
UNIFORMLY CONVEX SPACES*

BY

JAMES A. CLARKSONf

1. Introduction

The spaces with which we shall deal in this paper are Banach spaces, that

is, linear, metric, complete, normed spaces, which possess in addition a cer-

tain property of convexity of the norm. Expressed in geometrical terms this

property is simple: it is that the mid-point of a variable chord of the unit

sphere of the space cannot approach the surface of the sphere unless the

length of the chord goes to zero. Additional interest is given to the notion

by the fact that, as we shall prove, the well known spaces Lp and lp possess

this property for p exceeding unity.

Several writers^ have considered the problem of defining an integral of

a function whose domain is in Euclidean space (or even a more general space)

and whose range lies in a Banach space. Bochner§ has pointed out that such

a function may be absolutely continuous without being an integral in his

sense, or indeed without being differentiate at any point. We shall prove

that if the range space is uniformly convex in our sense such phenomena do

not occur, and that for these spaces the situation is quite analogous to the

theory for ordinary complex functions.

2. Uniformly convex spaces

Let B denote a Banach space, with elements x, y, • • • . We denote the

norm of an element x by ||x||.

Definition 1. yl Banach space B will be said to be uniformly convex if to

each e, 0<€^2, there corresponds a 5(e) >0 such that the conditions

11*11 = Il y II ~ h>       ||x — y|| = «
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imply
x + y
— íi-i».

We remark that Euclidean spaces of all dimensions, Hubert space, and

hyper-Hilbert spaces,* are all uniformly convex. This follows, for example,

from the identity

(i) ||x + ;y||2 + ll*- v||2 = 2(||x||2 + |H|2)

which is knownf to be characteristic of such spaces.

We shall need to recall the definition of the product% of a finite number

of Banach spaces. Let 73i, B2, ■ ■ ■ , Bk be A Banach spaces with elements

x1, x2, •■ ■ , xk. The product space B = BiXB2X ■ ■ ■ XBk is defined as the

set of all ordered A-tuples x = (x1, x2, • • • , xk), where addition and complex

multiplication are defined in obvious fashion, and where the norm of the

elements x of B is required, in addition to the usual properties, to have the

property that ||x||—»0 is equivalent to Hx^—>0 (¿ = 1, 2, • • -, A). B is also a

Banach space.

It is clear that the product of uniformly convex Banach spaces is not in

general uniformly convex unless we require something more of the norm in

the product space. In our first theorem we lay down a condition sufficient for

this.

Let Niai, a2, ■ ■ • , ak) be a non-negative continuous function of the non-

negative variables a,. We say that N is

(a) homogeneous, if for c^O,

Nicau ca2, ■ • ■ , cak) = cN(ai, a2, ■ ■ • , ak);

(b) strictly convex, if

7V(ai + 6i, o2 + 62, • • • , ak + 6*) < 7V(ai, a2, • • • , ak) + 7V(6i, 62, • • • , bk)

unless af = cbi (¿ = 1, 2, • • • , A). In the latter case we have equality by

condition (a) ;

(c) strictly increasing, if it is strictly increasing in each variable separately.

A  familiar example  of  a  function  7Y  satisfying  these  conditions  is

* That is, those spaces which satisfy all the postulates of Hubert space except that of separabil-

ity. See J. v. Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, 1932, pp.. 37-38,

for discussion of an example.

t J. v. Neumann and Jordan, On inner products in linear metric spaces, Annals of Mathematics,

vol. 36 (1935), pp. 719-724.

t Cf. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 181.
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7V = (Xi=1aip)1/p ip>l)> here condition (b) becomes the inequality of Min-

kowski.*

Suppose now that a finite number of Banach spaces, Bx, B2, ■ ■■ , Bk are

given, and that B is their product. We shall call B a uniformly convex product

of the Bi if the norm of an element x = (x1, x2, • • ■ , xk) of B is defined by

||*|| =iV(||*i||, ||**||,- •■ , ||x*||),

where N is a continuous non-negative function satisfying the conditions

(a)-(c).

We now prove

Theorem 1. The uniformly convex product of a finite number of uniformly

convex Banach spaces is uniformly convex.^

We see at once that the norm thus defined satisfies the usual rules,

including the triangle inequality. Let B=BXXB2X ■ ■ ■ XBk, and let

{*<} = {(*,J,Xi2, • ■ • ,*,*)}, {yi) = \iy?,y?, ■ ■ ■ , yf)) be two sequences of

points of B such that ||x<l| =||y¿|| =1, |[xi-r-y,j|—>2 as ¿—>oo. We must show

that ||*i—y.||—>0.

In the first place we assert that limi<0O(||x,J'||—||y,J'||) =0 ij = \, 2, ■ ■ ■ ,k).

Indeed, we have, using conditions (a)-(c),

\\xi + yt\\ = N(¡\x¿ + y¿\\, ■■■ , ||*<* + y?\\)

úN<\\x}\\ +IMI,. •• ,||*,*|| +||y(*||)
á N(\\xt\\, - - ■ ,\\x!\\) + Ni\\y>\\,--- ,\\y*\\)

- IWI + ||yi|| =2,

so that

H\W\\ + \M, ■ • • ,lki + l|y.*ll)->2.
Now the last expression is <2 unless ¡|x,J'|l =||:y,J'|| ij = h 2, ■ ■ • , k) by (b)

and our normalization; by the continuity of N our above assertion then fol-

lows.

Assume that ||*< — y.j| does not —>0. We may then by selecting an appro-

priate subsequence of i's assume that

* See, for example, Hardy, Littlewood and Pólya, Inequalities, Cambridge, 1934, p. 31.

t In general, of course, ||*|| will depend upon the *¿ themselves, and not merely upon their norms.

If this is the case, however, the question of the uniform convexity of the product space is entirely

independent of the uniform convexity of the factor spaces, and no theorem of the type of Theorem 1

can be stated.
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(2)

Set

Then

so that

UNIFORMLY CONVEX SPACES

lim ||Xi — yi\\ = a > 0;
I—»oo

lim \\x/\\ = lim ||y,J'|| = ßj
I—» oo i—* »

lim \\x¿ — y¿\\ = 7 > 0;
i—»co

i Ml >o,    M >°

Wi = /31xiV||x¡1||,

lim ||w¡ — Xj'll  = lim |]3¡ — y^W = O,
ï—► oo i—♦ oo

lim \\wi — Zi\\ = y.

399

(/ = i, 2, •■• , *);

(»- 1,2, ••• )•

Then since Tii is uniformly convex,

limsup||w¡ + 2¡j|  < 2/81,

and hence

Since by (2)

it follows that

lim supllxj1 + y^W < 201.

lim sup   x,J' + y,-» 11 = 2/3,- 0* - 2, 3, • • • , A),

J'á #f ilim sup||xi+ y,-|| = 7VÍ lim supU-v,1 + y^W , • • • , lim sup||xf + y*|| j
I—»OO \ »—»00 ,'—»« /

<N(2fit, •■•    20*) = 2/V03,, • •• ,/S») = 2,

from which contradiction of our assumption the theorem follows.

3. Spaces Lp and lp ip>l)

We might now attempt to prove the uniform convexity of space lp by

extending the argument of Theorem 1 to an infinite number of factors. We

prefer to prove this fact and the corresponding statement for Lp by exhibiting

a set of inequalities for these spaces which are in close analogy with the

identity (1). We collect these in
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Theorem 2. For space Lp or lp, with p^2, the following inequalities be-

tween the norms of two arbitrary elements x and y of the space are valid (Aere q

is the conjugate index, q = p/ip — i))'-

(3) 2(||*||" + ||,||») ^ ||* + ,||» + ||* - ,||» = 2»~i(||*||» + ||,||»);

(4) 2(||*||» + IMI»)«-» ú ||* + ,||« + ||x - ,||«;

(5) ||* + ,||" + ||x - ,||» = 2(||*||« + IMI«)"-1.

For i<p^2 these inequalities hold in the reverse sense.

We first point out that for all values of p the right-hand side of (3) is

equivalent to the left-hand side, while (4) is equivalent to (5); to see this,

set *+, = £, x—y = n¡ and reduce. We make full use of this fact in proving

the theorem.

Proof of (4). First consider Kp^2. We commence by showing that for

x, y, any two complex numbers, we have

(6) | * + y I* + | * — y |« á 2(| *|» + | y |»)«~».

To prove this, assume that | x| =■ | ,|, and divide (6) by | x| «, reducing (6) to*

(7) |l + c|« + |l-c|«á2(l + |c|»)«-»,

with |c| =1. Setting c = peie, we see by elementary calculus methods that

it suffices to consider 0 = 0; i.e., 0 = c^l; (7) is trivial for c=0 or c = l,

so we need only consider 0 < c < 1. Making the further transformation

c = (l-z)/(l+z) (so that0<z<l) we reduce (7) to the form

S-i{(l +2)»+  (1   -3)»}   -   (1 +Z«)"-1 =  0.

Expanding each term of 5 in its Taylor's series, we have

H/, M.-L.-. Xl 1    .PU"  »)    2   ,    M-  D(2 - /»(3 - /))
J{(1 +2)»+ (1 - 2)»}   =   H-22 H-24+  • • •

pip - 1)(2 - p) ■ ■ ■ i2k - I - p)
-\-22* + • • • ;

(2A)!

ip - 1)(2 - p)
(1 + s«)p-i = 1 + (p - l)s« _ IL-Li gi« + . . .

ip - 1)(2 - p) ■ ■ ■ i2k - 1 - p)

(2A - 1)!

ip - 1)(2 - p)--- i2k- p)

(2A)!
22fc« +

* The proof of (7) given here is due to J. S. Frame.
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Hence

=  -  rpiP - 1)(2 - p) ■ • • (2k-I-p)

¿ÍL (2A)!

^-l)(2-^)...(2*-l-rt

(2k - 1)!

fr - 1)(2 - p) ■■■ (2k - p)       "I

(2*)! J

"   (2 - p)(3 - p) ■ ■ ■ (2k - p)   tt r 1 - 2(2*-p)/o>-i>       l - 32*/(P-D-|

"eí (2Ä- 1)! ~~ *" L(2* - #)/(# - 1) ~  2k/(p - 1) J*

But (1 —zl)/t, for <>0 and 0<z<l, is a decreasing function of t; hence the

series for 5 has non-negative terms, and (7) is established.

Turning now to the proof of (4), we consider first space lv. Let the two

elements considered be x = (xi, x2, • • • ), y = (yi, y2, • • • ); (4) states that

El xí+ yi\p\   +\ El*- yi\*\
(8) i=1 J       L« J

p     oo -13—1

= 2^E(|*,h + |r,|p)J     .

Now one form of Minkowski's Inequality states that if yl,-, Bf are any two

sets of non-negative numbers, finite or infinite in number, and 0 < 5 ¿ 1, then

(Z ¿s)1" + (Z Bi'Y" = i}~2 iAi + Bi)>y,

proper account being taken of convergence. Setting

P i i ii
— = 5,       | Xi + y.\t = At,      | Xi — yi\q = Bi,
a

we infer that the left side of (8) is

r  « -i«/?
á    Z(| *+ y.-|a + | Xi- yi^yu

which by (6) is

á[¿(2{ | *|* + |y«|»}«'»)»'«T "= [¿2'>'«{|*i|» + |yi|''}"|
iip

Since q/p = q — h this is our result; (4), then, stands proved for lv (l</> ^ 2).

To extend this result to space Lp (1 <p = 2), let [0, 1 ] be the interval over

which the functions of our space are to be defined. We consider first two func-
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tions x(/), yit) which are step functions on a division of [0, 1 ] into equal parts.

It is readily verified that for such functions the relation (4) reduces to the lp

case already treated, and as these functions form a dense set in Lp the result

follows by continuity of the norm.

Consider now (4) for p>2. Again let x, y be any two elements of lp; the

relation which we must prove is (8) with the sense reversed. Letting yl„ ¿J,-,

and s have the same values as above, and again applying Minkowski's In-

equality, which is now reversed in sense since s exceeds 1, we conclude that

the left side of (8) is

(9) à MC(l* + y<l« + |*-y<|«),,/a    •

Now (5) (or its equivalent, (4)) has already been proved for p <2; hence em-

ploying it for complex numbers we have that for p>2,

| Xi+ yi\" + | Xi - yi\" è 2(| *i|" 4- | y^*)«-*.

From this we have that (9) is

r   °° ~\qIp r   °° —i «—i

= I Z(2(|*i|p + |yil!,}'-i)H   = A Zd^h + biM   ,

our result for lp. The passage to space Lp is carried out exactly as in the case

for \<p^2, with which the demonstration of relations (4) and (5) is com-

plete.

Proof of (3). We take/» ^2, and consider the right-hand inequality. We

show that this is implied by (5) : that for a, b = 0 we have

(10) 2(a» + ¿>5)p-i ̂  2"-1(ap + b").

For suppose a = 6>0, which entails no real loss of generality; dividing (10)

by bg(p~l) =bp we obtain

2(c" + 1)p-i <: 2"-1(cp xi) (0 g c £ 1),

or
c*+ 1

2"~2-> 1,
(C + I)""1

which, being raised to the power \/p, gives

(c» + iyi"
H(c) = 2("-2""-^-— > 1.

(C + 1)»'«

¿/(l) = 1, and the result then follows by noting that dH/dc is <0 for the in-
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terval considered. For 1 <p^2 the inequality (10) holds in the reverse sense,

the proof being identical. This completes the proof of Theorem 2.

Corollary. For p>i the spaces Lp and lp are uniformly convex.

It is of some interest to compute the function 6(e) of Definition 1 explicitly

in this case. Consider /> = 2, and set ||x|| =||y|| =1 in (3);

||x + y||" + ||* — y||" ^ 2".

Then if ||x-y|| =e (0<e^2), we see that

* + y

[-(DT''
so that an admissible value for 5(e) is 1 — [l — (e/2)»]1'». For i<p S 2, we have

<5(e) = l-[l-(e/2)«]i/«, by (4).

4.   A "STRONG" TRIANGLE RELATION

For uniformly convex spaces the ordinary "triangular inequality," which

states that if y=2^,i^lxi then ||y|| ¿T^ ||*<||. can be replaced by a consider-

ably stronger inequality.

For two non-vanishing vectors, x and y, of the space B, we define a gen-

eralized "angle" between the vectors, which we denote by a[x, y], as follows:

a[x, y\ =
x

Vx\
y_

\y\

We note the following properties of a:

(i) a[x, y]=a[y, x];0^a[x, y]=2.

(ii) a[x, y]^a[x, z]+a[z, ,].

(iii) a[x, y] =0 is equivalent to the condition y = cx (e>0).

We now state our inequality in

Theorem 3. Let xi, x2, • • • , Xk, y be non-vanishing elements of B, a uni-

formly convex Banach space, with

k

y = X) *<•

Letai=a[xi,y] (i = l, 2, • • • , A). Then

(ID ||,|| S¿[1-»<««)]|N|,
i—1

wAere 5 is the function of Definition 1, and 5(0) =0.
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Since for each i we have

Xi

i*i

y_

\y\

then by Definition 1, for each i,

or

*        y

1*11   IM

|y||* + \\xi\\y

= 2 - 2Í(«<),

=• (2-2á(a,.))||*i]|||y||;

summing these inequalities over i, we obtain

|y||*< + ||*||y áE(2-25(a<))||*||||y|

If we replace the sum of norms on the left by the norm of the sum, this be-

comes
k k

\\y\\y + yE 11*11   á ||y||E(2^ 25(«<))||*<||,
¿-1 i—l

or, since the left side equals ||y|| (||y||+Za_,||*||)»

k k k

h\\ + Z 11*11 = 2Z ||*||- 2¿í(a,)||*i||.i=i »=i >=i
Rearranging the terms we have the inequality of the theorem.

It will be noticed that in a uniformly convex space, if the sum of the

lengths of two sides of a triangle is equal to the length of the third side, the

triangle is degenerate, and conversely;* that is, if x and y are 9*0, and

||*+y|| ™||*||+||y||j then x = cy(c>0):this statement is a consequence of (11)

and (iii). We can show from this that in Definition 1 the value of S (2) may

be assumed to be L Indeed, suppose that ||x|| = ||y|| = 1, and ||x — y|| = 2.

Then

*+ (. Ml +11 - y
hence by the property just noted, x = —y, and the value 5(2) = 1 is admissible.

We can now state as a further property of the function a [x, y ] that

(iv) a[x, y] =2 is equivalent to the condition y = cx(c<0).

Using the particular value of 5(e) obtained above for £P[/P] we have the

following strengthening of Minkowski's Inequality:

* We say that a space in which this condition is satisfied is "strictly convex."
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Corollary. Let Xi, x2, • • • , xk, y 6e non-vanishing elements of Lp or lp

ip^2), y=2Zi_]Xi- If<xi = a[xi, y], then

(12) ||,|| = E[2(l - («(/2)»)»»- l]||xi||.
¿-i

For KpS2, p must be replaced by q in this inequality.

We point out that in inequalities (11) and (12) the factors associated with

the ||xt|| may assume any values between —1 and 1 inclusive. These relations

are obviously reminiscent of the corresponding relation between vectors in

the Euclidean plane, ||y|| =2~1 cos af||*<||, «< = angle between the vectors *,-

and y.

For use in a later argument we state the following corollary to Theorem 3.

Corollary. Let y, xh x2, • • ■ , xk, wi, • • • , w¡ 6e non-vanishing elements of

a uniformly convex space, with y = Sí=iít;<+2t_1Wt, and with a[x{, y]>€>0

ii = i,2, ■ ■ ■ , k). Then

This follows immediately from

||,|| á Z(l-25(£))||*i|| + ¿||Wi||;
¿=1 i-l

which itself is implied by Theorem 3.

5. Functions from a Euclidean to a uniformly convex space

A function of bounded variation from a Euclidean space into a uniformly

convex Banach space is differentiable at almost all points; we shall formulate

and prove this statement in precise fashion as our next theorem. As we have

noted above, Bochner has shown that this theorem is not true for Banach

spaces in general. Bochner's example is a function from one-dimensional

Euclidean space into M, the space of bounded functions. The following ex-

ample, in which the range space is taken to be space L, the space of all sum-

mable functions fis) on the interval 0 = s = 1, shows that this phenomenon

may still occur in separable spaces.

To each point t, O^i^l, let correspond the element (f>teL defined as fol-

lows:

(1        (sáí),
<Pt = <piis) = <

KO        is > t).
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The reader will easily verify that the norm in L of the difference quotient

A(A, t) = +£L=± {h * o)
h

is identically equal to unity, and hence that the point function (pt, since it

satisfies a Lipschitz condition, is of bounded variation and indeed is abso-

lutely continuous. However, as A—>0, A (A, t) approaches no element of L even

in the weak sense,* and hence (pt has no (strong) derivative at any point; that

is, lim^0A(A, t) does not exist.

In our proof of the abstract form of the Lebesgue theorem we employ the

terminology and definitions of Saks.f The basic method of the proof, how-

ever, is contained in a proof of TonelliJ that rectifiable plane curves admit

tangents almost everywhere.

We recall a few definitions.

By an interval of the «-dimensional Euclidean space £„ is meant the set

of points (*i, x2, • • • , x„) satisfying the inequalities a, = x,- = 6,, where (a,-, 6.)

are n number pairs with a,- < 6,-. In case all 6i — a, are equal, the interval is

called a c«6e, and will always be denoted by J. By an elementary figure, R,

is meant the sum of a finite number of intervals (or the null set). In order that

the set of elementary figures may be closed under our manipulations, the no-

tions of difference and intersection of two figures, denoted symbolically by

•Q and O, are defined as

RiO R2 = (7?i - R2)*

TciO 7?2 = (7?i-7?2)°,

where E°, Ê denote the interior and closure respectively of the set E. We

denote the measure of the figure by | R \.

A function FiR) which makes correspond to each elementary figure, con-

tained in a fixed figure T?0, an element in a linear space, is called additive if

FiR! + 7?2) = F(7t,) + F(7?2)

whenever T?x and T?2 are non-overlapping; that is, the set T?i-T?2 is of measure

zero. FiR) is said to be of bounded variation in T?0 if for any finite set of non-

overlapping figures in R0: Ri, R2, ■ ■ ■ , Rk, the sum]>2i._i||T?(T?i)|| is less than

a fixed bound. FiR) is absolutely continuous^ in 7c0 if given e>0 there corre-

sponds a 5e>0 such that if |T?| <ôe, then ||F(Tc)|| <«.

* See Banach, loc. cit., p. 136.

t S. Saks, Théorie de l'Intégrale, Chapters I—III, esp. p. 47.

t Tonelli, Fondamenti di Calcólo delta Variazione, pp. 48-56.

§ These last two definitions, because of the setting, differ slightly in form from those of Saks,

but are equivalent to his in case the range space is the set of real numbers.
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Finally, F(R) is said to be diferentiable at a point p if the limit

F(I)
F'ip) =  hm f-f

I/Ho | ¿I

exists, where I is an arbitrary cube containing p.

Theorem 4. Let F(¿?) be an additive function of elementary figures, defined

for the figures within a fixed figure ¿c0, and assuming values in a uniformly con-

vex Banach space B. Let F be of bounded variation in R0. Then F is diferentiable

almost everywhere in R0.

We first note that in proving the existence of F'ip) we may without loss

of generality consider only those functions ¿^(¿v) such that

(13) ||F(J!)||fc|lî|

for all ¿v. Indeed, we have to prove that

Fil)
(14) lim -r^-r

|/|-.o  | 7|

exists, where I is an arbitrary cube containing the point p. Let Bi = Bx£1,

where ||(x, í)|| = [[|^||2+í2]1/2, and consider the function of figures Fi(¿c)

= (F(¿?), \R\), whose range is in Bi. The function Fx satisfies our conditions,

since Bi is uniformly convex by Theorem 1, and also (13); hence, assuming

the theorem proved in this case, we have almost everywhere that

(Fil), I ¿I)
F(ip)   =   lim . ' (pel)

l/l-o        | 11

exists. This, however, implies the existence of (14), which justifies our.pre-

liminary remark.

We first show that the limit

F(I)
(15) ÍÍ.M (p'n

exists for almost all p.

Given a point p, and e>0, we define

A(p,e) = sup a[F(I),F(I')],

where I, I' are arbitrary cubes with measure less than e containing p. Let

A(p) =limt^oAip, e). A necessary and sufficient condition that (15) exist is

thatAip)=0.
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Let e, e'>0 be fixed. Let 7?o = Ei_r^»'> ^< non-overlapping elementary

figures. By assumption the sums E«||^(&)|| have a least upper bound M

for all choices of the 7?ij we fix this choice so that

(16) M - 22\\FiR<)\\ <e'.

Let E = E {A ip) > 2e} ; then m*E =I3*=1w*£T?i0. Each set ER? is covered

(in the sense of Vitali)f by a set of cubes I', c T?i°, with

(17) a[FiI<),FiRi)]>e.

Then by Vitali's covering theorem there is a finite set of these,   {7/}

ij = l,2, • ■ ■ , ni), disjunct, with

(18) £| If I > \m*ERi* = \m*ERi        ii = 1, 2, • • • , k).
i-i

Now by additivity

FiRi) = E W) +F\Ri e E If),

so that by (17) and the second corollary to Theorem 3 we infer

E IIW)H = ¿[ E ||W)|| + || f(ä1 e E 7/) || - IIfwII],

or, adding these inequalities over i,

EE llw)ll
» J

^ ¿r [ E E ||W)|| + E |U(* e E //) || - E ||iW||T.
2o(e) Li/ i   II     \ ,•        / Il i J

The sum of the first two terms in the bracket is =M; hence by (13) and (16)

we can conclude that

EE|//I =

which in conjunction with (18) gives us

23(e)

m*E = E m*ERi < 2 E Z I ¿7 I ̂ -
i i     í 5(0

t For a definition of a Vitali covering, and a proof of Vitali's theorem, see, for example, Saks,

loc. cit., pp. 33-36.
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Since E is independent of e', this implies mE — 0, which in turn implies

Aip)—0 almost everywhere. The existence of the limit (15) almost every-

where has now been established.

Now to arrive at the conclusion that the limit (14) exists, we again form

the function Fi(R) = (F(¿?), \R\) with range in space Bi=BX£i. Since (15)

holds almost everywhere, we have the existence of

Ft(I) iF(D,\l\)
lim T,-rr = lim
l/HO \\FiiD\\       l/HO (||F(/)||2x|/|2)i/2

and hence that of both limits

Fjl) . |/|

i/™ (||f(/)||2x|/|2)i/2'        |/HJ (||j?(/)||»x|/|i)i/i

except for a null set. If the second limit does not vanish except for a null set,

then (14) will follow. Now where the second limit vanishes, we have

(19) hm —:—¡— = x co .

UI-.0    \I\

But given any A7>0 let EN be the set on which

r l|F(/)|1 ̂  A7
lim sup—¡—¡— > N.

l/l-o      I 11

Then corresponding to every point peEN there is a set of cubes I h p with

|¿*|—>0 and ||F(/0||>i»,|/,|; by another application of Vitali's theorem

there is a finite set of these, non-overlapping, with

Z| ¿i| = \m*EN,

which yields the estimate

*-m 2  _ „ .,      2M
m*EN£2¿Z\li\ < - Z \\FHi)\\ a—-

Thus (19) can only occur on a null set, and (14) exists almost everywhere.

This completes the proof of Theorem 4.

Theorem 5. Under the hypotheses of Theorem 4, the derivative of F(¿?) is

integrable in the sense of Bochner.

Let ¿o be a cube containing ¿?0, and for each positive integer k let ¿o be

subdivided in symmetrical fashion into 2nh sub-cubes, ¿/\ Now in ¿0 define

the functions Fhip) as follows: if p is interior to a cube ¿,*c¿?0, define

FkiP) =FiIjk)/\ljk\ ; for all other points of ¿0 let F kip) vanish. Then almost



410 J. A. CLARKSON [November

everywhere in T?0 we have \im.k^KFkip) =F'ip), and, since the Fk are "finite

valued functions," F'ip) is measurable as a consequence. Now to show that

it is integrable we need only demonstrate* that the real function ||F'(/>)||,

which is also measurable, is integrable. Since ||F*(^)||—*||^"(#)|| almost every-

where, this will follow from the Fatou lemmaf if the integrals /b,||F*(^)|| are

bounded. But for each A,

f ||*(ti|| á f 11*0)11- e ]^r3\n\^M,
JR, Jra rfcB,      | If |

which completes the proof.

Theorem 6. Let the hypotheses of Theorem 4 6e satisfied, and in addition

let FiR) be absolutely continuous in T?0- Then F is the integral of its derivative;

for every elementary figure R c T?0,

FiR) =  ( F'ip).

That F'ip) exists almost everywhere, and is a summable function, we

have already seen; set G(Tc) =fRF'ip) for each figure RcR0. Bochner has

shownj that G'ip) exists and equals F'ip) almost everywhere; moreover G

is additive and absolutely continuous. Then the function H = F—G is an ad-

ditive absolutely continuous function of figures whose derivative vanishes

almost everywhere. We assert that from this it follows that TT vanishes iden-

tically.! Indeed, let R be any elementary figure, and let S be the set on which

H'ip) =0. Let e>0 be chosen, and let S(e) be the function whose existence is

asserted in the definition of absolute continuity. The set 7? ■ H is covered

(Vitali) by a set of cubes I for each of which we have

(20) 77(7) < 5(0 | 7|.

Then by Vitali's theorem there is a finite set of these cubes, {I,}, disjunct,

such that

KO                    ^               v-                         5(e)
mRS - — <™(7?EE7,) = wE7,- <mRa-\->

* Since Bochner's integral is absolutely convergent.

f Cf. Schlesinger and Plessner, Lebesguesche Integrale und Fouriersche Reihen, Berlin, 1926, p. 91.

Î See the first cited paper of Bochner, p. 269.

§ As the proof shows, this assertion is true if B is any Banach space. In fact, since Theorem 5

employs the assumption of uniform convexity only to assert the existence of F'(R), we can say that

if F(R) is an additive absolutely continuous function from £„ into any Banach space, which is differ-

entiable almost everywhere, then F'(p) is integrable (Bochner), and F is its indefinite integral.
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and as S includes almost all points of ¿?o, we may rewrite this suppressing the

factor S, as

8(«)                  ^              v-                     5(e)
(21) mR-< mR O Z ¿í = «E^í < mRJi-

Now

(Z7,e [R02ZiA) + R - E// + <*e [Ro E7,1),

so that by additivity and the triangle relation one has

.„. \\HiR)\\ á Z Wmiii + \\HiR e[A0l 7,1)11
{ } +l|Ä(Ei#e[Ä o E 7,])||.

From (21) we deduce the inequalities

»(JR O [R Q Z 7,]) = wi? - mi? © Z ¿i < 5(e),
(23) Í

I*>(E 7í O [72 O Z 7,]) = «E 7,- - mR O Z 7, < 5(e);

combining the relations (20), (21), (22), and (23), and remembering that

mR' <8ie) implies ||¿¿(¿0|| <«, we infer that

\\HiR)\\ <i(()^i|y] + 2t.

As we may assume that 5(e) ^ e, this is arbitrarily small with e, ||¿¿(¿v)|| must

vanish, and the proof is complete.

Corollary, yl» additive function of elementary figures, with values in a

uniformly convex space, which is absolutely continuous and of bounded varia-

tion, can be extended to all measurable sets while preserving these properties,

and in only one way.

By a standard argument we can now prove, for point functions in the one-

dimensional case,

Theorem 7. yl function <f>it) from an interval af¿t^b into B, a uniformly

convex space, which is of bounded variation, is istrongly) differentiable almost

everywhere. The derivative, <f>'it), is integrable iBochner). If in addition <j>it) is

absolutely continuous, then*

<t>it) = Ma) +  Í   4>'(t)dt.
J a

We omit the proof, which presents no difficulty.

* Compare G. Birkhoff, loc. cit., Theorem 26, which is the special case of Theorem 7 in which B

is Hubert space. The last assertion of this theorem appears to be in error.
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The notion of a "continuous rectifiable curve" in a uniformly convex

space may be defined in a manner quite analogous to the procedure for ordi-

nary plane curves, and by using the "angle" a defined above, the notion of a

"tangent" to such a curve may be made precise. We omit the details, but

state without proof the following theorem, the demonstration of which may

be made to depend directly on the preceding theory :

Theorem 8. yl continuous rectifiable curve in a uniformly convex space

possesses a tangent at almost all of its points.

6.   A GENERALIZATION. CONCLUSION

It has been called to the attention of the author by J. von Neumann that

the "differentiability properties" of the space expressed in the last five theo-

rems remain true under a somewhat weaker assumption. It suffices to assume,

not that the space B is uniformly convex, but merely that there can be de-

fined a norm in the space, equivalent to the given norm (i.e., such that the

notion of limit is the same with both), with respect to which the space is

uniformly convex. The only point that is not immediately obvious in the

verification of this statement is that the definitions of bounded variation and

absolute continuity are equivalent with the different norms, and this is clear if

we notice that when ||x||i, ||x||2 are two equivalent norms, the ratio ||*||i/ ||*||s

is bounded for Hx^r^O.

It follows from this that these properties are possessed by all finite di-

mensional Euclidean spaces with an arbitrary "Minkowski norm"; that is, a

norm determined by any convex region centrally symmetric about the origin ;

since any such metric is clearly equivalent to the Euclidean metric. For ex-

ample, all spaces /i(t) with a finite number, k, of coordinates, possess these

properties.

It may be proved directly without a great deal of difficulty that the space

h also possesses these properties. The proof rests essentially on the de-

numerable coordinate system in space h. If a function </>(/)> say from a real

segment into (real) h, is of bounded variation, then each of its components

x,(/) is a real function of bounded variation, and the sum of their variations

is finite. Then </>(/) may be decomposed into the difference of two "mono-

tone" functions by decomposing each of the x¿(í) ; by means of a theorem of

Fubini, that a convergent series of monotonically increasing functions is

term-wise differentiable, the result follows.

A question which will naturally arise in the reader's mind is whether

"differentiability theorems" of the above nature can be proved under the

still weaker assumption that the space B in question is strictly convex,* or

* See the definition above.
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that a norm equivalent to the given norm exists with respect to which B is

strictly convex. The answer to this question is negative: indeed, the essential

role played by the uniformity assumption is clearly exhibited by the following

theorem.

Theorem 9. Any separable Banach space may be given a new norm, equiva-

lent to the original norm, with respect to which the space is strictly convex.

We first demonstrate that the theorem is true of space C (the space of con-

tinuous functions/(/) in the interval 0</^l, where ||/|| =max |/(/)|)- Let

{tn} be a dense sequence of points in (0, 1); then as F. J. Murray has re-

marked, the sequence of bounded linear functionals Fnif) =/(0 forms a

"total" set in the space C conjugate to C; that is, the only element of space C

for which all of these functionals vanish is the zero element. Now let the

space C be renormed with the following definition :

ll/l|1 = [ll/ll2 + E¿l^(/)l2]1,2;

it is readily verified that ||/||i is a norm equivalent to ||/||. But suppose that

for two non-vanishing elements/and g we have ||/+g||i = ||/||i + ||g||i. This im-

plies

(11/11 + lkll)2+ E ¿k»(/) +^G,)I2Î'2
n=l    ^ J

[co 1 -ni/2 r- oo 1 —11/2

11/11' +E ¿I *(/)('] +[||g||2 + E-|^)|2]  ,

and hence there exists a constant e>0 with cF„(f) =Fnig) in = 1,2, ■ ■ ■ ).As

the sequence {Fn} is total, this implies that cf=g; i.e., the renormed space

is strictly convex.

Now let B be any separable Banach space. Banach has shown* that there

is a closed linear manifold of space C which is in one-to-one linear isometric

correspondence with B. Then the above defined renorming of C furnishes a

means of renorming the space B in the manner required, which finishes the

demonstration of the theorem.

In the opposite direction we have

Theorem 10. None of the following spaces can be renormed so as to be uni-

formly convex:f space L; space M ifiounded functions); space C icontinuous

functions) ; space m ibounded sequences) ; space c iconvergent sequences).

* Banach, loc. cit., p. 185.

f For the precise definition of these spaces see, for example, Banach, loc. cit., pp. 9-12.
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It need only be verified that Theorems 4-8 do not hold in the spaces

enumerated. Our above example, and the example given by Bochner, dispose

of spaces L and M, and the property of space C used in the last theorem,

that it is a "universal space" for all separable Banach spaces, together with

our example in space L, furnishes an immediate proof for this space. The fol-

lowing example, of an absolutely continuous (even Lipschitzean) function,

from the interval 0 = /=l into space c, which is not difierentiable, even in

the weak sense, at any point, settles the matter for space c; as this space

forms a closed linear manifold of space m, the same example will do for the

latter space.

To construct the example, we first form the sequence/n(/) of real functions

on (0, 1) as follows:

hit)

fnit)   ■

=     it (OSf  £*),

t        (*SiSl);

lfn-ii2t)     (Oáfái),

Mt-h)   (i-í-i).

The function <b(t) from (0, 1) into space c is now defined by setting

(f>it)= {fi(t),fi(t), ■ ■ ■ }. We leave to the reader the simple verification that

<b(t) possesses the required properties.

The conjugate space of c is the separable space lx. We see, then, that this

property, separability of the conjugate space, is neither necessary nor suffi-

cient for differentiability properties of the type discussed above, thus answer-

ing in the negative a question posed by G. Birkhoff* in his paper referred to.

* Loc. cit. p. 378.
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