
ON THE REGULAR POINTS OF A CONTINUUM*

BY

W. L. AYRES

I. Introduction

1. We consider a compact, connected metric space M which we shall

call the continuum M. A point /» of M is said to be a regular point if for each

e>0 there exists a neighborhood Up of /» (i.e., an open subset of M containing

p) such that d(Up)<e and F(UP) consists of a finite number of points. The

point p is said to be a point of order a if (1) for each e>0 there exists a

neighborhood Up such that d(Up)<e and the cardinal number of F(UP) ^a,

and (2) a is the smallest cardinal number for which (1) is true. Regular

points of no finite order are called points of order w. Let Ma denote the set

of all points of M of order a.   Then

M = M1 + M2 + ■ ■ ■ + M" + M«° + Mc.

These definitions were introduced by Urysohn and Mengerf several years

ago and since that time have been studied in a number of papers.

One of the interesting studies in this theory is that of the distribution

and structure of the various sets M". It is of course quite obvious that M

may be composed entirely of points of order 2 or entirely of points of order c.

UrysohnJ has given examples to show that M may be composed entirely

of points of order co or entirely of points of order No. Except for these four

orders this is not possible, a consequence of a theorem proved independently

by Urysohn,§ G. T. Whyburnj| and H. Künnethlf that if all points of M are

of order ^ n, then the points of order ^ \n +1 are dense in M.

Since MréMn(n9¿2), it would be interesting to know more of the distri-

bution of the points of Mn. Whyburn** has shown that M" is punctiform and

has raised the question as to whether it is of dimension zero.  In the present

* Presented to the Society, September 9, 1930; received by the editors September 9, 1930.

t P. Urysohn, Comptes Rendus, vol. 175 (1922), pp. 481-483; and K. Menger, Monatshefte für

Mathematik und Physik, vol. 33 (1923), pp. 148-160.
t Mémoire sur les multiplicités cantoriennes, 2ème Partie, Verhandelingen, Akademie van

Wetenschappen, Amsterdam, vol. 13 (1927), No. 4, pp. 109-115.

§ Ibid., pp. 105-9.

|| On regular points of continua etc., Bulletin of the American Mathematical Society, vol. 35

(1929), pp. 218-224.
1[ Ein Theorem der Kurventheorie, Monatshefte für Mathematik und Physik, vol. 36 (1929),

pp. 149-152.
** Loe. cit.
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paper we will answer this question in the affirmative as a special case of our

theorem that Mn+Mn+1+ ■ ■ ■ +M2""3 is a set of dimension zero. As

corollaries of this theorem we obtain most of the previously known results

concerning the distribution of the points of finite orders. In the last section

of the paper we complete our study of the structure of the sets of various finite

orders by examining the set M2. Here we prove that M2 is composed of a set

of dimension zero plus a countable set of arcs.

2. Notation. Capitals will denote sets, lower case letters denote indi-

vidual elements which are either points or numbers. The usual notation of

the theory of sets will be employed. Below we will list some special notation

which, while not new, is not universally employed by writers in this field and

thus needs definition.

p£N=p is an element of the set ¿V.

p non-£N=p is not an element of the set N.

p{p, q) = distance between the points p and q.

p{M, N) =greatest lower bound of p{p, q) for pEM and q£N.

d{M) = diameter of M=least upper bound of p{p, q) for p+qcM.

S{p, r/) = set of all points q such that p{p, q) <r¡.

Q{p, N) = component of set N containing the point p.

F{N) = N-{M-N)+M-N-N = irontier or boundary of N.

C{N)=M-N = complement of N.

dinij, E, orderp E = dimension of set E at p, order of E at p.

II. The structure of Mn, n^2

3. Theorem. For any integer »> 2, the set of all points p of a continuum M

such that n Sor der p M^2n — 3 is a zero-dimensional set {or vacuous).*

Let E denote the set of points p such that » = order p MS2n — 3. Given

6>0 and p£E, we shall show the existence of a neighborhood UpcS{p, e)

such that F{UP) E = 0, i.e., dim E = 0. If p is a point of order m, by an order

neighborhood of p we shall mean a neighborhood of p whose boundary consists

of exactly m points.

Let Zx c S{p, £e) be an order neighborhood of p. HE- F{ZX) = 0, our proof

is complete. If not, let E-F{Zx)=qx+q2+ ■ ■ ■ +q3l (si = 2w —3). Let Uk be

an order neighborhood of qk{lSk^sx) such that UkcS{qk, rk), where rk is

the smaller of the numbers e/A and \p{qk, F{Zx)+p—qk). We see that

Vi-Uj^O if *V/.   Let Vk=Zx-Uk and Wk = C{Zx)-Uk.   Since qkEE,F{Uk)

* Professor K. Menger has called attention to the fact that no use is made of the condition

that M be connected and compact in the proof of this theorem. Hence the theorem is true for

any metric space M.
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consists of =2»-3 points. And since F(Vk)+F(Wk)=F(Uk)+qk and

F(Vk)-F(Wk)=qk, either F(Vk) or F(Wk) consists of =»-l points. Let h

be the set of all integers i such that F(W¡) consists of ^» — 1 points, and let

Ji be the set of all integers 1 ¡Si^Si not in Ix. Let Xk be an order neighbor-

hood of qk such that Xk c £7*.   Now let

Z2=Zi+  £x< -   Y,Xj,

where the first summation extends over h and the second over J\.

If F(Z2)-E = 0, then Z2 is the desired neighborhood Up. If not, we have

F(Z2)-EcJ£kF(Xk). Let F(Xk)-F(Z2)-E=qki+qk2+ ■ • • +qk,ik. For each

point qim(i£li), let t7im be an order neighborhood of qim such that Uimc Wi

■S(qim, rim), where rim is the smaller of the numbers e/8 and ip(<7im, F(X¡)

—qim). For each point qjm(j£Ji), let ¡7i)B be an order neighborhood of qjm

such that UjmcVjm-S(q]m, r¡m), where r,m is the smaller of the numbers

e/8 and &>(?/«■, F(X,)-qjm). We see that Í7iimi-i742m2 = 0 unless ¿i = ¿2,

mx=mi. Let Vkm=Z2-Ukm a.nd Wkm = C(Z2)-Ukm- Since qkm£E, F(Ukm)

consists of ^2re — 3 points. Then either F(Wkm) or F^*,) consists of

;£» — 1 points. Let 72 be the set of all pairs (k, m) such that F(Wkm) consists

of = n — 1 points. Let 72 be the set of all pairs (k, m) for which Ukm is defined

that are not in I2. Let Xkm be an order neighborhood of qkm suchthat

XkmcUkm.  Now let

Z3   = Z2 +    2^Xkm  —  / Xkm,

where in the first summation (k, m)£l2 and in the second (k,. m)&J2.

If F(Z3)-E = 0, Z3 is the desired neighborhood Up. If not, we repeat this

process on the points of F(Z3) • E=F(Z3) ■ E ^¿^(Xkm). Continuing this

process, at some stage we reach a neighborhood Zi such that F(Zi)-E = 0 or

the process continues indefinitely.

In case the process continues indefinitely, we define a monotonie increas-

ing sequence of neighborhoods of /> as follows:

«1    _ «1 »!*

Yi=Zi-  ZUk,   Y2=Z2-  £   ¿>tm,
k=l Jfc_l    m=l

and similarly we define Yt for each positive integer t.   Now let

Up=  ¿F(.
i-i

Since UpcZi+%2kUkCS(p, «), then Up is the desired neighborhood if

F(t7„)-.E = 0. Every point of F(Zt) not belonging to £ is a point of F(Y¡)

and of every F(Y.) for s = i.   Then the points of F(UP) are of two classes:
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(a) points which belong to F{YS) for every s greater than some fixed integer,

and (b) Wt.x{F{Up)—F{Yt)). Just above it was seen that no point of the

class (a) is a point of E.  Now as

F(UP) -F(Yt) c   £E7*,*,...*(,

we have that every point of F{UP) of class (b) belongs to the set

b= n £tfM,-v

Now consider any point y of H. Each neighborhood Ukm is a subset of F*

or Wk according as k£lx or Jx, i.e. £/*m is a subset of a neighborhood of the

first stage whose boundary contains ^« — 1 points. Similarly for the neigh-

borhoods E/fcjtj • • • kt of any stage. Then at each stage y belongs to a neighbor-

hood whose boundary contains <¡ n—1 points. And as the diameters of the

neighborhoods approach zero, it folio w s that order, M = w — 1. Hence y

non-£¿£.   Then Up is the desired neighborhood of p as

Up c 5(#, e) and F(Up)-E = 0.

4. This section proves corollaries to the preceding theorem.

Corollary 1. For each positive integer w^2, the set of all points of M of

order n is zero-dimensional {or vacuous).

Since a subset of a vacuous or zero-dimensional set is necessarily of the

same type, for n >2 this follows, from our theorem. That the set M1 is of this

type has been shown by Menger and Urysohn.*

Corollary 2.f There exists no continuum all of whose points are of order

n^2.

If M is a continuum, dim M _ 1.   Hence M — Mn?±0 for any m-^2.

Corollary 3. The simple closed curve is the only {compací) continuum

all of whose points are of the same finite order.

Corollary 4. If the order of every point of the continuum M is Sm, then

the points of order S\m + 1 are dense in M.

From our theorem it follows that the set of all points p such that

\m+l <order,, M^m is zero-dimensional. Hence it contains no open subset

and the remaining points are dense in M.

5. Remarks.   It may be noticed in the proof of the preceding theorem

* K. Menger, Mathematische Annalen, vol. 95 (1925), p. 293; and P. Urysohn, Second refer-

ence, p. 79.

t The corollaries 2, 3 and 4 are all known results. See the papers cited in the Introduction.
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that, while at each stage the neighborhoods have only finite boundaries, the

final neighborhood UP may have an infinite boundary. This raises the ques-

tion as to whether it is possible to select Up with only a finite boundary.

This is not always true. If we join two of the Sierpinski triangle curves*

at the vertices we have a continuum containing only points of orders 3 and 4.

Now if we take w = 4 the only neighborhoods Up such that F(Up) £ = 0have

infinite boundaries.

We have seen that dim M" = 0 for n>2. It would be interesting now to

determine the conditions under which dim^n>2 M" = 0.

Urysohn has constructed very interesting examples of continua con-

taining points of orders n and 2n — 2 only for any n>2. This should lead to a

study of continua containing points of orders m and n only (m>n>2).

From our theorem or Corollary 4, it follows that such a continuum can exist

only if m^2n — 2. It would be interesting to determine whether it can exist

if m^k(n — 1). Also it seems likely that in such a continuum the points of

order m are countable.

III. The structure of M2

6. Lemma. If p is a point of M2 and a cut point im kleinen of M and dimp

M2 > 0, then M contains an arc one of whose end points is p such that the arc-

segment^ is an open subset of M.

As p is a cut point im kleinen of M, there is a neighborhood Zp such that

Q(p, ZP)=R+S, where R and S are continua and RS = p. Then either

dimp F-Af2>0 or dimp 5M2>0 and we suppose the former. There exists

a neighborhood Up such that if the neighborhood Vp c Up, then

F(VP)-M2R * 0.

As/»£M2 there is a neighborhood Wp such that Wpc Up and F(WP)-R is a

single point r andR-Wp^O. Let G = WPR. As r£M2 and R-Wp^0, the

point rEG1, i.e. the points of G of order 1 with respect to G. As p£Gl and

M2G = G2+p+r,we will complete our proof by establishing the next lemma.

7. Lemma. If G is a continuum and (a) /» and r are end points of G, and

(b) for any neighborhood Up such that r non-£Up, the set F(Up)G2t£0, then

G is an arc with end points p and r.

Let Q denote the set consisting of p+r + those points of G2 which separate

p and r in G. We shall prove that Q is a closed set. Let [cí] be a sequence of

* Comptes Rendus, vol. 160 (1915), pp. 302-5; and Prace Matematyczno-Fizyczne, vol. 27

(1915), pp. 77-86.
t By the arc-segment is meant the arc minus its end points.
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distinct points of Q such that lim ç,=ç. We shall show that q£Q. This is

true if p=q or r=q.   II p^q^r, there are two cases:

Case I.  There is an infinite subsequence [ç,J such that

G — qik = Gpk + Grk, Gpk-Grk + GpkGrk = 0,

pEGpk,  q + qik+x+ r c Grk.

Since qik£G2, Gpk and Grk are connected and Gpk c Gpk+l.  Let

CO

XP = / ,G.t.

The set Xp is a neighborhood of />* and q non-£Xp. Suppose F{XP) z> t£G2+r,

t^q. Let [i„] be a sequence such that tn£Gpn, lim tn = t. As t£lLGrk it follows

that if A7 is any subcontinuum of G containing t and i„, then qi¡£N for / = ».

Then TV contains q. For this reason G is not locally connected at t. But

t£G2+r and a continuum is locally connected at every point of finite order.

Hence / cannot exist.   By condition (b), F{Xp)G2^0.   Then q£G2.

Suppose there exists a neighborhood Uq of q such that both p and r belong

to one component L of G—Uq. Then Lz^T/Qh- But as lim qik = q, for k

sufficiently large qtk c Uq. But this is absurd as LUq = 0. Hence, for any

neighborhood Uq such that p+rcG—Uq, p and r belong to different com-

ponents of G — Uq. Now let [Un] be a set of neighborhoods of q such that

Un+xcUn, d{Un)<l/n, F{Un) consists of two points, G—Ux^p+r. It is

easily seen that

G - Un = C{P,G - Un) + Q(r,G - Un);

and thus

C(P,G-   Un+X)   3   G(P,G-   Un),

C(r,G- Un+i) = Q(r,G- Un).
Then

G - q -   SC(Í,G - i/„) +  De(',G - i/n).
n n

Hence ?£().

Case II.  There is an infinite subsequence [g<J such that

G — qit  = Gpk + Grk,    Gpk Grk + GpkGrk  =  0,

p + q + q,k+x c Gpk, r£Grk.

Let

P=     Tfirk.
k-1

* For this lemma we consider G as our space. Relative to G alone, the set X, is open and hence

is a neighborhood.
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Exactly as in Case I we may show that if F(P) ^>t£G2+p, t^q, then G is not

locally connected at t.  We have thus

(1) F(P)-(G2-q + p) =0.

The set G—P is a neighborhood of /», and r non-£F(G—P). We have

F(G-P)cF(P).   From (1) then,

F(G-P)-(G2-q) =0;

and, from condition (b), we must have q£G2. As in Case I we may show that

q separates /» and r in G.

We have shown that the set Q is closed. Let H be a subcontinuum of G

irreducible between /» and r. Suppose there exists a point x£H—Q, and let

Gx = C(x, H — Q). Let y£GxQ. Since P&G1, there is a neighborhood Zp such

that F(Zp)=u (a single point) and (x+r)-Zp = 0. The point u separates /»

and r, and w£Q from condition (b). Then GxcG — Zp and hence y^p.

Similarly y^r. Let Uy be a neighborhood of y such that (x+p+r)- Uy = 0.

As y£G2 there is a neighborhood VycUy such that F(F„) =«i+m2. From

the fact that H is an irreducible continuum it follows that both ui and u2

separate /» and r in G. Then there exists a neighborhood FPi (i = i, 2) of />

such that F(Fj,,-) =«{ and thus ut£Q from (b). The connected set Gx contains

a point in F y and a point x non-£F„, so either ux or u2 belongs to Gx. But

GxQ = 0 and «i£().   This is a contradiction and hence 7J — Q = 0.

From this it follows that H = Q = G. Then p+r = Gl and G-p-r = G2.

By a result due to Urysohn and Menger* the set G is an arc with end points

p and r.

8. Lemma. If p&M2 and dim„ M2 > 0, then p is a cut point im kleinen of M.

There exists a neighborhood Up such that if VP c Up then

(2) F(Fp)-M2^0,

and

(3) F(Fp) d at least two points.

There exists a sequence of neighborhoods Vx, V2, ■ ■ ■ of p such that Vi c Up,

Vi+i c Vi, d(Vi) < l/i, F(Vi) = Ui+Vi. Consider the_set F,_i - F,-. Obviously

the set Ui-X+Vi_x+Ui+Vi=G c Fi-i- Vi. Let x£Fi_i - Vi. Then g(x, Fi_i

— Fi)-G^0, for otherwise there would be a separation of Vi-i—Vi into

mutually separated sets containing Q(x, Fi_i — Vi) and G respectively. But

this separation would effect a separation of M, which was connected. Then

Vi-X — Vi contains at most four components.  But Q(ui, Fi_i— V{) must con-

* P. Urysohn, loc. cit., and K. Menger, loc. cit., p. 303.
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tain Ui-i or t\-_i for otherwise V,■+ Q{u{, Vi-X — F,) is a neighborhood Vp c Up,

but F{Vp)=Vi contrary to (3). Similarly for Q{v(, F¿_i-Ft). Also Ç(«î_i,

F<-i —F¿)- {ui4-^)^0, for otherwise F,_i — Ç(«,-_i, F¿_i —F.) is a neighbor-

hood Fp and (3) is not true. Similarly for Ç(»,-_i, Vt-i—Vt). Thus Vi-X — F,-

has at most two components and each contains a point of Ui+v{ and a point of

Ui-.x+Vi-X. From (2) we have that «¿£M2 or Vi£M2. Further at least one of

these points is a point of M2 and is such that dim M2- (F¿-i — F<) >0 at the

point. For suppose Uí+VícM2, dim Af2-(F,_i —F<) =0 at both points.

There exists a neighborhood UU{ c Fi_l such that F{UUi) ■ M2- (F,_i- F<) =0,

and similarly a neighborhood t7„,. c Fi_1# Then ÍFP = F¡4- Z7Ui4- C/Bi is a neigh-

borhood of p such that Wp c £/p and F{WP) -M2 = 0 contrary to (2). In case

M<£M2, », non-£M2, dimu< M2■ (F,-i- F.) = 0, we define Wp = F¿4- í/u¡. The

only other possibilities are the interchange of w< and »,-.

Case I. Suppose (a) «îÊjW2, (b) dimu¡ M2 • (F¿_i - Vt)> 0, (c) »< non-£M2.

Since Ui£M2 there is a neighborhood £/„,. c F,_1 — Vt+i — »< such that

F{UUt)=x+y. Since there is a component of F<—Fi+i containing «< and a

point of ui+x+Vi+x, either x or y, let us suppose y, belongs to Vi—Vt+v Then

x£M2, since dim«,. M2 ■ (Vt-i - Vi) >0. And Q{x, %t ■ (Fi_i - V,)) = H is a

continuum such that «i4-x c ¿í1. Now if WUi is any neighborhood of Ui such

that x non-£iF„,, then PFMi.Z7u,. is a neighborhood such that F{WUi-UUi)

■ (F,_i- Fi) c F{WU,) ■ H. Then from (b) we have that F(WMI) H-M2^0.

Thus by the lemma of §7 the continuum H is an arc from x to »j. Now let

Ni denote w¿ plus all points of V,-X — V( that can be joined to Ui by an open

arc-segment of Vt-i—Vi, i.e., a point z£F,_i— F< is a point of ¿Vj if there is

an arc ¿I c F<-i —F< with end points z and w< such that M—A+Ui+z is

closed. Evidently H c A7,-. Since u, is a point of order 1 of Vt-i—Vi, we see

that Ni is an arc or homeomorphic with an arc minus one end point. Con-

sider the second possibility. As Vt+Ni is a neighborhood of p contained in

Up, it follows from (2) and (c) that one point of Ni —Ni is a point q£M2.

Since M is locally connected at q we have that q is the only point of Ni — ¿V*.

Then Ni+q is an arc and q may be joined to u, by the open arc-segment

Ni—Ui. Thus q£Ni which is a contradiction. Hence Ni is an arc and let u¡

and q be its end points. As Vi+Ni — q is a neighborhood of p, q£M2 from

(2) and (c). If q non-£w¿_i4-!\-_i, there exists a neighborhood Uq c F,_i— F¿

such tha.tF{Uq) consists of just two points. Then just as was the case with

¿¿, we may show that Uq—Ni+q is an arc by using the lemma of §7. Then

any point of this new arc belongs to ¿V,- by definition, a contradiction.

Hence q£u,-X+Vi-X, say q — Ui^x. As q£M2 and q is a limit point of

M — F.-i, q = Ui-X is a point of order 1 of F¿_i — F¿. Hence Ni is a component

of Vi-i - Vt and Fi-i - F< - Ai is closed.   Then
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Fi_x - Vi = N{ + Mi,

where Mi is a continuum containing z\ and z\_i.

Case II. Suppose (a) Uí+VícM2, (b) dimu,. M2 ■ (F,_i - F¡) > 0, (c) dimti

M2-(Fi_i—Fi)=0. From (c) there exists a neighborhood UVi such that

Uu c Vi-i - Vi+i - Ui and F(UV/) ■ (V^x - Vi) M2 = 0. The proof in Case II

is exactly the same as Case I except that where a neighborhood of /» is formed

by taking F,- plus some open set, we take Vi+UVi plus the open set.

CasellL Suppose (a) ut+ViCM2, (b) dimu< M2 ■ (F<_i - V¡) >0, (c)

dim,,; M2-(Fi-i — Fi)>0. Let NUi and NVi denote the sets consisting of «,-

and Vi respectively together with all points of Fi-i — Vi that can be joined to

Ui or Vi, as the case may be, by an arc of Fi_i — Vt such that the arc-segment

is an open subset of M. The sets NUi and NVi are either arcs or homeomorphic

with an arc minus one end point. Either NUi or NVi is an arc, for otherwise

Vi+NUi+NVi is a neighborhood of p and we have a contradiction exactly

as in Case I. Also we may prove, similar to the proof of Case I, that one of

these must be an arc with Ui-X or z>¡_i as one end point and this arc is a com-

ponent of Fi-i — Fi and also an open subset of it.  Hence

Fi_! - Fi = Ni + Mi,  Ni-Mi = 0,

where each is a continuum joining a point of Ui+Vi to a point of «i_i+o,_i.

Thus we have seen in any case that each set Fi-i — Vi consists of two com-

ponents TYi and Mi, and suppose the components are so lettered that

Ni-Ni+i^O^Mi-Mi+i.   Then

Vx = (p+ î>.) + (p + ¿Mi^

is the sum of two continua having only/» in common.  Hence p is a cut point

im kleinen of M.

9. Theorem. // M is any continuum, then M2=H+K, where (a) H is

vacuous or dim H — 0, (b) if pEH then dimp M2 = 0, (c) K is vacuous or a

countable set of arcs A,-, (d) each arc-segment A ,• is an open subset of M, (e)

Ai-Aj = 0, AícAj, or AjcAi.

Let K denote the set of all points p such that pZM2 and dimp M2>0.

Then if q£M2-K, dim, M2 = 0. Then as H = M2-K cM2, dim, P = 0 for

each q£>H. Now let p&K. By the lemmas of §§6 and 8, there is an arc Bp

one of whose end points is p such that BpcM2 and <BP>, i.e. Bp minus

its end points, is an open subset of M. And the arcs Bp may be chosen so

that if x is any point of an open arc-segment of M, there is some point p£K
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such that x£<J3p>. Then the set [<Bp>] for all points p£K is a set of

open subsets of M covering all points of open arc-segments of M. By the

Lindelöf property there is a countable subset, <BX>, <B2>, ■ • ■ , which

covers the same set. Since each B¡ c M2 it follows that if the sum of any finite

number of the ¿3,'s is connected, then it is an arc.   From this we find that

N- 2Zb<
i

m

consists of a countable number of maximal connected subsets, Nx, N2, • • ■ ,

each of which is homeomorphic with a closed, half-open, or an open interval.

Take the interval (0, 1) and let $< be the homeomorphism which carries this

interval (closed, half-open, or open) into TV*.  There are three cases.

Case I. Ni is homeomorphic with the closed interval. In this case A7,- is

an arc and let An"*Ni, A^ = 0 for/>l.

Case IL Ni is homeomorphic with the half-open interval (0, 1 >. In

case limn<0O <£-<(»/(»+1)) exists and is a point Xi£M2, then Ari4-x< is an arc

ci1 and we define AíX = Ní+Xí, Aí¡ = 0 for/>l. In case the limit does not

exist or Xi non-£M2, we define ^4¿, = í»i(¿,), where ¿,- is the closed interval

(o,j/{j+D).
Case III. Ni is homeomorphic with the open interval < 0,1 >. Suppose

(a) limn,«, $<(1/») exists and is a point x¿£M2, (b) limn,«, <£j(»/(«+l))

exists and is a point y(£M2. Then A<4-xi4-yi is an arc cM2 and we define

Au — Ni+Xi+yi, An = 0 for j>l. If (a) is true and (b) false, we define

Aíj=Xí+$i{I¡), where I, is the half-open interval <0, j/(j+l)). If (b) is

true and (a) false, we define An = yi+^i{I,), where /,• is the half-open

interval {l/{j+l), 1>. If both (a) and (b) are false, we define Ai, = $.•(/,•),

where ¿, is the closed interval {l/(j+2), (j+l)/(j+2)).

We shall show now that [An] is the required countable set of arcs, i.e.,

for every i and/, An cK, and if p£K, then p£An for some i and/. The first

part is obvious from the definition of A a. Now if p£K, there is an arc

BpcM2 with p as one end point such that <BP> is an open subset of M.

Now as [Bi] covers all such open subsets, there exists an integer i such that

<BP> c Ni. If p£Ni, then p£A,j for some/. If p non-£iV,-, since p is an end

point of Bp, it follows that either limn.„ *¿(1/») or lim„,M &i{n/{n+l)) exists

and is the point p.   In this case p£Aix.
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