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I. Introduction and summaries

1. Introduction. We shall say that f{x) is an arithmetical function of x

if f{x) is uniform and finite for all finite integer values > 0 of x. The arith-

metical functions/(#), g{x) are said to be distinct if f{x)^g{x) for at least

one integer x > 0.

Let ax, ■ ■ ■ , ar be numerical constants all different from zero, and let

fi(x), ■ ■ ■ ,fr{x) be r distinct arithmetical functions of x. Then if and only if

(1.1) axfx{x) + ■ ■ ■ + arfr{x) = 0

has only a finite number of integer solutions x >0, we shall call (1.1) a singular

relation between fx{x), ■ ■ ■ ,fr{x). In (1.1) precisely one oifx{x), ■ ■ ■ ,fr{x)

may be the arithmetical function whose value is 1 for all integers x>0.

Having obtained a singular relation in any instance we shall require also the

statement of all integers x > 0 which satisfy it. The number of completely

solved singular relations known is very small, probably not more than a

dozen. In this paper, we add about 50 more, concerning the functions next

defined.

The following notation will be used throughout the paper without further

reference.

n, m, p denote integers >0; n is arbitrary, m odd¡ and p is an odd prime;

1 is considered as being composite.

<r{n) =the sum of the divisors of ».f

r{n) = the excess of the number of divisors of n of the forms 8Í+1, 8/+3

over the number of divisors of the forms 8Í+5, 8i+7.

a{n) =the excess of the number of divisors of n of the form 3t+l over

the number of divisors of the form 3Í+2.

£(«) = the excess of the number of divisors of n of the form 4£+1 over the

number of divisors of the form 4Í+3.

* Presented to the Society, November 29,1930; received by the editors in August, 1930.

t The rudimentary state of the subject is seen from the following. Let <p{n) = n for all integers

n > 0. The relation o-(») — 2<p(n) = 0 is as simple in appearance as any in this paper, yet it is not known

whether it is singular. It is not known whether <r(m) — 2<p{m) = 0 is solvable, although a{2n) — 4^(«)

=0is.
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e(x) = 1 if x is the square of an integer >0, and e(x) =0 otherwise.

12E(n) =the number of representations of « as a sum of 3 squares; E(n)

is the usual notation for a class number function.

F(n)=the number of odd classes of binary quadratic (Gauss) forms of

determinant —n, with all the usual conventions (as in H. J. S. Smith's

Report, and similarly for E(n)). For example, F(l) = l/2, F(2) = l, • • • ,

F(5)=2, ■ ■ ■ , F(9)=5/2, ■ ■ ■ , F(25)=S/2, ■ ■ ■ , F(100) = 5. There is a
table of F(n), n = l, ■ ■ ■ , 100, useful in numerical verifications, in the

Tôhoku Mathematical Journal, vol. 19 (1921), p. 116.

Writing f=f(xi, ■ • • , xa)=aiXi2+ • • • +asx}, where ai, ■ ■ ■ , a, are in-

tegers >0, we shall denote by N(n=f) the total number of representations

of n in/ (the roots of the squares Xi2, ■ ■ ■ , x? being <0); by R(n—f) the

number of representations of n in / in which Xi, • ■ • , xs are restricted to be

^0; and by R'(n=f) the number of representations of n in / in which

Xi, • • ■ , x, are restricted to be all distinct and =0.

In a paper which will be published elsewhere, Dr. Gordon Pall has de-

termined for all s = 3 the explicit solutions n of

(1.2) R'(n = xi2+ ■ ■■+x2) = 0.

We shall assume his results for s = 4.

(1.3) Theorem. All nfor which (1.2) is solvable with 5=4 are the Pall num-

bers 22ha, h'SiO, where

a = 2, 6, 10, 18, 22, 34, 58, 82; 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 31, 33,

37,43,47,55,67,73,97,103.

These then are the only n which are not sums of 4 unequal squares g 0.

From (1.3) we shall deduce all the singular relations which it implies.

These relations concern the functions a, t, w, £, e, F above defined.

2. Summary of lemmas.  This section states a number of lemmas.

(2.1) Lemma. 2'R(n = aiX?+a2x22 + ■ ■ ■ +asx2) =£iAr(« = a,-a;,i)+£i,JAr

(n = aiX?+a¡x?)+ ■ ■ ■ +N(n = aiXi2 + ■ • ■ +aex?), the notation being as in

§1, and£.-,/,...,t referring to all choices of t distinct indices i,j, • • • , k, where t

is the number of indices, chosen from 1, 2, ■ ■ ■ , s; t = l, 2, ■ ■ ■ , s.

This is proved in §5.

(2.2) Lemmas. !6R(n = x2+y2+z2+w2) =4N(n = x2)+6N(n = x2+y2)+4N(n

=x2+y2+z2)+N(n = x2+y2+z2+w2).

This is an immediate consequence of (2.1), as also are the next.



1931] RELATIONS BETWEEN ARITHMETICAL FUNCTIONS 67

8R{n = x2 + y2 + 2z2) = 2N{n = x2) + N{n = 2s2) + N{n = x2 + y2)

+ 2N{n = x2 + 2y2) + N{n = x2 + y2 + 2z2);

AR{n = x2 + 3y2) = N{n = x2) + N{n = 3x2) + N{n = x2 + 3y2);

AR{n = 2*2 + 2y2) = 2N{n = 2x2) + N{n = 2x2 + 2y2);

2R{n = Ax2) = N{n = 4x2).

(2.3) Lemma. R{n = x2+y2+z2+w2) =R'{n = x2+y2+z2+w2)+6R'{n = x2

+y2+2z2)+3R'{n = 2x2+2y2)+iR'{n = x2+3y2)+R'{n = ix2).

For proof, see §6.

Directly from the definitions of R, R', we have

(2.4) Lemmas. R'{n = 4z2) =J?(» = 4x2);

R'{n = x2 + 3y2) = R{n = x2 + 3y2) - R{n = 4x2);

R'{n = 2x2 + 2y2) = R{n = 2x2 + 2y2) - R{n = Ax2);

R'{n = x2 + y2 + 2z2) = R{N = x2 + y2 + 2z2) - 2R(n = x2 + 3y2)

- R{n = 2x2 + 2y2) + 2R{n = Ax2).

In the last of these the preceding results were used to reduce the identity

given at once by the definitions,

R{n = x2 + y2 + 2z2) = R'{n = x2 + y2 + 2z2) + 2R'{n = x2 + 3y2)

+ R'{n = 2x2 + 2y2) + R'{n = Ax2).

Combining (2.2)-(2.4) in an obvious way we reach

(2.5) Lemma. \6R'{n=x2+y2+z°+w2) = l2N{n = x2) + 12N{n = 2x2) +32N{n

= 3x2)-A8N{n = Ax2)-6N{n = x2+y2)-2AN{n=x2+2y2)+32N{n = x2+3y2)

+ 12N{n = 2x2+2y2)+AN{n = x2+y2+z2)-l2N{n = x2+y2+2z2) + N{n = x2

+y2+z2+w2).

For easy reference we collect some well known results in the next two.

(2.6) Lemmas.  If h is an integer ^0, and n = 2hm, then

N{n = x2 + y2) = 4£(w), N{n = x2 + 2y2) = 2r{m), N{n = x2 + 3y2) = Cco(w),

where C = 2, 0, or 6 according as h = 0, h is odd, or h is even and >0; N{n=x2

+y2+z2+w2) = ba{m), b = 8, or 24 according as h = 0 or h>0.

(2.7) Lemmas.  N{n = x2+y2+z2) = \2E{n);

N{m = x2 + y2 + 2z2) = AF{2m),  N{2n = x2 + y2 + 2z2) = 12E{n).
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Proofs for the last two are given in the American Mathematical Monthly,

vol. 31 (1924), p. 128. The following well known reduction formulas will be

found useful, i = 0:

3E(St + 3) = 2F(St + 3),  £(8/ 4- 7) = 0, E(4n) = E(n),

E(4t + 1) = F(4t + 1),    E(4t + 2) = F(4/ + 2),    F(4n) = 2F(n).

Further reductions, such as £(4/+3)=0, e(22tm) =e(m), etc., which are

obvious, will be used in stating final forms of theorems without reference.

From (1.3), (2.5) we have the next two.

(2.8) Lemma. If and only if 2n is a Pall number (as in (1.3)),

12 N(2n = x2 + y2 + 2z2) - 4N(2n = x2 + y2 + z2)

= l2N(2n = x2) -f UN(n = x2) + 32N(2n = 3x2) - 48N(n = 2x2)

- 6N(2n = x2 + y2) - 24N(2n = x2 + 2y2) + 32N(2n = x2 + 3y2)

+ 12N(n = x2 + y2) + N(2n = x2 + y2 + z2 + w2).

(2.9) Lemma.   // and only if m is one of the odd numbers in (1.3),

\2N(m = x2 + y2 + 2z2) - 4N(m = x2 + y2 + z2)

= \2N(m = x2) + 32N(m = 3y2) - 6N(m = x2 + y2)

- 24^(w = x2 + 2y2)+ 32ÍV(m = x2 + 3y2) + N(m = x2 + y2 + z2 + w2).

3. Singular relations. From (2.6), (2.7), (2.9) we have the following.

(3.1) Theorem.   The only m = 7 mod 8 for which

6F(2m) = 8w(w) + a(m)

are m = 7, 15, 23, 31, 47, 55, 103.

(3.2) Theorem.   The only m = 3 mod 8 for which

6F(2m) - 4F(m) = Se(m/3) - 6r(m) + 8w(m) + c(m)

arem = 3, 11, 19, 27,43,67.

(3.3) Theorem.   The only m = \ mod 8 for which

6F(2m) - 6F(m) = 3t(m) - 3£(w) - (rr(m) + 8co(m) + a(m)

arem = \, 9, 17, 25, 33, 73, 97.

(3.4) Theorem.   The only m = 5 mod 8 for which

6F(2m) - 6F(m) = - 3£(w) + 8w(m) + <j(m)

are m = 5, 13, 37.
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(3.5) Theorem.   (3.1)—(3.4) contain all the singular relations implied by the

odd solutions of (1.2) with s = A.

The next are obtained similarly from (2.8) with n therein of the form

22hm{h^0). Several simple reductions by (2.6), (2.7), which need not be

preserved, have been used.

(3.6) Theorem.   There is no m = 1 mod 8 such that

2F{2m) = 2r{m) — <r{m).

(3.7) Theorem.   The only m = 3 mod 8 such that

AF{m) - 2F{2m) = <s{m) - 2r{m)

are m = 3, 11.

(3.8) Theorem.   The only m = l mod 4 such that

6F{m) - 2F{2m) = e{m) + £(w) + a{m) - 2r{m)

arem = l, 5, 9, 17, 29, 41.

The following come in the same way from (2.8) with n therein of the

form 2h+1m{h^0).

(3.9) Theorem.    The only m = 7 mod 8 for which

6F{2m) = 8co(w) - 2r{m) + a{m)

are m = 7, 15, 23, 31, 47, 55, 103.

(3.10) Theorem.   The only m = 3 mod 8 for which

18F{2m) - AF{m) = 8e{m/3) - 6r{m) + 2Ao>{m) + 3a{m)

arem = 3, 11, 19, 27,43,67.

(3.11) Theorem.   The only m = l mod A for which

6F{2m) - 2F{m) = - 3t{m) + £(w) - 2r{m) + 8u{m) + a{m)

are m = \, 9, 13, 17, 25, 33, 37, 73, 97.

(3.12) Theorem.   (3.6)—(3.11) contain all the singular relations implied by

the even solutions of (1.2) with s = i.

Hence all singular relations implied by (1.2) with 5 = 4 have been obtained.

4. Singular relations with prime argument p. In §3, taking m = p {p prime,

as always), and reducing the results by the definitions of the functions in-

volved, we get the following, which are numbered correspondingly to §3.
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(4.1) Theorem. The only p = 7 mod 24 for which 6F(2p)=p + 17 are p = 7,

31, 103; the only p = 23 mod 24 for which 6F(2p) =p+\ arep = 23, 47.

(4.2) Theorem. The only /> = 11 mod 24 such that 6F(2p)-4F(p) = p-ll

is p = U;the only ¿ = 19 mod 24 such that 6F(2p)-4F(j>)=p+5 are P = 19,
43, 67.

(4.3) Theorem. The only p = 1 mod 24 such that 6F(2p)-6F(p) =p-l are

P = 73, 97; there is no p = 17 mod 24 such that 6F(2p)-6F(p) = p-\7.

(4.4) Theorem. The only p=5 mod 24 such that 6F(2p) -6F(p) =p -5 is

p = 5; the only p = 13 mod 24 such that 6F(2p)-6F(p) = />+ll are p = l3, 37.

(4.7) Theorem. The only p = 3 mod 8 such that 4F(p) - 2F(2p) = p - 3 are

p = 3,U.

(4.8) Theorem. The only p = 1 mod 8 such that 6F(p) - 2F(2p) = p -1 are

p = l7, 4l;tke only p = 5 mod 8 such that 6F(p) -2F(2p) =p+3 arep = 5, 29.

The theorem (4.9) (obtained from (3.9)) is identical with (4.1).

(4.10) Theorem. The only p = 3 mod 8 such that 18F(2p) -4F(p) = 24co(¿)

+3p-í is p = 3; the only p = íí mod 24 such that 18F(2p) -4F(p) =3p-9 is

p = 11; the only p = 19 mod 24 such that 18F(2p) -4F(p) = 3p+39 are p = 19,
43, 67.

(4.11) Theorem. The only p = 13 mod 24 such that 6F(2p)-2F(p)=p+19
are p = 13, 37; the only p = \ mod 24 such that 6F(2p)-2F(p)=p+l5 are

P = 73, 97; the only p = i7 mod 24 such that 6F(2p)-2F(p)=p-l is p = 17;
there is no p = 5 mod 24 suck that 6F(2p)-2F(p) =p + 3.

(4.12) Theorem. (4.1)—(4.11) contain all the singular relations with prime

arguments implied by (1.2) with s = 4.

II. Proofs

5. Proof of (2.1).  This is practically obvious. However, if a formal proof

be desired, a simple one is given by the identity

2-fill + 0i(?"O] = ÍIU + K03(?°O - D],
t-1 Í-1

where

e,(q) = £?'s = i + 2 £<r2, |9| <i,
i=—M „=»1

on the right of which the coefficient of q" is the R function in (2.1). On the

left the product is distributed before collecting the coefficient of qn.
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6. Proof of (2.3). From the definitions of R, R', the left of (2.3) enumer-

ates the same representations of n as the right. For, on the left, all of

x2, y2, z2, w2 may be unequal, or two may be equal and distinct from the re-

maining two which may be either equal or unequal, or three may be equal

and distinct from the fourth, or all four may be equal, and these cases are

exhaustive and mutually exclusive. To account for the numerical factors

1, 6, 3, 4, 1, consider one, say 6. We have

R'{n = x2 + y2 + 2z2) = R'{n = x2 + y2 + z2 + z2).

From a particular representation x2, y2, z2, z2, since x2, y2, z2 are unequal,

there are only 2 representations, obtained by permuting x2, y2 contributed

to the left of (2.3). But on the left of (2.3) the equal squares (if any) in the

representations enumerated are free in position. If in the particular repre-

sentation the z2's are free, the contribution to the left is 4!/(l!l!2!), = 12.

Hence R'{n=x2+y2+2z2) must be multiplied by 12/2, = 6.

All proofs are now completed.
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