of order n of If. See

K. Menger, Grundzüge einer Theorie der Kurven, Mathematische Annalen, vol. 95 (1925), pp. 277—

306, and P. Urysohn, Sur la ramification des lignes Cantoriennes, Comptes Rendus, vol. 175 (1922),

p. 481.
t Bulletin of the American Mathematical Society, vol. 33 (1927), pp. 685-689, see proof of

Theorem 1. The proof here given is somewhat similar to the one just referred to. R. L. Wilder has

recently published some interesting extensions of Theorem 1 in my paper here cited; see R. L. Wilder,

On connected and regular point sets, Bulletin of the American Mathematical Society, vol. 34 (1928),

pp. 649-655.
X See Knaster and Kuratowski, Remark on a theorem of R. L. Moore, Proceedings of the National

Academy of Sciences, vol. 13 (1927), pp. 647-649; see also an abstract of mine in the Bulletin of the

American Mathematical Society, vol. 33 (1927), p. 388.
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sets Ei, Ei, E3, ■ ■ • , En. One of these, say £*, contains Q, and Q is not a

limit point of M—Ek. But there exists an integer m such that for every in-

teger j>m, XjcMp. And since QcMb(X¡), EkoQ, and EkX{=0, then

Ek c Mb(X,) for every j >m. Hence Q is not a limit point of ^J-m+iM^X,),

because this set of points is a subset of M—Ek. But clearly Q is not a limit

point of Y^T-i Ma(Xj), because QcFcMb(X,) for every/. Therefore Q

is not a limit point of E, contrary to supposition. Thus no point of F

except possibly P can be a limit point of E.

Now P must belong to F, for if not, then E and F are mutually separated ;

and since E+F = M, this contradicts the fact that M is connected. Hence

PcF; and since E and F—P are mutually separated and contain A and B

respectively, and E+(F—P)=M— P, therefore P separates A and B in

M and hence belongs to K.

Corollary la. If M is a continuum, then every point of K which is not

in K+A +B is a non-regular point of M.

Theorem 1 does not hold true, even in case M is a continuum, when we

substitute the words "point of connectivity im kleinen" for the words "regu-

lar point." For let I be the interval (0,2) of the X-axis; let A and B be the

end points of 7; let L be the straight line interval from (1,0) to (1,1); let P

be the point (1,0) ; for each positive or negative integer n, let Ln be the straight

line interval from (l + l/(2«),0) to (1 + 1/(2«),1); and let M be the con-

tinuum I+L+^Ln- Then the set K of points of M which separate A and

B in M is identical with the set I —(A +B+P) ; and P is a limit point of K

and is a point of connectivity im kleinen of M; but P does not belong to K.

Theorem 2. Let N be any closed subset of a connected point set M, and let

K be the set of all points of M which separate* N in M. Then K+N contains

every point P of K which is a regular point of M+P.

Let P be any point of K which is not in N and which is a regular point

of M+P, let e be a positive number which is <p(P,N), and let U be a finite

subset of M which e-separates P in M+P. Then M— U = MP+Mn, where

MP and Mn are separated and contain P and N respectively. Now MP con-

tains an infinite sequence Xj, X2, X3, -of points of K having P for its

sequential limit point. For each i, M—Xi = Mi(Xi)+M2(Xt), where

Mi(Xi) andM2(Xi) SLTeser)a.T3iteda,TidN■ Mi(Xt) 9^0^N -M2(Xi). Nowsincef

Mn+U is the sum of a finite number of connected point sets, it follows

that there exist two point sets Ka and Kb and an infinite subsequence

* The point P of a connected set M is said to separate a given subset N of M in M if M—P is

separated between some two points of N, i.e., M—Pis the sum of two mutually separated sets Mi and

Mi, where N ■ Mi ̂ Q^N ■ M¡; see R. L. Wilder, loc. cit.

t See the reference to Knaster and Kuratowski above.
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Xn„ Xn„ • • • of the sequence [Xn] such that Ka+Kb = Mn+U and such

that, for every i, KacMx(Xni) and KbcM2(Xni)- Hence if A= N ■ Ka

and B = N ■ Kb, then A and B are mutually exclusive, closed, and non-

vacuous subsets of M, and every point of Y.Xni separates A and B in M.

Then since P is a limit point of ¿^,Xni and is a regular point of M+P, it fol-

lows by Theorem 1 that P belongs to M and separates A and B in M.

Therefore P separates N in M and hence belongs to K. This completes the

proof.

Theorem 3. Let A and B be any two mutually exclusive closed subsets

of a continuum M, and let K be the set of all those points of M which separate

A and B in M. Then K+A+B contains every point P of K having the prop-

erty that every subcontinuum of M containing P contains at least two points

at which M is connected im kleinen.

Let P be a point of K not in A +B which has the property mentioned

in this theorem. Let the points and point sets Xx, X2, X3, • • • , E, and F

be selected and defined exactly as in the proof of Theorem 1. Then, just as

in that proof, no point of £ is a limit point of F. Likewise no point of F —P

can be limit point of E. For suppose some point Q of F —P is a limit point

of E. Let R be a compact neighborhood of P such that R does not contain

Q. Then since for no i can Q be a limit point of Ma(Xi), it readily follows

that if, for each i, I(Xi,Xi+x) denotes the set of points Mb(Xi) ■ Ma(Xi+x) +

Xi+Xi+X, then both Q and P belong to the sequential limiting set L of the

sequence of continua* [l(Xi,Xi+x)]. Now with the aid of a theorem of

Janiszewski'st and a theorem of Lubben's,{ it follows that LR contains a

continuum H containing P and at least one point of the boundary of R.

Since for each i, L-Ma(Xt)=0, clearly HcF. Now by hypothesis, H con-

tains a point C, distinct from P, at which M is connected im kleinen. Since

C belongs to L, it follows that there exists an integer k and a point D of

I(Xk,Xk+x) which can be joined .to C by a subcontinuum I oî M which

does not contain P. There exists an integer j>k such that X,- does not be-

long to /. But then C belongs to Mb(X¡) (for CcFcMb(Xt), for every i),

D belongs to Ma(X,), and / is a connected subset of Ma(X¡)+Mb(X,) con-

taining both C and D. Clearly this is impossible, because Ma(X,) and Mb(X¡)

* See my paper Concerning the cut points of continua, these Transactions, vol. 30 (1928), pp. 597-

609, Theorem 1.

t Z. Janiszewski, Sur les continus irréductibles entre deux points, Journal de l'Ecole Polytechnique,

(2), vol. 16 (1912), p. 109.

X R. G. Lubben, Concerning limiting sets in abstract spaces, these Transactions, vol. 30 (1928),

pp. 668-685; see Theorems 11 and 12.
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are mutually separated. Thus the supposition that F—P contains a limit

point of E leads to a contradiction. Hence E and F—P are mutually sep-

parated; and since E?A,F—P^B, and E+(F — P) = M — P, it follows that

P separates A and B in M and hence belongs to K.

3. Cardinal number and Borel classification of the set of cut points.

We shall prove the following theorem:

Theorem 4. Let A and B be any two points, or, indeed, any two closed

mutually exclusive subsets, of a continuum M, and let K be the set of all points

of M which separate A and B in M. Then K is the sum of a G¡ set* and a count-

ble set.

Let E be the set of all those points of M which can, for each e>0, be

e-separated in M by some two points of K, i.e., the set of all points of M of

order g 2 relative to K. It follows readily with the aid of a theorem of

Menger'sf that if E exists it is a G¡ set. And since A +B is closed, H = E—

E- (A +B) is a G s set. Now since every point of £ is a limit point of K and

is a regular point of M, then by Theorem 1, K+A +B d E. Hence H cK.

And by a theorem of the author's,t K—H is countable. This completes the

proof.

Corollary§ 4a. If K is uncountable, it contains a perfect set.

Theorem 5. The set G of all the cut points of any continuum M is a d„

i.e., the sum of a countable number of Gs sets.

Since our space is metric and separable, M itself is|| separable and hence

contains a countable set D such that M = D. Let H be the collection of all

possible pairs of points of D, and for each pair (A,B) of points in H, let Kab

be the set of all points of M which separate A and B in M. By Theorem 4,

Kab = a Gs set + a countable set, for every pair (A,B) in H. Then since H

is countable, it follows that X# ^<>¡> is a G¡„. Now if X is any point of

G, M—X = Mi+M2, where Mx and M2 are mutually separated. And if Pi

and P2 are points of Mi and M2, respectively, then since Pi • Mi = 0 = P2 • Ml,

* A G¡ set is a point set which is the common part of some family of open sets.

f See K. Menger, loc. cit., Theorem 3.

Î See Concerning the cut points of continua, loc. cit., Theorem 7; see also my paper Concerning

collections of cuttings of connected point sets, Bulletin of the American Mathematical Society, vol. 35

(1929), pp. 87-104, Theorem 12.
§ This corollary follows from Theorem 4 and Young's theorem that every G» set containing a

subset which is dense in itself contains a perfect set; see W. H. Young, Leipziger Berichte, vol. 55

(1903), p. 287.
|| See W. Gross, Zur Theorie der Mengen, in denen ein Distanzbegriff definiert ist, Wiener Sitzungs-

berichte, vol. 123 (1924), pp. 801-819.
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andPi+P2 c D, then Z) is a subset of neither Mx+X nor M2+X. Hence there

exist points A and B of D in Mx and M2 respectively. Therefore X separates

A and B in M and hence belongs to Kab and to ^.K"0i. Thus G=2^Kab,

and hence G is a Gi,.

Corollary* 5a. If G is uncountable, it contains a perfect set.

We note here the following fact which, in a certain sense, is a converse

proposition to Theorem 4:

If K is any set which lies within the linear interval I(A, B) and is the

sum of a G3 set and a countable set, then there exists a continuum M such that

K is identically the set of all those points of M separating A and B in M.

We note also the fact that the set of all the cut points of a continuum

is not necessarily the sum of a Ga set and a countable set. Indeed, the set

of all cut points of the universal acyclic continuous curve of Wazewski is not

the sum of a G¡ set and a countable set.

4. Concluding remarks. Theorem 5 and Corollary 5a are propositions

concerning the set G of all the cut points of a continuum M. We may obtain

the same conclusions for the set H of all the local separating points] of a con-

tinuum M. We state the following propositions concerning the local separa-

ting points of continua.

(i) Every continuum M contains a countable collection [Mi] (¿ = 1,2,3,

• • • ) of compact subcontinua such that if H is the set of all local separating

points of M and, for each i, d is the set of all cut points of Mi, then (1)

2^,'GícH, (2) H—^Gi is countable, and (3) for each i, Mi-(M—M{) con-

tains exactly two points.

(ii) The set H of all the local separating points of any continuum M is

a Gj,; and if H is uncountable, it contains a perfect set.

(iii) Every continuous curve M contains a countable collection [Mi],

(¿ = 1,2,3, • • ■ ) of compact continuous curves such that if H is the set of all

* This corollary can be deduced from Theorem 5 using Young's theorem (loc. cit.), or it follows

also from Corollary 4a and the author's theorem (see Concerning the cut points of continua, loc. cit.,

Theorem 3) that if G is any uncountable set of cut points of M, then some two points A and B of G

are separated in M by uncountably many points of G.

t The point P of a continuum_Af is a local separating point of If if there exists a compact

neighborhood Roi P such that M -R—P is separated between some two points of the component of

M -R which contains P; see my paper Local separating points of continua, in Monatshefte für Mathe-

matik und Physik, vol. 35, No. 2.
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local separating points of M and, for each ¿, C7,- is the set of all cut points of

Mi, then Y7iGi=H.

Result (i) is readily deduced from the theorems in my paper Local

separating points of continua (loc. cit.)—in particular from the result that all

save possibly a countable number of the local separating points of any

continuum M are points of order two of M. Result (ii) follows immediately

from (i) and Theorem 5 and Corollary 5a above. Result (iii) was established

incidentally by the author in proving the theorem* that the set H of all the

local separating points of any continuous curve is an Fa.

It has been shown by the authorf that all save possibly a countable num-

ber of the cut points of any continuum M are points of order two of M. That

this theorem does not hold true for connected sets M, even in case M is ir-

reducibly connected between some two of its points, is shown in the example

given by Vietorist of a totally discontinuous function y=o>(*) which has a

connected graph. That this theorem does not hold true even for connected

and connected im kleinen sets M is shown by the following example. Let K

be a non-dense perfect set on the interval /(0,1) of the X-axis not containing

the end points A and B of I. Let Si,S2,S3, -be the complementary seg-

ments of K in I. For each ¿, let E{ be an ellipse with minor axis S, and with

major axis two units in length. Let M=I+£llEi. Then If is connected

and connected im kleinen, and every point of K separates A and B in M;

but clearly no point of K is a regular point of M.

Recently I have made a study of the structure of connected and con-

nected im kleinen point sets and, among other results, have found the

following theorem:

In a connected and connected im kleinen point set M, every connected

set of cut points is arcwise connected. §

* See my paper Concerning points of continuous curves defined by certain im kleinen properties

Mathematische Annalen, vol. 102 (1929), pp. 133-336.

f See Concerning the cut points of continua, loc. cit., Theorem 7.

% L. Vietoris, Stetige Mengen, Monatshefte für Mathematik und Physik, vol. 31 (1921), p. 202;

see also Knaster and Kuratowski, Sur quelques proptiétés topologiques des fonctions dérivées, Rendi-

conti del Circolo Matemático di Palermo, vol. 49 (1925).

§ For special cases of this theorem, see an abstract by C. M. Cleveland in the Bulletin of the

American Mathematical Society, vol. 32 (1926), p. 420, where the theorem is stated for plane con-

tinuous curves M, and my paper Concerning the structure of a continuous curve, American Journal of

Mathematics, vol. 50 (1928), pp. 167-194, Theorem 8, where the theorem, in more general form, is

proved for continuous curves M in »-dimensional space.
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It is of interest in this connection to note the theorem, easily deducible

from the work of F. Frankl*, that Every connected point set M each point of

which is of order = 2 of M is arcwise connected.

* See Ueber die zusammenhängenden Mengen von höchstens zweiter Ordnung, Fundamenta Mathe-

maticae, vol. 11 (1927), pp. 96-104.
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