
ON THE GEOMETRY OF THE RIEMANN TENSOR*

BY

R. V. CHURCHILL

I. Introduction

1. The problem. This paper deals with a problem which, for the Rie-

mann tensor, or in general for a tensor of rank four with certain symmetry

properties, is analogous to the well known problem which appears under

many forms such as that of reducing a central conic to its principal axes or

reducing a matrix to its classical canonical form. Here, as there, the problem

may be stated as that of finding certain directions associated with the tensor,

and determining the scalar quantities needed to complete the description of

the tensor.

The space whose curvature tensor is considered here is a Riemannian

space Vi with a positive definite quadratic form.

A set of « orthogonal directions in a Vn was found by Ricci, f These are

the principal directions of the first contracted Riemann tensor. J Kretsch-

mann§ has outlined a method which leads to a set of four directions, not in

general orthogonal, and Struik|| derived this set in a new way; but these direc-

tions have not been shown to be real when, the Vi has a positive definite

quadratic form.

A new procedure is adopted in this paper. The tensor is split up into two

parts and the problem is solved for each part separately. The set of four

orthogonal directions found for one of these parts coincides with those of

Ricci (cf. §18).

Six-vectors are used in the solution of the problem, so the theory of these

vectors is reviewed and extended here.

2. Local coordinates. The vectors and tensors considered here are those

at a given point of the F4. Their components, denoted here by subscripts,

are referred to a rectangular locally cartesian coordinate system^ with its

origin at the given point.

* Presented to the Society, December 1, 1928; received by the editors July 6, 1931; abstract

published in the Bulletin of the American Mathematical Society, vol. 35 (1929), p. 154. This paper

was prepared under the supervision of Professor G. Y. Rainich, University of Michigan.

t Ricci, Atti, Reale Istituto Véneto, vol. 63 (1904), p. 1233.

X Eisenhart, Proceedings of the National Academy of Sciences, vol. 8 (1922), p. 24.

§ Kretschmann, Annalen der Physik, vol. 53 (1917), p. 592.

|| Struik, Journal of Mathematics and Physics, vol. 7 (1928), p. 193.

H For coordinate transformations which produce these local coordinates see Levi-Civita, A bsolute

Differential Calculus, Part II, §11, or Eddington, Mathematical Theory of Relativity, 1924, §§4, 36.
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Any term containing a Greek letter as a subscript is to be summed for the

values 1, 2, 3,4 of that subscript, unless another range of numbers is specified.

Hence the scalar product of the vectors x = (xx, x2, x3, xt) and y = (yi, y2, y3, yî)

can be written

(2.1) xy = xaya.

If X and p are arbitrary numbers the family of vectors \x is called the direc-

tion of the vector x, and the family \x+py is called the plane of * and y. A

vector x is given in terms of the unit coordinate vectors ¿ = (1, 0, 0, 0),

/= (0, 1, 0, 0), k = (0, 0, 1, 0), 1= (0, 0, 0, 1) by the equation

(2.2) x = Xii + x2j + x3k + xj.

Any new set of unit coordinate vectors can be obtained from i, j, k, I by suc-

cessive rotations in the coordinate planes : if the rotation

(2.3) i' = i cos 0 — / sin 0, /' = i sin 0 + / cos 0,   k' = k,  V = I

in the i, j plane through any angle 6 is followed by an arbitrary rotation in

the i', k' plane, and so on, the general rotation is obtained in six steps. By

scalarly multiplying the members of (2.3) by x and noting that Xx = ix, x2 =jx,

etc., we obtain the relations between the old and new components of x:

(2.4) xi = Xx cos 0 — x2 sin 0,   xi = Xx sin 0 + Xi cos 0,   xl — x3,  x[ = xt.

3. The Riemann tensor. This definition of a tensor is used here: a tensor

of rank r is a scalar function of r vectors which is linear in each of its vector

arguments.* Hence a tensor R(x, y; u, v) of rank four is a scalar function of its

vector arguments x, y, u, v which satisfies the linearity conditions

.      . R(x + w, y; u, s) = R(x, y; u, s) + R(w, y; u, v), • ■ • ,

R(\x, y; u, s) = \R(x, y; u, s), ■ • • ,

where X is any scalar and w is any vector, and where the dots indicate that

these conditions apply to y, u, v as well as to x.

Let x, y, u and v be written in the form (2.2); then when conditions (3.1)

are applied to the tensor we find

(3.2) R(x, y; u, v) = Raß,ysxayßUyvs,

where the numbers 2?mn,pï (m, n, p, q = l, 2, 3, 4) are the values assigned by

the tensor to the unit coordinate vectors:

* The word linear here implies the properties (3.1). This definition of a tensor is given by Rainich,

Two-dimensional tensor analysis without coordinates, American Journal of Mathematics, vol. 46 (1924),

p. 77; also compare the definition given by Weyl, Raum, Zeit, Materie, 1923, §5.
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(3.3) Rn.ii = R(i, i) i, i), ■ ■ • ,

jRi2,i2 = R(i, j; i, j), ■ • ■ , £12,34 = R(i, j; k,l), ■ ■ ■ .

These numbers are the components of the tensor relative to our local coordi-

nate system.

The Riemann tensor has the following fundamental properties :

(3.4) R(x,y;u, v) = - R(y,x;u,v) = - R(x, y;v, u),

(3.5) R(x, y;u,v) = R(u,v;x,y),

(3.6) R(x, y;u, v) + R(x,u;v,y) + R(x,v;y,u) = 0.

By substituting the unit coordinate vectors for x, y, u, v, these properties

become, in terms of components,

\y. I) K.mntpq   = K-nm.pq  = K-mn.qp,

(^ • */ K-mn,pq  =   Kpq.mn,

(3.9) Rmn.pq + Rmp.qn +  Rmq.np   =   0    (m, M, p, q  =   1, 2, 3, 4) .

The first contracted Riemann tensor,

(3.10) R(x, u) = R(x, i; u, i) + R(x,j; u, j) + R(x, k; u, k) + R(x, I; u, I),

is a tensor of rank two; its definition can also be written

(3.11) Rmn   —   Rma.na (m, M   =   1, 2, 3, 4).

The second contracted Riemann tensor is the number

(3.12) R = Rßa,ßa-

Our problem can now be reformulated as that of studying the geometry

of a linear scalar function of four vectors in four-dimensional euclidean ge-

ometry, when this function satisfies (3.4), (3.5), (3.6).

II. Six-vectors

4. Definitions and properties. The definitions and several of the proper-

ties of six-vectors given by Sommerfeld* are reviewed in this section. In ad-

dition to this we examine the uniqueness of a six-vector which is given by its

components.

An elementary six-vector, called by Sommerfeld a special six-vector, is

defined as a flat oriented area. It is determined by a plane, an area in this

plane, and a direction of rotation about the origin in this plane, and these

three characteristics are called the plane of the six-vector, its absolute value,

* Sommerfeld, Vierdimensionale Vektoralgebra, Annalen der Physik, vol. 32 (1910), p. 749. Also

see Laue, Die Relativitätstheorie, 1921, p. 91.
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and its sense. We denote these vectors by small letters in the first part of the

alphabet.

An elementary six-vector c can be referred to our local coordinates by

selecting any two four-vectors x, y in the plane of c such that the area of the

parallelogram determined by x and y is equal to the absolute value of c. If

<j> is the least angle between x and y then just one of the vectors, say x, can

be made to coincide with the other by a rotation through <p in the direction

given by the sense of c. The components of this vector are used in th,e upper

rows of the determinants

(4.1)

Xi

y\

Xi

y2

Xi

yi

x3

y*

CX2,

— c23,

Xi

yi

Xi

yi

xz

y*

Xi

yt

—  Ci3,

— C\2,

Xi

x3

y*

Xi

y*

Xi

yi

Cu,

— Cu,

which are called the components of c The invariant expression

(4.2) Cxi + Cx3 + Cm + c23 + Ci2 + Cu — c2

is the square of the area of the parallelogram, or the square of c. From (4.1)

it follows that the components of any elementary six-vector satisfy the rela-

tion

(4.3) C12C34 + Cl3C42 + Cl4C23 — 0.

Corresponding to c there is an elementary six-vector c with the same ab-

solute value whose plane is absolutely perpendicular* to the plane of c; the

six-vector — c also corresponds in this way to c. If the sense of c is properly

chosen, its components are related to those of c in the following way:f

(4.4)   ci2 = C34,   ¿"13 = Ci2,   Cx\ — c23,   Ci% = Cu,   Si2 = C13,   C34 = Ci2.

The elementary six-vector c is called the dual of c; it follows from (4.4) that

the dual of c is again c.

The general six-vector, denoted here by a capital letter in the first part of

the alphabet, is determined by two elementary six-vectors whose planes are

absolutely perpendicular to each other.| Its components are the sums of the

corresponding components of its elementary six-vectors. If c is any unit eler

mentary six-vector and X, p are any two numbers, then the components of any

general six-vector C are

* Two planes are absolutely perpendicular if each vector of one is perpendicular to every vector

of the other.

t These relations are derived by Sommerfeld, loe. cit., p. 756.

t This definition is slightly modified in the paragraph preceding Theorem 2.
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(4.5)      Ci2 = Xci2 + juci2,    Ci3 = Xci3 + pcX3, ■ ■ ■ , C34 = XC34 + peu.

According to (4.1) and (4.4) these components can also be written

(4.6)   Ci, = X
xx  x2

yi y2

+ P
X3    Xi

y» y*

CX3 — X
xx  x3

yi y%
+ M

Xi   x2

yi y2

where * and y are two four-vectors which determine the unit elementary six-

vector c. The numbers X and p are the absolute values of Xc and pc; they are

called the characteristic numbers of C.

The six-vector C, whose elementary six-vectors are the duals of Xc and pc,

is called the dual of C. Its components are

(4.7) Cl2   =   XCl2 + JUCl2,      C13   =  XCn + ¿tCi3,  •   ■   •   , C34   =  XC34 + PC3i,

and from (4.5) and (4.4) it follows that

(4.8) Cl2   =  C34,    C13   =  W2,    C14   =  C23,    C23   =  C14,    C42   =  C13,    C34  =  Cl2.

The law of transformation of the components of six-vectors follows from

(4.6) and (2.4). After the rotation (2.3) the new components of C are given in

terms of the old by the equations

G2 = Cl2,

(4.9) C13 = C13 cos 0 — C23 sin 1

Cu = C14 cos 0 — C24 sin 1

where Cmn = — C„m.

C34 = C34,

C23 = CX3 sin 0 + C23 cos 0,

C24 = Cu sin 0 + C24 cos 0,

Lemma 1. If any six numbers depend upon the coordinate system in such a

way that they transform like the components of a six-vector then there is at least

one six-vector with these numbers as components.

By four successive transformations of the type (4.9) it is always possible to

determine the four angles involved so as to make all but the first and last of

the six numbers G2, Cu, • ■ • , C3i vanish. The new values (G,, 0, 0, 0, 0, C3i)

correspond to a new set *',/', k', I' of coordinate vectors, and two vectors

can be selected in the *',/' plane and two in the k', I' plane so as to determine

a six-vector whose components have these values. The components of this

six-vector relative to the original coordinate system-are the original six num-

bers.

Before discussing the uniqueness of this six-vector let us introduce the

scalar product of two six-vectors,

(4.10)    BC = BX2CX2 + BX3Ci3 + BuCu + B23C23 + JB42C42 + .B34C34;

this expression in the components of B and C is invariant under transforma-

tions of the type (4.9). The relation (4.3) can now be written
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(4.11) cc = 0,

and it follows from (4.5) and (4.7) that

(4.12) C2 = \2 + p2,

(4.13) CC = 2\p.

According to the definition of a general six-vector, C is elementary if X or p is

zero. It follows from (4.13) that C is elementary if CC = 0, and, since the con-

verse is given by (4.11), the following theorem is proved.

Theorem 1. A necessary and sufficient condition that a six-vector be ele-

mentary is the vanishing of the product of this vector by its dual.

If the components of the six-vector in Lemma 1 satisfy (4.3) then when all

except the first and last are made to vanish it will follow that Ci2 C34' = 0. Ac-

cording to the definition of an elementary six-vector there is just one with

components (Cxi, 0, 0, 0, 0, 0), so an elementary six-vector is uniquely de-

termined by its components.

According to Lemma 1 there exists a unit elementary six-vector c and two

numbers X, p such that the six numbers Cm„ are the components of the six-

vector determined by Xc and pc:

(4. 14) Cmn   =  Xcm„ + PCmn.

Cmn determine the values of C2 and CC, and (4.12), (4.13) give the relations

(4.15) (X + p)2 = C2 + CC,  (X - p)2 = C2 - CC.

Bearing in mind that an elementary six-vector is uniquely determined by its

components it is easy to see that (4.15) and the six equations (4.14) determine

X, p, Cmn in such a way that there is just one pair of elementary six-vectors

Xc, pc, provided \29¿p2.

If X2=ju2, there is a two-parameter family of unit elementary six-vectors

any one of which, together with its dual and the number X, determines a six-

vector with the numbers Cmn as components. If ft and c are any two unit ele-

mentary six-vectors of this family, then

L,nn ==  K\0mn    \    Omn)   =  h\Cmn    \    Cmn),

when X=/i. We now modify our definition of a general six-vector to this ex-

tent: when X2=/i2, we call the six-vector determined by ft, b, X the same as

that determined by c, c, X. The following theorem is then true.

Theorem 2. Six numbers which transform like the components of a six-

vector are the components of a unique six-vector C; the components uniquely de-

termine the elementary six-vector parts Xc, pc of C except when X2 = /i2.
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Since Amn+Bmn transform like the components of a six-vector when A

and B are six-vectors, it now follows that these numbers are the components

of a unique six-vector C, called the sum of A and B :

(4. 16) C  = A  + B   if   Cmn  = Amn + Bmn.

The distributive laws for duals and scalar products,

C = 2 + B, DC = DA + DB,

follow at once. As a further consequence of (4.16), we may write (4.5) and

(4.7) as

(4.17) C = \c + pc,

(4.18) C = \c + pc.

5. Further properties of six-vectors. If the elementary six-vectors 6 and c

are given by two pairs of four-vectors x, y and u, v then their scalar product is

given by

xu   xv
(5.1) be =

yu   yv

All quantities involved here are invariants, so any coordinate system can be

used to prove this. Let coordinate vectors be chosen so that * falls along x,

and j in the plane of x and y ; then x = (xx, 0, 0, 0) and y = (yx, y2, 0, 0) and the

determinant reduces to 6i2Ci2 which is the product 6c.

We shall call two six-vectors perpendicular if their scalar product van-

ishes.

Theorem 3. The planes of two perpendicular elementary six-vectors are

either conditionally or absolutely perpendicular.

To prove this we represent one of these six-vectors by two perpendicular

four-vectors x and y, and the other by u and v, and then select coordinate

vectors so that x = (xx, 0, 0, 0), y = (0, y2, 0, 0). Then according to (5.1), the

condition that the two six-vectors be perpendicular reduces to

uiv2 — vxu2 — 0,

and from this it follows that

(uxv2 — vxu2)y2 = (uxv — vxu)y = 0.

The last equation, together with the identity

(«i» — vxu)x = 0,

shows that, unless «i = z>i = 0, the vector uxv — vxu in the plane of v and u is
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perpendicular to both x and y, and hence to every vector in the plane of x

and y. If ux=Vx = 0, then x is perpendicular to every vector in the plane of u

and v. Hence there is at least one vector in one plane perpendicular to all

vectors of the other, so the two planes are perpendicular.

Let us now eliminate the double subscripts which have been used to

denote the components of six-vectors. We number the six pairs of subscripts

according to the table

pair:        12      13     14     23     42     34
(5.2)

number:     12       3       4       5        6

and use the numbers as subscripts instead of the pairs. In what follows then

Cx, C2, ■ ■ ■ , C» are written for G2, Ci3, • • • , C34, respectively.

In terms of this notation the properties (4.8), (4.10) become, respectively,

(5.3) C, = Ci-, (5 = 1, 2, ...,6),

(5.4) BC = 23iC, + • ■ ■ + B«Ce = BPCP      (p = 1, 2, • • • , 6),

and the condition that c be elementary can be written

(5.5) cpc„ = cpc^p = 0 (p = 1, 2, • • • , 6).

It is evident that for p = l, 2, • • -, 6, the sum B-i^„C^p is the same as the

sum BPCP, so the relation

(5.6) BC = BC

follows from (5.3) and (5.4). In the same way we find that

(5.7) BC^BC.

The six elementary six-vectors Ix, I2, ■ • ■ , Ie whose components relative

to a given coordinate system are (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), • • • , (0, 0,

0, 0, 0, 1), are called the unit coordinate six-vectors. Each of these has a

coordinate plane for its plane, e.g., the i,j plane is the plane of Ix and the i, k

plane is the plane of I2. These unit coordinate six-vectors are mutually perpen-

dicular; moreover, Ix=h, h=h, I3=Ii- From the definition of the sum of

six-vectors it follows that

(5.8) C = C,7„ (p = l,2,-.-,6).

A condition under which a set of six-vectors form a set of unit coordinate six-

vectors is given by the following theorem.

Theorem 4. 2/ a, ft, c and their duals a, ft, c are six mutually perpendicular

unit six-vectors, the intersections of their planes determine a set of unit coordinate

four-vectors for which a, ft, c, a", 6, c are the unit coordinate six-vectors.
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These vectors are elementary according to Theorem 1. The plane of â

is absolutely perpendicular to that of a. The condition ac = 0 means that the

plane of c is perpendicular to that of a (Theorem 3) ; it must be conditionally

perpendicular since c and ä can not have a common plane because of the

hypothesis cä = 0. Hence in the plane of c there is a unit four-vector / which

is perpendicular to the plane of a; it follows that I is common to the planes

of c and â. From the condition ca = 0 we find in like manner that there is a

unit vector i common to the planes of c and a. Similarly c and â determine k,

and c and a determine/. When /,/, k, I are adjusted as to sense and used as

unit coordinate vectors we have

(5.9) a = Ii, ä = 76, 6 = I2, b = I¡, c — /,, I — 74.

Since a six-vector has six independent components and a scalar product

of the form (5.4), its components may be interpreted as those of a vector in

six-dimensional euclidean space. When the unit coordinate vectors in F4 are

rotated the transformation of the components of a six-vector C are of the

type (4.9), or

C\   = G, Ce  = Cj,

(5.10) C2  = C, cos 0 — d sin 0,    C¿ = C2 sin 0 + C4 cos 0,

Cd = Ci cos 0 — C3 sin 0,    C»  = Ci sin 0 + C3 cos 0.

But under these transformations not only the scalar product of two six-

vectors is invariant, but also the meaning of the dual is preserved. Only those

special rotations of the coordinate axes in six-dimensional space which yield

transformations of the type (5.10) are permitted while considering our six-

vectors as vectors of this space.

6. Three-vectors. In addition to the elementary six-vector there is an-

other special type of six-vector which is very useful for our purpose ; it is

called a three-vector.* If a is a unit elementary six-vector, the six-vector

(6.1) A = Xa + pä

is called a three-vector if the characteristic numbers satisfy the condition

X2 = p2.

If X=ju then A is self-dual: A =A; hence As = Ai^,(s = l, 2, ■ • • , 6) and

the components of A can be written

(6.2) (AX,A2,AZ,A3,A2,AX).

* These vectors were introduced in the form used here by Rainich, Les indices dans un champ de

tenseurs, Comptes Rendus, vol. 185 (1927), p. 1009.
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Likewise if X= — p for the six-vector B=\b+pb, then B is anti-self-dual:

B— —B, and its components are

(6.3) (Bx, B2, B3, - B3, - B2, - Bx).

It follows from (6.2) and (6.3) that each three-vector of one type is

perpendicular to every three-vector of the opposite type :

(6.4) AB = 0 if A = J, B = - B.

Furthermore if C and D are two three-vectors of the same type then their

scalar product can be written

(6.5) CD = 2 (CiDi + C2D2 + C3D3).

The numbers &, C2, C3 may be considered as the components of a vector in

three-dimensional euclidean space, and the same statement holds for Dh D2,

D3, for these numbers transform so that the expression CiDi+C2D2+C3D3

remains invariant.

III. The two parts of the Riemann tensor as functions of six-vectors

7. The Riemann tensor as a function of elementary six-vectors. The ex-

pression (3.2), which the Riemann tensor assumes when referred to our local

coordinate system, can be written

(7.1) 4Raß ,y¡xaypUyV} = Raß,-ri
ya   yß

u¡

v¡

These determinants are the components of the elementary six-vectors a and ft

determined by x, y and u, v respectively so that

4R(x, y;u,v) = Raß^sacßbys-

When the single subscripts are used for the components of a and ft, and when

the pairs mn and pq of subscripts in Fmn,p5 are replaced by the corresponding

numbers in table (5.2), an examination of the sum on the right shows that

the last equation can be written

(7.2) R(x, y; u, v) = R(a, ft) = Rp,apb,   (P, <r = 1, 2, • • • , 6).

It is well to repeat that the new symbols Rst are defined according to

(5.2):
2?11   =   2?l2,l2,  2?l2   =   Rx2,X3,  •   •   •   ,  2?56   =   2?4ü,34,  2?»6   =   2?34,34.

Since Rn,x2 = R(i, j; i, j) then 2?11 = 2?(/i, /\); RBi are the numbers which

22(a, ft) assigns to the unit coordinate six-vectors:

(7.3) R.t = R(I„It) (s,t= 1, 2, •••,6).
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The Riemann tensor is therefore a function of two elementary six-vectors,

the function being bilinear in their components. This statement includes the

linearity properties (3.1), but the second of these can be written

(7.4) R(Pa,b) =PR(a,b),

where p is any number. The symmetry property (3.5) becomes

(7.5) R(a,b) =R(b,a),

and the anti-symmetry property (3.4) is included in (7.4) for p = — 1.

The cyclic property (3.9) can be written

(7.6) it« + R2b + R3i = Rih, /,) + R(I2, I,) + R(I3, 74) = 0.

In terms of the new components, (7.5) and (3.12) take the forms

(7.7) R.t = Rt. (s, t = 1,2, • • • ,6),

(7.8) R = 2R„ = 2Ä(/„ Ip) (p = 1, 2, • • • , 6).

8. The two parts of R(a, 6). The two parts into which the Riemann ten-

sor is decomposed here, and the properties of these parts, are not new.* The

method of obtaining these parts and their properties, however, is simplified

by using six-vectors.

The identity

Ria, b) = [R(a, b) + R(ä, 5)]/2 + [Ria, b) - Rid, 6)]/2

expresses the Riemann tensor as the sum of the two functions

(8.1) Gia, b) = [Ria, 6) + Rid, 6") ]/2,

(8.2) Eia, 6) = [Ria, b) - Rid, b)]/2.

The identity can now be written

(8.3) Ria, b) = Gia, b) + Eia, b).

In terms of components (8.1) becomes

Gia, b) = iR^Jb. + RPaäpb,)/2

= iRptOph + i?7-p,7-»â7_p67-,)/2

= (/?„„ + i?7-p.7-<r)aP6<r/2 (p, o- = 1, 2, • • • , 6).

Hence G(a, 6) is a bilinear function of the components of two elementary

six-vectors and it follows that it is a fourth-rank tensor.

* Rainich, Electricity in curved space-time, Nature, vol. 115 (1925), p. 498; Cartan, Variétés d

connexion affine, Annales de l'Ecole Normale, vol. 42 (1925), p. 87; Einstein, Über die formate Bezie-

hung des Riemannschen Krümmungstensors zu den Feldgleichungen der Gravitation, Mathematische

Annalen, vol. 97 (1926), p. 99.
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According to (8.1) G(a, ft) has the properties (7.4), (7.5) and (7.6) of

R(a, ft), and an additional property that its value is unchanged when its argu-

ments are replaced by their duals. Hence G(a, ft), or the tensor of the first

type, has all the fundamental properties of the Riemann tensor together with

the property

(8.4) G(a, ft) =G(a, ft).

Likewise the second part E(a, ft), or the tensor of the second type, has all

the fundamental properties of the Riemann tensor and the additional pro-

perty

(8.5) E(â, ft) = - E(a, 6).

In terms of components (8.4) can be written

(8.6) Gst=G7-,j-t (s, t = 1, 2, •• • ,6).

Properties (8.6) and (7.7) show that the sixth-order determinant of the com-

ponents G,t is symmetric to both diagonals, so in view of the cyclic property

(7.6) the number of independent components of the tensor of the first type is

reduced to eleven.

Similarly

(8.7) Eet = - £7_„,7_t (5, / = 1, 2, • • • ,6),

and the number of independent components of E(a, ft) is reduced to nine.

According to (8.7) all components involved in the cyclic property vanish,

and also the second contracted tensor of E(a, ft) vanishes so that by twice

contracting both members of (8.3) we find

(8.8) R=G = 4(Gxx+Ga+G33).

We shall now proceed with our problem by referring each of the parts

G(a, ft) and E(a, ft) separately to their intrinsic directions.

IV. The tensor of the first type

9. A generalization of G(a,b); the function G(A). It was shown above

that the tensor of the first type has the properties

G(a, ft) = Gpaapb, (p, c = 1, 2, ■ ■ ■ , 6),

G(a, ft) = G(b, a),    G(ä, ft) = G(a, ft),

and also the cyclic property (7.6)

G(a, ft) was defined above when its arguments are elementary six-vectors.

We now define it when its arguments are any six-vectors by requiring it to

have the same formal properties and reduce to the tensor of the first type
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when its arguments are elementary. GiA, B) is then a scalar function of A, B

which has the properties

G(A +C,B)= GiA, B) + G(C, B),

G(yA,B) =yGiA,B),

where y is any number, and

(9.3) GiA, B) = GiB, A), G(Ä, B) = GiA, B);

it also has the cyclic property.

When A and B are expressed in terms of the unit coordinate six-vectors

and the linearity properties (9.2) are applied, we find

(9.4) GiA, B) = G„APB, (p, <r - 1, 2, • • • , 6),

where the coefficients Gst = G(Is, It) are the components of the tensor of the

first type.

According to the definition of G(A, B) the expression G„,A PB„ is an invar-

iant, and it is readily shown from this and Theorem 2 that GPPA „ are the com-

ponents of a six-vector. We call this six-vector G (A) and denote its com-

ponents by GP(A):

(9.5) Gp(A)=GppA, (P,p = 1, 2, ■ ■ • , 6).

G(A) is a function which assigns a six-vector to its argument^. The relation

between this vector function and the scalar function follows from (9.4) :

(9.6) GiA, B) = G.(A)B. = G(A)B («■ = 1, 2, ■ • • , 6),

where G(A)B is the scalar product of the six-vectors G(A) and B.

Now (9.6) enables us to express the properties of G(A, B) in terms of the

function G(A). For example, the second property in (9.3) can be written

G.(X)B. = G,iA)B. (cr = 1, 2, • • • , 6),

but the summation for 7 —cr is the same as for a, so

G,(S)B,-, = G^iA)Bi- (o- = 1, 2, • • • , 6).

This is an identity in the components Bp and hence

Gp(l) = G7.P(A) ip - 1, 2, • • • , 6),

which means that the vectors G(Ä) and GiA) are duals of each other. If

GiA) denotes the dual of GiA), then

G(I) = G(A).

The other properties oí GiA) in the set
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G(A + B) = G(A) + G(B),   G(yA) = yG(A),

G(A)B = G(B)A, G(Ä) = G(A)

are found in like manner from (9.2), (9.3) and (9.6). Hence G(A) is a sym-

metric linear six-vector function which has the property that the vector which

it assigns to A is the dual of the vector which it assigns to A. Furthermore,

G(A, B) satisfies the cyclic property, so that

(9.8) G(7i)/6 + G(72)/6 + G(/3)74 = G16 + G2h + G3i = 0.

10. Principal directions of a symmetric linear vector function in a F„.

In the two sections following this we need convenient references to the ge-

ometry of symmetric linear vector functions in euclidean spaces of six and

three dimensions, and in §18 we refer to the geometry of a symmetric tensor

of rank two in a F4. Consequently in this section we review the known*

geometry of the symmetric linear vector function and symmetric second-rank

tensor at a point of a F„ with positive definite fundamental quadratic form.

The components of vectors and tensors are referred here to a rectangular

locally cartesian coordinate system at the point. Let P and Q be any two

vectors at this point and let fT. be the components of a symmetric tensor,

(10.1) f(P, Q) = fP,P,Q, = f(Q, P)        (p, a = 1, 2, • • •, «),

of the second rank. The functions

fr(P) m fprPp (p, r - 1, 2, • • • , »)

are the n components of a symmetric linear vector function/(P), and accord-

ing to (10.1) the tensor/(P, Q) is the scalar product of f(P) and Q,

(10.2) f(P, Q) = f,(P)Qa = f(P)Q (c = 1, 2, • • • , n).

If P and/(P) have the same direction,

(10.3) f(P)=*P,

then P belongs to an invariable direction, or principal direction, of f(P) with c^

as multiplier. This condition (10.3) is given by the n scalar equations

fprPP - caPr = 0 (p, r = 1, 2, • • • , n)>

and this system has solutions other than Pr = 0 if « satisfies

fxX — 03  fix ' '  ■ fnX

(10.4) • • • = 0.

/in fin  *   "  *     fnn ~  03

* See Struik, Grundzüge der mehrdimensionalen Differentialgeometrie, 1922, p. 33, or Eisenhart,

these Transactions, vol. 25 (1923), p. 259.
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This determinant is symmetric to its principal diagonal and in this case the

characteristic equation (10.4) has only real roots.

If these roots coi, w2, • • • , co„ are distinct then f(P) has just « mutually

perpendicular invariable directions, each with one of the roots as a multiplier.

If a root has a multiplicity m, there is an m-space each direction of which is

invariable with this root as a multiplier. This m-space is perpendicular to the

principal directions or spaces corresponding to the other roots. Hence if m

mutually perpendicular directions are chosen in each principal m-space, then

regardless of multiplicity of the roots, there is always at least one orthogonal

set of « invariable directions of/(P).

Let unit coordinate vectors WT be taken along these n invariable directions

and let Pr be the components of P relative to Wr. Then due to the linearity of

fP) we have

fP) = fP.W.) = P.fiW.) (<r = 1, 2, • • • , n),

and if wr are the multipliers of WT, this becomes

(10.5) fP) = t*.P.W. («r = 1, 2, • • • , n).

It follows from (10.2) that

(10.6) fP, Q) = v.P/2. (cr = 1, 2, • • • , »),

where the components Qr are also referred to the unit vectors Wr. Hence the

symmetric linear vector function and the symmetric second-rank tensor are

determined by an orthogonal set of « intrinsic directions and » numbers, one

corresponding to each direction.

11. Invariable directions of G (A). We have seen that G(A) is a sym-

metric linear vector function of the six-vector A, and since A can be considered

as a vector of a six-dimensional euclidean space it follows that G(A) can be

considered as a symmetric linear vector function in this space. According to

the foregoing section then, there is at least one set of six mutually prependicu-

lar invariable directions for G(A) whose multipliers are the roots of the char-

acteristic equation

(11.1)

Gn-

Gn /62

= 0.

According to (9.7),

(11.2) G(B) = G(B),
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Now if 23 is a vector of invariable direction corresponding to a root a of (11.1)

then

(11.3) G(B) = aB,

and it follows that the duals of G(B) and aB are equal:

G(B) - aB.

When (11.2) is applied to the left-hand member, this equation becomes

(11.4) G(B)=aB.

Hence the dual of each vector of invariable direction of G (A) is also a vector

of invariable direction; the multiplier is the same for both directions.

Theorem 5. Each multiplier of an invariable direction of G(A) is the multi-

plier of at least one invariable direction whose vectors are three-vectors.

To prove this let 23 be a vector of invariable direction with multiplier a.

Then B satisfies (11.3) and (11.4) and hence

G(B + B) = G(B) + G(B) = a(B + B) ;

that is, B+B belongs to an invariable direction with a as multiplier. But

23+23 is self-dual, so it is a three-vector and the theorem is proved. This proof

fails if 23 = — 23, but in this case B itself satisfies the conditions of the theorem.

If the six roots of (11.1) are distinct then there are just six mutually per-

pendicular invariable directions each having one of these roots as multiplier.

It follows from Theorem 5 that in this case the vectors of each of these direc-

tions are three-vectors.

12. G(A) and three-vectors. To three-vectors of one type G(A) assigns

three-vectors of the same type, for if A =7, then, according to (11.2).

(12.1) G(A) = G(J) = G(A).

It follows in like manner that when its argument is anti-self-dual, the function

is anti-self-dual. Now since all three-vectors of the one type can be considered

as the vectors of a three-dimensional euclidean space, the function G(A) can

be considered as a symmetric linear vector function in this space when A is a

three-vector of this type. Consequently in the application of this function to

self-dual three-vectors G(A) has at least three mutually perpendicular in-

variable directions whose vectors are self-dual three-vectors (cf. §10). Like-

wise it has at least three mutually perpendicular invariable directions whose

vectors are anti-self-dual.

Let A', B', C be self-dual three-vectors along the invariable directions

of the first type and let the square of each be 2. Let a', ß', y' be their respec-
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tive multipliers. Likewise let A", B", C" denote anti-self-dual three-vectors

with square 2 taken along the invariable directions of the second type, with

«") ß"> *t" as the corresponding multipliers. Since the product of any two six-

vectors of opposite types is zero, each invariable direction of the first type is

perpendicular to those of the second type, so these six directions are mutually

perpendicular. We can now write

G(A') = a'A',       G(B') = ß'B',       G(C) = y'C,

G(A") = a" A",    G(B") = ß"B",    G(C") = y"C",

where

(12.2) A'B' = A'C = A'A" = • • • = C'C" = 0,

(12.3) A'2 = B'2 = ■ ■ ■ = C"2 = 2,

(12.4) A' = J', B' = B', C = C'; A" = - A", B" = - B", C" = - C".

Each of the six-multipliers a', ß', ■ ■ ■ , y" must be a root of the sixth-

degree characteristic equation (11.1) for these roots are the only multipliers

of invariable directions of G(A). Moreover these six-multipliers are the only

multipliers of three-vector invariable directions, so it follows from Theorem 5

that each of the roots of (11.1) belongs to the set of multipliers a', ß', • ■ ■ , y".

Therefore this set of multipliers is identical to the set of roots of (11.1), and

the following theorem is established.

Theorem 6. For the function G(A), there is always at least one set of six

mutually perpendicular invariable directions such that vectors along three of them

are self-dual and vectors along the other three are anti-self-dual. The multipliers

of these directions are the roots of (11.1) and if these roots are distinct, there is

just one set of invariable directions.

13. Intrinsic directions whose vectors are elementary six-vectors. From

the mutually perpendicular three-vectors

(13.1) A',B',C,    A",B",C"'

used in (12.1), let us form the following new set of six-vectors:

2)       ° = (A> + A")/2' b = {B' + B")/2>  C==(-C' + C"V2>

â = (A' - A")¡2, b = (B' - B")/2, c = (C - C")/2.

As a consequence of Theorem 1 and (12.2), (12.3), (12.4), these vectors a, b, c

and â, b, c are mutually perpendicular unit elementary six-vectors, so they

form a set of unit coordinate six-vectors (Theorem 4) :

(13.3) 7i = a, I2 = 6, 73 = c, 74 = c, 76 = b, 76 = d.
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From the three-vectors (13.1) five other sets of intrinsic coordinate six-

vectors can be found, the vectors in each set being determined as in (13.2) by

pairs of these three-vectors so that each pair consists of a self-dual and an

anti-self-dual three-vector. These six sets of coordinate six-vectors which are

intrinsically related to G (A) are called elementary six-vector skeletons of

G(A). When (11.1) has distinct roots there are just six of these skeletons; the

relations between them are discussed later.

Let us see how G(A) operates on, or transforms, the vectors of its skele-

ton. It follows from (13.2) and (13.3) that

A' = Ix + h,   B' = h + h,   C = 73 + 74,
(13.4)

A" = Ix- U, B" = 72 - h,  C" = 23 - 24.

When our function is applied to Ix, we find

G(Ix) =G(A')/2+G(A")/2;

but A' and A" belong to invariable directions, so

G(h) = a'A'/2 + a"A"/2 = (a' + a")I1/2 + (a' - a")It/2.

The transformations of all six unit vectors can be written

G(Ix) = alx + pit,  G(I2) = ßl, + vh,  G(I3) = yl3 + Mi,

G(h) = plx + ah,  G(h) = o-h + ßh,  G(h) = 573 + yh,

where the new numbers represent the following combinations of the roots

of (11.1):

a=  (a' + a")/2,      ß = (/?' + ß")/2,      7 = (V + y'OA

P=(a'- a")/2,      <r=(ß'- ß")/2,      8 = (y' - 7")/2.

The roots of the characteristic equation of G(A) are not independent. For

when both members of the first equation of (13.5) are scalarly multiplied by

Ix, we get
G(Ix)h = a;

but this is the component Gu of the tensor of the first type, referred to the

intrinsic coordinate six-vectors. In view of (13.5), all of the non-vanishing

components of this tensor can be given in terms of the six components

(13.7) Gu = a, G22 = ß, G33 = y, Gi6 = p, G25 = a, G3i = 5.

The cyclic property (9.8) now becomes

(13.8) p + cr + o = 0;

and in terms of the roots of the characteristic equation this becomes

(13.9) ¿   +   #   +   y'   =   a>'+ß"   +  y».



144 R. V. CHURCHILL [January

Hence the sum of the multipliers of the three invariable directions of one type

equals the sum of the multipliers of the invariable directions of the opposite

type.

From (13.7) and (8.8) it follows that the second contracted Riemann ten-

sor is given by

(13.10) R =G = i(a+ß + y).

14. Six-vector geometry of the tensor of the first type. If d and m are

any two elementary six-vectors, the tensor of the first type is given by

(14.1) G(d,m) =G(d)m.

Let d, be the components of d relative to the coordinate six-vectors (13.3) of

the skeleton of G (A); then

(14.2) d = dpIp (p = 1, 2, •-.,6)

and when the argument of G(d) is so written we find, according to (13.5),

x    G(d) = a(dJi + d,76) + ß(d2I2 + dih) + y(d3I3 + dJi)
(14.3)

+ p(di7» + ¿67i) + o-(d276 + dil2) + Ô(d3Ii + dih).

This can be put in the more convenient form

(14.4) G(d) = Rd/12 + ap(dpIp + d7-ph-„) + ß„idph-p + d^pIp) (p = 1,2, 3),

where R is the second contracted Riemann tensor and

,       rN ai = a- R/12,    a2 = ß - R/12,      a3 = y - R/12,
(14.5)

ßi = P, 0» = o-, ß3 = Ô.

It follows from (13.10) and (13.8) that

(14.6) ax + a2 + cx3 = ßx + ß2 + ß3 = 0.

In view of (14.1) our results can be applied at once to G(d, m) :

Theorem 7. The tensor of the first type is determined by an intrinsic set

of unit coordinate six-vectors and seven numbers, six of which correspond to

these vectors. Because of (14.6) only five of these numbers are independent. There

are at least six of these intrinsic coordinate systems and when referred to one of

them the tensor takes the form

(14.7) G(d,m) = dmR/12 + a„(dpmp + d^pm7-p) + ßp(dpm7-p + d^pmp)

(P = 1, 2, 3),
where

ax + a2 + a3 = ßx + ß2 + ß3 = 0.

The part dmR/12 of this tensor is independent of a skeleton.
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15. Four-vector geometry of the tensor of the first type. Let x, y and u,

v be two pairs of four-vectors which determine d and m. The tensor dmR/12

can be expressed as a determinant involving x, y, u, v according to (5.1). It is

denoted below by H(x, y;u,v) and the remaining part of the tensor of the

first type is called F(x, y; u, v).

According to Theorem 4 the intrinsic coordinate six-vectors found above

determine a set of coordinate four-vectors i, j, k,lso that the i, j plane is the

plane of Ix, the i, k plane is that of I2, etc. These four-vectors are intrinsically

related to the tensor of the first type, and the set of four mutually perpendicu-

lar directions determined by them is called a skeleton of this tensor.

Let the components of x, y, u, v be referred to this intrinsic coordinate

system, and let the components of d and m be given in terms of these com-

ponents of x, y, u, v according to (4.1) and (5.2). Then (14.7) enables us to

describe the tensor of the first type in terms of its skeleton and its four-vector

arguments by means of the following equations:

(15.1)

where

(15.2)

G(x, y; u, v) = H(x, y; u, s) + F(x, y; u, v)

H(x, y; u, s) =

and where

(15.3) F(x,y;u,v) =

xu    XV

yu   yv
R/12,

«i

+ /3i

+ a2

+ AI

+ a3{

+ ßz\

(

Xx x2

yi yi

Xi x2

yx yi

Xx Xz

y\ ys

Xx x3

yx y3

Xx Xi

yi yi

Xx Xi

yi yt

Ux M2

Si s2

«3 «4

53 S4

Ux «3

vx v3

M4 tt2

54 S2

1*1 M4

Si vt

u2 u3

S2 S3

X3 Xi

y» yt

X3 Xi

yt yi

Xi x2

yi yi

Xi x2

yi yi

x2 x3

yi yz

x2 x3

yi y3

U3 M4

S3 S4

Ux u2

Si s2

u4 u2

v4 s2

«1 u3

vx s3

u2 u3

S2 S3

Ml «4

Si S4
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The coefficients are related according to (14.6), viz.,

(15.4) ai + a2 + a3 = ßx + ß2 + ß3 = 0,

and our results can be summarized as follows.

Theorem 8. The tensor F(x, y; u, v) is determined by a skeleton and four in-

dependent numbers. Each of the three numbers ax, a2, a3 is associated with a differ-

ent pair of absolutely perpendicular planes of the skeleton, ax, with the i, j and

k, I planes, etc. The same is true of the numbers ßx, ß2, ß3. The tensor H(x, y;u,v)

depends only upon the number R, so the tensor of the first type is determined by a

skeleton and five independent numbers.

By referring the tensor of the first type to its skeleton its independent

components have been reduced in number from eleven to five. The scheme of

its components can be written from (14.7) or from the formulas of this sec-

tion.

16. Relations between skeletons. Our intrinsic coordinate six-vectors

(13.3) were determined by taking sums and differences of pairs of three-vec-

tors of invariable direction for G(A). These pairs consisted of one member

from the group A ', B', C of self-dual vectors and the other from the group A ",

B", C" of anti-self-dual vectors. Out of the six possible sets of pairs, however,

we used only the set

(16 1)      II = {A' + A")/2'  U = (B' + B")/2'   h = (C' + C")/2'

76 = (A' - A")/2,  h = (B' - B")/2,  74 = (C - C")/2.

Now consider the set of coordinate six-vectors obtained as follows :

do 2)I{ = Ii = (A'+A"y2>u - <*'+c"}/2'n =(c' - jB")/2'

'  'il = 7, = iA' - A")/2, U = iB' - C")/2, 11 = iC + B")/2.

The new set of intrinsic coordinate four-vectors are related to these new co-

ordinate six-vectors in the usual way: i' and/' determine I[, i' and k' de-

termine 72, ■ ■ ■ , k' and I' determine 76'. It follows from (16.1) and (16.2)

that

lte Jx  = 7i,   2/2' = 72 + 73 - 74 + 76, 273' = - 72 + 73 + 74 + 76,
(16.3)

U = h,   211 = h-h + h + h, 211 = h + h + h- h-

If x and y are two four-vectors which determine an elementary six-vector

6 and if w and z are any two unit coordinate four-vectors, then according to

the definition of the components of 6, the quantity

xw     xz

yw     yz

is the component of 6 with respect to the coordinate plane of w and z.
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Hence the equation

22/ = h + h-h + h

of the set (16.3) becomes, in terms of components relative to any coordinate

plane,

iw   iz jw    jz Iw   Iz

Iw   Iz kw    kz jw  jz

IW      IZ

k'w   k'z

IW

kw

IZ

kz
+

When the determinants on the right are collected this becomes

(i - j)w   (i - j)z

k'w   k'z (k + l)w   (k + l)z

This equation states in components that the elementary six-vector 22V is

the same as one whose plane contains i—j and k+l. Therefore i' and k' be-

long to the plane of i—j and k+l, and for some four numbers a, ß, y, 5 we

have

i' = a(i - j) + ß(k + I),  k' = y(i - j) + Ô(k + I).

But since I{ =2\, i' and/' lie in the plane of i and/. Likewise I i =It so k'

and I' lie in the plane of k and I. Hence for some four numbers X, p, e, r¡ we

have

i' = Xi + pj,  k' = ek + vh

with similar expressions for /' and I'. .

Since the vectors involved are unit vectors the last four equations de-

termine the values of the eight numbers except for ambiguous signs, and these

affect only the senses of i' and /'. Similarly the equation

2Ii = h - h + h + h

gives/' and V in terms of the old unit vectors, and the remaining equations in

(16.3) give nothing new. The relations thus found are

ï = (i - J)/2"2,     j'=(i+j)/21>2,

k' = (k + l)/21>2,     V = (k - 0/21'2.

Hence i,j, k, I can be made to coincide with *',/', k', V by rotating i and/

through an angle -ïï/4 in the i, j plane and k and I through — ir/4 in the k, I

plane. If 7r/4 is used in both rotations the skeletons will still be made to

coincide.

We can always arrange our passage from one set of intrinsic coordinate

six-vectors to another so as to have two relations of the type I i =Ix, It =It
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among the old and new vectors. Hence we can generalize the above method

to one for passing from any skeleton to another by rotations, and we can count

just six distinct skeletons to be found in this manner.

Theorem 9. Given one skeleton of G(x, y; u, v) we can rotate its axes through

7r/4 in any one of its six planes and through the same angle in the absolutely

perpendicular plane to obtain a new skeleton. We may proceed in the same way

with any new skeleton to get another, but there are just six distinct skeletons to

be found in this way.

The relations between the coefficients ai, ßi for the new skeleton and a,-,

ßi for the old can be found by observing from (14.7) that these coefficients

are the values which the tensor

Fid, m) = Gid, m) - dmR/12

assumes when the intrinsic coordinate six-vectors are its arguments. When

components are referred to the skeleton defined by (16.2) we have

(16.4) Fid, m) = a/ (d>; + ¿7'_Pm/_P) + ßi (¿/«/-p + di.pm'p) ip = 1, 2, 3).

Now by referring to (16.3) we find that

a{ - Fill, II) - Fih, h) = .«,,

ai = Fih, h) - [Fih, h) + Fih, h) + Fih, h) - F(h, h)]/2

= (ot2 + a3 + ß2 - ß3)/2.

In the same way we find the relations

ai = («2 + «s - ß2 + B,)/2, ßi = ßx,

ßi  = (ßi + ß» + «2 - a3)/2,  ßi  = 03, + ß, - a2 + a3)/2.

From the relations between the coordinate six-vectors of any two skele-

tons the relations between the two sets of coefficients can be written by the

above method.

17. Cases of multiple roots. We have shown that the tensor of the first

type has at least six skeletons, and just six if the roots of the characteristic

equation (11.1) are distinct. Let us determine the number of skeletons for the

various cases of multiple roots. The number of independent scalars needed in

each case to complete the description of the tensor is the number of these

roots which are independent after their multiplicity and the relation (13.9)

have been considered.

It was shown that there is at least one set of mutually perpendicular in-

variable directions for G(A) for which the vectors A', B', C along three of

them are self-dual and the vectors A", B", C" along the other three are
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anti-self-dual. Three of the roots, a', |8',7',of (11.1) are the multipliers of the

vectors of the first group and the other three, a", ß", y", are the multipliers

for the second group.

If multiple roots appear only to the extent that two of the same group are

equal, say a' =ß', then it follows from (12.1) that any six-vector of the plane

of A' and B' is of invariable direction. Since every vector of this plane is a

three-vector of the same type as A ' and 23', any pair of perpendicular vectors

of square 2 in this plane helps to determine six skeletons for the tensor just as

A ' and B' did. There is a one-parameter family or simple infinity of such pairs

in this plane, so there is a simple infinity of skeletons for the tensor in this

case.

The number of skeletons is not increased due to the equality of two multi-

pliers of opposite groups. For if a'=a" then every vector in the plane of A'

and A" is of invariable direction with a' as multiplier, but A' and A" de-

termine the only two directions in this plane whose vectors are three-vectors.

Hence A' and B' are the only vectors of this plane which can be used in de-

termining skeletons. Multiplicity of this type then causes only a reduction

in the number of scalars needed to describe the tensor.

By the above method it is easy to determine the number of skeletons cor-

responding to each kind of multiplicity of the roots. The condition (13.9)

helps to reduce the number of cases in which more than six skeletons exist to

five. The results are given in tabular form below.

1. a' = ß' «s  skeletons

2. a'=ß',a" = ß" oo 2

3. a' = ß', a" = ß" » y" °o<

4. a' = ß' = y' oo s «

5. a' = ß' = y' = a" = ß" = y" oo«        «

In this table a', ß', y' denote the roots of either group and a", ß", y"

those of the opposite. This is not just a convention to shorten the table, for

three-vectors of the self-dual type can be made anti-self-dual by reversing

the sense of some of the coordinate axes. Three-vectors of opposite types re-

main of opposite types for any coordinate transformation.

V. The tensor of the second type

18. Four-vector geometry of this tensor. A set of four mutually perpen-

dicular directions* which are intrinsically related to the second part of the

Riemann tensor become evident at once when the second part, E(a, ft) or

* These directions are due to Ricci, loe. cit.
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Eix, y; u, v), is expressed in terms of the first and second contracted Riemann

tensor, R(w, z) and R. This expression,

R(x, u)   R(x, v)

yu yv(18.1)
E(x, y; u, v) = 2 +

XU XV

R(y, u)   R(y, v)

XU     XV

yu   yv
R/i,

has been written in components and verified by Einstein.*

According to (3.5) and the definition (3.10) of the first contracted Rie-

mann tensor, this tensor is symmetric, R(w, z) =R(z, w). It is therefore de-

termined by four mutually perpendicular intrinsic directions and four num-

bers (cf. §10). Let coordinate vectors i,j, k, I be chosen along these directions.

Then, according to (10.6),

(18.2) R(w, z) = uawaza (a = 1, 2, 3, 4),

where coi, co2, co3, 04 are the characteristic numbers corresponding to the direc-

tions of », /, k, I, respectively, and wp, zp are the components of w, z relative

to this intrinsic coordinate system. The second contracted Riemann tensor

can be written

(18.3) R   =  COl + C02 + CO3 + «4.

Now let the first contracted Riemann tensor in the determinants of (18.1)

be expressed in the form (18.2). The symbol co« can be removed as a factor

from the first two determinants, and when the third is broken into equal parts

(18.1) becomes

/ I   XaUa       XaVa yaUa       yaVa I \
E(x,y;u,v) = 1 - lcoa/2

\\ yu       yv xu       xv    | /

/ I   XaUa      XaVa yaUa      yaVa I \ „ .„ .

-( - )*/8     («=1,2,3,4).
\\ yu       yv xu       xv   | /

Here the value of the entire right-hand member for a = 1 is to be added to the

value for a = 2, etc. For any a the part in parentheses can be factored out,

and one scalar and one vector factor can be removed from each determinant:

E(x, y;u,v) = (coa - R/i-) [ xay(*<0
Ua      Va

U        V
yax

Ua      V«     \\

U        V      I /
/2.

The determinants here are vectors. Let these be factored out and the coeffi-

cients simplified by writing

* Loc. cit.
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(18.4) (03P - R/4)/2 = yp (p = I, 2, 3, 4)

The expression for the tensor of the second type then becomes

(18.5) E(x, y; u, s) = ya
xa   ya

x     y

Ua       Va

U S
(«= 1,2,3,4),

where, according to (18.3),

(18.6) 7i + 72 + 73 + 74 = 0.

The determinants in (18.5) are scalarly multiplied, and the value of the entire

right-hand member for a = 1 is to be added to the value for a = 2, etc. We can

summarize our results as follows :

Theorem 10. The tensor E(x, y; u,v) is determined by a skeleton and four

numbers, one number corresponding to each direction of the skeleton, but only

three of these numbers are independent. The tensor can be expressed in the form

(18.5) by referring the components of its vector arguments to the intrinsic co-

ordinate system determined by the skeleton.

By referring it to the intrinsic coordinate system the number of inde-

pendent components of E(x, y;u,v) is reduced from nine to three.

Special cases arise when the four characteristic numbers of R(w, z) are

not all distinct. If two of these numbers are equal, say cox = w2, then R(w, z)

has a principal plane. Any two perpendicular directions in this plane together

with the two corresponding to u3 and co4 form a skeleton for E(x, y; u, v). In

this case E(x, y;u,v) has a simple infinity of skeletons and only two of the

four numbers 7P are independent.

If three of the characteristic numbers are equal, the tensor of the second

type can be described by means of any one of a triple infinity of skeletons and

one number; but if all four are equal it follows from (18.4) and (18.6) that

the tensor vanishes. In case of two pairs of equal characteristic numbers the

tensor can be described by any one of a double infinity of skeletons and one

number.

19. Six-vector geometry of this tensor. Each set of unit coordinate four-

vectors determines a set of unit coordinate six-vectors. Hence the tensor of

the second type is determined by a six-vector skeleton and three independent

numbers, and to express it in terms of these quantities it is only necessary to

write (18.5) in terms of elementary six-vectors and their components relative

to the intrinsic coordinate system.

Let d and m be the elementary six-vectors determined by the pairs of four-

vectors x, y and u, v, respectively; then
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(19.1) E(x, y; u, v) = E(d, m) = Ep„dpm, (p, a = 1, 2, • • • , 6),

where

Eu = E(IX, Ii) = £(*, j; i, j) = - Eu,   Eu = E(i, j; i, k) = - EK,

etc. By using the unit coordinate four-vector form of these components it is

found from (18.5) that E(d, m), when referred to its skeleton, has only three

independent non-vanishing components :

•En = 7i + 72, E22 = 7i + 7s,  £33 = 71 + 74.

When these are used in (19.1) we find

E(d, m) = (71 + 72)(¿imi - dtmt)

+ (71 + yi)(d2m2 — dimt) + (yx + yt)(d3m3 — ¿V»*).

This is the form of the tensor of the second type when referred to its six-

vector skeleton.

VI. Conclusion

The Riemann tensor is determined by two intrinsic sets of orthogonal

directions, or skeletons, and eight numbers. This tensor is the sum of three

parts,

R(x, y; u, v) = H(x, y; u, v) + F(x, y; u, v) + E(x, y; u, v).

The first of these is determined by just one number, the second contracted

Riemann tensor. The second is determined by one of the skeletons and four

numbers, and the third by the other skeleton and three numbers.

In the general case there is just one skeleton for the tensor E(x, y; u, v).

But from one skeleton and four numbers which determine F(x, y; u, v) five

other skeletons and sets of numbers, bearing the same intrinsic relation to

this tensor as the first, can be obtained. The tensor H(x, y;u,v) is given by

(15.2) independently of any coordinate system. F(x, y; u, v) is given by (15.3)

when referred to the coordinate system determined by one of its skeletons,

and E(x, y; u, v), referred to its skeleton, is given by (18.5).

In special cases the number of skeletons may form an m-parameter family

with m = 1, 2, 3, 4 or 6 for F(x, y;u,v) and m = 1, 2 or 3 for E(x, y; u, v).

University of Michigan,

Ann Arbor, Mich.


