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1. Introduction. The purpose of this paper is to present some theorems on

the convergence and overconvergence of sequences of polynomials of best

approximation to a function f(z) analytic on a closed limited point set whose

complement is of multiple (finite or infinite) connectivity. Our main theorem

is the following:

Theorem I. Let M be an arbitrary closed limited point set of the z-plane

whose complement K is connected and possesses a Green's function with pole at

infinity, f Let w = u(z) be a function which maps K (conformally but not neces-

sarily uniformly) onto the exterior of the unit circle in the w-plane so that the

points at infinity in the two planes correspond to each other. Let Cr denote the

transform (i.e., in K) of \w\ =R, R>\, under the mapping function w=u(z).

(1) If the function f(z) is analytic and single-valued on and within Cr, there

exist polynomials Pn(z) of respective degrees n%, n = l, 2, • • • , such that the

inequalities

(a) | f(z) - Pn(z) | = N/Rn, zonM,R>\,

where N is dependent on R but not on n or z, are valid for every z on M-

(2) If there exist polynomials Pn(z) of degree n, n= 1, 2, • • • , such that (a)

is valid for every z on M, then the sequence {Pn(z)} converges interior to Cr,

uniformly on any closed point set interior to Cr, and thus f(z) is analytic^

throughout the interior of Cr.

* Presented to the Society, October 29,1932; received by the editors February 27,1933.

t The requirement that K should possess a Green's function is equivalent to the requirement

that K should be regular, in the sense that the Dirichlet problem (for arbitrary continuous boundary

values) can be solved for K. See Kellogg, Proceedings of the National Academy of Sciences, vol. 12

(1926), pp. 397-406.
X A polynomial of degree n in z is any expression of the form a0+aiz+a2Z,+ • • • -\-anZn.

§ If /(z) is not originally assumed to be denned on the entire point set considered, then the defi-

nition in the new points is to be made by analytic extension interior to Cr, or, what amounts to the

same thing, by means of the convergent sequence of polynomials.
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The Green's function G(x, y) with pole at infinity for the region K is

(1) harmonic in K except at infinity where G(x, y)=log r+Gi(x, y),

r = (x2+y2)11-2, and Gi(x, y) is harmonic at infinity, and (2) G(x, y) is con-

tinuous and vanishes on the boundary of K.

It will be noticed that the hypothesis on the point set M is satisfied pro-

vided M is closed, limited, without isolated points, and provided K is con-

nected and of finite connectivity.

This theorem is known for the case that the complement of M is simply

connected and that M is not a single point. The second part of the theorem

for that case is due to Walsh and the formulation of the entire theorem to-

gether with detailed references was published by him.* Among the writers to

whom various parts of the theorem are due are Faber, S. Bernstein, M. Riesz,

Fejér, and Szegö; the theorem for the case that If is a segment of the axis

of reals is due to Bernstein. The generalization to be proved here is made pos-

sible by the consideration of the equipotential curves for the infinite region

K and of approximation by them to the boundary of K, by the approximation

to analytic curves by lemniscates, and finally by the use of a sequence of

polynomials found by interpolation.

By means of Theorem I we shall derive some results on convergence and

overconvergence,—results which are generalizations of results already es-

tablished by Walshf in the less general case mentioned. We study also the

convergence of sequences of polynomials of best approximation, where best

approximation is measured (1) in the sense of Tchebycheff, (2) by line in-

tegrals taken over rectifiable Jordan curves bounding the point set considered,

(3) by surface integrals taken over the region considered. The two latter

methods of approximation yield interesting results in regard to polynomials

belonging to a point set, a problem which has been considered in the case of a

simply connected region by Faber, Fejér, Szegö, Bergmann, Bochner, Carle-

man, and Smirnoff.í All three methods of approximation yield results on the

exact region of uniform convergence of the sequence of polynomials of best

approximation and show that this region depends not merely on the singu-

larities of the given function f(z) but also on the monogenic character of the

function /(z).

The term overconvergence is used in the sense of Walsh to denote that if a

sequence of polynomials converges sufficiently rapidly on a point set M

of the kind described, then that sequence necessarily converges also on a cer-

* Münchner Berichte, 1926, pp. 223-229.
t These Transactions, vol. 32 (1930), pp. 794-816; these Transactions, vol. 33 (1931), pp. 370-

388. We shall refer to these papers as (1) and (2) respectively.

| Detailed references are given below.
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tain larger point set containing M in its interior.

2. Approximation by analytic curves to the boundary of a given point set.

We shall prove several lemmas.

Lemma I. Let M be a closed limited point set of the z-plane whose complement

K is connected and possesses a Green's function G(x, y) with pole at infinity.

Then w- w(z) =gG+iB, where H is conjugate to G, is a function which maps K

onto the exterior of the unit circle in the w-plane so that the points at infinity in

the two planes correspond.

The equipotential lines, G — c, c>0, take the following forms: (1) the locus

G = c consists of a finite number of simple analytic closed curves, mutually ex-

terior, bounding an infinite region T of points G>c; or (2) the locus G = c

consists of a finite number of mutually exterior closed curves, at least one of

which has a multiple point of order m ^ 2, bounding an infinite region T of points

G>c.

Consider the set of points T: G >c, in which we count the point at infinity.

Because G is continuous in K except at infinity, the boundary points of T all

belong to the equipotential G = c. Conversely, all points of G = c are boundary

points of T. If not, then in a neighborhood of a point P olG = c which is not

a boundary point of T, we have only points Gfc. Since G is harmonic in this

neighborhood, by Gauss' mean-value theorem G equals c on the circumfer-

ence of a sufficiently small circle about P, and we have a contradiction.

The set T is a region, that is, every point of the set G>c is an interior

point of the set, and any two points of the set can be connected by a Jordan

arc all of whose points belong to the set.. Otherwise, a region Ti belonging to

the set T exists not including the point at infinity and having G = c on its

entire boundary. Since G is harmonic in Tu G is identically equal to c in Ti,

which leads to a contradiction.

The locus G = c, c>0, consists of analytic arcs which fall into a set of

closed curves; otherwise the continuity hypothesis is contradicted.*

The locus G = c, c >0, consists of a finite number of curves. If M is bound-

ed by a finite number of mutually exclusive closed point sets, the state-

ment follows at once from the facts that any curve on which G = c>0 con-

tains in its interior points of M and no two loci G = 0 and G = c>0 have a

common point. If M is bounded by an infinite number of mutually exclusive

point sets, assume the curves G = c: C(1>, C(2), • • • to be infinite in number

and consider a point Pi on C(1), P-¡ on C(2), • • • . Since G = c is a closed limited

point set, these points must have a limit point P on G = c. If P is not a point

at which the gradient of G vanishes, the curve G = c through P is a single

* See for instance Kellogg, Foundations of Potential Theory, Berlin, 1929, pp. 273-277.
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analytic piece, as the theorem on implicit functions shows.* If P is a point

at which the gradient vanishes, it is not a limit point of points at which the

gradient vanishes, for such points can occur only on the boundary of K, as is

evident from consideration of the derivative of the analytic function f(z)

of which G is the real part.f If -P is a point at which the gradient of G

vanishes, the analytic arcs of which G = c consists in the neighborhood of P

are finite in number and they pass through the point P with equally spaced

tangents4:, so P cannot be a limit point of points on C(1), C(2), • • • . Hence

we have reached a contradiction; and the statement that any locus G = c,

c>0, consists of a finite number of curves is true.

The locus G = c, c>0, consists either entirely of mutually exterior simple

curves, or of mutually exterior curves some of which may be simple but at

least one of which, C, has a multiple point of order m,m 2:2 ; and C contains

in its interior (i.e. the finite regions bounded by C) at least m mutually ex-

clusive closed sets belonging to M. The proof is similar to that already given

and is left to the reader.

If the region K is of connectivity greater than unity, there is at least one

value of c for which the locus G = c contains a curve with a multiple point.

The number of curves of which the locus G = c is composed increases

monotonically (if at all) as c decreases. The locus G = c consists of a finite

number of mutually exterior simple curves, except for a countable set of

values of c.

Out of Lemma I follows, as the reader will easily verify,

Lemma II. Under the hypotheses of Lemma I, the point sets bounding the

infinite region K can be approximated by finite sets of mutually exterior analytic

curves G = c. More explicitly, the equipotential loci /(i):G = c<, ¿ = 1, 2, • • -,

Ci>c2>c3> • • • —»0, lie in K and are such that the region interior to Jii+1) is

contained in the region interior to 7(i), /<° and /<<+1) have no common points,

and every point in K lies exterior to some /(i). // the c¿ are suitably chosen, each

Jli> consists of a finite number of mutually exterior analytic simple curves.

3. Approximation to several analytic curves by a lemniscate. The locus of

a point the product of whose distances from m fixed points is constant is a

lemniscate. Thus, if the given points are «i, a2, • ■ • , am, the lemniscate is de-

fined by the equation \P(z) \=c, where P(z) = (z — Ai) (z — ai) ■ ■ ■ (z — am).

For m = 1, the lemniscate is a circle; for m = 2, the lemniscate is a Cassinian

oval. We note that \P(z) \ =0 consists of the points z = ai} i = i, 2, ■ • • , m;

* Osgood, Lehrbuch der Funktionentheorie, vol. I, Leipzig, 1923, p. 675.

t The proof follows that of Kellogg in the case that K is simply connected : loc. cit., pp. 364-365.

Î See for instance Kellogg, loc. cit., p. 275.
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and, in the general case, since G = log [|P(z) |/|c|]1/m is Green's function

with pole at infinity for the region exterior to |P(z) \=c^0, the curves

G = log e, e> 1, or |P(z) | =cem, for e sufficiently near unity and c sufficiently

near zero, are m simple closed analytic curves, each containing one root

a¡, ¿ = 1, 2, • ■ • , m, of P(z) =0, if the a< are all distinct.

The possibility of approximation of analytic curves by lemniscates is the

basis of our proof of Theorem I, and Theorem I is the source of all succeeding

results in this paper.

Lemma III. A finite number k of arbitrary mutually exterior closed analytic

curves can be approximated by the same lemniscate; that is to say, given a set C

consisting of k mutually exterior closed analytic curves Cjt j = 1, 2, • • • , k, and

a number rj >0 such that the ^-neighborhoods of C¡ are distinct, a lemniscate

T : | (z — ai) (z — Ov) ■ • • (z — am) \ — c exists which lies exterior to C and interior

to these ^-neighborhoods, and contains C in its interior*

Let CJ ,j = l, 2, ■ ■ ■ , k, be k curves constructed as follows:

(1) The curve CJ is contained in the region swept out by a circle of radius 77

whose center describes Cr

(2) The curve CJ contains in its interior one and only one of the given curves,

say Cj, and lies exterior to C.

(3) The curves CJ lie exterior to one another.

Let s(Ç) measure arc length on the curves C¡ whose lengths are d¡,

j = í, 2, • • • , k. For 0^s(r)^di, f shall lie on d; for di<s(£)£¿i+dt, f
shall lie on C2; • • • ; for£*-&<i(f) áZ)y_i¿„ T shall lie on Ck.

Green's function G(x, y) exists t for the region exterior to C: (1) G(x, y)

is harmonic exterior to C except at infinity where G(x, y) =log r+G0(x, y),

and Go(x, y) is harmonic at infinity and has the value — n at infinity, and

(2) G(x, y) is continuous and vanishes on C. We define a function V(x, y) so

that V(x, y) =G(x, y)+p; and we now prove that there exists a continuous

positive function
1    dV(x,y)

4>0) = -—-—
2ir        dn

[n is the exterior normal for C) such that

* This lemma was proved by Hubert in the case of approximation to one analytic curve and

applied to approximation of analytic functions by polynomials: Göttinger Nachrichten, 1897, pp.

63-70.
Simultaneous approximation of several distinct curves by lemniscates has also been used by

other writers, especially Faber, Szegö, Fekete, and Pólya, in connection with the approximation of

functions by polynomials and related topics, but without detailed proof of the results of the present

paper. See particularly Faber, Münchner Berichte, 1922, pp. 157-178, and for further references

Pólya and Szegö, Crelle's Journal, vol. 165 (1931), pp. 4-49.

f Osgood, loc. cit., pp. 687-703.
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V(x, y) =  J    <b(s) log r ds,

where now r = | z —f |, ds = | ¿f |, and z=x+iy is any point of the z-plane ex-

terior to C.

By a familiar theorem of potential theory, a function G(x, y) which is (1)

harmonic in the region S which is bounded by C and a circle C<¡ (with center

P : (x, y) exterior to C) containing C in its interior, and (2) continuous to-

gether with its partial derivatives of the first order on the boundary of S,

satisfies the following equation :

(a)

If/ dG 3 log A
G(x,y)=-\    (logr—-G—Mrfs

2ttJci>\        on dn  /

l r /      dG       a log a

2irJc  \ dn an   )

Here r denotes distance from P:(x, y) and n denotes interior normal with

respect to 5.

If we use the Green's function G(x, y) =log r+Gi(a;, y), we have from (a)

l  r        dG
(b) G(x,y)=-ß + —\    logr —¿5,

2-kJc on

for we have

1   C  (       oGi        d log A 1   C oG
G(x,y)=~\    (logr—-Gi——W + -       logr— ds,

2t Jc0\ dn dn   / 2ir J c dn

/dGi                      1   i"      d logr           Í   r       ölogr
logr-ds = 0,       — I   Gi-ds = —-I    G0-ds = p.

c„          dn                       2irJca        dn              2w J c0         dn

Consequently,

à(G + ß)
G(x, y) + ix = — I    logr- - ds,

2irJc dn

and
1   r dV

V(x, y) = — I    logr—-ds.
lie J c dn

The function d V/dn is continuous on C since dG/dn is continuous on C, and

dV/dn is positive since V(x, y) is harmonic exterior to C except at infinity

where it is logarithmically infinite. Hence
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1   dV
— —- = <f,(s)
2t   dn

is the function desired.

Since V(x, y) is harmonic exterior to C except at infinity, V(x, y) takes on

all the Cj a minimum value pi >p. We now choose e >0 such that e < (p1—p)/2.

Since V(x, y) —p is Green's function for the region exterior to C we may apply

Lemma I. If V = p+e is a locus consisting of curves not all of which are sim-

ple, some curve of the locus must intersect a Cj ■ Since p+e <pi, and pi is the

minimum value of V on Cj, the curve cannot cut Cj. Hence V = p+e con-

sists of a simple closed curve 71 in the ring Cid', a simple closed curve y2 in

the ring C2Ci, ■ • • , a simple closed curve 74 in the ring C^Ci ■

By similar reasoning, V=pi — e consists of a simple closed curve 71 in the

ring Cid', a simple closed curve 72' in the ring C2Ci, • • • , a simple closed

curve y¿ in the ring CkC{.

We denote by 7,-7/ the ring region bounded by y¡ and 7/. We let

<b(s)ds ;
0

and we make the change of variable

/>«(f) <b(s)ds,
0

so that u increases from 0 to u0 as s increases from 0 to ]C;=i d¡. Then

r "1

V(x, y) =    I      log r du,
J 0

and

V(x, y) = lim («o/«) (log ri + log r2 + • • • + log r„),
ft—*oo

where r\, r2, ■ • ■ , rn are distances from z to n points of C¡ corresponding to

equidistant values «i = Uo/n, u2 = 2u0/n, ■ ■ ■ ,un = u0oiu. For simplicity, the

dependence of r¿ on n is not indicated in the notation.

For z interior to 7,7/, convergence of the sequence of functions w0 log ru

(wo/2) (logTir2), • • • , (uo/N) (log nr2 ■ ■ ■ rn), ■ ■ ■ , to V(x, y) is uniform.*

For n sufficiently large, n = N, and z interior to yfyj, we have

- e' < V(x, y) - («o/»)(log rjr2 • • ■ r„) < «'.

* The detailed proof of uniformity offers no difficulty. See for instance Walsh, Bulletin of the

American Mathematical Society, vol. 35 (1929), pp. 499-544; Lemma, p. 538.
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If we denote by T the locus exterior to C:(u0/N) (log nr2 ■ ■ ■ rx) =X,

where /i-fe<A<Mi — e, and choose e' sufficiently small, we have, on T,

p+e<\—e'<V(x, y)<\+e'<pi—e. Every Jordan arc joining a point of y,-

to a point of 7/ must cut T. The locus T has the following properties :

(1) T consists of a curve T(1) enclosing 71, a curve r(2) enclosing 72, • • •,

and a curve r(4) enclosing 7*. Otherwise there would exist a region in some

7,7/ in which the harmonic function (u0/N) (log nr2 ■ ■ ■ rn) constant on

T would be identically constant, which is impossible.

(2) T lies in the rings 7,7/, since X is such that p+e<\— e'<V(x, y) <X

+ e'<Mi-É.

(3) T is a lemniscate, for the equation

*Vl • ■ • rN = eN*lu°

is of the form |P(z) \ = c>0.

The proof of Lemma III is now complete.

If we choose 77 successively 1, 1/2, • • • , i/n, • • • , we have lemniscates

I\, r2, • • ■ , r„, • • • , exterior to C. From this set can be extracted a subset

such that (1) each r,0+i is interior to r¿0, (2) I\0 and r,0+1 have no common

point, and (3) every point exterior to C lies exterior to some r,0.

4. Lemmas involving the mapping function w(z). We prove the following

lemmas:

Lemma IV. Under the hypotheses of Lemma I, a multiple point of order m

of the curves G = c, c>0, occurs at (x, y) = (#', y') if and only if co'(z') =0,

w"(z')=0, • • • jw'"*-1' (z')=0,«<m> (z')^0,z' = (x',y'),m^2,simultaneously,

that is, when and only when z = z' is a branch point of the inverse of the mapping

function co(z) = eG+iH.

The proof of this lemma is essentially included in Lemma I.

Lemma V. Let M, K, «(z) be defined as in Theorem I. Let Cr denote* the

transform in the z-plane of \w\=R, R>1, under the mapping function w(z).

Let p be arbitrary, K'p<R. Then there exists a lemniscate (of Lemma III)

T:\(z — ai) ■ ■ ■ (z—am) \ =c such that T contains M in its interior and such

that Tr/p:\ (z-r-ai) • • • (z — am) | =cRm/pm lies interior to Cr. Thus for z on

and within Y {hence on M) and for t on or exterior to Tri„, we have

(z — aO ■ ■ • (z — am)

(t — ai) • • ■ (t — am) R'

* A symbol of the form Cr denotes henceforth the transform in the z-plane of | w \ =R, R> 1,

under the mapping function w(z).
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Let T be a lemniscate contained in K and lying interior to Cp. Then the

locus Tri,, lies interior to [Cp]s/P = Cr, as follows from the study of the Green's

functions for the exterior of C„ and the exterior of T. If these Green's func-

tions are denoted by Gi and G2 respectively, their difference Gi—G2 is nega-

tive on Cp, hence harmonic and negative exterior to Cp even at infinity. Then

on Trip we have Gi—log R/p <0, so on rÄ/p we have Gx <log R/p; the curve

Cß:Gi = log R/p lies exterior to TR/p.

Lemma VI. Let M, K, co(z) be defined as in Theorem I. If Q(z) is a poly-

nomial of degree n such that \Q(z)\^L, z on M, then

| Q(z) | ^ LR?, z on and within Cr0, R0 > 1.

The special case in which M is a line segment is due to S. Bernstein,* and

the method used in proving Lemma VI is a generalization of the method of

M. Rieszf for this special case. This lemma was proved by WalshJ in case

K is simply connected and the possibility of its extension to the more general

case was indicated by him. See also Faber (loc. cit.), who proves Lemma VI

for a set M bounded by a finite number of Jordan curves.

5. Approximation to ari analytic function. We proceed now to the proof

of Theorem I.

We first prove (1). Since/(z) is analytic on and within Cr, the function

j(z) is also analytic on and within some CR>, R' >R. Choose the present .R'as

the R of Lemma V and the present ratio R'/R as the quantity p of Lemma V.

Then by Lemma V there exists a lemniscate r:| (z — ai) ■ • ■ (z—am) \=c

containing M in its interior, while Ts: | (z—ai) • • ■ (z — am) \ =cRn is interior

to Cr>; for z on and within T (in particular on M) and for t on or exterior to

Fr (in particular on Cr-), we have

(z — ai) ■ ■ ■ (z — am)

(t — a{) ■ ■ ■ (t — am)

A unique polynomial Pmp-i (z) of degree mp — 1, p = 1, 2, • • • , exists with

the properties

Pmp-i(aj) = / * (a¡) (i = 0,1, 2, • • • , p - 1; j = 1, 2, ■ • • , m). §

* Mémoires de l'Académie Royale de Belgique, Classe des Sciences, (2), vol. 4 (1912), pp. 36-94.

t Acta Mathematica, vol. 40 (1916), pp. 337-347.
% Münchner Berichte, loc. cit., p. 225.

§ Hubert (loc. cit.) has exhibited such polynomials in the case of approximation in a simply

connected region. See also Jacobi, Crelle's Journal, vol. 53 (1856-57), pp. 103-126; and Montel,

Leçons sur les Séries de Polynômes, Paris, 1910, pp. 47-49,95-97.

R'
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Two distinct polynomials Pmp-i(z) of degree mp — \ surely cannot satisfy

these conditions, for their difference would have at least mp roots. We

actually exhibit the polynomial Pmp-\(z) (necessarily unique) :

mp—1 GO
1   C   /W l~(z -«!)•■•(*- o~i\     .     .

= f(z)-I      -   -    dt,   z interior toGje-.
2tíJcB, t — zL(t — ai) • • • (/ — am)J

Indeed, it is clear by inspection that Pmp-i(z) thus defined satisfies the con-

ditions on interpolation to/(z), since this equation is valid for z = a,-. More-

over, if f(z) is expressed by Cauchy's integral (which may be taken over the

whole of Cr> even if CR> consists of several curves) :

1    f     /(0
f(z) =-; I      -dt, z interior to Cr-,

2-iriJCn, t — z

substitution in the previous equation leads to an integrand which has no

singularity in z and which is a polynomial in z of degree mp — i, so the func-

tion Pmp_i(z) is seen to be a polynomial of degree mp — 1.

For z on M, we have

i    i r    1/(0
|/W-P«^i(«)|^-|       7~

(z — «O • ■ • (z — am)

(t — ai) • • ■ (t — am)

p

I dt\

Since/(z) is analytic on and within CR-, there follow the inequalities \f(l) |

^Af"; |0s-fli) • • • (z-am) \/\(t-a{) ■ ■ ■ (t-am)\ gl/R«, and \/\t-z\

^ 1/S, zonif,i on CR>. Set

X.¿Í    = L ;

we have

.       1      1     N"L
f(z) -Pmp-1(z)\^-—~-—

2tt  Rm*      ô

N'
^-> z on M,

fímp

where N' is independent of p and z.

The polynomial Pn(z) of degree n, n = 1, 2, • • • , already defined when w

is of the form mp — 1, is now defined for arbitrary n by the equation

Pn(z) = Pmp-i(z),    w/> - 1 ^ n < m(p + 1) - 1.

Then we have the inequality
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i N' N
f(z) - Pn(z)   =g- g -, z on M,

1 Rn~ m+2     i?B

where N = N'Rm~2, and where A7 is independent of « and z. The proof of the

first part of the theorem is complete.

The proof of the second part of the theorem is the analog of the cor-

responding proof given by Walsh in the case of a closed limited point set

whose complement is simply connected,* and is a direct application of Lem-

ma VI.

The following theorem is simpler but less explicit than Theorem I:

Theorem. Let M be an arbitrary closed limited point set whose complement

K is connected and possesses a Green's function with pole at infinity. A necessary

and sufficient condition thatf(z) be analytic on M is that there exist polynomials

Pn(z) of respective degrees n such that the inequality

(a) \M-**b)\*-=r,*>i,Rn

N not dependent on n or z, is valid for every z on M.

The function f(z) of Theorem I is not necessarily a monogenic analytic

function; in other words, if we consider the functions defined on various

separated pieces of M, the hypotheses of the theorem may well be satisfied

where/(z) is not a monogenic analytic function.

Theorem II shows the best degree of approximation (measured like the

convergence of a geometric series) possible for a sequence of polynomials

Theorem II. Let M, K, co(z) be defined as in Theorem I, and let f(z) be

analytic on M. Let R be the largest number for which the following is true: (1)

a function F(z) is analytic and single-valued interior to Cr, (2) F(z) =f(z) on M.

Then there exists a sequence of polynomials {P„(z)} of respective degrees n,

n = \, 2, • • • , such that

i                      i       N
f(z) — Pn(z)    ^-, z on M, R0 arbitrary < R,

Ro*

N dependent on R0 but not on n or z; but for no sequence of polynomials \Pn(z)}

do we have

N
f(z) - Pn(z)   ¿-, z on M, Rx > R,

R?

N dependent on Ri but not on n or z.

* Münchner Berichte, loc. cit., p. 226.
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The number R defined by (1) and (2), finite or infinite, exists; the formal

proof is left to the reader.

The curve Cr is characterized by the fact that the function f(z) (when

suitably extended analytically from M along paths interior to CR) is analytic

and single-valued interior to Cr, but is not analytic or is not single-valued or

fails in both particulars interior to every Cr>, R' >R, when extended from M

along paths interior to Cr>. Thus, (a) at some point P of Cr the function

/(z) has a singularity for analytic extensions from M along paths interior to

Cr terminating in P; or (b) the curve Cr has at least one multiple point Q,

and there is disagreement at Q among the various analytic extensions of/(z)

from the various parts of M to Q along paths belonging to the several regions

interior to and bounded by Cr; or (c) both (a) and (b) occur.

As an illustration of (b) let the point set M be the closed interior of the

lemniscate | z2 — 11 —c, c<\, and let/(z) = 1 in the oval to the right of the or-

igin, and f(z) = — 1 in the oval to the left of the origin. Then Cr is the lem-

niscate \z2 — 11 = 1. As an illustration of (c) let /(z) = l/(z —21'2) and

l/(z+21/2) in the right and left ovals of the point set M above. Then Cr is

again the lemniscate with double point | z2 — 11 = 1.

The first statement of Theorem II has been proved in Theorem I, al-

though the polynomials there exhibited depend on ¿?0; this restriction does

not appear for the polynomials of Theorem III below. We shall prove the

second statement.

Assume that polynomials Pn(z) of degree n, n = 1, 2, • • • , exist such that

i                      ,       N
f(z) - Pn(z)   ¿-,zonM,Ri>R,

N independent of n and z. By Theorem I, the sequence \Pn(z)} converges

to an analytic function F(z) within Cr,. Then F(z) is analytic interior to C«,

and F(z) =f(z) on M, where Rj. is greater than R, contrary to hypothesis.

6. The TchebychefT polynomial. The Tchebycheff polynomial of degree

« for approximation to/(z) on M is the polynomial II„(z) of degree n such that

max | f(z) — nn(z) |, z on M,

is not greater than the corresponding expression for any other polynomial of

degree n. The Tchebycheff polynomial exists and is unique,* under the hy-

potheses of Theorem I.

Theorem III states the exact region of uniform convergence of sequences

of polynomials of best approximation in the sense of Tchebycheff. The first

* Tonelli, Annali di Matemática, vol. 15 (1908), pp. 47-119.
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part of this theorem was proved by Faber* for a point set M bounded by an

analytic Jordan curve and the entire theorem was proved by Walsh f in the

case of a closed limited point set whose complement is simply connected.

Theorem III. Under the hypotheses of Theorem II, the sequence of poly-

nomials {n„(z)} of respective degrees n,n = 1, 2, • • • , of best approximation in

the sense of Tchebycheff to f(z) on M converges interior to Cr, uniformly on any

closed point set interior to Cr, and converges uniformly in no region containing

a point of Cr in its interior.

The proof of this theorem is the analog of that given by Walsh in the case

of a closed limited point set whose complement is simply connected, and is

omitted.

The proof of Theorem III holds for the following theorem :

Any other sequence of polynomials which converges on M like the Tchebycheff

polynomials, or, in other words, such that the inequality |/(z)—P„(z)| ^N/R"

is satisfied for z on M and for R0 arbitrary less than R, where N depends on R<¡

but not on z, converges as in Theorem III.

The following theorem was proved by Walshf in the special case of a

point set whose complement is simply connected:

Under the hypotheses of Theorem III, neither the sequence of polynomials

{II„ (z)} of best approximation tof(z) on M nor any other sequence of polynomials

which converges like the sequence of polynomials of best approximation converges

like a geometric series in any region or on any Jordan arc exterior to Cr.

The proof follows the method of proof of the last part of Theorem III.

In particular, the discussion holds for simultaneous approximation to real

analytic functions on a finite number of intervals on the axis of reals.

7. Other measures of approximation. There are other measures of approx-

imation such as (1) approximation by the Tchebycheff method with a

norm function, (2) approximation on M as measured in the sense of least

pth powers (p > 0) by Une integrals in the case that M (closed, limited) is

bounded by a finite number of rectifiable Jordan curves, (3) approximation

on M as measured in the sense of least pth. powers (p > 0) by surface integrals

where M (closed, limited, consisting of a finite number of regions) is an open

set plus its boundary points.

In each of these cases the polynomial of best approximation exists, and is

* CreUe's Journal, vol. 150 (1920), pp. 79-106.

t(l), p. 795; (2), pp. 381-384.

Î (2), p. 385.
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unique if p> 1.* In each case, as we shall proceed to indicate, under suitable

restrictions on M, the sequence of polynomials of best approximation to /(z)

on M converges satisfying the inequality \f(z)—Pn(z)\^N/RÔ, Rq<R, z

on M, and hence converges interior to Cr, uniformly on any closed set in-

terior to Cr, but converges uniformly in no region containing a point of Cr

in its interior.

The proofs in each of these cases are analogous to proofs already given

by Walsh.f In cases (2) and (3), an inequality of form |/(z) -P„(z) | ¿N/RÔ,

Ra<R, is first proved not for z on M but for z on a suitably chosen closed set

M' interior to M. The conclusion follows from the fact that when M' ap-

proaches M, then Cr' (defined for M' as Cr is defined for M) approaches Cr;

this latter fact is a consequence of the fundamental results of Lebesguef on

harmonic functions and variable domains.

A Tchebycheff polynomial for approximation to /(z) on M with the norm

function p(z), where p(z) is given continuous and different from zero on M,

is the unique polynomial II„' (z) of degree n such that

max [ | p(z) [   | f(z) - n„' (z) | ], z on M,

is not greater than the corresponding expression for any other polynomial of

degree n.

Theorem IV. Under the hypotheses of Theorem II, the sequence of Tcheby-

cheff polynomials {Tin (z)} for approximation to f(z) on M with an arbitrary

positive continuous norm function p(z) converges interior to Cr, uniformly on an

arbitrary closed point set interior to Cr, and converges uniformly in no region

containing a point of Cr in its interior.

A polynomial of best approximation in the sense of least weighted pth

powers as measured on^r,, where r„ j = 1, 2, ■ • • , k, are k rectifiable Jordan

curves bounding the point set M (satisfying the hypotheses of Theorem I),

is a polynomial LT„(z) of degree n such that

£ f    \f(z)-nn(z)\*n(z)dz,
j=i J r,-

where p >0 and n(z) is arbitrary, continuous, positive, is not greater than the

corresponding expression formed for any other polynomial of degree n.

Theorem V. Let the closed limited point set M whose complement is con-

nected be bounded by a finite number k of non-intersecting rectifiable Jordan

* See for instance Walsh, these Transactions, vol. 33 (1931), pp. 668-689; p. 681.

t (i); (2).
t Palermo Rendiconti, vol. 24 (1907), pp. 371^02.
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curves T¡. Under the hypotheses of Theorem II, the sequence of polynomials

{n„(z)} of best approximation to f(z) on M in the sense of least weighted pth

powers (p>0) as measured on T¡ converges throughout the interior of Cr,

uniformly on any closed point set interior to Cr, and converges uniformly in no

region containing a point of Cr in its interior.

The case p = 2 is of especial interest. Here the polynomial ü„(z) of best

approximation to an arbitrary function f(z) is of the form

nn(z) = a0P0(z) + ffiPi(z) + • • • + anPn(z),

where the P,(z), i = l,2, ■ ■ ■ ,n, depend on the T,- but not on/(z), and the co-

efficients at(i^n) are independent of«. The set of polynomials P,(z) is said to

belong to the point set M.

The method of approximation used in Theorem V for p = 2, n(z) = l, was

discussed and the corresponding special case of Theorem V was proved (under

an additional restriction) by Szegö* and Smirnofff for the case of a point set

whose complement is simply connected.

A polynomial of best approximation in the sense of least weighted ^th

powers as measured by integration over the areas R¡, where R¡,j = 1, 2, • • • ,

¿, are arbitrary closed regions, is a polynomial li„(z)of degree«, » = 1, 2, • • ■ ,

such that

£ fT-   I/to -TLn(z)\"n(z)dS,
i-1«'   J R¡

where p>0, n(z) is continuous and positive in R„ is not greater than the cor-

responding expressionf formed for any other polynomial of degree n.

Theorem VI. Let Ri; j = l, 2, ■ • ■ , k, be arbitrary closed limited regions

no two of which have a common point. Let K denote the region consisting of all

points which can be connected with the point at infinity by Jordan arcs which do

not contain points of the R¡. Let G(x, y) be Green's function with pole at infinity

for K. Under the hypotheses of Theorem II, the sequence {n„(z)} of polynomials

of best approximation tof(z) in the sense of least weighted pth powers, p>0, over

the areas R¡, j = 1, 2, • • • , k, converges interior to Cr, uniformly on any closed

point set interior to Cr, and converges uniformly in no region containing a point

of Cr in its interior.

It will be noticed that the regions R¡ are not necessarily Jordan regions,

and in fact any region R¡ may be multiply connected and even if simply con-

* Mathematische Zeitschrift, vol. 9 (1921), pp. 218-270.

f Journal de la Société Physico-Mathématique de Léningrade, vol. 2 (1928), pp. 155-178.

t If any of the boundaries of Ri,j= 1, 2, ■ ■ • , k, have area, either upper or lower integral may

be used here.
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nected may separate various regions B from K. The hypothesis of Theorem

VI includes the analyticity of f(z) in all such regions B.

The case p = 2 is again of especial interest. The polynomial nn(z) of best

approximation to an arbitrary function/(z) is of the form

nn(z) = a0P0(z) + alPl(z) -\-+ anPn(z),

where the-P,(z), i = 1, 2, • • ■ , n, depend on the Rj but not on/(z), and the co-

efficients a{(i^n) are independent of n. The set of polynomialsP,(z) is said to

belong to the point set M.

The method of approximation used in Theorem VI was considered by

Bergmann,* Bochner,| and CarlemanJ in the case of a single Jordan region,

p = 2, n(z) = 1, although without proof of our results on degree of convergence

and overconvergence.

As a complement to Theorems IV-VI we add

Theorem VII. // M consists of a finite number of mutually exclusive closed

Jordan regions and if the function f(z) is analytic in the interior points of M,

continuous in the corresponding closed regions, then (1) the sequence of poly-

nomials of best approximation to f(z) on M in the sense of Tchebycheff with a

positive continuous norm function converges to f(z) uniformly on M ; (2) if the

Jordan curves bounding M are rectifiable, the sequence of polynomials of best

approximation to f(z) on M in the sense of least pth powers (p>0) as measured

by a line integral with a positive continuous norm function converges to f(z) at

every interior point of M, uniformly on any closed set interior to M; (3) the

sequence of polynomials of best approximation to f(z) on M in the sense of least

pth powers (p>0) as measured by a surface integral with a positive continuous

norm function converges to f(z) at every interior point of M, uniformly on any

closed set interior to M.

In case (3) it is indeed sufficient (see Carleman, loc. cit.) for this conclu-

sion if/(z) is analytic interior to M and if ffM \f(z) |2 dS exists; the restrictions

in case (2) can similarly be somewhat lightened (see Smirnoff, loc. cit.).
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