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1. Introduction. The transformation

00

y„ = Y,Kn,iXi,
i-i

where {x,} is a sequence of complex elements and the Kn.i are complex

numbers, has been widely studied, and the conditions which must be ful-

filled by the Kn,i in order that the property of convergence of the sequence

may remain invariant were given by Schur [l].f In recent studies by Hur-

witz [2, 3] and Knopp [4] modes of measuring the divergence of bounded

sequences were given, and the conditions on the Kn,i were found under which

the divergence of the sequence {y„} is no greater than that of {xn}.

In this paper the effects of the transformations will be investigated with

fewer restrictions on the Kn,i than those imposed by earlier writers. The

problem will be approached by means of the new concept of the limit circle

defined as follows:

The limit circle of a bounded sequence of complex elements is the (unique)

circle of least radius which contains within or on its boundary the limit points

of the sequence.

The limit circle of a bounded function F(y) of the complex variable y as

y—»£ (finite or infinite) is analogously defined in terms of the limit points of

F(y) as y—*•£; this concept will be used in the study of transformations of

sequences and functions into functions.

2. Sequence to function transformations. Instead of the transforma-

tion mentioned in the introduction we shall study the following more general

transformation 5. Let F be a set of points in the complex plane having a

limit point h (finite or infinite) not belonging to T. We shall speak of a point

t in T as being sufficiently advanced if for some 5>0, 11 —10\ <5 when t0 is

finite, or 11/21 <5 when t0 is infinite. Then let K¡(t) be a set of complex num-

bers defined for i = 1, 2, ■ • -, and each t in T, and such that

* Presented to the Society, December 27,1932; received by the editors November 15,1932, and

after revision, May 17, 1933.
t Here and below numbers in square brackets refer to the bibliography at the end of the paper.
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is defined for each t in T. We shall refer to the limit points of g(t) as t—*h

simply as the limit points of g(t).

We shall now prove

Theorem 2.1. Let {xn} be a bounded sequence of complex elements. If the

Ki(t) satisfy the conditions

(2.11)

(2.12)

lim Ki(t) = ki, for each i,

¿ | K{(t) | < M,

for all sufficiently advanced t, M a constant, then the quantities a the center and

D the radius of the limit circle of the function 2~2?=iKi(t),

00 00 00

A = a —  E^»> B =   2~2kiX*, C = lim sup    E1 ^»(0 — **|
»-i »-i '->'•       »=i

exist, and the limit points of g(t) lie in the circle of center H=Ah+B, and

radius R = Cr+D\ h\, where h is the center and r the radius of the limit circle

of \Xn).

The existence of a, A, B, C, D is easy to establish and the details will not

be given here. For the remainder of the proof write the inequality

2ZKi(t)x¡ -   Í><s.- - h(a -   ¿¿AI ^   ¿| K¡(t) - kt\ ■ | *, - h\
i=l ¡-1 \ «-1        / I «-1

Z Ki(t)  - a .
t-i

Choose €>0, and p so great that for all i>p\xi—h\ <r+e. Then

+ E \K<(t) - Kt\ -\Xi- h\+\k\
•=p+i

lim sup g(t)

00 / 00 V    I

J^kiXi — hi a—  2^)
»=1 \ i=l      / I

o(l) + (r + e) • lim sup    ¿ | K((t) - k{ | + | h \ ■ lim sup E^iW - «

and since the inequality holds for all e>0, the theorem follows.

The remaining theorems of this section will be seen to be in part conse-

quences of Theorem 2.1. Notations already introduced will be freely used,
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and {x„} will be taken bounded throughout the discussion. In particular h

and r will in each case by taken to depend on {x„}.

Theorem 2.1 easily yields the sufficiency of the following theorem of

Schur [1].

Theorem 2.2. In order that S may be such that lim(^t, g(t) exists whenever

h = r=0, it is necessary and sufficient that the K~i(t) satisfy (2.11), and (2.12).

The theorem just stated can be generalized to

Theorem 2.3. Let N be a real non-negative constant. In order that the limit

points of g(t) shall lie in a circle of radius N\ h\, whenever r = 0, it is necessary

and sufficient that the R~i(t) satisfy the conditions (2.11), (2.12), and D^N.

The sufficiency follows from Theorem 2.1, and the necessity of the first

two conditions from Theorem 2.2. For the necessity of the condition D^N

we need only consider the special case x„ = l (» = 1, 2, • ■ • ).

To supplement Theorem 2.3 we can give the following theorem which

takes into account the position of the limit points of g(t).

Theorem 2.4. Let N be a real non-negative constant. In order that S may be

such that the limit points of g(t) shall lie in a circle of center h and radius N\ h\,

whenever r=0, it is necessary and sufficient that the Ki(t) satisfy- the conditions

(2.11), (2.12), D^N, ki = 0,for all i, and a = l.

The proof readily follows from a consideration of Theorems 2.1 and 2.3,

and, for the necessity of the two last conditions, the sequences x, = 0, i^j,

Xj = l, and the sequence x< = l (i,j = l, 2, ■ ■ ■).

Obviously the special case N = 0 yields the well known conditions for

regularity, namely the conditions under which limt.,0 g(t) =limn<00 xn.

We shall now give two theorems which are concerned with divergent se-

quences.

Theorem 2.5. Let Q be a real non-negative constant. In order that 5 may be

such that the limit points of g(t) shall lie in a circle of radius Qr whenever h=0,

it is necessary and sufficient that the Ki(t) satisfy the conditions (2.11), (2.12),

and C^Q.

In the proof we encounter difficulty only in connection with establishing

necessity of the condition C^Q. We shall assume that (2.11) and (2.12) hold

and show that the remaining condition also holds.

Suppose on the contrary C >Q. Then for some X > 0 we have

£ | Ki(t) - ki | > Q + 5X
t-i
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repeatedly as / approaches t0. There exists, therefore, a sequence {tp} lying

entirely in the range for which (2.12) is satisfied, and such that limp,M tp = to\

and an increasing sequence of integers {rap} for which the following inequali-

ties hold:

"S I Ki(tp) - k{\ < X,     ¿| K,(tp) - k{\ > Q + 5\,
i-l t-1

E \Ki(t,)-k{\ <X,     E     \ Ki(tp) - ki\ > Q + 3\.

In the set Ki(tp)—ki, np-i+2^i^np, there is surely one value K,(tp)—k,

which is not zero.

We now define a sequence having a limit circle of center zero and radius
<êê

one

xt = (- l)"-1 sgn [Ki(tp) - ki], np-i + 2|já«w

Xnp+i = (- l)psgn [K,(tp) - k.].

We shall establish the desired contradiction if we show that the limit

circle of
oo

g(t) =  22K<(t)x>
i-i

has a radius greater than Q. Write

g(tP) -  ¿*,*< = ( "E' +    2Z   +    i   ){Ki(tP) - k>]xi.
t=-l \     »—1 »'— np_i+2 »—np+l   /

The first and third terms on the right are each less than X in absolute value,

and the real middle term is greater than Q+3X for p odd and less than

— (Q+3X) for p even. Hence, writing R(z) =real part of z,

F- \g(tp) -   ¿>,*;J > Q + X, p odd,

<-(Q + *),P even,

and g(t) has a limit circle of radius greater than Q, which completes the proof.

The conditions (2.11), (2.12), and C^Q, remain necessary but not suf-

ficient when Theorem 2.5 is written without the hypothesis A=0. We can,

however, state necessary and sufficient conditions if we restrict ourselves to

a consideration of conservative transformations, that is, those transformations

* We use the definition sgn (z)= \z \/z, z^O, and sgn (z) = 0, z = 0.
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for which lim(_íc g(t) exists whenever lim»..*, x„ exists. The conditions for

conservatism are (2.11), (2.12), and 7>=0. Clearly in the conservative case,

the condition C^Q is necessary and sufficient for the limit points of g(t) to

lie in a circle of radius Qr. We can also take into account the position of the

limit points and state

Theorem 2.6. Let Qbe a constant, Q_: 1. In order that the conservative trans-

formation S may be such that the limit points of g(t) shall lie in a circle of radius

Qr and center h, whenever {x„} is bounded, it is necessary and sufficient that

S be regular, and that C^Q.

An example due to W. A. Hurwitz yields an interesting comparison be-

tween the work of this paper and that of Hurwitz and Knopp. Apply to the

sequence x„=w2", w8 = l, the transformation defined by Kn,i = ( — l)nco'/3

(i = n,n+l,n+2), and K„,,• = 0,otherwise. The resulting sequence, gn = ( — l)n,

has its limit points within the limit circle of the original sequence as is to be

expected from our theory but the oscillation of {gn} is greater than that of

{xn} and one of its limit points lies outside the limit core of {xn} ■

3. Function to function transformations. I. In the following let/(x) be a

complex function of the real variable x defined and integrable Lebesgue in

each interval a — x^Xi<^, where Xi is arbitrary and £ is finite or infinite.

We shall call the following the transformation 5i. Choose a point set T

as in the definition of 5, and a function Ki(t, x) denned for each t in T, and

each x, a = x<£, integrable Lebesgue in each interval agxgxi<£, for each t,

such that

Si: gi(t) =  f  Ki(t, s)f(s)ds
J a

exists for each t in T.

We shall now give without proof a theorem analogous to Theorem 2.1.

Theorem 3.1. Let f(x) be bounded agx<£. If Si is such that Ki(t, x)

satisfies the conditions

I Ki(t, s) - Ki(u, s) | ds = 0, a ^ Xi < {,
a

(3.12) f    \Ki(t,s)\ds<M,

for all sufficiently advanced t, M a constant, then the quantities «i the center and

Di the radius of the limit circle of the function ßaKi(t, s)ds,
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Ai = ai —   lim  lim   I    Ki(t, s)ds,

Bi=  lim lim   I    Ki(t, s)f(s)ds,

Ci = lim sup lim  lim | Z<"i(/, s) — Ki(u, s) \ ds
t-*tt        x—*{   u-Wo   J a

exist, and the limit points of gi(t) lie in a circle of center Hi = Aih+Bi, and

radius Ri = Cir+Di\h\, where h is the center and r the radius of the limit circle

off(x).
The sufficiency of theorems analogous to those in §2 can easily be estab-

lished, but for a complete theory analogous to that in §2 we need the trans-

formations in the next section.

4. Function to function transformations. II. We shall call the following

transformation 52. Choose a function R~t(t, x) which has all the properties of

Ki(t, x) and the additional property that R~t(t, x) is continuous in x, uniformly

for all sufficiently advanced t, and all x, a^x^q, where q is an arbitrary

constant less than £. The transformation is then given by

52: gt(t) =  f  Kt(t, s)f(s)ds.
Ja

We can establish

Theorem 4.1. Let f(x) be bounded, a^x<%. If*S2 is such that K2(t, x)

satisfies the conditions

(4.11) lim Kt(t, x) = k(x), sgi<{,
<->/.

(4.12) f | Kt(t,s)\ds < M,
J a

for all sufficiently advanced t, M a constant, then the quantities a2 the center and

Dt the radius of the limit circle of the function faKt(t, s)ds,

At = ai — k(s)ds,     Bt =   I     k(s)f(s)ds,

Ct = lim sup   I     | Ki(t, s) — k(s)\ ds
t-»t>     J a

exist, and the limit points of g2(t) lie in a circle of center H2 = A2h+Bi, and

radius Ri = dr+D2\h\, where h is the center and r the radius of the limit

circle off(x).
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The proof of this theorem may be made to depend upon that of Theorem

3.1 by showing that k(x) is continuous a — x<£, that K2(t, x) approaches

k(x) uniformly over a = x-=q, for arbitrary q less than £, and that k(x) is

integrable over a=?xg£. The details will not be given here.

We can now state

Theorem 4.2. In order that S2 may be such that lim,,,, g2(t) exists whenever

h = r = 0,it is necessary and sufficient that K2(t, x) satisfy the conditions (4.11)

and (4.12).

The sufficiency follows from Theorem 4.1. The necessity can be estab-

lished by using the methods of Silverman [5 ], and Schur [l ] ; and a considera-

tion of the fact that if f(x) is measurable a =? x =~ b, then sgn f(x) is also

measurable in this interval.

The remaining analogues of the theorems in §2 can easily be stated and

proved by methods suggested in that section, and will not be given here.

5. Bounds of the sets of limit points. It is easy to see that in parts of our

discussion we can replace the limit circle by some other circle which contains

the limit points of the sequence or function. In particular we can replace it

by a circle with center at the origin and radius equal to the maximum of the

distances from the origin to the limit points. This radius which is a bound for

the set of limit points may be written in the case of sequences as lim sup«-»

| x„ |. We can state

Theorem 5.1. Let Q be a real non-negative constant. In order that

lim sup | g(t) | ^ Q lim sup | x„ |
t-*t, «-.«o

whenever {xn} is bounded, it is necessary and sufficient that the Ki(t) satisfy the

conditions (2.11), (2.12), C^Q, and kt = 0,for alii.

For the proof of necessity consider Theorem 2.5 and, for the last condi-

tion, the sequence x,=0 (* = 1, 2, • • • ); and the sequences x, = l, x, = 0,

i*j(i,j = l,2,---).

6. Application to series. We shall generalize some results due to Schur

[l] and Kojima [6].

Let the series w0+wi+w2+ • • • , with partial sums Wn, be the Cauchy

product of the two series u0+Ui+u2+ ■ ■ ■ , and Vo+Vi+v2+ ■ ■ ■ , with

partial sums Un and F„ respectively. We can write

Wn   =   UnVa +■■■+ UoVn,

which is a linear transformation on the sequence {F„}. If we suppose that

Y^ | un | converges and that { F„} is bounded with limit circle of center h and
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radius r we can apply Theorem 2.1 to show that the limit points of {Wn} he

in a circle of center /EM" and radius rE | w» I •

Now write U*-£U¿S-<«<> where An = T(p+n+l)/[T(n+l)T(p+l)]

and P^O. If the Cesàro transform of order p, Cn(u) — U„/Apn, is bounded,

the series EM» is said to be bounded (C, p). Writing similar expressions for

the series E1'» and Ew- we get WÍ+q+1 =E"-o^n-.*Z?> ?^0, which may be

written

cTq+\w)=—^-±A:vUlu).

If we regard this expression as a linear transformation on the C<0) we

get Kn,i = A^Vn_i/Al+q+1 (i = 0, 1, 2, • • • , ra), Kn.i = 0 (i>n). Then sup-

posing that E1*» is bounded (C, q), we have |Kn,i\ =AviAqn_i\Cn-i(v)\

/Avu+q+1<M/n"+1, M a constant for all ra, so that hmn~K Kn,i = 0. Further-

more 22t-o\Kn,<\ <N, N a constant for all ra, and 2Z^oKn,i = Cpn+q+1(v).

Hence if we call the center and radius of {C£(w)}, and {Cn+q+1(v)}, K,

ru, and hv, rv, respectively, we have

Theorem 6.1. Z/2^Mn is bounded (C, p) and2~2vn is bounded (C, q), p, q^O,

then the sequence {Cn+q+1(w)} has its limit points in a circle of center kvhu,

and radius ru-lim supn.M E?-o¿< I Vq_{\ /Avn+q+1+rv\ K\.

If we consider the two series EM« "with partial sums sn, and Ec»Mn with

partial sums tn we get

tn   =   S0(Co  —  Cl)  +   •  •   •  + Sn-l(Cn-l  —  Cn)   + SnCn-

On the basis of the assumptions that {sn} is bounded with limit circle of

center h and radius r, and that EiT-olcn—c„+i| converges, we can show by

means of Theorem 2.1 that the limit points of {/„} he in a circle of center

Alimn,M Cn+Er-ota-Cn+Os», and radius r-limn^«,|cn|.

Generalizations of the last result to the case when 2~lun is bounded (C, p)

for some p>0 can easily be arrived at on the basis of the work of Schur [l]

and Kojima [6].
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