
ON BOOLEAN FUNCTIONS OF MANY VARIABLES*

BY

J. C. C. McKINSEY

1. Introduction. I here treat of some facts regarding Boolean functions

of n variables. The results are in part an extension to functions of n variables

of theorems already known for functions of one variable, in part a discussion

of new problems.

By a. function of n Boolean variables I mean a rule whereby to each ordered

set Xi, ■ ■ ■ , x„ of Boolean elements is assigned a Boolean element z. A func-

tion of Boolean variables is called a Boolean function if it can be expressed

through a finite number of applications of the Boolean operations +, X,

and '. It is well known that every Boolean function/(xi, •• • , x„) can be ex-

pressed as/(l, ■ • ■ , l)xi • ■ • x„+ ■ • • +/(0, • • • , 0)xi • • ■ x„'. By a non-

Boolean function, I mean a function of Boolean variables which is not a

Boolean function. I shall be concerned mainly, as already mentioned, with

Boolean functions, but an occasional reference will be made to non-Boolean

functions.

In §§2-6 I discuss "monotone" Boolean functions, which are analogous to

the monotone functions of ordinary analysis. I establish conditions that func-

tions be monotone non-decreasing and monotone non-increasing. In §§7-9 I

discuss a more special kind of functions, namely, "additive" and "subtrac-

tive" functions. In §§10 and 111 define and discuss an analogue, for Boolean

functions of the "continuity" of classical analysis. I show here that all

Boolean functions are "continuous" and suggest the importance of con-

tinuity with regard to non-Boolean functions. In §12 I discuss inverse'func-

tions, finding all the domains within which a function of n variables has a

one-valued inverse.

Schmidtf obtained some interesting facts concerning Boolean functions

of one variable. Schmidt's results are included in my Theorems 15, 17, 20, 24,

and 30. Theorems 15, 17, 20, and 24 constitute a generalization to functions

of n variables of his "Principal Theorem"J concerning Boolean functions of

one variable. In §§5 and 8 I make some remarks on the ways in which this

* Presented to the Society, April 11, 1936; received by the editors February 28, 1936.

f Karl Schmidt, The theory of functions of one Boolean variable, these Transactions, vol. 23 (1922),

pp. 212-222. All later references to Schmidt are to this paper.

t The theorem is as follows: Every change of x, or part of x, in the increment region ab' produces

the same change in ax-\-bx'; in the decrement region a'b it produces the opposite effect; and a change of x

in any other region has no effect whatsoever on ax-\-bx', which always occupies ab and never enters a'b'.
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theorem fails to admit of generalization. Theorem 30 gives the domains within

which a function of n variables has a one-valued inverse; this problem was

only partially solved by Schmidt for functions of one variable.

Throughout the paper I use, besides the familiar Boolean operations, +,

X, and ', the operations a o ft and aAft, which have been recently discussed

by Bernstein.* These operations are defined as follows: a o b = a'b-\-ab',

aAb— aft+a'ft'. From their definitions it is easily seen that both operations en-

joy the commutative and associative properties and that aAft= (a o ft)'. Other

properties will be found in Bernstein's paper.

2. Monotone non-decreasing functions. One of the important general

types of functions of a real variable is the set of monotone functions. A func-

tion of a real variable is monotone non-decreasing if it does not decrease when

the argument increases, and monotone non-increasing if it does not increase

when the argument increases. Thus, for example, the function/(x) = sin x is

monotone non-decreasing in the interval (0, ir/2) and monotone non-increas-

ing in the interval (ir/2,7r). This classification rests upon the use of the rela-

tion < as holding between real numbers, and hence cannot be applied

directly to functions of Boolean variables. If we consider one of the most

important interpretations of Boolean algebra, however, namely, the inter-

pretation of the algebra as a calculus of classes; we are led to consider a func-

tion as monotone non-decreasing when it has the following characteristic: If

the argument changes from one class to a more inclusive class, the function

changes from one class to a more inclusive class. And analogously for mono-

tone non-increasing functions. These notions are made more precise by the

following definitions.

Definition 1. A Boolean function/(x1; • • • , *„) is said to be monotone

non-decreasing with respect to Xi in the domain {A, B) if, for all a in (A, B),

/(*i, •••,*»)< /(*i + a, *t, • • • , *»)

independent of the choice of *i, • • • , *„. If /(*i, • ■ ■ , *„) is monotone non-

decreasing with respect to xx in the domain (0, 1), we say that/(xi, •■-,*„)

is monotone non-decreasing with respect to Xi everywhere.

Definition 2. A Boolean function/(xi, ■ ■ • , xn) is said to be monotone

non-increasing with respect to *i in the domain {A, B) if, for all a in (yl, B),

/(*! + a, x2, ■ ■ ■ , *„) < /(*!, ■ • ■ , *„)

independent of the choice of *i, • ■ ■ , x„. If /(x1; ■ • ■ , xn) is monotone non-

* B. A. Bernstein, Postulates for Boolean algebra involving the operation of complete disjunction,

to appear in the Annals of Mathematics. I take this opportunity of acknowledging my indebtedness

to Professor Bernstein for his valuable suggestions regarding the present paper.
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increasing with respect to xt in the domain (0, 1), we say that/(xi, • • • , x„)

is monotone non-increasing with respect to Xi everywhere.

Thus, for example, the Boolean function of one variable/(x) = ax is mono-

tone non-decreasing everywhere; for,

fix) = ax < ax + aa. = a(x + a) = fix + a.)

for any x. Similarly the function/(x) = ax' is monotone non-increasing every-

where; for,

fix + a) = a(x + a)' = ax'a' < ax' = /(x)

for any x.

I now find a condition that a function of one variable be monotone non-

decreasing in a domain.

Theorem 1. A necessary and sufficient condition that a given function fix)

of one variable be monotone non-decreasing in the domain iA, B) is that

B<fil)+fi0).

Proof. To say that/(x) is monotone non-decreasing in iA, B) is, by defini-

tion, equivalent to saying that for all a in iA, B) we have

(1) /(*)</(* + «).

But (1) is equivalent to

(2) /(x)/'(x + a) = 0,

which is equivalent to

(3) /(0)/'(l)ax' = 0.

Since (3) is an identity in x, it is equivalent to

(4) fi0)f'il)a = 0,

orto

(5) a</(l)+/'(0).

If (5) holds for all a in (A, B), it holds in particular for a—B, since B is in

iA,B); moreover, if (5) holds for B, it holds for all a in iA, B), since if a is in

iA, B) we have a <B. Hence to say that (5) holds for all a in iA, B) is equiva-

lent to saying that

(6) 7?</(l)+/'(0),

as was to be shown.
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I next generalize Theorem 1 to functions of » variables.

Theorem 2. yl necessary and sufficient condition that a given function

/(*i, •••,*„) be monotone non-decreasing with respect to Xi in the domain

iA, B) is that

B < II   [fih «2, • • • , an) + /'(0, a2, ■ ■ ■ , an)].
«¿=0,1

Proof. I prove the theorem by mathematical induction on ».

For a function of one variable, we have Theorem 1.

Suppose, now, that the theorem is true for n = k. Let/(xi, ■ • • , x*+i) be

any function of k+l variables. For any fixed value, z, of x*+i,/(xi, ■ ■ ■ ,xk,z)

is a function of k variables. Then, since by hypothesis the theorem holds for

a function of k variables, we have : A necessary and sufficient condition that

/(*!, ■ • • ,xt, z) be monotone non-decreasing with respect to Xi for the domain

(A,B) isthat

(1) B < II  [/(I, «*,-•-, «*, *) + /'(0, a2, - • - , ak, *)].
o,-0,l

Since (1) is the required necessary and sufficient condition for each z, we may

regard z as a variable in the condition. Thus, a necessary and sufficient condi-

tion that/(xi, ••-,*„) be monotone non-decreasing in (yl, B) is that (1) hold

for all z. But to say that (1) holds for all z is equivalent to saying

B < II  [/(I, «2, ■ • • , *k, 1) + /'(0, «,,-•• , a», 1)]

(2)

^ < II   [/(l, «2, • • • , <**, 0) + /'(0, a2, • ■ • , a*, 0)].
«i=0,l

And conditions (2) are equivalent to the condition specified in the theorem.

Hence the theorem is proved.

Theorem 3. yl necessary and sufficient condition that a function /(*i, • • • ,xn)

be monotone non-decreasing with respect to x± everywhere is that

/(0, a2, ■ ■ ■ , an) < fil, a2, ■ ■ ■ , a,) [a, = 0, l].

Proof. For, to say/(*i, • • • , xn) is monotone non-decreasing with respect

to Xi everywhere is, by definition, to say that/(xi, • • - , x„) is monotone non-

decreasing with respect to Xi in the domain (0, 1). This, by Theorem 2, is

equivalent to

II   [/(I, «2,    •• ,«n)+/'(0,a2,.-- ,<*„)] = 1,
<*,-0,J

or to
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fil, «»,••, a„) + /'(O, «s, ■ • • , «„) = 1 [oti = 0, 1].

The last equations are equivalent to the given inclusions.

Theorem 4. A necessary and sufficient condition that a f'unction /(xi, • • -,x„)

be monotone non-decreasing with respect to Xi everywhere is that fixi, ■ ■ ■ , xn)

be expressible in a form which does not involve xi (but which may involve Xi).

Proof. If /(xi, • • • , xn) is monotone non-decreasing with respect to Xi

everywhere, then, by the preceding theorem, we have

/(0, a2, ■ ■ ■ , an) < fil, a2, ■ ■ ■ , an) [a{ = 0, l].

Hence

/(0, a2, • • • , a„) = /(0, a2, ■ • • , a»)/(l, a2, • • • , a«) [a< = 0, l].

Thus

fiXl,  ■  ■  ■   ,   Xn)   = /(l,  •   ■   ■   ,   l)Xl  •   •   •   Xn +   •   •   ■   + fil,  0,   ■   •   ■   , 0)XiX2'   •   •   • Xn

+ /(0, 1, ■■ ■ , 1)/(1, ■ ■■ ,l)xi'x2-- *.+ ••■

+ /(0,-'- ,0)/(l,0, •• • ,0)xi' ••• s*

= fil, • • • , l)[xi + Xi'/(0, 1, • • • , l)]x2 • • ■ x„ + • • •

+ fil, 0, • • • , 0)[xi + xi'/(0, ■ • • , 0)]x2' • • • xl

= /(l,-- • ,l)[xi+/(0, 1, ■■■ ,l)]x2-- x„+ ■ ••

+ /(1,0, ■■ • ,0)[x1 + /(0)- •• ,0)]x2' ••• xn',

which is a form not involving x{ . Hence, the condition is necessary.

Suppose, on the other hand, that /(xi, • • • , x„) can be expressed in a

form not involving xT. . The most general such form is

/(Xl,  •   •   ■   ,   Xn)   =   Xig(x2,  •   •   •   ,   X„)   +   Ä(X2,  •   •   •   ,   Xn).

Then we have

/(0, a2, ■ ■ ■ , an) = A(a2, ••-,«„),

/(l, a2, • • ■  , a„) = gia2, ■ ■ ■ , an) + A(a2, • • • , a»).

Therefore,

/(0, a2, ■ ■ ■ , an) < fil, ct2, ■ ■ ■ , an) [a{ = 0, l],

and hence, again by the preceding theorem, /(xi, • •■ , x„) is monotone non-

decreasing with respect to Xi everywhere. Hence, the condition is sufficient.

Theorem 5. A necessary and sufficient condition thatfixi, ■ ■ • , x„) be mono-

tone non-decreasing with respect to xx everywhere is that, for every u and v,

/(« +  V,  X2,  ■   ■   ■   ,   Xn)   = /(«,  X2)  ■   •   •   ,  Xn)   + fiv,  X2,  •   •   ■   ,  X„) .
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Proof. To say that

(1) fiu + V,  X2,  ■   ■  ■   ,  *„)   = fiu,  *2,  ■   •   •   ,  Xn)   + /(»,  X2,  ■   ■   ■   ,   Xn)

holds for all u and v, is equivalent to saying it holds for u, v = 0, 1. But (1)

becomes an identity when we substitute u=v= 1, and likewise when we sub-

stitute u=v=0. Furthermore, we obtain the same condition when we put

«= 1, v=0 as when we put m = 0, v= 1. Hence to say that (1) holds for all u

and v is equivalent to saying that

(2) f{\, *2, •  •  •   ,  *„)   = /(l,  X2, ■  ■  ■   ,  Xn)  + /(0,  *j,  ••,*»),

which is in turn equivalent to

(3) /(0, x2, • • • , *„) < fiX, *2, • • • , *»).

Since (3) is an identity in x2, • • • , x„ it is the same as the condition, given in

Theorem 3, that /(*i, ■■-,*«) be monotone non-decreasing with respect

to Xi everywhere. Hence, (1) is a necessary and sufficient condition that

/(*i, • ■ • , xn) be monotone non-decreasing with respect to x3 everywhere.

The following theorem is proved in a similar way.

Theorem 6. yl necessary and sufficient condition thai /(xi, • • ■ , xn) be

monotone non-decreasing with respect to Xi everywhere is that, for every u and v

/(«»,  *2,  •   •   •   ,  *„)   = fiu,   *a,  •   •   •   ,   *»)/(»,  *2,  •   ■   •   ,   *») .

The following theorem gives a condition for monotone non-decreasing

domains which might have been taken as the definition. Definition 1 was

selected only because its content is slightly more obvious intuitively

Theorem 7. yl necessary and sufficient condition that a function /(*i, • • -,x„)

be monotone non-decreasing with respect to X\ in the domain (yl, B) is that, for

all a in (yl, B), we have

/(*i a', *2, • • • , *„) < /(*i, *2, • • • , *„)

independent of the choice of xx, ••-,*„.

Proof. Let/(x) be a function of one variable which satisfies

(1) fixa') < fix)

identically for all a in (yl, B). Condition (1) reduces to

(2) /'(l)/(0)a* = 0.

Since (2) is an identity in x, it is equivalent to

(3) /'(l)/(0)a = 0,
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which is equivalent to

(4) «</(l)+/'(0).

Thus,

(5) 73</(l)+/'(0).

It may now be shown, by mathematical induction on n, that/(xi, • • • , x„)

satisfies

/(Xl a',   X2,   ■   ■   ■   ,   Xn)   < fiXl,   ■   ■   ■   ,   Xn)

identically for all a in iA, B) if and only if

73 < II   [/(I, «2, • • • , «.) + /'(0, «,,•■•, an)].
o,=0,l

But this is the condition, found in Theorem 2, that/(xi, • • • , xn) be monotone

non-decreasing in iA, B).

3. Monotone non-increasing functions. The proof s of the following seven

theorems are omitted, since they are closely analogous to the proofs of the

corresponding theorems on monotone non-decreasing functions.

Theorem 8. A necessary and sufficient condition that a given function fix)

of one variable be monotone non-increasing in the domain iA, B) is that

73</'(l)+/(0).

Theorem 9. A necessary and sufficient condition that a given function

/(xi, ■ ■ ■ ,x„) be monotone non-increasing with respect to xx in the domain iA,B)

is that

B <  Il   [/'(I, ol2, ■ ■ ■ , an) + /(0, a2, ■ ■-,«.)].
tti-0,1

Theorem 10. A necessary and sufficient condition that a function

/(xi, • • • , xn) be monotone non-increasing with respect to Xi everywhere is that

fil, a2, ■ ■ ■ , an) < /(0, a2, ■ ■ ■ , an) [a¿ = 0, l].

Theorem 11. A necessary and sufficient condition that a function

/(xi, • • ■ , x„) be monotone non-increasing with respect to Xi everywhere is that

/(xi, • • • , xn) be expressible in a form which does not involve Xi ibut which may

involve x{ ).

Theorem 12. A necessary and sufficient condition that /(xi, • • • , x„) be

monotone non-increasing with respect to xx everywhere is that, for every u and v,

fill + V, X2, ■  ■  ■   ,  Xn)   = fill,  X2,  •  •  •   ,  Xn)fiv,  X2,  •  •  •   ,  Xn) .
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Theorem 13. yl necessary and sufficient condition that /(xi, • • ■ , xn) be

monotone non-increasing with respect to X\ everywhere is that, for every u and v,

/(«»,   X2,  ■   ■   ■   ,   Xn)   = fiu,  X2,  ■   ■   ■   ,  Xn)   + fiv,  X2,  •   •   •   ,  X„) .

Theorem 14. yl necessary and sufficient condition that a function

/(xi, ■ ■ ■ , x„) be monotone non-increasing with respect to Xi in the domain

(yl, B) is that, for all a in (yl, B), we have

/(*i, x2, ■ ■ ■ , Xn) < /(xi a', x2, ■ ■ ■ , *»)

independent of the choice of X\, ■ ■ ■ , x„.

4. Functions both monotone non-decreasing and monotone non-increas-

ing. Constant functions. We prove the following theorem.

Theorem 15. yl necessary and sufficient condition that a function

/(*i, ■ ■ ■ , xn) be both monotone non-decreasing and monotone non-increasing

with respect to xx in the domain (yl, B) is that

B < II  [/(l, «*•••, «-) A/(0, at, ■ ■■ , ««,)].
«¿=0,1

Proof. To say that /(xi, • ■ • , *„) is both monotone non-decreasing and

monotone non-increasing with respect to Xi in (yl, B) is, by Theorems 2 and 9,

equivalent to saying that

(1)

B < II   [/(l. «i,"-, «0 + /'(0, at, ■ ■ ■ , «»)],
«¿=0,1

B   <   II    [fih «2,  •   •   •   , an)   + /(0, «2,  •   ■   •   , «„)]■
«,-0,1

Conditions (1) are equivalent to the single condition

(2)

B < II   [/(l. «2, ■ • •  , «n) + /'(0, a,, ■ • • , «n)]
«i-0,1

Il   [/'(l, a2, ••• , «.) + /(0, a2, • • • ,aB)],
«¿=0,1

or

(3)
5 <  IT   [f(l, «t, • • • , «n) + /'(0, a,, ■ • • , a„) J

«¿=o,i

■[f(l,a,,-- • , a„) + /(0, a2, ■ ■ • ,«„)],

or, finally,

(4) B < II  [/(I, a2, • • • , «») A/(0, «,, • • • , «„)].
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Theorem 16. A necessary and sufficient condition that /(xi, ■ ■ ■ , xn) be

both monotone non-decreasing and monotone non-increasing with respect to Xi

everywhere is that

fil, a2, • • ■ , an) = /(0, a2, ■ ■ ■ , an) [a¡ = 0, l],

hence, thatfixi, ■ ■ ■ , xn) be expressible in a form which involves neither Xi nor xi.

Proof. The theorem is an immediate consequence of Theorem 15.

By saying that /(xi, ■ ■ • , x„) is constant with respect to Xi in the domain

iA, B), I mean that/(xi, • • • , x„) is unchanged when Xi assumes or loses any

increment from iA,B).

Theorem 17. A necessary and sufficient condition that /(xi, • ■ • , xn) be

constant with respect to Xi in a domain iA, B) is that /(xi, • ■ • , x„) be both

monotone non-decreasing and monotone non-increasing with respect to Xi in the

domain iA,B).

Proof. To say that /(xi, ■ • • , x„) is constant with respect to Xi in the

domain (^4, B) is to say that for all a in iA, B)

. . /(*i + a, x2, ■ ■ ■ , xn) = /(xi, • • • , xn),

fixia', x2, ■ ■ ■ , Xn) = /(xi, • ■ • , x„).

Conditions (1) are equivalent to the four conditions

'/(xi + a, x2, ■ ■ ■ , x„) < /(xi, • • • , xn),

. /(Xl + a,  X2, ■  ■  ■   ,  Xn)   > fiXi, •  •  ■   ,  Xn),

fixia', x2, • • • , Xn)  < /(Xi, • • •  , xn),

fixia', x2, ■ ■ ■ , xn) > fixi, ■ ■ ■ , x„).

By Theorems 7 and 14, respectively, the third and fourth conditions of (2)

are consequences of the first and second. Hence conditions (1) are equivalent

to

,   . fiX\ + a,   X2,  ■   ■   ■   ,   Xn)   < /(Xi,  •   ■   •   ,   Xn),

/(xi + a, x2, ■ • • , x„) > fixi, ■ ■ ■ , Xn).

Hence the theorem is established.

Theorem 18. A necessary and sufficient condition thatfixx, ■ • ■ ,x„) be con-

stant with respect to Xi everywhere is that

fil, a2, • • ■ , an) = fiO, a2, ■ ■ ■ , an) [a,- = 0, l],

hence, that /(xi, • • • , x„) be expressible in a form which involves neither Xi

nor xi.
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Proof. The theorem is an immediate consequence of Theorems 16 and 17.

5. Remarks on the variation of functions. It is of some interest to notice

that the theorems given so far are sufficient to give a complete, though rough,

characteriziation of the variation of a function of one variable. When we are

given the function/(x) = ax+ftx', then we may consider the universe as falling

into the four regions: aft, ab', a'b, a'b'. From Theorems 15, 17, 1, 7, 8, and 14

we now see that/(x) is affected as follows when x assumes or loses increments

from these regions:

region if x assumes an increment if x loses an increment

aft /(*) is unchanged fix) is unchanged

a'b' fix) is unchanged /(*) is unchanged

aft' fix) assumes an increment* /(x) loses an increment

a'b fix) loses an increment /(*) assumes an increment

For functions of more than one variable, however, the theorems are not

sufficient to allow such a complete characterization. For a function of two

variables, for example,/(x, y) = axy-\-bxy'-\-cx'y-\-dx'y', we may consider the

universe as falling into sixteen regions :

abed, abe'd, a'b'cd, a'bed',

ab'cd', abed', a'b'cd', ab'c'd.

a'be'd, abe'd', a'b'c'd,

a'b'c'd', ab'c'd', a'bed,

a'be'd', ab'cd',

From Theorems 15 and 17, it is seen that the four regions in the first column

are such that, when x assumes or loses an increment from one of them,/(x, y)

is unchanged; they are thus like the regions aft and a'b' for functions of one

variable. From Theorems 1 and 7, we see that the five regions in the second

column are monotone non-decreasing and not constant; they are thus like

region aft' for one variable. And from Theorems 8 and 14, we see that the

five regions in the third column are monotone non-increasing and not con-

stant, and are thus like region a'b for one variable. Of the two regions in the

last column, however, we know only that fix, y) is neither monotone non-

decreasing nor monotone non-increasing for changes of x in them.

6. Duality considerations for monotone functions. By Theorem 1, to say

that/(x) = ax-\-bx' is monotone non-decreasing in (yl, B) is equivalent to say-

ing

(1) A < B <a + b'.

* The increment assumed, or lost, by f(x) may, however, in any one of the cases, be vanishing.
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The dual of (1) is, if we represent the dual of A by ^4i, etc.,

(2) A i > Bi > QXb(

or

(3) Ai < BÍ < ai +6i.

By Theorem 8, to say that g(x) = aix+6ix' is monotone non-increasing in

041', Bi) is equivalent to saying

(4) Ai < BÍ < ai + 6i.

But (4) is the same as (3). Hence, the dual of "ax+6x' is monotone non-de-

creasing in iA, B)" is "aiX+6ix' is monotone non-increasing in (A{, B{)."

Similar considerations apply to functions of n variables.

It is now seen that Theorem 8 is the dual of Theorem 1. For, writing

ax+6x' for/(x), a for/(l) and 6 for/(0) in Theorem 1, and applying the rule,

we obtain the following proposition : A necessary and sufficient condition that

aix+6iX ' be monotone non-increasing in iA Í, Bi ) is that Bi > aibi. Substitut-

ing ai for a, 6i for 6, Ai for A, and B{ for B, we obtain: A necessary and suffi-

cient condition that ax+6x' be monotone non-increasing in iA, B) is that

B'>ab'. But B'>ab' is equivalent to B <<z'+6, so we have Theorem 8.

In a similar way, it can be shown that Theorems 9, 10, 12, 13, and 14 are

the respective duals of Theorems 2, 3, 5,6, and 7. Theorems 15, 16, 17, and 18

are self-dual.

7. Additive and subtractive functions. Schmidt has established the follow-

ing fact concerning a Boolean function of one variable, /(x) = ax+6x': If

a<ab', then /(x+a)=/(x)+a and /(xa')=/(x)a'; and if a<a'b, then

fix+a)=fix)a' and/(xa')=/(x)+a.

I propose in this section to generalize this result to functions of n varia-

bles. To this end I first lay down the following definitions.

Definition 3. A function /(xi, ■ ■ • , x„) is said to be additive with respect

to Xi in the domain iA, B) if, for all a in iA, B), we have

/(Xi + a, x2, ■ ■ ■ , xn) = /(xi, ■ • • , xn) + a,

fixia', x2, ■ ■ ■  , Xn)  = /(Xi, ■ • ■  , x„)a'

independent of the choice of Xi, • • • , x„. If/(xx, • • • , x„) is additive with re-

spect to X\ in the domain (0, 1), we say that/(xi, ■ • ■ , x„) is additive with re-

spect to Xi everywhere.

Definition 4. A function /(xi, • • • , x„) is said to be subtractive with re-

spect to Xi in the domain iA, B) if, for all am iA, B), we have
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f(xi + a, *2, • • • , x„) = /(*,, • • • , xn)a',

fixia', x2, ■ ■ ■ , xn) = /(xi, ■ ■ ■ , xn) + a

independent of the choice of *i, ■ ■ ■ , x„. If/(*i, ••-,*») is subtractive with

respect to Xi in the domain (0, 1), we say that f(xi, ■ ■ ■ , x„) is subtractive

with respect to Xi everywhere.

The following theorem includes the result, mentioned above, due to

Schmidt, but is somewhat more complete, in that it shows that the given

condition is necessary as well as sufficient.

Theorem 19. yl necessary and sufficient condition that a function of one

variable fix) be additive in (yl, B) is that B < /(l)/'(0).

Proof. The condition

(1) fix + a) - /(*) + a

reduces to

(2) f'il)ax + f'il)ax' = 0,

or

(3) /'(l)a = 0.

The condition

(4) fixa') - /(*)«'

reduces to

(5) /(0)a* +/(O)ax' = 0,

or

(6) /(0)a = 0.

Equations (3) and (6) are together equivalent to

(7) a[/'(l)+/(0)] =0,

or

(8) «</(l)/'(0).

By an argument like that used in the proof of Theorem 1, it is now seen that

to say that (8) holds for all a in (yl, B) is equivalent to saying that

(9) 73</(l)/'(0).
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In the above proof, it will be noticed that the condition that (2) hold for

all x is the same as the condition that it have a solution for some x ; and simi-

larly, the condition that (5) hold for all x is the same as that it have a solu-

tion for some x. Hence, we could weaken Definition 3 (as applying to functions

of one variable) to say that/(x) is additive in (A, B) if for all a in (A, B) there

is at least one x such that

fix + a) = fix) + a

and at least one x such that

fixa') «/(*)«'.

A similar situation will be found to obtain with respect to Definition 4.

I next generalize Theorem 19 to functions of » variables.

Theorem 20. yl necessary and sufficient condition thatfixi, ■ ■ ■ , x„) be ad-

ditive with respect to Xi in (A, B) is that

B < II fiX, «»,-•> an)/'(0, at,--, an).
«¿-0,1

Proof. For »=1 the theorem reduces to Theorem 19.

Suppose the theorem true for n=k, and let/(xi, • • • , xi+1) be a function of

k+1 variables. Then, for any given value of xk+i, as y, /(*i, •••,**, y) is a

function of k variables; hence, by hypothesis, a necessary and sufficient con-

dition that /(*i, ■ ■ ■ , Xk, y) be additive with respect to Xi in (yl, B) is that

B < II /i1» a2, ■ • • , a*, y)/'(0, a2, • • • , ah, y).
«¿=0,1

Hence, a necessary and sufficient condition that/(xi, • •• , Xjb+i) be additive

is that (1) hold for all y. But to say that (1) holds for all y is equivalent to

saying that it holds for y= 1 and y=0, hence to

B < II fih «2, • ■ • , ak, l)/'(0, «„•••, ak, 1),
«¿=o,i

B < II fih «2, ■ • ■ , «*, 0)/'(0, at,-- , ak, 0).
«¿=o,i

These two inclusions are equivalent to the single inclusion

B < II fih **,•••, «*+i)/'(0, «2, • • • , a*+i).
«¿=0,1

Hence, the theorem holds for n = k-\-1 if it holds for « = k.

Theorem 21. yl necessary and sufficient condition thatfixi, ■ ■ ■ , x„) be ad-

ditive with respect to xx everywhere is that

/(l, a2, ■ ■ ■ , an) = 1, /(0, a2, ■ ■ ■ , an) = 0 [a¿ = 0, l].
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The theorem follows from Theorem 20.

Theorem 22. The only function that is additive with respect to Xi everywhere

is

/(Xl,  •   •   •   ,   Xn)   =   Xi.

Proof. Substituting the values given by Theorem 21 into the identity

fiXl,  ■■■   ,Xn)   = fil,  ■   ■■   ,   l)Xi  •   •   •   Xn +   ■   ■   ■   + /(0,  •  •  •   , 0)Xi    ■  •  •   *„' ,

we find

/(Xi,  •   •   •   ,   Xn)   =   Xi  •   •   ■   Xn +   •   •   •   +   XiX2'   •   •   ■   Xi

=   Xi(x2 ■   ■   ■   Xn +   ■   ■   ■   +   X-i   ■   ■   ■   Xn)

=   Xi.

The following theorems on subtractive functions are stated without proof,

since the proofs are analogous to the corresponding proofs for additive func-

tions.

Theorem 23. A necessary and sufficient condition that a function of one

variable fix) be subtractive in iA, B) is that

75</'(l)/(0).

Theorem 24. A necessary and sufficient condition thatfixi, • • ■ ,xn) be sub-

tractive with respect to Xi in iA, B) is that

B < II/'(1,«2, • •• , «,)/(0, ai, ■ • • ,a„).
a,=0,l

Theorem 25. A necessary and sufficient condition thatfixx, ■ ■ ■ , x„) be sub-

tractive with respect to xx everywhere is that

/(I, a2, ■ ■ ■ , an) = 0, /(0, a2, • ■ ■ , an) = 1 [a¿ = 0, l].

Theorem 26. The only function that is subtractive with respect to Xi every-

where is

/(Xi, •   ,  Xn) Xl  .

8. Remarks on additive and subtractive functions. It will doubtless have .

been noticed that, for a function of one variable, the region, ab', in which

fix) is monotone non-decreasing and not constant, coincides with the region

in which fix) is additive. Such is not the case, however, for functions of two

or more variables. Thus, for example, for a function of two variables,

fix, y) = axy-\-bxy'-\-cx'y-\-dx'y',fix, y) is monotone non-decreasing with re-

spect to x and not constant in the five regions a6c'¿, abed', abe'd', ab'c'd',
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a'be'd, while the only region in which /(x, y) is additive with respect to x is

abe'd'. It is also of some interest to observe that a function of » variables is

never additive in the same domain with respect to two or more variables.

Analogous remarks apply to subtractive domains.

9. Duality considerations. By an argument similar to that used in §6, it

can be shown that the dual of "ax+ftx' is additive in {A, B)" is "aix+ftix' is

subtractive in (A{, B{)." Thus, Theorems 23, 24, 25, and 26 are the duals,

respectively, of Theorems 19, 20, 21, and 22.

10. Continuity. In ordinary analysis, we say that a function/(x) is uni-

formly continuous if for every «>0 there is a 8 >0 such that

if    {\x-y\<5}    then    { | /(*) - /(y) | < e}.

It is of some interest to try to extend the notion of "uniform continuity" to

Boolean algebra.

To make such an extension it is first necessary to find in Boolean algebra

some analogue of the operation |x—y\. Probably the best such analogue* is

x o y. From the usual geometrical representation of x o y it is seen that x o y

is the total amount by which x and y fail to coincide; if x o y = 0, then x = y.

On the basis of this analogy, we may lay down the following definition.

Definition 5. A function fix) of a Boolean variable is said to be uni-

formly continuous if, for every Boolean element e?¿0, there exists an element

5^0 such that

if     \xoy<ô]     then     {/(*) o/(y) < «}.

The definition can be extended to functions of » variables as follows.

Definition 6. A function /(xi, • • • , x„) of » Boolean variables is said to

be uniformly continuous if, for every Boolean element «f^O, there exists an

ordered set of Boolean elements 5i, • • • , 8n, with 5,^0, such that

if {(*iOyi < Si), •••,(*» o y„ < 5„)} then {/(*i, • • • , *„) o/(yi, ■ ■ ■ ,yn) <t\.

The concept just defined, however, despite the fact that it is analogous

to one of the dominant concepts of ordinary analysis, is not a very important

one in connection with Boolean functions, for, as shown in the following

theorems, every Boolean function is uniformly continuous.

Theorem 27. 7//(*i, • ■ ■ , x„) is any Boolean function, then

fixi, ■ ■ ■ , xn) 0/(311, ■ • ■ , y„) < (*i o 3>i) + • • • + (x„ 0 y„).

* For a treatment of x o y as an analogue of | x—y \ see P. J. Daniell, The modular difference of

classes, Bulletin of the American Mathematical Society, vol. 23 (1917), pp. 446-450. For a treatment

of x o y as an analogue of "distance," see M. H. Stone, Postulates for Boolean algebras and generalized

Boolean algebra, American Journal of Mathematics, vol. 57 (1935), pp. 703-732.
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Proof.Itiseasilyseenthatwhentheexpression/(xi, • • -,x„)o/(yi, • • • ,y„)

is expanded, all terms where x, and y i are primed or not primed together (such

as Xi • • • x„-yi ■ • • y„ or xi • • ■ x„'_! -xn-yí ■ ■ ■ y„'_ry„) have discriminants

= 0. On the other hand, if we expand the expression (xi o yi) + • • ■ + (xn o y„),

we see that the expansion will be as follows: All terms where x¿ and y i are

primed or not primed together have discriminants = 0, and all other terms

have discriminants = 1. Hence the theorem is proved.

Theorem 28. Every Boolean function is uniformly continuous.

Proof. Let e^O be arbitrary, and choose 5i= • • =ô„=e. Then, by

Theorem 25, when

(xi o yi < Si), ■ ■ ■ , (xn o yn < 8n),

we have

/(xi, • ■ • , xH) o /(yi, • • ■ , yn) < (xi o yi) + • • • + (x„ o yn)

< Si+ ■ • ■  +8n = t+ ••+€ = e.

11. Remarks on continuity. Since we have now seen that all Boolean

functions are uniformly continuous, it would be interesting to inquire what

non-Boolean functions, if any, are uniformly continuous. Such an investiga-

tion, however, would lie outside the bounds I have set myself. I shall merely

remark here that one can construct examples to show that some, but not all

non-Boolean functions are uniformly continuous. From this it seems likely

that the continuity concept might be of importance in the study of a more

general type of functions. The relation of Boolean functions to uniformly con-

tinuous functions in Boolean algebra is somewhat similar to the relation of

polynomials to uniformly continuous functions in ordinary algebra.

12. One-valued inverses of functions. When z is a Boolean function of x,

then it is possible to consider x as a function of z, say g(z), where g(z), how-

ever, is not, in general, one-valued. Similarly, if z is a function of x1; • • • , x„,

then, again, we may consider Xi as a function of z, x2, • ■• , x„ where g, again,

may be many-valued.

It is of some interest to investigate the conditions on the given function

in order that the inverse function be single-valued. More generally, it is of

interest to find, for any /, what domains are such that for x in them / has a

single-valued inverse. This question has been solved by Schmidt for a special

case: namely, he has shown that a Boolean function of one variable,

/(x) = ax+6x', has a one-valued inverse for x in (a6, a+b) and also for x in

(0, a o 6). I propose to find all the domains for a function of « variables. I

first lay down the following formal definition.
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Definition 7. A Boolean function /(xi, • • • , x„) is said to have a one-

valued inverse with respect to Xi in the domain iA, B) if, for every u and v in

iA, B), we have

[/(«,  X2,  ■   ■   ■   ,   Xn)   = /(»,  Xt, •••,*»)] 3 (»  -  V),

independent of x2, • • • , x„. If /(xi, • • • , x„) has a one-valued inverse for Xi

in the domain (0, 1), we say that/(xi, • • • , xn) has a one-valued inverse with

respect to Xi everywhere.

Preliminary to establishing the principal theorem of this section, it is con-

venient to prove the following lemma.

Lemma to Theorem 29. If every solution of a(z>i o v2) = 0 is also a solution

of 6(i>i o v2) = 0, then b<a.

Proof. Suppose that every solution of

(1) a(i¡i o v2) = 0

is also a solution of

(2) 6(i>iOi>2) = 0.

A particular solution of (1) is V\ = a, v2=l, since a(a o l) = aa' = 0. Hence,

this must also be a solution of (2); hence 6(a o l) = 6a' = 0. Hence b<a.

Theorem 29. A function fix) = ax+6x' has a one-valued inverse in those

and only those domains that are of the form

(A, A + B[aob]).

Proof. First suppose that yi and y2 lie in a domain iA, A-\-B[ao 6]).

Then there exists a vi and a v2 such that

(1) yi = Av{ + (A + B[aob])vi,    y2 = Avi + (A + B[a o b])vt.

From (1), we see that

(2) yxo y2 - A'Biaob)iviOv2).

Now,

(3) fiyi) o fiy2) = (aob)iyiO yt).

Thus, from (2) and (3),

(4) fiyi)ofiy2) = yiO y2.

Hence, ii fiyi)=fiy2), then yi = y2; hence/(x) has a one-valued inverse in

iA,A+B[aob]).
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Suppose, on the other hand, that the domain (yl, yl+5) is such that with-

in it/(x) has a one-valued inverse. Let yi and y2 be any elements in (yl, yl -\-B) ;

then there exists a Vi and a v2 such that

(5) 3-1 = Av{ + (.4 + B)vu        y2 « Av{ + (.4 + B)v2.

By hypothesis,

(6) [fiyi) =/(yt)b(yi = y*),

which is equivalent to

(7) [(a o ft) (3>! 03-2) = 0]d [y^oy2 = Oj.

Substituting (5) in (7) and simplifying, we have

(8) [(a o b)A'B(vi o v2) = O] d [yl'5(i>i o v2) = O].

Applying the lemma to (8), we have

(9) A'B <A'Biaob).

But (9) is equivalent to

(10) B = AB + Biaob).

Thus

(yl, yl + B) = iA,A +AB + B[aob]) = (yl, yl + B[aob]).

It will be noticed that the two results previously mentioned as having

been given by Schmidt are special cases of Theorem 29. To show that /(x)

has a one-valued inverse in (aft, a-p-ft), set A = ab and B = \. To show that

fix) has a one-valued inverse in (0, a o ft), set yl =0 and B=\. It is evident

that the most inclusive domains are got by taking 5 = 1.

I now generalize Theorem 29 to functions of n variables.

Theorem 30. yl function /(xi, ■ ■ ■ , xn) has a one-valued inverse with re-

spect to Xi in those and only those domains that are of the form

(a, A + B II   [fih «2, • • • , «n) o/(0, a2, • • • , «„)]).
\ a¿-0,l /

Proof. For »=1, we have Theorem 29.

Suppose the theorem true for n = k. Let/(xi, • • ■ , xk, xk+i) be any func-

tion of &+1 variables. Then for any fixed value of xk+i, as y,/(*i, •••,**, y)

is a function of k variables. Hence by the induction hypothesis we have:

/(*i, ■ ■ ■ , Xk, y) has a one-valued inverse with respect to xx in the domain

(yl, yl+C) if and only if there is a B such that
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(1) A+C = A+B]J  L/(l, «2, • • • , «*, y) o/(0, «„•••, a,, y)].
aj-0,1

But there is a B such that (1) holds if and only if

(2) C < A + TJ  [/(I, «2, • • ■ , a», y) o/(0, a,, • • • , ak, y)].
«i=0,l

Thus, a necessary and sufficient condition that/(xi, • • • , xk, y) have a one-

valued inverse with respect to Xi in (.¡4, A-\-C) is that (2) hold. Hence, a

necessary and sufficient condition that/(xi, • • • , xk, xk+i) have a one-valued

inverse with respect to xx in (yi, A-\-C) is that (2) hold for all y. But to say

that (2) holds for all y is equivalent to saying it holds for y=l and y = 0, hence

equivalent to

C < A + II  [/(I, «2,   • • , ak, 1) o/(0, «2, • • • , ak, 1)],

(3)
C < A + II  [/(l, «t, • • • , eck, 0) o/(0, «„••-, ak, 0)],

«t-0,1

which is equivalent to

(4) C < A + II [/(I, «2, • • • , «hi) o/(0, «2, • • • , <**+i)].
<*i=0,l

But to say that (4) holds, is equivalent to saying that there exists a B such

that

(5) A + C = /I + B II  [/(I, «2, • ■ • , «ttO o/(0, «2, • • • , a*+i)].
«i=0,l

Hence, the theorem holds for n=A+1 if it holds for n=k.

Theorem  31.     A   necessary and sufficient condition  that  a function

fixi, ■ ■ ■ , xn) have a one-valued inverse with respect to Xi everywhere is that

fil, a2, ■ ■ • , an) = /'(0, a2, ■ ■ ■ , an) [a¡ = 0, lj.

Proof. Since every domain in which/(xi, • • ■ , xn) has a one-valued inverse

with respect to Xi is, by Theorem 30, of the form

[A, A + B II  [/(I, «2, ■ • • , «0 o/(0, «2, ■ • • , an)]),

it is clear that if /(xi, ■ ■ • , x„) has a one-valued inverse with respect to Xi in

the domain (0, 1), we must take A = 0 and

A+Bll   [fil, a2, ■ • ■ , a.) o/(0, «„••-, «.)] = 1.
«.=0,1

Hence,
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/■(l, a2, ■ ■ ■ , an) o/(0, «2, ■ • • , a„) = 1 [a¿ = 0, l].

Hence,

fih «2, ■ • ■ , a„) = /'(O, a2, • • - , a„) [a< = 0, l].

Theorem 32. Those and only those functions have one-valued inverses with

respect to Xi everywhere that are of the form

/(xi, ••-,*„) = [xi A/(l, 1, • • • , l)]x2 • • ■ xn + ■ ■ ■

+ [xiA/(l,0, • • • ,0)]x2' •• • *„'.

This theorem is an immediate consequence of Theorem 31.

The next theorem tells us the form which inverse functions have when

they exist.

Theorem 33. ¿//(xi, • • • , x„) = z has a one-valued inverse with respect to Xi

everywhere, this inverse function with respect to x\ is

*i = /(z, *2, • • • , x„).

Proof. Under the given hypothesis, we have, by Theorem 31,

fil, 1, • ■ • , 1)*! • • • *„ H-+ /(l, 0, • • • , 0)*i- x2' • ■ • x„'

+ fih h ■ ■ ■ , 1)*/ ■*»•••*»+•■•+ fih 0, • • • , 0)xi' •••*„'- z,

which is equivalent to

[zo/(l, 1, •• • , l)]*i- ■ ■ xn-\-+ [zo/(l,0, • • • ,0)]*r*2' •••*„'

(2) + [to fil, h- ■ ■ ,l)]*i'-*2- ■*„+•••

4- [flo/(l,0, • • • ,0)]*i' •••*„'= 0,

or, again, to

{[zo/(l,l, ••■ ,l)]*t... *„+•■•

+   [Z0/(1, 0, •  ■  ■   , 0)]*2'   ■  •  •   Xn' }A*!  =  0.

Equation (3) has the unique solution

*, = [zA/(l,l, • • • ,1)]*2- ••*„+••• + [zA/(l,0, • • • ,0)]x2' •••*„'

= /(Z,   *2,  ■   ■   •   ,   *„) ,

as was to be shown.
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