
THE VOLUME OF THE FUNDAMENTAL DOMAIN
FOR SOME INFINITE GROUPS*

BY

CARL LUDWIG SIEGEL

Let Q be any region in m-dimensional euclidean space which is invariant

under a group T of real homogeneous linear transformations of the coordi-

nates. The group T has a fundamental domain F on Q if F is mapped by the

different transformations of T into a set of domains which completely fill out

Q without overlapping one another. It is obvious that then T is countable.

If all the substitutions of the group have the determinant ± 1, the volume v

of F is uniquely determined by Q and T. The reciprocal value of v is a certain

measure for the order of T ; in fact, if Ti is a subgroup of T with the index g,

the volume of the fundamental domain of Ti is exactly gv.

It is known from the analytic theory of quadratic forms how to find v

if T is the group of automorphisms of a quadratic form with integer coeffi-

cients. Minkowski, in his last investigations on the theory of numbers, de-

termined the value of v in another case, which also has interesting appli-

cations to the problem of the closest packing of «-dimensional spheres. Let

2^1 i-i5*'***' ^e any positive definite quadratic form of n variables and Q

that part of the space of the n(n+l)/2 coefficients skt (1 ^k^l^n) where

the determinant | skt | is not greater than a fixed positive number q. By apply-

ing any substitution xk ='%2"_lckiyi with integer coefficients whose determi-

nant is ±1, a linear transformation of the ski is induced which leaves Q

invariant. The group T of these transformations of the quadratic form is ob-

viously isomorphic to the factor-group of the group of all unimodular sub-

stitutions of n variables with respect to the subgroup of order 2 generated

by xk= — yk ik = i, • • • , n). A fundamental domain of T on Q is the region

F of the reduced positive definite quadratic forms of n variables whose de-

terminant is not greater than q. Minkowski proved that F is bounded by a

finite number of planes and the surface | sk,\ =q. Moreover, he calculated ex-

plicitly the volume of F as a function of n and q, namely,

(1)        v = C(n+l)/2lr-n(„+l)/4r^r^  .   .   .   r(y)f(2)  •  •   •   f(»),
n+ 1

where f is) denotes the zeta function of Riemann.

* Presented to the Society, October 26,1935; received by the editors April 1,1935.
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The purpose of the present paper is to prove Minkowski's formula (1)

by a simple analytic method and to generalize it to the case of any algebraic

number field. A special application gives the non-euclidean volume of the

fundamental domain for the modular group in every totally real algebraic

field. Blumenthal and Hecke have shown the importance of the corresponding

modular functions for algebraic and arithmetic investigations. Since the

knowledge of a set of generators of the modular group is necessary for the

construction of any example in the theory of modular functions, the determi-

nation of the volume of the fundamental domain can be useful for further

researches.

1. Let Qo he the space of all positive definite symmetric matrices 3E of n

rows, and F0 its fundamental domain for the group of all transformations

S'ïfë where 6 is any unimodular matrix of n rows and S' its transposed. The

trace of ï is denoted by cr(ï), the determinant of % by | H\, and ¿3E is the

§w(w + l)-dimensional volume element in Qo. The formula

(2) ÏÎ 7r-<»+*"2r (-)=   f  \$\,it-1(r"Wd3L
k-0 \      2      / J Q0

holds for every 5 with positive real part and can be proved by complete induc-

tion, starting with Euler's definition of the gamma function. Let 21 be any

real matrix of n rows and columns, whose determinant is not zero. Then

2l'3E2l can be substituted for ï in (2). Hence

(3) 4>(s) I 2T2Í |-«--»/* =  f | % \.i2-ie-™Wm)dx>

where <p(s) is an abbreviation for the left side of (2).

If ï runs over the fundamental domain F0 and S over all unimodular

matrices of n rows, the matrices S'Ï6 = ( — E)'ï( — S) completely fill out

twice the space Q0. Therefore (3) can be transformed into the equation

(4) 2ç6(s)|2t'2l|-('+n-1)/2 =  f  |ï|''1-1£œi-"<a'Œ'ÏŒa)<EE.
Jf0

A matrix S3 is called associated to 21, if 33 = S2l with unimodular 6. In

(4), the matrix S2Í runs over all associates to 21. It is clear that the determi-

nants of all associates have the same absolute value. There exist only a finite

number of non-associate integer matrices 21 whose determinants have a fixed

absolute value a¿¿0. In fact, Eisenstein has proved that their number is

(5) P(a) = 2 ai'-V-2 • • • a^-ißn0,
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where ai, • ■ ■ ,an run over all systems of solutions of- ai ■ ■ ■ an = a in positive

integers.

Let the real part of 5 be greater than 1 and sum (4) over a complete system

of non-associated integer matrices SI whose determinants are different from

zero. Since

00

£ iia)a->-»+1 = r(j)f(i + 1) • ■ • t(s + n - 1),
a—1

the result is

(6) 2*(4)r(i)r(5 + 1) • • • f(s + « - 1) =  f  | XI»'2-1 £ e-"<ä'*ä>d*,
Jpt l«l*o

where 21 runs over all integer matrices with | 211 y^O.

The left side of (6) is a meromorphic function of 5 which has a pole of

first order at s = 1. The residue at this pole is

(7) p = 2r^<-H>wr(-lW.i)     • r(y) r(2) • • • f(»).

To study the behavior of the right side of (6) near 5 = 1, the well known

method from the theory of the zeta functions can be used. Divide 7"0 into

two parts 7\ and F2, corresponding to | Ï | ^ 1 and 1361 > 1. The integral in

(6) then splits up into the sum of the two integrals over Fi and F2. The second

integral is an integral function of 5. Furthermore the function

f   | il''2"1 Z <r"(a'ï!,)dï,
J Pi |ä| = o

where 21 runs over all integer matrices with |2i| =0, is regular near 5 = 1.

Hence p is also the residue of

f   III"72-1 2D e-"<a'*a>dï,
J f, a

where 21 runs over all integer matrices, at the point 5 = 1. Now, from the

theory of theta functions, the formula

]T g-T<rca'3£ä) = | £ |-»/2 £ e-'^a'ar'a)

a a

is known. Hence p is the residue of

(8) f   |ï|(«-")/2-»dï +   f   |* |<»-">'2-iX)'e_I<r(rarlS!t)<**,
Jft Jfi a
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where 2Í runs over all integer matrices except the zero matrix. The second

integral in (8) is again regular at s = 1, and p is the residue of the first integral

in (8).

If Vx is the volume of Fi, the fundamental domain F, which is the part

136 J i=<7 of Fo, has the volume vxq(n+1)l2. Hence

J' ,    ,                      n+ l      rl                                   «+ 1
I j|(.-n)/2-l¿J  = _-n    I     ?(.-n)/2-l.c(„-l)/2¿?  = - „^

F,                                            2           J o                                                    s —  1

(9) p = (n+l)vx,

and (1) follows from (7) and (9).

2. The group of the matrices S with integer rational elements and the

determinant +1 has a generalization in any algebraic number field. It con-

sists of all matrices S of n rows, for which the elements of E and 6_1 are in-

tegers of the field K. These matrices will be called unimodular in K. Their

determinants are units of the field K. The definition of the associates of a

matrix can be at once extended to the case of any K: the matrix S3 is asso-

ciated to 21, if SB = E2Í with a unimodular (5 in K. Since the determinant of

an associate of 21 can only differ from the determinant | 211 =a by a factor

which is a unit of K, the determinants of all associates to an integer matrix

of K define the same principal ideal (a). Eisenstein's result (5) has been gen-

eralized by Hurwitz. He proved that the number of non-associate integer

matrices 21 of K with n rows, whose determinants a^0 define the same prin-

cipal ideal (a), is

(10) Ha) = E Niax"-^-2 ■ ■ ■ anLia„°),

where the symbol N denotes the norm and cti, • • • , o„ run over all systems

of solutions of di • • • an = (a) in integer ideals cu, • • • , u„.

In this section only the simpler case of a totally real field K will be in-

vestigated. If / is the degree of K, the / conjugates of any matrix 21 with ele-

ments of K will be denoted by 2íi, ■ • • , 2Í¡. Let &, • • • , Hi he any / positive

definite symmetric matrices of n rows, Ç0 the space of their %n(n+l)l coeffi-

cients, and Q the part of Q0 defined by the inequality | ïi • • • ïz| ^q. If S is

unimodular, the transformation Si* XiSi, •••,(£/ 3E¡Ej leaves Q invariant. The

problem is to prove the existence of a fundamental domain F on Q with re-

spect to these transformations, which is bounded by a finite number of planes

and the surface | ïi • • • í¡ | = q and to calculate the volume of F. The first

part of the problem requires the theory of reduction of positive definite quad-

ratic forms in K and can be solved without serious difficulty by generalizing

Minkowski's ideas. Here only the solution of the second part, the determina-

tion of the volume v oí F by analytic methods, will be explained in detail.
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From (3) there follows for every integer matrix 21 of K with n rows, whose

determinant does not vanish, the equation

(11) ç6'(5)^(2I'2I)-('+"-1)/2 = f /y(X)«/i-v-«(«'H.>di1 • ■ • dur,
J Qo

here Ni%) denotes the product of the determinants of &, • • • , Xi and

S(2l'ï2I) the sum of the traces of 21/ Ïi2ti, ■ • • , 21/ ï,2i,. If F0 is a funda-

mental domain on Ço, the right side of (11) can be transformed in analogy

to (4). By summing (11) over a complete system of non-associated integer

matrices 21 of K with | 211 5^0, the equation

(12) 24>lis) £ tia)Nia)->-»+1 =    f  iV(ï)"2-1 £ cr^'ia^i ■ • ■ dï,
f«) Jf„ 181^0

arises, when (a) runs over all integer principal ideals and 21 over all integer

matrices with | 211 ̂0; the real part of s must be greater than 1.

If h is the class-number of K, there exist exactly h different characters

x(a) of the class-group. The sum23xx(<0 is h, if a is a principal ideal, and 0

otherwise. Let

Us) =T,xia)Na-
a

denote Dedekind's zeta function with class-characters. Then, by (10),

(13) 2>W(«)—"+1 = A_1E rx(i)fx(i + 1) • • ■ Us + n - 1).

Now it is known that Us) is an integral function if x is not the principal

character. For the principal character, ^(5) is the function

Us) = Zm»-,
a

which is regular for s ̂  1 and has at s = 1 a pole of first order with the residue

2í-i D~ll2R h, where R and D are regulator and discriminant of K. Hence the

residue of the left side of (12) at s = 1 is

(14) p = 2'D-^2RÛr-""2r'(-)   f.(2)f«(3) • ■ • f.(»).
/fc-i \ 2 /

The calculation of the residue of the right side of (12) is quite analogous

to the rational case. The domain F0 is divided into the two parts iV(ï) ^ 1

and N(£) > 1 and for the first part of F0 the theta formula

£ e-rsiä'ia) = D-n,'2N(£)-nl2 X) e_,rS"ö'*""1*'

a irlisB
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is used; here b denotes the fundamental ideal of K, the matrix 21 runs over

all integer matrices of K and 33 over all matrices whose elements belong to

the ideal b_1. In this manner it can be seen that

(15) P=(n+ l)D-»2i2Vx,

where vxq(n+l)l2 is the volume of F.

Hence, by (14) and (15), the volume of the fundamental domain F is

(16) V  =  - q(n+X)l2D(n^X)l2Rlr-n(n+X)lHTli\  .   .   . Tl(—\ f,(2)   ■  •  ■ £»(»),

and this is the generalization of Minkowski's formula (1) to the case of any

totally real algebraic number field.

3. If some of the conjugates of K are imaginary, let 2r2 be their number

and rx the number of the real conjugates. Then rx+2r2=l. For any matrix 21

with elements of K, the conjugates in the real fields will be denoted by

2Ii, • • • , 2lri and the conjugates in the imaginary fields by 2íri+i, • • • , 21«;

moreover 21* and 21*+,-! (k = rx+l, • ■ ■ , ri+ri) shall be conjugate complex.

Put rx+r2 = p. Instead of the /positive definite symmetric matrices Hi, • • •, Hi

of the totally real case, rx positive definite symmetric matrices Hx, ■ ■ ■ , Hri

and r2 positive definite Hermitian matrices HTl+x, • • • , HP must be considered.

The elements of Hi, • • • , Hp define a space of n(n+l)rx/2+n2r2 real dimen-

sions. Let Q be the part of Q0, where | & • • • HriH21+i ■ ■ • Hp\ èq. If S de-

notes the conjugate complex to (5, the transformation S* Hk&k (k = 1, • • • , p)

leaves Q invariant for any unimodular matrix S of the field K. The existence

of a fundamental domain F on Q for the group of these transformations, which

is bounded by a finite number of analytic surfaces, is known for the case of

an imaginary quadratic field K by the investigations of Picard and Bianchi.

The proof can be extended to the case of any K.

For the calculation of the volume v of F, an analogue of (2) for the space

77 of the positive definite Hermitian matrices H must be considered. If y«x

and zKx denote real and imaginary parts of the element xt\ of H, the volume

element dH of 77 will be defined by

dx = n dxA = 2"<«-1"2 n ¿y* n <&*.
«,X-1 lá«SXán lS«<XSn

Then the analogue of (2) is the formula

5 (2x)—*r(j + *) = f I ï |-v-*"tt>dï.
k-a d B
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If SE» (k = p + l, ■ ■ ■ , I) denotes the conjugate complex '26*_r!to 26*_r2,the gen-

eralization of (11) is

| JJ7r-cs+fc)/2r/'fL±—^|ri| II (2ir)-'-kT(s + k)\r'N(%"

=   I    7Y(ï),'2e_,rS(â,3£a>
Je

§í)-(«+»

axi dxj

Qo I *^l I I ^p I

Since the equations Ë* 26*E* = 26* (& = 1, • • • , />) only hold identically in 26*

for a unimodular S of 7T, if S=w@, where ® is the unit-matrix and w a root

of unity, the matrices 6* 26*E* (£ = 1, • • • , p) completely fill out Q0 exactly

w times, if 26i, • • • , 26P run over the fundamental domain F0 and S over all

unimodular matrices; here w denotes the number of roots of unity in K.

Hence corresponding to (12) and (13)

Wízlí                                  /s + k\ )
— H\ 2-"<s+*V-!<s+*"2r'-'i-)T"(s + *) j.

• E Us)Us + 1) • • • Us + n - 1)
X

=  I   N(%y12 X) e-^'â'ïa)
Jp„ 181*0

d26i d26P

laTío 126i I I 26p I

and by calculating the residues at s = 1 on both sides,

_0(n+l)/2£)(n2-l)/2^Tr,-n(n+l)i/42-n(n+l)r!/2TT pr, [ _ 1 pr, (M

•f«(2) • • ■ Un) =   I   I 26r1+i • • • 26p| d26i • • • d26p,

where D is the absolute value of the discriminant of K and R the regulator.

Therefore (17) gives the volume of the fundamental domain if the volume

element is defined by 126ri+i • • • 26p|d26i • • • d26p which is invariant under uni-

modular transformation.

4. The special case n = 2 is closely connected with the theory of the modu-

lar group in any totally real algebraic field K. Let r\, • • • , r¡ be a set of vari-

ables in the upper half-plane. The modular group in K consists of all the

substitutions

,        akTk + ßk
T*    =  -—— (k   =   1,  ■   ■   ■   ,1),

ykTk + 5*

for which a, ß, y, 5 are integers of K and ab —ßy is a totally positive unit. If e
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is any unit of K, then ea, eß, ey, eb define of course the same modular sub-

stitution as a, ß, y, ô.

Blumenthal has proved the existence of a fundamental domain G0 of the

modular group in the space of the upper half-planes of the / complex variables

Tk = tk+iuk (k = 1, • • • , /). The domain G0 is bounded by a finite number of

algebraic surfaces. Since the special modular substitutions with ab—ßy = l

form a subgroup of finite index m, they possess also a fundamental domain 67.

The non-euclidean volume

dtxdux dtidui/' dtxdux

G    «l2 U?

of G, and hence also the corresponding volume m~lV of Go, can be found in

the following manner.

Formula (16) gives the volume

(18) v=  f dHx--- dHi

for the space of the reduced systems of positive definite symmetric matrices

Hi, • • ■ , Hi oí n rows with | Hx ■ ■ • Hi\ ^q. Let n have the value 2 and con-

sider instead of the group of all unimodular matrices (^) only the subgroup

for which ab— ßy = e2 is a square of a unit of K. Since the index is 2', the

corresponding volume in the space oí Hx, • ■ ■ , Hi is 2lv. By the substitutions

_ /xk yk\

\yk  zj'

yk + (yk2 — XkZk)112

Tk =-,       £* = xkZk — y¿

Zk

the equation (18) is transformed into

2h = f ■ ■ ■ J (£i • ■ • &P'U6i ■ ■ • d%i

(* = i, • • •, 0

dtxdux          dtidui
- . . . -,

Ml2 Ml2

where the variables tx, ■ • • ,ui run over G and £i, • • • , £¡ over a fundamental

region in £i • • ■ £i^q with respect to the group £' = e4£ formed by the fourth

powers of all units of K. Hence

2lv = \22l-xRq*i2V,

and by (16)

(19) V = 21r-!7>3'2r,(2).

Since it can be shown that 7r_2'7?1/2f«(2) is rational for totally real K, the
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number ir~'V is rational also, corresponding to a theorem of Dehn and Poin-

caré on the volume of a non-euclidean polyhedron in an even number of

dimensions.

5. The very simple result (19) can also be proved by another method,

which does not use the properties of the units and of the zeta functions of K.

Let Vi, ■ ■ • ,Vt be any positive numbers, u and v two numbers of K, not both

0, and the ideal (p., v) = a. Consider the integral

__       C                vidtidui                                     ijidtidui
(20)    7(a) =  £      I    -¡--:-^-í-jí-

(C.')-a    "O    (Vi I PlTl +  Vl \2 + Ml)2 (ni | ßlTl + Vl |2 +  Ul)2

where p., v run over all pairs with the greatest common divisor a. If a, ß, y, S

run over all integers with a5—ßy = l, then ua+vy, uß+vb run over all pairs

which have the same greatest common divisor as the fixed numbers u, v.

Moreover, if in particular ua+vy = u, uß+vb=v, then the integrand in (20)

is invariant under the modular substitution (ar+fi)/(yr+S). Hence 7(a) is

exactly twice the value of the integral with the same integrand and fixed u, v

extended over a fundamental region for the subgroup T of the modular sub-

stitutions with ua+vy =u, uß+v5 = v. Choose now two numbers k, X of the

ideal a-1, such that kp—\u = 1, and make the substitution

, KT  + X
T    —   ~-

ßT +  V

A simple calculation shows that, for all elements ("f) of T, the equation

\M v)\y o)\ß v)      ' \0    1/

holds, where f belongs to or2; on the other hand, if X belongs to

a-2, then ("£) is an element of T. Let coi, • • • , o>¡ be a basis of a-2 and

l=o)iXi+ ■ ■ ■ +utxi. Then a fundamental region of T is defined by the in-

equalities

0 á ** < 1, ** >0 ik = 1,- ■ ■ ,1).

Hence

>i/2ri Vf
lc-1 J 0     J 0

rtkdxkduk
7(a) = 27Ya-27»1'2H-= 2Na.-2Dl>2,

(vk + uky

and, summing (20) over all integer ideals a,

T)idtidui rjidtidui
(21) 27>1/2r«(2) -z in

ii, f*0,0   *> G   \Vl\ PiTi + vi \2 + ui)2 (ni   ßin + vi \2 + Ui)2
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where fi, v run over all pairs of integers different from 0, 0. If r¡i, ■ ■ ■ , r\i tend

to zero, the right side of (21) becomes

J O k-X \ J -oo    J -a     i\ HkTk  +   Vk\2  +   Uk)2 /

where nk, vk are variables of integration. Now, by the substitutions

.    . t u
lJL\T\ "T" v i—r = r112 cos 4>, v "i—r = r1/2 sin </>,

r t

J_„   J_m   (|ur + y|2 + M)2  ~   Jo    Jo

dpdv        r°° r2r ^dr¿*

(l/ír + í-h + M)2 ~  Jo   Jo     uir + u)2

and therefore the expression (22) has the value

dtkduk

D-V f fi
J G *=-l

= D-W.

Together with (21), this completes the second proof of (19).
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