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1. Introduction. A generalized quaternion division algebra Q is an algebra

of degree 2, order 4, over the field R of all rational numbers. It can be written

in the form Q= (a, Z) =Z+uZ, where Z is a quadratic field over R and u2 = a

is^in R and is not the norm of an element of Z, and Zu = uZ', elementwise,

where the prime denotes the conjugate in Z. We say that Q has the generation

Q= (a, Z) and identify the unity elements^ of Q and Z with each other and

with 1, the unity element of 7?. We call 1, u, a Z-basis of Q. If fi, f2, and f3, f«,

are any i?-bases of Z then fi, fj, wf3, «ft, is an J?-basis of Q.

An algebra Q has a representation as an algebra of matrices of degree 2

with elements in Z which can be obtained in the following manner. Regarding

(1, u) as a vector, for any q = f 0+wft of Q, fo and ft in Z, we have <7<—*q, where

9(1, «) = (q, qu) = (i, «)i,   g =
ft,     aft'

fii       fo

We call r(cj) = T(q) = ft+ft the reduced trace oí q. In a similar way, using an

ii-basis of Q we obtain a representation of Q as an algebra of matrices of de-

gree 4 with elements in R.

The Q are cyclic algebras§ and the theory of their invariants is included in

the general theory of Hasse|| which yields all generations of a given Q. There

exist a finite number >0 of rational primes w such that the 7r-adic extension

QT of Q is a division algebra whereas Qp for all other rational primes p is a

total matric algebra. We say that Q splits at the prime spots p of R. The num-

ber of w is even if Q has a real quadratic sub-field, and odd otherwise. In the

former case, Q is said to split at the infinite prime spot of R.

A maximal order\ üfj? of Q, that is, an integral domain (Dickson, loe. cit.,

* Presented to the Society, December 31, 1935; received by the editors December 2, 1935.

f The paper had its inception while its author was a National Research Fellow.

Î The name unity element in preference to modulus or unit element was adopted at the suggestion

of Professor A.A. Albert.

§ Dickson, Algebren und ihre Zahlenlheorie.

|| Hasse, Theory of cyclic algebras over an algebraic number field, these Transactions, vol. 34 (1932),

pp. 171-214.
11 Deuring, Algebren, Ergebnisse der Mathematik, vol. 4, part 1. Deuring gives a complete bib-

liography including references to the work of Darkow and Latimer.
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p. 198), is a set of elements of Q with the properties:

U: 3DÎ contains the unity element.

B : SO? contains an i?-basis of Q.

I: The elements of SDc are integral; that is, they satisfy equations with

rational integral coefficients, highest coefficient 1.

Ca: 90? is closed under addition.

Cm: SO? is closed under multiplication.

M : 21? is maximal; that is, it is not contained in a larger set having the

first properties.

A set having properties U, ■ ■ ■ , Cm, is called an order $ of Q.

Each Q has infinitely many 5T/Î of which special ones have been determined

for certain Q by Dickson (loe. cit.), Darkow and Latimer, and for all Q by

Albert.* It is the purpose of this paper to determine all 9JÎ for each Q.

First, every St is shown to have a certain simple form relative to an ar-

bitrary generation of Q. Second, the necessary and sufficient conditions for a

set of elements of this form to be a $ are determined. Third, the maximality

condition is introduced. Fourth, canonical generations of each Q found by

Albert (loc. cit.) are described. Finally, conditions for the existence of maxi-

mal orders 9Dt are determined by a study of the earlier results when expressed

in terms of canonical generations.

Throughout the paper we denote by g the maximal order of R. It is clear

by Properties U and C„ that every $ contains g. Also, if vx and v2 are fixed

quantities and m and n are sets of quantities we write vx-m+v2-n for the set

of all quantities of the form vip,+v2v, p in m and v in n.

2. The form of an order. Any order fi of an algebra Q has the simple form

relative to an arbitrary generation Q = (a, Z), described in

Theorem 1. If S is any order of Q = ia, Z) the intersection mc of Ä and Z

is an order of Z whose conductor is a positive integer c. There exists a unique

mc-modul n, which is a finite %-modul, of elements of Z, and a quantity X of Z

such that

(1) fi = l-me+ (X + «)-n.

By the definition of irtc and the order properties of S it is evident that mc

is an order of Z. It is known that the conductor of every order of a quadratic

field is a positive integer c, uniquely determining the order, such that c2d is

the discriminant of the order, where d is the discriminant of the field.

By Property B, $ contains elements of the form vo+uv, v^O and v0 in Z.

Let n be the set of all v, including v = 0, which occur when all elements of $ are

* Albert, Integral domains of rational generalized quaternion algebras, Bulletin of the American

Mathematical Society, vol. 40 (1934), pp. 164-176.
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written in this form. By Property Cm, Smt c Si whence nmt c n. Hence n is

an rrtc-modul since Property C0 of Si implies that n is a modul.

To prove that n is a finite g-modul we prove more, namely, that £ is a

finite g-modul. For, Si contains an .R-basis, say v0, vx, v2, v3, of Q by Property B.

Let q be any element of Si. Then we have

3 3

q = ]C aivi,        «> m F,       Qv¡ = 2 «<"<»* (j = 0, ■ • ■ , 3).
¿=0 ¿=0

From these equations we get

Tiqv,) = j^aiTivivi) 0' = 0,--- ,3),
i-0

where all traces are in g by Properties Cm and 7. Solution shows that

| T(viV,) | «t is in g for k = 0, • • • ,3, where | T(víV}) | = A(z>o, •••,%) is in g, is

independent of q in $ and is not zero since Q is semi-simple. This proves that

S is a finite g-modul and it is evident, therefore, that n is a finite g-modul. We

call A(v0, ■ ■ • ,v3) the reduced discriminant of the 7c-basis Vo, ■ • ■ , v3.

From the properties of n just proved it follows in the usual way that there

exist ^if^O and v2?¿0 in n such that n = vir]+v2-$. Then Si contains quantities

vox+uvx, voi+uv2, vox and v02 in Z. By Property Cm, Si also contains

(vox + uvi)(v02 + uv2) = j'oins + aviv2 + u(vxvo2 + v2v0i),

whence vxv02+v2v0x is in n. By Property 7,

Tivoi + uvi) = ¡>oi + Poi  = g

is in g. Hence

VlV02 — Ï^Ol  =  í'll'02 + »'2>'01    — gv2

is in n and there exist gi and g2 in g such that

J'ii'02 — ^oi = g2vi — gift, ivox — gx)v2 = iv02 — g2)vx.

We define X = iv0x—gi)/vx = iva2—g2)/v2 and prove (1).

We have (X+u)vx = v0i+uvi—gi in $ by Property C0 since g c $. Similarly,

(X+u)v2 is in St and hence by Ca, (X+w)n c St. For an arbitrary vQ+uv in ®,

whence v is in n, we have v0+uv=p+iX+u)v, p = v0—Xv, where p is in Z and

also in ® by Property C„ and hence in mc. Since mc c Si and (X-t-«)n c $, we

have (1).

An order mc of Z and a finite g-modul n of elements of Z such that nmt c n,

have g-bases of a special form needed later. We state*

* For the first part of the theorem, see Fricke, Lehrbuch der Algebra, vol. 3, p. 249. The second

part is easily proved as a consequence of the properties of n.
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Theorem 2. The order mc of Z, with the conductor c, can be written

(2) mc = 1-B + cw-B,        «= (d + dl/*)/2,

wÄere d ¿5 the discriminant of Z. A finite Q-modul n of elements of Z such that

nmc c n, can be written

(3) n = r-Q + rv-Q,        v = (gx + cw)/gt,

where r is in R and gi and g2 are in g and such that

(4) gi2 - cdgi + c\d2 - d)/4 m O (mod g2).

3. The closure and integral conditions. Let mc and n be given by (2), (3),

and (4). Let

(5) X = e0 + exw,        e0 and ei in R,

whence X is in Z. We consider the set

(6) © = lmc + (X + «)n,

of elements of Q. Evidently © has Properties. U, Ca, and B, since 1 is in mc,

mc and n have Property Ca, and v0, vi, v2, v3, where

(7) »o = 1,        Vi = cw,        Vt = (X + u)r,        v3 = (X + u)rv,

is an i?-basis of Q in ©. We shall determine necessary and sufficient conditions

that © have Properties 7 and Cm, and hence be an order of Q. We first prove

Lemma 1. The trace Tis) is in a, for every s of S if and only if T(Kr) = ¿i and

T(hrv) =k2 are in g. These conditions are equivalent to

rceo = {gi +cid + l)/2]ki — g2k2,
(8)

rcdei = — (2gt + cd)ki + 2g2k2,

with ¿i and k2 in g.

If s=p+(K+u)t] is in ©, we have p in mc and tj in it. Then T(u) is in g

and T(s) = T(p)+T(\rj) is in g if and only if T(\r¡) is in g. From (3) and the

linearity of the trace function we obtain at once the lemma, where (8) is the

solution of T(Kr) = ¿i and T(Krv) = k2 for e0 and Ci.

We leave Property 7 and consider Cm assuming (2), • • • , (8). Since

mc-mt = mc and n• mc = n, it follows from (6) that © has Property Cm if and

only if we have simultaneously :

(9) p(\ + u)r¡ in © for every p in mc, y inw,

and

(10) (X + m)tji(X + u)r¡2 in © for every r¡x, r¡2 in n.
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By (2) and (3) it is necessary and sufficient for (9) that cco(X+w)r and

cco(X+u)rv be in ©. Using (2), • • • , (8) we find

cco(X + u)r = — (gi + cd)ki + g2k2 + kicu + (X + u)cu'r,

(11)
cw(X + u)rv = — g3ki + gik2 + kicu + (X + u)cw'r,

where g3g2=gx2 +cdgx+c2(d2 — d)/i, whence g3 is in g by (4). Since coo' is in mc,

cu'r and cu'rv are in n. Hence (11) shows that (2), • ■ • , (8) imply (9).

Next, we have

(12) (X + «)iji(X + u)V2 = [a - N(X)}vir,2 + (X + u)V2T(Xr,x),

where N(X) =XX'. For every r\x, Vz in rt, 7\X?7i) is in g by Lemma 1 and hence

t)2T(Xt)i) is in n. Hence, by (3), (4), and (12) it is necessary and sufficient for

(10) that {a — NQi) } -ni 772 be in mc in the four cases: r,i = r)2=r; 172=rv; r,i = rv,

i)2=r;t)i = t)2 = rv.ln the second of these cases (10) requires that r2 {a — N(X)} v

he in mc which holds, by (3), if and only if

(13) r2{a- NQi)} = k3g2, k3 in g.

It is readily seen that the first and third cases require no additional condi-

tions. In view of (4), (13) is also necessary and sufficient in the fourth case.

This completes the proof of

Lemma 2. If the elements of €5 have integral traces, © has Property Cm if

and only if (13) holds.

We now return to Property 7 and prove

Lemma 3. If © has Property Cm then © has Property I.

It is plain that (7) is a g-basis of ©. For any s in © we have

3

s = X (TíVí,        0-, in g (i = 0, • • • , 3).
¿-0

By means of this basis, in the manner indicated in the Introduction, we form

the representation of Q as an algebra of matrices of degree 4 with elements in

7?. In this representation s in © corresponds to a matrix with elements in g

by Property Cm. Hence s is integral since it satisfies the characteristic equa-

tion of this matrix.

Combining Lemmas 1,2, and 3 we have

Theorem 3. The set © in (6) is an order of Q if and only if (8) and (13)

hold with kx, k2, and k3 in g.

4. The maximality condition. We now study Property M in connection

with  the  reduced discriminant, for brevity,  discriminant,  of  an  order.
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This is defined* for algebras Q over R, as the discriminant of any g-basis

(see §2) of the order. By the following lemma, the discriminant of an order

is independent of the g-basis.

Lemma. If v0, ■ ■ ■ , v¡, and u0, • ■ ■ , u3, are two R-bases of Q, such that

(uo, ■ ■ ■ , u3) =A (vo, ■ ■ ■ , v3), where A is a rational matrix of degree 4, then

A(»o, ■ ■ ■ , u3) = \ A |2A(»o, • • • ,v3).

The lemma is a well known consequence of the linearity and symmetry of

the trace function. If the u's and v's are g-bases of the same order, | A \ 2 = 1.

The discriminant of $ in Theorems 1 and 2 is

(14) A(t) = - r*c*a2d2/g22.

This can be verified by computing the discriminant of the g-basis (7) of $

by means of the lemma from A(l, cca, u, ucu) which is easily found directly.

The discriminant of a maximal order 20? of Q, which is invariant for all 5D?,

is called the discriminant A(<2) of Q. It is known (cf. Reichardt, loc. cit.) that

ir2 divides A(Q), ir3 does not divide A(()), for each of the primes ir described

in the Introduction, and that A(Q) is not divisible by any other rational

prime. For the purposes of the next section it is convenient to define a0 as

the product of the tt or as the negative of their product according as the num-

ber of ir is even or odd. With (14) andmthe lemma these remarks imply

A(<2) = -a02 and yield

Theorem 4. An order of Q given by Theorems 1,2, and 3 is maximal if and

only if

(15) r*àa2d2 = a02g22.

5. Canonical generations. We now describe canonical generations of the

Qin

Theorem 5. Each Q has a canonical generation Q = ia0, P), where a0 is

the quantity defined in §4 and P is any quadratic field with the following proper-

ties. The discriminant of P is —p, where p is a prime such that p = 3 (mod 4)

and each prime factor of a0 is a quadratic non-residue, while a0 is a quadratic

residue modulo p. The discriminant of Q is —a02.

This theorem follows at once from theorems of Albert (loc. cit., Theorems

1,2, and 3) by verifying, either by the use of Hasse's theory, or by computing

the discriminant of the special maximal orders found by Albert, that the

* See Reichardt, Die Diskriminante einer normalen einfachen Algebra, Journal für Mathematik,

vol. 172 (1935), pp. 31-35, for the extension of the definition to the case of an algebra over an alge-

braic number field and for the form of the discriminant in terms of ideals of the coefficient field.
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quantity o of Albert's Theorem 3 is the quantity a0 we defined in §4. Similar

canonical generations exist* for cyclic division algebras of odd prime degree

over R.

To express the conditions of Theorems 1, •• -, 4 in terms of a canonical

generation we replace a by a0 and ¿by —p. We assume, without loss of gen-

erality, that g>0 and r>0. Then from (15) we get g22 =r*cip2, g2 = r2c2p,

whence g2 = pg2, g in g, r = g/c. Next, (4) requires gi = ph, h in g, and

(16) ph2 - cph + c2(p + l)/4 = g3g2 m 0 (mod g2).

From (5) and (8), we now obtain

X = eo + eiw,

(17) geo= \ph-c(p-l)/2]kx-pg2k2,

gex = (2h — c)kx — 2g2k2.

Finally, we compute NQi) =XX' from (17) and substitute in (13) which be-

comes

(18) ao - g3kx2 + p(2h - c)kxk2 - pg2k22 = k3c2p m 0 (mod c2p).

This completes the proof of

Theorem 6. Let Q = (a0, P) be a canonical generation. Every maximal order

'SSI of Q is of the form

(19) l = lra£+(\ + u)n,

where

(20) m. = 1-8 + CCÜ-8,        co= {-p+(- py>2}/2,        c ^ I in g,

is the intersection of SD? and P;

(21) n = r-fl + ri/-ß, r = g/c, v = (ph + cw)/pg2,

where g and h are in g and satisfy (16), and X in Z is given by (17) for ki, and k2

in g such that (18) holds. Conversely, if c, g, and h are such that (16) holds and

there exists a solution kx, k2 in g of (18), define mc and n by (20) and (21). Then

ifX is given by (17) with any solution of (18), 3JÎ in (19) is a maximal order of

Q whose intersection with P is mc.

The question as to the existence of maximal orders 93Î, that is, the exist-

ence of integers c, g, h, etc., satisfying the conditions of Theorem 6, is deferred

to the next section. For the sake of completeness we here adjoin the multi-

plication table of a g-basis of Wl in (19). No use is made of this in what follows.

We have

* Cf. Hull, these Transactions, vol. 38 (1935), p. 517.
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ÜD? = vo-Q + vi% + t>2g + t»3-g,

t>o = 1,        Vi = eco,        v2 = (X + u)r,        v3 = (X + u)rv,

where all quantities are as defined in Theorem 6. The following relations hold :

voVi = ViVo = Vi (¿ = 0, • • • , 3)

vi2 = - c2ip2 + p)/4 - cpvi,

Viv2 = pg2k2 — pih — c)ki+ kxvx + pik — c)v2 — pg2v3,

vxv3 = hpk2 — g3ki + k2vi + g3v2 — hpv3,

v2vx = — kpv2 + pg2v3, v22 = pg2k3 + kxv2,

v2v3 = hpk3 + k3vx + kiv3, v3Vi = — g3v2 + pih — c)v3,

v3v2 = pih — c)k3 — k3vi + k2v2,        v32 = g3k3 + k2v3.

6. On the existence of maximal orders. As a special case of a general theo-

rem of Schilling* on division algebras of prime degree over an algebraic field,

we have the following existence theorem.

Theorem 7. There exists a maximal order of Q = (a0, 7') whose intersection

with P is a given order mc of P if and only if c is prime to the discriminant of Q,

that is, if and only if

(22) ic, oo) = 1.

This theorem can also be proved directly* by means of Theorems 5 and 6.

We shall indicate a proof of the sufficiency of (22) later. The necessity can be

shown as follows. If ir is an odd prime dividing a0 the Legendre symbol

(ir/p) = — 1 by Theorem 5. This is equivalent to i — p/ir) = — 1 by the quad-

ratic reciprocity law and p=3 (mod 4). From this it follows that the highest

power of T which divides any value of the quadratic form px2+y2, x and y in g,

is even. Multiply (18) by 4g2, apply (16) and complete the square. There re-

sults

(23) p{(2h- c)kx - 2g2k2}2 + c2kx2 = 4g2(ao - k3c2p).

If ir divides c, evidently the highest power of x which divides (23) is odd since

x2 does not divide a0. This contradiction, with a similar one in case 2 divides

a0, implies (22).

Henceforth let c^ 1 be fixed and assume (22). To determine all ÜDc whose

intersection with P is mc we have first, by Theorem 6, to determine all

n = n(g, h) of the form (16) and (21) such that (18) has solutions and then,

for a fixed n, to determine the effect of taking distinct solutions of (18). We

now seek a criterion for the n(g, h) such that (18) has solutions.

* Schilling, Mathematische Annalen, vol. Ill (1935), p. 376.
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The quadratic form

(24) / = f'kt, kt) = gzki2 - p(2h - c)kik2 + pg2k22

belongs to a class* of quadratic forms of discriminant — c2p, p = 3 (mod 4),

uniquely determined by n. Yor,f=c2pN(k2r — kirv) and a unimodular substi-

tution on the g-basis (21) of n corresponds to a similar substitution on kx

and ¿2. A prime which divides each of g3, p(2h—c) and pg2 divides c by (16).

Hence, by (22), a necessary condition that (18) have solutions is thatf be primi-

tive. Then/has the following characters, f If c> 1, let

(25) c = 2*p»qP ■ ■ ■ q¿", (qi- ■ ■ q„ 2p) = 1,

be the canonical factorization of c into prime powers. If a = 0 or 1, / has the

(only) characters (f/p) and (f/q,) (¿ = 1, • • • , s). If a = 2, f has the (only)

additional character 5(n) = ( —l)(n_1)/2, n odd and represented by/. If a^3,

/ has the (only) additional characters Ô and e(w) = ( —1)("2_1)'8, n odd and

represented by/. Since (a0, c2p) = l by (22) and Theorem 5, the Legendre

symbols (th/P) and ia0/q) and the quantities 5(a0), e(a0) if 5 and e occur for/,

define a total character Cia0) for the discriminant — c2p. The congruence

f=a0 (mod c2p) is easily shown to have solutions if and only if the characters

of/have the values prescribed by C(a0). This is the criterion sought. We have

proved

Theorem 8. Le/ c be fixed and satisfy (22). Then (18) has solutions for all

and only those mc-moduls nig, h) for which the associated forms f are primitive

and such that their characters have the values prescribed by C(a0).

The conditions of Theorem 8 lead to necessary conditions on the integers.

g. We first prove the

Lemma. The form f associated with n(g, h) is primitive if and only if h can

be chosen so that

(26) (g„ c2p) = l.

If (26) holds (18) has solutions if and only if Cig3) = C(aà).

The sufficiency of (26) for the primitivity of / is obvious by an earlier re-

mark. To prove the necessity, first let ß^O. Then (18) requires (g3, p) = l

and (16) implies g = pßgo, (go, p) = 1, h = pßh0. We cancel p2ß in (16) and have

(gi, P) = i- Moreover, (g3/p) = l. Second, suppose q,, for a fixed i, does not

* If n is a regular mymodul, that is, an mvideal, the class to which/ belongs is primitive and cor-

responds in the usual way (see Fricke, loc. cit.) to the ideal-class of the order mc to which tl belongs.

t See Dickson, Introduction to the Theory of Numbers, pp. 82-87, or, Studies in the Theory of

Numbers, p. 37.
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divide g. Then, without altering n(g, h), we can take (h, qi) = l and have

(ëh Ç,) = 1 trivially. Moreover, then (g3/qi) = (p/qi). If <7i divides g, (16) im-

plies qi divides h. Then the primitivity of / requires (g3, qi) = l. Since h is

uniquely determined modulo g2 by n, in this case g3 is uniquely determined

modulo qi by n. Third, if a >0, we proceed for factors 2 as for <7,-. In this case,

if g is odd, we obtain the additional results that g3=p (mod 4) or (mod 8)

in case a = 2 or «S: 3, respectively, and if g is even, g3 is uniquely determined

modulo 4 or 8 in case a = 2 or a ^ 3, respectively.

The last part of the lemma is obvious since g3 is represented by / and, if

(26) holds, C(g3) is the total character of /.

The additional conditions on g3 stated in the proof of the lemma, together

with the lemma, lead easily to the following theorem, the details of whose

proof we omit.

Theorem 9. An integer g, such that (16) has solutions, leads to mc-moduls

n(g, h) satisfying the conditions of Theorem 8 only if

(27) g = 2»°peQxgo,        igo,p) = l,

where ß is given in (25), Qx is the product of the prime powers qf* in (25) for

which (p/qi) 9* (a0/qi), and a0 = 0 if a = 0 or 1, a0 = 0 or 1 if a = 2 according as

p — a0=;0 or 2 (mod 4) and a0 = 0, a —I, a —2, or a —I if a^3 according as

p — aa = 0, 2, 4, or 6 (mod 8), respectively.

It should be noted that g0 is required by Theorem 9 to be prime to p,

but not necessarily prime to 2Qx- Naturally, g0 must be such that (16) have a

solution h. The sufficiency of (22) in Theorem 7 can be proved by showing

that there exist n(g, h) satisfying Theorem 8 for g given by (27) with g0 = l.

We omit the details of this proof.

We now assume that n(g, h) is fixed and such that (18) has solutions.

Let X<« and X<2> be given by (17) with solutions kxw, ¿2(1) and kxm, k2<2\ re-

spectively, of (18). It is plain that SD^X'1') = Src(X<2>) if and only if

(28) (X<»-«)ncS»(X<«)

since 50î(X(2)) is maximal. It is readily shown that (28) holds if and only if

r(X(2)—X(1)) and n<(X(2) — X(1)) are in mc and that the conditions, written in

(29) below, on the coefficients of co in these expressions are necessary and suffi-

cient. In this way we obtain

Theorem 10. Let c and nig, h) be fixed and such that (18) has solutions.

Then for two solutions kx(1), k2m and kxm, k2m of (18), and X(1) and X(2) defined

by (17) with these solutions, <SS\Q.m) =9)i(X(2)) if and only if, simultaneously,
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(2A - c)(¿i<2> - *!<») - 2g2(k2™ - ¿2(1)) = 0 (mod c2),

2g3(kxm - ¿i<D) - p(2h - c)(k2w - *,<»>) = 0 (mod c2p).

The conditions found in this section become very simple when c = 1. Then,

by Theorem 9, we must have (g, p) = l. For every n(g, A) with (g, p) = 1 and

c = l, the form/has the (only) character if/p) = l = ia0/p), and (18) always

has exactly two distinct solutions modulo p which do not satisfy (29). More-

over, without altering (18) modulo p, we may take ¿i=0 (mod 2g2) and then

take ¿2 such that ei = 0. Then X is in g. The special maximal orders found by

Albert (loc. cit.) are the 99? of Theorem 6 with c=g = l. Except for certain

particular algebras Q (cf. Schilling, loc. cit.) it is not known that an arbitrary

maximal order 5D? of Q contains the maximal order of some canonical splitting,

field P, nor, indeed, that Ü)? contains the maximal order of any splitting field

of Q.
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