
PARTIALLY ORDERED SETS*

BY

H. M. MACNEILLEf

1. Introduction. A relation, c, orders a set, K, of elements, a, b, c, ■ ■ ■ ,

if Postulates 1.1 and 1.2 hold for any elements of K.

1.1 Postulate, a c b and bee imply acc.

1.2 Postulate, aca.

Such a set need not possess simple or linear order and for this reason is

commonly called a partially ordered set.J A large part of the theory of simply

ordered sets applies, with little or no change, to partially ordered sets. Al-

though the principal objectives of the paper are certain properties of partial

order which have either a trivial or no counterpart in the theory of simple

order, considerable use is made of the parallelism between the two theories

without a systematic development of it. This parallelism makes it natural to

call any set which satisfies Postulates 1.1 and 1.2 an ordered set, dropping the

word "partially." This convention leads to no confusion in this paper as but

scant reference is made to simple order, a c b is read a is contained in b.

The relations of equality and equivalence order any set in which they occur.

Being a subset of is a relation ordering the subsets of a given set. The relation

less than or equal to orders the set of real numbers. A set of propositions is

ordered by the relation of implication. An ordering relation can be assigned

to any system, such as a Boolean algebra, which has an associative operation

with respect to which every element is idempotent. The relations of being

homomorphic to and being a subsystem of order any aggregate of classes with a

common set of operations. These examples do not begin to exhaust even the

* Presented to the Society, in part, April 19, 1935; received by the editors May 28, 1936. See

also, Extensions of partially ordered sets, Proceedings of the National Academy of Sciences, vol. 22

(1936), pp. 45-50.
f This paper contains the results of a doctoral dissertation, Extensions of partially ordered sets,

accepted by Harvard University in May, 1935. It also contains further results obtained while the

author was a Sterling Fellow at Yale University, 1935-36.

% Hausdorff (10), p. 139, Ore (18) p. 408, von Neumann (17), p. 94, and Alexandroff (1) p. 1650.
Alexandroff (1) shows that discrete spaces in which A = B implies A=B are abstractly equivalent to

partially ordered sets where A c B if, and only if, A is an element of B. Bennett (2) speaks of such sets

as having semi-serial order. Tucker (26) calls such sets cell spaces and makes the relation < (§2),

instead of c , fundamental.

The numbers in parentheses refer to the bibliography at the end of the paper.
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common instances of ordered sets in mathematics.*

This paper presupposes the calculus of classes without restriction as to

cardinal number. The classes employed are defined by such properties that

the admission or rejection of a candidate does not depend upon the disposi-

tion of candidates under consideration or not yet considered. Hence, the para-

doxes connected with inconsistent aggregates do not arise and no recourse to

the theory of types is necessary. In fact, no classes are employed where the

admission or rejection of a candidate depends upon the disposition of ele-

ments already considered. The definition of such classes depends upon a par-

ticular well ordering of the candidates. For the classes here considered, the

possibility of well ordering the candidates is not assumed.

The concept of a class or set, K, can be specialized by the imposition of

correspondences between subsets of its elements. A correspondence can be

considered as a subclass of the class of ordered pairs of subsets of the given

set. Hence, the only new undefined concept needed for the introduction of

correspondences is that of an ordered pair.f If, under a correspondence, a

subset A corresponds to a subset B, A—>B, then B must be uniquely deter-

mined by A and the definition of the correspondence. A is called the original

of B and B is called the image of A. The domain of a correspondence in K is

the class of subsets which have an image in K. The ränget is the class of

subsets which have at least one original in K. The definition of a correspond-

ence may restrict the subsets admissible to the domain both as to the par-

ticular elements and the number of elements they may contain. The

correspondence may also impose such restrictions on the subsets admis-

sible to the range. A set K is closed under a correspondence if the image of

every admissible original exists in K. The ordering relation may be defined

as a correspondence if the domain is restricted to single elements of K and

the image of any element a is the set B of all elements bj such that a c b,-.

The closure of K under this correspondence is assured by Postulate 1.2. The

relations, operations, and homomorphisms, the systematic exploitation of

which is the object of this paper, are further instances of correspondences.

In terms of the ordering relation,- new relations are defined in §2 and

operations in §3. An ordered set is not necessarily closed under the opera-

* For example, the order preserving mappings, a—>£>(a), of an ordered set K upon the interval

[0, l] of real numbers, such that D(a)+D(b) = D(a+b)+D(ab), where addition and multiplication

in K are defined in §3 and ordinary addition is used for the real numbers, have as special cases the

theories of probability, measure, and dimensionality in projective geometries. See von Neumann (17)

and Freuden thai (9).

f Quine (20), p. 10, for classes, p. 18 et seq.

t Stone (22), p. 33.
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tions of §3, though closure under certain operations implies closure under

others. The relations between closure under various subsets of the operations

of §3 are worked out in §4 and §7. This forms a basis for the classification

of ordered sets with respect to the operations under which they are closed,

as equivalent types can now be recognized. Multiplicative systems, lattices

or structures, and Boolean algebras are among the distinct types of ordered

sets included in this classification.

The object of this classification is to establish content for the extensions

which form the principal part of this paper. The purpose of an extension is to

adjoin elements to a given set so as to increase the number of operations un-

der which it is closed. This is usually accomplished by the construction of a

new set with the desired closure properties and with a subset isomorphic with

the given set. These constructions depend upon the theory of homomorphisms

developed in §5. Methods of constructing and methods of combining exten-

sions are discussed in §9. In the following sections, the adjunction of units,

unrestricted sums and products, unrestricted distributive sums, and comple-

ments is attained. By successive application of these extensions, any ordered

set can be imbedded in a complete Boolean algebra. §9 contains a more de-

tailed statement of the program of extensions carried out in this paper.

2. Definition of new relations. In an ordered set, if a c b does not hold,

we write a <t b and read a is not contained in b. The proofs of theorems, in

cases where they are practically automatic, have been omitted. The propo-

sitions which follow refer to a set, K, of elements, a, b, c, ■ • • , ordered by

the relation c.

2.1 Theorem. Every subset of an ordered set is an ordered set.

2.2 Definition, a a b if be a.

2.3 Theorem. The relation d orders the set K.

By virtue of Definition 2.2, an exact duality exists between the relations

c and a. Hence, any general proposition holding for the relation c im-

plies a dual proposition for the relation z>. The relations c and o are not

mutually exclusive. For example, aca and »du. To obtain, mutually ex-

clusive relations we give the following four definitions:

2.4 Definition, a = b if a c b and be a.

2.5 Definition. a<b if a c b and 6<t a.

2.6 Definition. a>b if a$ b and b ca.

2.7 Definition. a\\b ii a<tb and b<ta.

2.8 Theorem. Exactly one of the relations =, <, >, and || holds for any

ordered pair of K elements.
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These four mutually exclusive relations are usually used in defining or-

dered sets. An ordered set in which the relation || does not occur is a simply

ordered set or a set with linear order. It frequently happens that the rela-

tions < and > do not occur in an ordered set. There is also the trivial case

where all elements are equal. With these exceptions, all four relations occur

in any ordered set. The equality defined by Definition 2.4 satisfies the usual

postulates for equality and is an ordering relation.

2.9 Theorem. Postulates 1.1 and 1.2 are consistent and completely inde-

pendent.

Proof: The necessary examples can be constructed with three elements.

2.10 Theorem. If a = b and c = d, then acc implies bed and a$c im-

plies b<td. More generally, equals may be substituted for equals in an ordered

set without effecting the ordering relation.

Let A be an ordered set of elements, a,-, to each distinct element of which

an ordered set, As—of elements, a,,-, has been assigned. The set B of ele-

ments bn<—Wij is defined as any set of elements in a one-to-one correspondence

with the totality of elements in the sets A(. A relation, c , for 73 is defined as

follows: bn c bki if either a, c ak and at- $ ah, or ai = ak and a(ic«H, This is

the product (in the sense of Hausdorff (11), p. 46), ordered lexicographically,

of two ordered sets. The sum (in the sense of Hausdorff (11), p. 44) is a special

case of the product. This is an example of a property commonly restricted

to simply ordered sets which generalizes at once to partially ordered sets.

2.11 Theorem. The set B, as defined above, is ordered by the relation c,

as defined above, if, and only if, the sets A and Ai are ordered.

3. Definition of operations. Given an ordered set, K, it is possible in vari-

ous ways to define correspondences, A^B, between subsets of K. For ex-

ample, let A-^B if bj is in B if, and only if, b, c a, for every a, in A. In such

situations, we can regard the correspondence as defining B as a function of

A or as defining an operation upon A. We are particularly interested in cer-

tain correspondences where the elements of the set B are all necessarily equal.

By Theorem 2.10, equals may be substituted for equals in ordered sets, so

we can represent such sets by a single element. In general, correspondences

between subsets and single elements will be referred to as operations. As a

rule, these operations are relative to the set K for which they are defined and

are not necessarily the same when defined for subsets of K. Thus, to avoid

ambiguity, it is necessary to specify the set relative to which the operations

are defined. We shall denote subsets of K by capital letters with or without

subscripts and elements of these subsets by the same small letter with one
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more subscript. For example, a< is an element of A, bjk of Bj, and so on. Be-

cause of the duality between the relations c and 3 each definition yields

two operations, one for each relation. The operations have been defined for

the relation c and the changes necessary to obtain the dual have been indi-

cated in parentheses. The following definitions of operations are made with

no assumption as to the closure of the arbitrary set, K, under them. The

question of closure is treated in later sections. In the theorems of this section

it is tacitly assumed that the subsets involved lie in the domain of the opera-

tions involved.

3.1 Definition, a is a product, JJa,- (sum, Xa0 oi A ii a c a{ (as a,) for

every a,- in A and x c a, (x 3 a<) for every a< in A implies xca (x 3 a).t

3.2 Theorem. If a and b are both products (sums) of A, then a = b.

3.3 Theorem. If a=IJa,- (Xa<) and b=Y[bj (X&j) and, for each a< in A,

b, exists in B such that bj c a,- (bj 3 a,-), then b c a (b 3 a).

3.4 Corollary. If a = b, then ac = be (a+c = b+c). More generally, equals

may be substituted for equals in products (sums) without changing the value of the

product (sum).

3.5 Corollary, a [be] = [ab]c = abc (a+[b+c] = [a+b]+c = a+b+c).

More generally, if each b,- is the product (sum) of a subset of A and, for each a,

in A, bj exists in B such that bj c a< (b, 3 a,), then JJa,- =HX (XX =H°i) ■

3.6 Corollary, ab = ba (a+b = b+a). More generally, the value of a prod-

uct (sum) is independent of any ordering or arrangement of the factors (sum-

mands).

3.7 Corollary, aa — a (a+a = a). More generally, IJa = a (Xa = fl)-

3.8 Definition. HX (XX) distributes b with respect to YLai (Xa«) if

b =JJ_bi (b =X/-,») and, for each b,-, a,- exists such that a,- c bj (a; 3 bj).

3.9 Definition, ab (a+b) is modular with respect to a if every element,

x, such that ab ex c a (a + b 3a) can be distributed with respect to ab

(a+b).

3.10 Definition. TT«; (Xa*) is distributive if every element, x, such that

IJa,- c x (Xa*3 x) can be distributed with respect to IJa< (Xa0 •

3.11 Theorem. If JJa, (Xa<) distributive a«a'IJa;c& (X0^3^)* then

Ylfij (zZ>b,) exists such that (XX) *s distributive and distributes b with re-

spect to J\ai (Xff;)-

t For the case of two factors this goes back to Peirce (19), pp. 32-33. See also Schröder (21) p. 196,

Huntington (12), and Bennett (2).
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3.12 Theorem. If a =H#t (a =z~lai) an& eac^ a<=IIa«;' (a«' =zZaa) and if

all these products (sums) are distributive, then a =Ylaa (a =zZ,aa) ** distributive.

3.13 Theorem. a=YLai (a=Xa<) andYLai GCa<) distributive, if A is
the set of all elements a< 3 a (a,- c a).

3.14 Definition. 0 (I) is a zero (one) of K if 0 c a (I d a) for every a in K.

3.15 Theorem. If 0 (I) and b are both zeros (ones) of K, then 0 = b (I = b).

Collectively, the elements 0 and I are called the units of K.

3.16 Theorem. a0 = 0 (<z-fT = I) and a4-0 = a (al = a). Furthermore, aO

(a+T) and a+0 (ai) are distributive.

3.17 Definition, a' (a*) is a product (sum) complement] of a if aa' = 0

(a+a* = T) anda# = 0 (a+x = T) implies xc a' (x^a*).

3.18 Theorem. If a' (a*) and b are both product (sum) complements of a,

then a' = b (a* = b).

3.19 Theorem. ac[a'}' (a a [a*]*).

3.20 Theorem, a cb implies b' c a' and b* c a*.

3.21 Definition, b is a complement of awith respect to c and dii a-\-b = c

and ab = d.

Complements, unlike sum and product complements, are not, in general,

unique. Sum and product complements may be defined with respect to ele-

ments other than 0 and I. This further distinction, though not needed in this

paper, would prove useful in developing Stone's generalized Boolean algebras

along the lines of this paper.

3.22 Theorem. If a' = a*, then a' is the unique complement of a with re-

spect to I and 0.

4. Classification of ordered sets by closure under operations. We proceed

to the classification of ordered sets with respect to the operations under which

they are closed. The discussion of the different types of complements is post-

poned until after the treatment of lattices. We further limit the number of

types to be considered by distinguishing only between operations on finite

and on infinite sets. The classification might be continued indefinitely by dis-

criminating between different orders of infinity in restricting the subsets ad-

missible to the domain of an operation. Under these restrictions, there remain

to be considered six possibilities of closure with respect to multiplication,

together with their duals for addition.

f Collectively called pseudo-complements by Birkhoff (3), p. 459.
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4.1 Postulate. If a and b are in K, then ab (a+b) is in K.

4.2 Postulate. If ab (a+b) is in K, it is modular with respect to a.

4.3 Postulate. If ab (a+b) is in K, it is distributive.

4.4 Postulate. K contains a unit 0 (I), that is, the product (sum) of all its

elements.

4.5 Postulate. If A is a subset of K, thenYlfli (XX)    iW K-

4.6 Postulate. 7/JJa; (Xa») &    A if is distributive.

Clearly the dual postulates are not equivalent to the originals, so we shall

denote them by asterisks. For example, Postulate 4.1 relates to products

while Postulate 4.1* is the corresponding postulate relating to sums.

These postulates, together with the postulates for ordered sets give us a

system of 14 postulates. We wish to investigate the independence and con-

sistency of all subsets of this system. Not all these postulates are independent.

In each case we must either establish a relation between some combination

of these postulates or show their independence by examples. The consistency

of the entire set is demonstrated by an example. Fortunately, the large num-

ber of examples required can all be constructed by combining a few simple

examples in various ways. The following examples are the ones required for

these combinations.

4.7 Example. K consists of a single element, a, such that a c a.

4.8 Example. K consists of two elements, a and b, such that a e a and

beb and no further relations hold.

4.9 Example. K consists of three elements, a, b, and c, such that a e a,

beb, and c c c and no further relations hold.

4.10 Example. 4.9 with the additional relation acb.

4.11 Example. K consists of the positive integers in their natural order.

4.12 Example. K consists of the positive integers where me2n — \, if

m-=2n — 1 in the natural order; 2m c 2n, if m^n in the natural order; and no

further relations hold.

4.13 Example. K consists of three elements, a, b, and c, such that aca,

acb, beb, bee, and cec and no additional relations hold.

4.14 Example. K consists of the positive integers where m e n if m <n in

the natural order.

Examples 4.7, 4.8, 4.9, 4.10, and 4.13 are self dualistic. We denote the

duals of the remaining examples with an asterisk. All the examples except 4.13

and 4.14 are ordered sets. These examples may be combined in sequences,

such that the assigned relation holds between any two elements of the same

example and such that all the elements of any example are contained in every
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element of every succeeding example. We shall enclose such sequences in

brackets, for instance, [4.11, 4.7] consists of the integers in their natural

order and a single element containing all of them. It follows from Theorem

2.11 that if the components of such a sequence are ordered sets, then the en-

tire sequence is an ordered set.

The definitions of operations do not require that the relation c be an

ordering relation. Hence these definitions can be applied equally well to the

examples which are not ordered sets and the postulates for closure under

operations can be considered independently from those of ordering.

We shall study each postulate separately, determining all the combina-

tions of the remaining postulates which imply it and constructing examples

which show its independence from the remaining postulates by which it is

not implied. By suitably combining these examples, an example can be con-

structed in which any given subset of the postulates, and those postulates

shown to be implied by this subset, hold, while the remaining postulates do

not hold.

4.15 Theorem. Postulate 4.6 (4.6*) is implied by no combination of the re-

maining postulates.

Proof: Consider the example [4.7, 4.12*, 4.7]. Clearly, the product of

the even integers is the zero of the set and every odd integer contains it,

but no odd integer can be distributed with respect to it. The remaining

postulates are satisfied.

4.16 Lemma. Postulates 4.4 and 4.5* (4.4* and 4.5) imply Postulate 4.5

(4.5*).

Proof: If A is any subset of K and B is the set of all K elements such that

bj c ai for every element of A, then B is not void for it contains the element 0,

which exists by 4.4, and 2~X exists by 4.5*. But, by 3.1 and 3.1*, zZ°i=TLai-

Therefore, 4.5 holds.

4.17 Theorem. Postulate 4.5 (4.5*) is implied by no combination of the

remaining postulates except by Postulates 4.4 and 4.5* (4.4* and 4.5) jointly.

Proof: Consider Example 4.11*. All the postulates except 4.4 and 4.5 are

satisfied. Consider Example [4.11, 4.11*]. All the postulates except 4.5 and

4.5* are satisfied.

4.18 Lemma. Postulate 4.5 (4.5*) implies Postulate 4.4 (4.4*).

Proof: The product of all the elements of K, which exists by 4.5, is the 0

of K.
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4.19 Theorem. Postulate 4.4 (4.4*) is implied by no combination of the re-

maining postulates except by Postulate 4.5 (4.5*).

Proof: Consider Example 4.11*. All the postulates except 4.4 and 4.5 are

satisfied.

4.20 Lemma. Postulate 4.5 (4.5*) implies Postulate 4.1 (4.1*).

4.21 Theorem. Postulate 4.1 (4.1*) is implied by no combination of the re-

maining postulates except by Postulate 4.5 (4.5*) and by Postulates 4.4 and 4.5*

(4.4* and 4.5) which jointly imply Postulate 4.5.

Proof: Consider Example [4.8, 4.7]. All the postulates except 4.1, 4.5,

and 4.4 are satisfied. Consider Example [4.11, 4.8, 4.7]. All the postulates

except 4.1, 4.5, and 4.5* are satisfied.

4.22 Lemma. Postulates 4.1* and 4.2* (4.1 and 4.2) imply Postulate 4.2

(4.2*).

Proof: We assume that ab exists and that abccca. We must distribute c

with respect to ab. By 4.1*, b-\-c exists. Let X be the set of all elements, x,

such that x c a and x c b+c. X is not void, for c is in X. We next show that

x in X implies xcc. We have c c c-\-x cb-\-c, and the sums exist by 4.1*.

By 4.2*, c+x = c+y, where y cb. Also, since cca and xca, c+x=c+y c a

and yea. But, yea, y cb, and ab cc imply y cab cc. Hence, c+x=c+y — c

and xcc. By 3.1, c = a(b+c). a(b + c) exists, since c does, and distributes c

with respect to ab.

4.23 Lemma. Postulates 4.1* and 4.3* (4.1 and 4.3) imply Postulate 4.3

(4.3*).

Proof: We assume that ab exists and that ab c c. We must distribute c

with respect to ab. By 4.1*, a+c and b+c exist. Let X be the set of all ele-

ments, x, such that x ca+c and x cb+c. X is not void for c is in X. We next

show that x in X implies xcc. We have, by 4.3*, since xca+c, x = u+v

where uca and v cc and, since ucx cb+c, u = w+y where web and y cc.

But web, wcuca, and ab cc imply w cab cc. Hence, x = w+y+v c c. By

3.1, c = (a+c)(b+c). The product exists, since c does, and distributes c with

respect to ab.

4.24 Lemma. Postulate 4.3 (4.3*) implies Postulate 4.2 (4.2*).

4.25 Lemma. Postulate 4.6 (4.6*) implies Postulate 4.3 (4.3*).

4.26 Theorem. Postulate 4.3 (4.3*) is implied by no combination of the re-

maining postulates except by Postulate 4.6 (4.6*), by Postulates 4.1* and 4.3*

(4.1 and 4.3) jointly, and by combinations implying one of these.
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Proof: Consider Example [4.7, 4.9]. All the postulates except 4.3, 4.6,

4.1*, 4.4*, and 4.5* are satisfied. Consider Example [4.7, 4.9, 4.7]. All the

postulates except 4.3, 4.6, 4.3*, and 4.6* are satisfied. Consider Example [4.7,

4.9, 4.12*]. All the postulates except 4.3, 4.5, 4.6, 4.1*, and 4.5* are satisfied.

4.27 Theorem. Postulate 4.2 (4.2*) is implied by no combination of the re-

maining postulates except by Postulate 4.3 (4.3*), by Postulates 4.1* and 4.2*

(4.1 and 4.2) jointly, and by combinations implying one of these.

Proof: Substitute 4.10 and 4.9 in the examples given for 4.26. In addition

to the postulates listed in 4.26 as failing to hold in each case, 4.2 and, in the

second case, 4.2* are no longer satisfied.

4.28 Theorem. Postulate 1.1 is not implied by any combination of the re-

maining postulates.

Proof: Consider Example [4.7, 4.13, 4.7]. All the postulates except 1.1 are

satisfied.

4.29 Theorem. Postulate 1.2 is not implied by any combination of the re-

maining postulates.

Proof: Consider Example [4.7, 4.14*, 4.14, 4.7]. All the postulates except

1.2 are satisfied.

4.30 Theorem. Postulates 1.1, 1.2, 4.1-4.6, and 4.1*-4.6* are consistent.

Proof: Consider Example [4.7, 4.7, 4.7]. All the postulates are satisfied.

Given any subset, Q (admitting the void set as a subset), of the postulates

so far considered, the closure of Q is defined as the subset of the postulates

which contains Q and all postulates implied by combinations of the postu-

lates in Q. A subset, Q, of the postulates is said to be closed if it is identical

with its closure. Clearly, the subset consisting of all the postulates which hold

in any given ordered set, must be a closed subset. It remains to exhibit, for

each closed subset, Q, of the postulates, an ordered set in which the postu-

lates, Q, and no others, hold.

To do this we select examples from those used in proving the theorems

of this section (specifically, 4.15, 4.17, 4.19, 4.21, 4.26, 4.27, and their duals)

and arrange these examples in a sequence, ordering the result lexicographi-

cally as in 2.11. It is necessary that the examples selected have units, with

the possible exceptions that the first example in the sequence may lack a zero

and the last example may lack a one.

First, consider the case where Postulates 4.4 and 4.4* are in Q. Then for

each postulate not in Q select an example in which it fails to hold and all the

postulates in Q hold. Since Q is closed, this is always possible, as no postulate
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not in Q is implied by any combination of postulates in Q. Suppose there are n

postulates not in Q, then we have n examples, At each with units 0,-, I;, which

we shall arrange in a sequence A = [Ai, 42, ■ ■ ■ , A{, ■ ■ • , An\. For this

example, the postulates Q and no others hold. In the first place, by 2.11,

A is ordered if, and only if, every A, is ordered. Postulates 4.4 and 4.4*

hold in A, since they are in Q and hence hold for A\ and An. Next, consider

any subset, B, of A. The elements of B come from the sets A(. Suppose

that 7 is the lowest index for which A,- contributes at least one element to B.

Then JJbk, if it exists, is in A,- as 0,- is contained in this product and 0,+i

is not. Furthermore, every element of A appearing in some Aiy i>j, can be

distributed with respect to YL°k- F°r this element contains I,- which contains

some bk by the selection of j. Hence the existence and distributive properties

of JI&j depends solely on the corresponding properties of the subset of B

in Aj. Hence any of the postulates regarding the existence and distributive

properties of products which holds for every A ,■ holds for A. A similar state-

ment is true for sums. Furthermore, as the sum or product with respect to A

of any subset of any Ai; being bounded between 0, and L-, cannot be in A,

for any j^i, hence the failure of a sum or product to exist or have certain

distributive properties in some Ai guarantees the same failure in A. But

every postulate of Q holds in every Ai} hence in A, and every postulate not

in Q fails in some A , and hence in A.

We now consider the case where Postulate 4.4 is not in Q but Postulate

4.4* is. If Postulate 4.5* is in Q, then the closure Q of the set formed by ad-

joining 4.4 to Q must contain 4.1 and 4.5. In no case need other postulates be

adjoined to Q to obtain Q. Since Q contains 4.4 and 4.4* an example, A, can

be found for it under the case first considered. If 4.1 is not in Q, then [4.8, A ]

is an example of Q. If 4.1 is in Q, then [4.11*, A ] is an example of Q. Postulate

4.5 cannot be in Q as it would imply 4.4 in Q. By similar reasoning [A, 4.8]

and [A, 4.11] are examples of the case where Q contains Postulate 4.4 and

not Postulate 4.4* and A is an example of the closure of Q and Postulate 4.4*.

If neither Postulate 4.4 nor Postulate 4.4* are in Q, and A is an example for

the closure of Q, 4.4 and 4.4*, then [4.8,4,4.8], [4.11*, A, 4.8], [4.8,4,4.11]
and [4.11*, A, 4.11] are the examples required.

5. Homomorphisms, isomorphisms, automorphisms, and subsystems. In

the theory of ordered sets, so many operations are involved that it is neces-

sary to formulate the concepts of homomorphism and subsystem with gen-

erality and precision to provide, without ambiguity, for the different cases

which arise. A homomorphism is a correspondence between the elements, the

ordering relations, and the operations of two ordered sets. Isomorphisms and

automorphisms are particular types of homomorphism. We consider two



1937] PARTIALLY ORDERED SETS 427

ordered sets, K and K, and a set, ©, of univocal operations defined by an

ordering relation.

5.1 Definition. A homomorphism relative to 6 from K to K is a corre-

spondence, —*, between the elements, ordering relation, and operations 0

of K and similar entities of K such that:

a. If a is in K, then a uniquely defined element, a, exists in K such that

a—>ä;

b. If ä is in K, then at least one element, a, exists in K such that a—*ä;

c. An ordering relation, c, is defined for K such that a c b in K implies

äEb in K;

d. If 0 is in 0 and       exists in K, then ö(ä,-) exists in K and 0(a,) —*Ö(ä<).

7£ is homomorphic to TT relative to © if there is a homomorphism relative

to © from K to 7L Since the operations © are defined in terms of the relation

c and © in terms of c, the correspondence 0—>0 is determined by the corre-

spondence c . Thus a homomorphism is determined by the correspond-

ence between elements and between ordering relations. It can be classified

by the operations 0 which it is said to preserve.

We have already remarked that the definition of operations is relative to

the entire set to which they are applied and not just to the elements immedi-

ately involved. Thus, although any subset of an ordered set is an ordered

set, there is no assurance that the operations defined for a subset will be

identical with operations defined for the entire set when operating on ele-

ments of the subset. This fact motivates our definition of subsystems.

5.2 Definition. K is a subsystem of K relative to 0 if K is a subset of K

and if, whenever 0(ä<) exists in K, ö(ä,-) exists in K and ö(äf) =0(ä,-).

Nothing in the definitions of homomorphisms and subsystems requires

that the sets involved be closed under any operations. In many cases the

sets involved are not closed under the operations 0. Every homomorphism

preserves units. A homomorphism does not necessarily preserve sums, prod-

ucts, complements, or sum and product complements. If a subsystem pre-

serves units, it preserves complements and sum and product complements.

A subsystem does not necessarily preserve units, sums, and products.

Taking the complement is not always univocalf and, hence, is not always

admissible to the set 0. The other operations considered are always univocal.

We next consider some of the properties of homomorphisms and subsystems.

5.3 Theorem. A given aggregate of ordered sets, Kt, is ordered by the rela-

tion c, if R~i c Kj whenever K, is homomorphic to K,- relative to 0.

t See Theorems 7.28 and 7.29.
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5.4 Theorem. A given aggregate of subsystems, Ki, relative to 0 of a given

set is ordered by the relation c if Kfc Kj whenever Ki is a subsystem relative to

0 of Kf.

5.5 Theorem. A given aggregate of ordered sets, Ki, is ordered by the rela-

tion c if Ki c K, whenever Ki is homomorphic relative to 0 to a subsystem rela-

tive to 0 of Kj.

5.6 Definition. K and K, two ordered sets, are isomorphic if a 1-1 cor-

respondence exists between the elements of K and the elements of K such

that acb implies deb and äcb implies acb.

We remark that an isomorphism is a symmetric relation. The expressions,

an isomorphism exists between K and K and K is isomorphic to K, are equiv-

alent to K and K are isomorphic. All operations are preserved by an isomor-

phism, so it is not necessary to specify them.

5.7 Theorem. If K and K are isomorphic, then each is homomorphic to the

other relative to any set of operations.

For homomorphisms and isomorphisms it is not necessary that the ele-

ments of K and K be distinct. Furthermore, if K and K have elements in

common, it is not necessary that their ordering relations be the same in their

common part. We call an isomorphism between K and K an automorphism

if the elements of K and K are the same, though the ordering relations need

not be the same. Among automorphisms, we are particularly interested in

dual automorphisms.

5.8 Definition. An isomorphism between K and K is a dual automor-

phism if the elements of K and K are the same and the ordering relation of K

is the dual of the ordering relation of K.

5.9 Theorem. If K is an ordered set and K is any subset of K such that a

in K and b c a (6 a a) imply b in K, then K is a subsystem of K with respect to

multiplication (addition).

5.10 Corollary. If A is a subset of K and x is in K if, and only if,

x c a{ (x o a,-) for every a{ in A, then K is a subsystem of K with respect to multi-

plication (addition).

5.11 Corollary. If a is in K and x is in K if, and only if, xca (xoa),

then K is a subsystem of K with respect to multiplication (addition).

5.12 Theorem. If A is any subset of an ordered set K and K is the subset

of K such that x is in K if, and only if, a< c x (a,- 3 x) for every a,- in A, then K

is a subsystem of K with respect to multiplication (addition).
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5.13 Corollary. If a is in K and x is in K if, and only if, a ex (ao x),

then K is a subsystem of K with respect to multiplication (addition).

5.14 Theorem. Given a set of subsystems, Kit of K with respect to multi-

plication (addition) and K the section, or common part, of the subsystems Kt,

then K is a subsystem of K with respect to multiplication (addition).

5.15 Corollary. If A and B are subsets of K such that a{ c b, for every at

in A and every bj in B and x is in K if, and only if, djcic bjfor every a,- in A

and every bj in B, then K is a subsystem of K with respect to addition and multi-

plication.

5.16 Corollary. If a and b are in K, a c b, and x in K if, and only if,

acxcb, then K is a subsystem of K with respect to addition and multiplication.

5.17 Theorem. If K is homomorphic to K with respect to certain types,

0, of addition and multiplication and A is the set of elements, a,, in K which

have the same image, a, in K, then A is a subsystem of K with respect to 0.

5.18 Corollary. If K is closed under a subset $ of 0 then A is closed

under <i>.

6. Multiplicative systems and lattices. An ordered set which satisfies

Postulate 4.1 for the existence of finite products is called a multiplicative

system. If Postulate 4.5 for the existence of unrestricted products is satisfied,

the ordered set is said to be a complete multiplicative system. In this section,

the dual theorems apply to systems in which the dual postulates are satisfied.

6.1 Theorem. If K is a multiplicative system and a, b, and c are elements

in K, then

(a) a = a;

(b) a = b implies b = a;

(c) a = b and b=c implies a = c;

(d) ab (a-\-b) exists in K;

(e) a = b implies ac = bc (a + c = b + c);

(f) ab = ba (a + b = b + a);

(g) a[bc]=*[ab]e (a+ [b+c] = [a+b]+c);

(h) aa = a (a+a = a);

(i) ab = a (a+b = a) implies acb (a 3 b), and conversely;

()) ab = a (a+b = a) implies that a + b (ab) exists and that a+b = b (ab = b).

6.2 Theorem. If 6.1 (b—h) are taken as postulates and c (d) is defined

by 6.1 (i), then a set, K, satisfying 6.1 (b-h) is ordered by the relation c (d),

is a multiplicative system, and the equality and multiplication (addition) defined

by c can be identified with the equality and multiplication (addition) postulated

by 6.1 (b-h).
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Theorems 6.1 and 6.2 establish the equivalence between the approach to

multiplicative systems in which equality and multiplication are made funda-

mental and that in which the ordering relation is made fundamental. Theo-

rem 6.1 serves to show the greater simplicity of the latter method of approach

and gives the more important elementary identities of such systems.

6.3 Theorem. If, in a multiplicative system, Xa> (ITa>) exists and is dis-

tributive, thenzZaib= Ea<]& (ITX + &] =ITö; + ö).

Proof: a, c ^a, for every a,-in hence, a,7j c [XXjoandXX^ <= [XXX

On the other hand, since XJa*' is distributive and Ea* l'-' cXa«, [XX]^ =XX

where, for each c,- in XJC*, ai exists such that c, c a,. Also, c,- c [XX]^, hence,

ci ca] ['22ai]b = ajb. It follows that [XXJ^ =XC* cXa^- Therefore, Xa«^
= [Za.X

6.4 Corollary. If, in a multiplicative system, a-\-b exists and is distribu-

tive, then ac-\-bc= [a-\-b]c ([a-\-c] [o-f-c] = ab+c).

6.5 Theorem. If, in a multiplicative system, XX (HX) exists and for every

element, b, in the system XX^ = [XX (IT [ai + ̂ ] =ITa»~rX, ̂en XX (ITa«)
is distributive.

6.6 Theorem. If, in a multiplicative system, XJa< (LTa«) exists and is dis-

tributive, thenzZaib (ITX+o]) exists and is distributive.

Proof: zZaib = [XX ]^which exists. If x cXX#, then,since Xa^ = Ea<X
x cX^i and x c b. Since Xa>' is distributive, x= E^ij^^XX^- Since x c b,

x = bx, hence, x =Xa^x and XX^ is distributive.

6.7 Theorem. //, in a multiplicative system, a-\-b (be) exists, is modular

with respect to a (c), and ace, then a + bc= [a + b]c.

Theorem 6.7 is stated so as to exhibit the intrinsic self duality of the

modular property.

6.8 Theorem. 77, in a multiplicative system, a-\-b (be) exists and for every

element c (a) such that ace, a + bc= [a-\-b]c, then a + b (be) is modular with

respect to a (c).

An ordered set which is a multiplicative system with respect to both the

relations c and s is called a lattice, f If the multiplicative systems defined

by the relations c and 3 are complete, then the lattice is complete. If but

one of these systems is complete, we speak of a lattice with unrestricted prod-

ucts or sums. However, these latter categories are not very general as Lemma

t Birkhoff (3), p. 442. Ore (18) calls such sets structures; Klein (14 and 15), Verbände; Dedekind

(6), Dualgruppe. Grell (9), Menger (16), and von Neumann (17) deal with special cases of such sets.
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4.16* implies that any complete multiplicative system with a unit I is a com-

plete lattice.

If Postulate 4.2 holds in a lattice, the lattice is modular. Lemma 4.22

implies that in a lattice Postulates 4.2 and 4.2* are equivalent. Theorem 6.9

is self dualistic.

6.9 Theorem. A lattice is modular if, and only if, ace implies a+bc

= [a+b]c.

If Postulate 4.3 holds in a lattice, the lattice is distributive. In a lattice,

Postulates 4.3 and 4.3* are equivalent, by Lemma 4.23.

6.10 Theorem. A lattice is distributive if, and only if, ac+bc= [a-\-b]c

([a+c][b+c]=ab+c).

Actually, ac+bc c [a + b]c is sufficient to imply that a lattice be distribu-

tive, for ac-\-bc c [a-\-b]c in any lattice.

A complete lattice in which Postulate 4.6 (4.6*) holds is called a lattice

with completely distributive products (sums). The situation in the complete

case is not analogous to that in the finite case, for Postulate 4.6 does not imply

Postulate 4.6* in a complete lattice. If both Postulates 4.6 and 4.6* hold,

the lattice is said to be completely distributive.

6.11 Theorem. A lattice has completely distributive products (sums) if,

and only if, Y[[ai+b] =IT«i+& (Ea<]*=XX&)-

Some properties of subsystems and homomorphisms in multiplicative sys-

tems and lattices are now considered, f

6.12 Theorem. If K is a multiplicative system and K is a subset of K be-

longing to one of the types considered in 5.10-5.16, then K is a subsystem of K

with respect to multiplication, addition, modular addition, and distributive addi-

tion.

Proof: By 5.10-5.16, 6.5, and 6.8.

6.13 Corollary. K is a multiplicative system and if K is complete, so is K.

6.14 Corollary. If K is a lattice, modular lattice, distributive lattice, com-

plete lattice, or lattice with completely distributive sums (products), then so is K.

A subsystem with respect to multiplication of a multiplicative system will

be called a multiplicative subsystem. Similarly, a subsystem with respect to

addition and multiplication of a lattice will be called a sublattice.

6.15 Theorem. If K is a multiplicative system and b is an element of K,

then the correspondence x^bx, carrying K into the multiplicative subsystem K

f Compare Ore (18), p. 416 et seq.
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of elements y cb, is a homomorphism with respect to multiplication and dis-

tributive addition. The sumis preserved if, and only if, [52at]b =2~X&-

Proof: ace implies abecb. ac—*acb = abeb. 2~X—^E0»']^ =Ea»& if, and

only if, Ea*]^=2~Za«'^ H Za> is distributive, then \%2ai]b =zZ,ai° and2~X&
is distributive, by 6.3 and 6.6.

6.16 Corollary. If K is a modular lattice, then all sums a+c, where c cb,

are preserved as modular sums.

6.17 Theorem. If K is a modular lattice, X the sublattice of all elements Xi

such that acxiCa-\-b, and Y the sublattice of all elements y,- such that ab c y,- c b,

then the correspondence Xi—>bx, between X and Y is the inverse of the corre-

spondence yj—^a-\-y} between Y and X. Together, these correspondences define

an isomorphism between X and Y.

Proof: Xi^bxi—>a + bxt = x,-  and implies   bxi c bxj. Similarly,

y3—»a+y,—>fi [a+y,] = y, and y< c y, implies a+y, ca+y,.

6.18 Corollary, f The correspondence Xi+—>bxi, or yjt—*a+yj, between X

and Y preserves all types of sums and products defined relative to K.

Proof: An isomorphism preserves all operations. Hence, relative to X and

Y, all types of sums and products are preserved. However, X and Y are sub-

systems of K with respect to these operations by 5.16 and 6.14.

7. Complements. We are now ready to continue the classification of or-

dered sets with respect to the existence of complements. We consider the

following postulates.

7.1 Postulate. If a is in K, then a' (a*) is in K.

7.2 Postulate. A dual automorphism exists in K.

7.3 Postulate. The correspondence a<—>a' (a<-^a*) is a dual automor-

phism.

7.4 Lemma. Postulate 7.1 (7.1*) implies Postulates 4.4 and 4.4*.

Proof: The existence of a product complement demands a 0. The product

complement of 0 is I.

7.5 Theorem. If K belongs to any of the classifications satisfying Postu-

lates 4.4 and 4.4* considered in §4, then an example of the same classification

in §4 can be found in which Postulate 7.1 (7.1*) holds.

Proof: Consider Example [4.7, K].

t This is a generalization of Ore (18), p. 418, Theorem 2, as it shows that infinite, as well as finite,

sums and products are preserved.
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7.6 Lemma. Postulates 4.4, 4.5*, and 4.6* (4.4*, 4.5, and 4.6) imply Postu-

late!. 1 (7.1*).

Proof: 0 exists by 4.4, hence, the set B of all elements b, such that

abj = 0, for any fixed a in K, is not void. By 4.5*, XX exists and, by 4.6*,

a(XX) =XXj =0- Therefore,        is the product complement of a.

7.7 Example. tt consists of the finite, or void, subsets of the positive in-

tegers with the relation a c b if every integer in a is an integer in b.

7.8 Theorem. Postulate 7.1 (7.1*) is implied by no combination of the

postulates of §1 and §4 except by Postulates 4.4, 4.5*, and 4.6* (4.4*, 4.5, and

4.6) jointly and combinations implying these postulates.

Proof: Consider Example 4.11*. Postulates 4.4, 4.5, and 7.1 are not satis-

fied. Consider Example 7.7. Postulates 4.4*, 4.5*, 7.1, and 7.1* are not satis-

fied. Consider Example [7.7, 4.11*]. Postulates 4.5, 4.5*, and 7.1 are not

satisfied. Consider Example [7.7, 4.7]. Postulates 4.6* and 7.1 are not satis-

fied. In each case the remaining postulates of §1 and §4 are satisfied.

7.9 Lemma. If the corresponding a~^ä is a dual automorphism and XX

(LTa<) exists, then\\di XX) exists and XX] =I1X (LlTa»'] =X<^)-

Proof: a.cXfli, hence [XX] cd*. If yea,- for every a, in XX> then x

is uniquely determined so that x<—>y, or y = x, and a,- c x. Therefore, Xa« c x

and y = x c [XXL

7.10 Theorem. If Postulate 7.2 holds, then the dual of any other postulate

which holds is also satisfied.

Proof: Apply 7.9.

7.11 Theorem. Except for duals, no new postulates are implied by com-

bining Postulate 7.2 with a given set of the remaining postulates.

Proof: Consider any subset of the postulates, excluding 7.2 and 7.3, and

adjoin the duals. Next adjoin all postulates implied by these. The dual of

each such postulate will be such a one and thus adjoined at the same time.

By the methods of §4 and this section an example, K, can be constructed in

which just these postulates hold. The Example [K, K*] also has these prop-

erties and in addition satisfies 7.2.

7.12 Theorem. Postulate 7.2 is implied by no combination of the remaining

postulates except Postulate 7.3.

Proof: Consider Example [4.7, 4.7, 4.8, 4.7]. All the postulates except 7.2

and 7.3 are satisfied.

7.13 Theorem. Postulate 7.3 (7.3*) implies [a']' = a ([a*]* = a).
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Proof: Since a'a = 0, ac [a']'. Similarly, a' c [(a')']', and by the dual

automorphism, [a']' c a. Therefore, [a']' = a.

7.14 Theorem. Postulates 7.3 (7.3*) and 1.1 imply Postulate 1.2.

Proof: a c [a']' and [a']' c a imply aca.

7.15 Lemma. Postulate 7.3 (7.3*) ww^/ies Postulates 7.1, 7.1*, 4.4, 4.4*,

7.2, and 7.3*.

7.16 Theorem. If Postulates 7.1 (7.1*), 1.1 and 1.2 are satisfied and

XX(DX) exists, then JJa/ (Xa»*) exwfo awd JJo/ = [Xa«]'(XX* = QL1X]*)-

Proof: Since [XX ]' exists by hypothesis, the existence of IJa/ follows

from the equality. For every ait a,-fXXl7cT^atlYX!' =0 and [XX]'cai'-
If, for every a,-, x c a/, then xa,- = 0, a< c    XX c x', and x c [XX]'-

When a*.—>a' (a*—>a*) is a dual automorphism 7.16 is a special case

of 7.9.

7.17 Theorem. If Postulates 7.3 (7.3*) and 1.1 are satisfied, then a' = a*.

Proof: If a c x and a' cx, then a:' c a', x' c [a']', x' c a'[a']' =0, and *<-=I.

Therefore, a4-a' = I. On the other hand, if a+y = I, then, by 7.16, a'y'= 0

and y' c [a']'. Therefore, a' cy.

7.18 Corollary. 7/ Postulates 7.3 (7.3*) area" 1.1 are satisfied, then a' is

the unique complement of a with respect to I and 0.

7.19 Theorem. Postulates 7.3 (7.3*) and 1.1 imply Postulate 4.6* (4.6).

Proof: If Xa> exists and b is any element such that b cYJa;, then let B

consist of all elements bk such that bk c b and o4 c a, for some a,-, and let X

consist of all elements such that bkcxi for every bk in B. If we show that

b c Xt for every in X, then 6 =X°* and the theorem is proved. It remains

to prove that b c x{ for every in X. Let x be any element of X and y any

element such that ycb and y ca?'j Then ya; =0 for every a,-, since z cy and

z c a< imply z in B, z c z c and z = 0. Hence y c a/ and y cJTj/ = [XX]'•

But y c o cXJßi- Therefore, y = 0, to'=0, and bcx. Since this holds for any

x in X, there can be no x for which it fails, and it must be true for every x

in X.

7.20 Corollary. Postulates 7.3 (7.3*) and 1.1 wra^/y Postulates 4.2, 4.2*,

4.3, 4.3*, arcd 4.6 (4.6*).

7.21 Lemma. If Postulates 7.3 (7.3*) and 1.1 are satisfied, then either

Postulate 4.5 or 4.5* implies the other and 4.1 a«d 4.1*, araa" either 4.\ or 4.1*

implies the other.

7.22 Theorem. iVorae o/ 2/ze Postulates 4.1, 4.1*, 4.5, a«d 4.5* are implied

by Postulates 7.3 (7.3*) awd 1.1.
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Proof: Consider the following set, K, consisting of units, 0 and I and four

elements ai} i = 1, 2, 3, 4, and their product complements a[ where a[ c a,- for

ir*'j. did,- and a[ +aj, for i&j, do not exist, therefore none of the Postulates

4.1, 4.1*, 4.5, and 4.5* hold. However, Postulates 7.3 and 1.1 are satisfied.

7.23 Theorem. Postulates 4.5 and 4.5* are not implied by Postulates 7.3

(7.3*), 1.1, 4.1, <md4.1*.

Proof: Consider the set, K, of finite collections of intervals with rational

end points in the closed interval [0, l], where acb if every point of a is a

point of b. [0, ri] and [ri} l], where R consists of all rational numbers less

than (1/2)1/2, do not exist. Hence Postulates 4.5 and 4.5* are not satisfied.

Postulates 7.3, 1.1, 4.1, and 4.1* are fulfilled.

7.24 Theorem. No subset of the postulates of §1, §4, and the remaining

postulates of §7 imply Postulate 7.3 (7.3*).

Proof: Consider Example [4.7, 4.7, 4.7].

7.25 Theorem. All the postulates of §1, §4, and §7 are consistent.

Proof: Consider Example [4.7, 4.8, 4.7].

7.26 Theorem. If Postulates 7.1 (7.1*) and 1.1 are satisfied and [a']'ca

(a c [a*]*), then Postulate 7.3 (7.3*) is satisfied.

Proof: Apply 3.18 and 3.19.

7.27 Theorem. If Postulates 7.3 (7.3*) and 1.1 are satisfied, then acb if,

and only if', ab' = 0 (a*+b = T).

Proof: If acb, then a = ab and ab' =abb' = a0 = 0. If ab' = 0, then

ac(b')' = b.

Sum complements and product complements are unique. We now con-

sider the necessary and sufficient conditions that complements be unique.

7.28 Theorem. If K is a distributive lattice and b and b are complements of

a with respect to c and d, then b = b.

Proof: By hypothesis, a-\-b = c = a + b and ab=d = ab. Hence, b = b(a+b)

= b(a + b)=ba + bb = ab + bb = (a + b)b = (a + b)b = b.

7.29 Theorem. If K is a lattice, but not distributive, then K contains a

set of elements a, b, b, c, and d, such that b and b are complements of a with re-

spect to c and d, but b^l.

Proof: If K is modular, it contains a subset of the form [4.7, 4.9, 4.7].f

If K is not modular, it contains a subset of the form [4.7, 4.10, 4.7].f

t Birkhoff (4), p. 617, Theorem 4 and Corollary.
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7.30 Theorem. In any distributive lattice, with units, if a has a complement

b with respect to I and 0, then b is the product (sum) complement of a.

Proof: «6 = 0. If b is not the product complement of a, then c exists in K

such that ac = 0 but c<t b. This implies that c+b^b and that c+b is also a

complement of a, contrary to Theorem 7.28.

7.31 Theorem. If, for every element a{ of a subset, A, of an ordered set, K,

the product (sum) complement a[ (af) exists, Xa< and HX' (IlX and Xa»*)

exist, and Xa> (LTX) *"* distributive, then OX (XX*) *s ^e product (sum)

complement of Xa« GGX) •

Proof: [Xa;]HX' =XXIlX']=0- If (zZ,ai]x = 0, then OiX = 0, xca' for
every a£, and x c JJa/.

7.32 Theorem. If K is an ordered set and A is a subset of K such that each

element a,- in A has a complement b{ with respect to c and d and YLai and X°«

XX and YL°i) exist and are distributive, then ]Tat and X^i CEX and IlX) are

complementary with respect to c and d.

Proof: By hypothesis, a;4-0, = c and a(bi = d. Hence, a.cc, 6,cc, and

IlX»+X0; cc- ®n the other hand, Hai+X^«' =lT(ai+X^') 3lT(a» + 'Ji) =c-
Therefore, YLai+zZ°i = c- Similarly, U«i (%lbt)=d.

8. Boolean algebras. Systems satisfying Postulates 1.1, 4.1, and 7.3 are

considered next. These Postulates imply all the postulates considered in §1,

§4, and §7, except Postulates 4.5 and 4.5*. Hence, such a system is a distribu-

tive structure with units and, by Theorem 7.18, complements. The postu-

lates for a Boolean algebra of Huntington,! Stone, and Tarski can be readily

verified in such a system. Moreover, Postulates 1.1, 4.1, and 7.3 are well

known properties of a Boolean algebra. Therefore Theorem 8.1 follows.

8.1 Theorem. For a set, K, to be a Boolean algebra, it is necessary and suffi-

cient that Postulates 1.1, 4.1, and 7.3 be satisfied.

It follows from Theorem 7.23 that Postulate 4.5 does not necessarily hold

in a Boolean algebra. If Postulate 4.5 does hold, the Boolean algebra is said

to be complete. Since Postulate 4.5 implies Postulate 4.1, it is no longer neces-

sary to affirm Postulate 4.1 and Theorem 8.2 follows.

8.2 Theorem. For a set, K, to be a complete Boolean algebra, it is necessary

and sufficient that Postulates 1.1, 4.5, and 7.3 be satisfied.

It is interesting to note that Postulates 4.6 and 4.6* are always satisfied

in a Boolean algebra, hence, it is not possible to classify Boolean algebras

according to the extent to which the distributive property holds, as was done

f Huntington (12 and 13), Stone (23), and Tarski (25).
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in the case of lattices. Stonef considers generalized Boolean algebras which

are ordered sets with a unit 0 and such that for every b in the set, the sub-

system of elements, x, such that x c b is a Boolean algebra.

9. Extensions of ordered sets. The object of an extension is to complete

or close a given ordered set with respect to specified operations. Whenever

this can be done in some uniquely defined manner it becomes unnecessary

to postulate closure under these operations as closure may be obtained by an

extension. To secure the uniqueness of an extension, we require that it be

minimal in a sense made precise by Definition 9.4. Furthermore, it is impor-

tant that a minimal extension be determined by the given ordered set and

the operations under which it is to be closed and not depend upon the particu-

lar method of extension employed. By achieving this latter goal, we are able

to make an extension by any sequence of steps we desire without affecting

the uniqueness of the result. Naturally, an extension must preserve in the

given set the operations under which it is to be closed. With these points in

mind, we are lead to the following definitions and theorems.

9.1 Definition. If K and L, are ordered sets and <£ is a set of univocal

operations defined by an ordering relation, then L, is an extension to <f> of K

provided that:

a. Li is closed under <J>;

b. Li contains a subsystem, Ki; relative to <I> such that K and K( are

isomorphic.

We now seek an ordering relation for the set of extensions, Lit to $ of a

given set, K. It is with respect to this ordering relation that we require an

extension to be minimal. Let Li and L3 be extensions to <£ of K.

9.2 Definition. L, c L, if a correspondence exists such that:

a. Li is isomorphic to a subset of Lf,

b. Ki is isomorphic toKj.

We remark that the image of L, in L} need not be a subsystem relative

to $ of Lj for the relation of Definition 9.2 to hold. In fact, Definition 9.2

and also Theorem 9.3 will hold equally well if Lt and Lj are not required to

be extensions to $ of K, but merely closed under $ and containing a subset

isomorphic to K.

9.3 Theorem. The relation c of Definition 9.2 orders the set of extensions

to<S>ofK.

9.4 Definition. L0 is a minimal extension to <f> of K if L0 is a zero of the

ordered set of extensions to $ of K.

f Stone (23 and 24).
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If LQ and Lo are both zeros of the set of extensions to f> of K, then they

are equal. But the equality in this case means only that each is isomorphic

to a subset of the other under certain restrictions. We desire a stricter equal-

ity, namely, that L0 and Lo be isomorphic. This result is established by con-

sidering required elements.

9.5 Definition. An element of Li, an extension to $ of K, is required by

$ and K if it can be represented by a finite succession of operations of $ on

subsets of Ki.

From the definition it is clear that the set of elements required by <I> and K

depends only upon $ and K and not upon the particular extension, Li} under

consideration. Furthermore, each L{ contains the set of elements required

by <f> and K. The representation of required elements in terms of <3? and K

and the ordering relation of K impose certain restrictions on their ordering.

Such restrictions we call required relations and define precisely in Definition

9.6.

9.6 Definition. The relation of a to b, elements of an extension to <f>

of K and required by $ and K, is required if either a c b or a <t 6 is implied by

their representation in terms of $ and K.

If the relation of a to ö is not required we say that it is optional. It is a

characteristic property of minimal extensions that whenever the relation of

a to b is optional then a c b. At the other extreme, we have free extensions

which are characterized by the property that if the relation of a to b is op-

tional then a <t b. For examples of required elements and relations let addition

and multiplication be in <J> and let a, b, and c be unrelated elements of K,

then a + b and ab are required elements and abca + b and a + b<tab are re-

quired relations. The relation of ab to ac is optional.

In each case which we consider we are able to find an extension in which

all the elements and relations are required. In fact, we are able to find a

unique representation for each element of each extension such that all the

relations are required by the unique representations and the given set. We call

such an extension a canonical extension.

9.7 Definition. An extension, L, to 4> of K is canonical if it consists

entirely of required elements and a unique representation can be assigned

to each of its formally different elements such that all the relations of L are

required by this representation and K.

It should be noted that the representation need be unique only for ele-

ments which differ in form. It may well be that some of the required relations

will introduce additional equalities.
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9.8 Theorem. If L is a canonical extension to 4> of K, then L is a minimal

extension to <3? of K.

Proof: Let L,- be any extension to 3> of K. Then Z,, contains all elements

required by <£ and K. In particular, P< contains elements with the representa-

tions assigned to elements of L. To each element of L let correspond the ele-

ment of Li with the same representation. Since all the relations of L are re-

quired, this 1-1 correspondence between L and a subset of Li is an isomor-

phism. Furthermore, under this correspondence, the subsets of L and Li

which correspond to K are isomorphic. Hence, L is a minimal extension to

$of K.

The proof of Theorem 9.8 goes through equally well if we do not demand

that Li be an extension to <P of K, but merely that Lt be closed under $ and

contain a subset isomorphic to K. Since the ordering relation for extensions

applies to this type of set too, we can assert that L is minimal with respect

to all sets closed under   and containing a subset isomorphic with K.

9.9 Lemma. If L is a canonical extension to $ of K, then any isomorphism

which carries L into L', a subset of itself, so that the image of K corresponds

to itself, element for element, carries each element of L into itself and L' is the

entire set L.

Proof: Since the image of K is preserved, element for element, and since

all the relations of L are required by the unique representations and K, each

element of L must correspond to itself.

9.10 Theorem. If L is a canonical extension to $ of K and L0 is a minimal

extension to <3? of K, then L and L0 are isomorphic.

Proof: Since L0 is a minimal extension to <£ of K, it is isomorphic to a sub-

set of i,and the images of K in L and L0 are also isomorphic under this corre-

spondence. Using this isomorphism between the images of K, an isomorphism

can be constructed between L and a subset of L0 by letting each element of L

correspond to the element of L0 with the same representation. Applying this

isomorphism from I to a subset of L0 and carrying this subset back into L

by the isomorphism from L0 to a subset of L, we have an isomorphism be-

tween L and a subset of L which preserves the image of K, element for ele-

ment. By Lemma 9.9, this subset of L must be the set L, itself. Thus every

element of L is the image of some element of L0 under the isomorphism from

La to a subset of L and the subset of L in question is the entire set L. Hence,

L and L0 are isomorphic.

The independence of a canonical extension from the particular steps by

which it is constructed is established by repeated applications of the following

theorem.
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9.11 Theorem. If Li is a canonical extension to of K; L,,-, a canonical

extension to <&, of Lt where is a subset of <!>, ; and K is a subsystem relative

to 3>, of Li. then L(j is a canonical extension to 4>j of K.

9.12 Theorem. If K is closed under then K is a canonical extension to <£

of itself.

In particular, it follows from either Theorem 9.11 or 9.12 that the iterated

application of a canonical extension yields nothing new. Thus a canonical ex-

tension has all the properties which we require.

It is not in general true that a canonical extension exists for arbitrary $

and K. For instance, a lattice, K, which is not distributive cannot be extended

to a distributive lattice, L, preserving both addition and multiplication, for

some a(b-\-c)9£ab-\-ac exists in K, while the preservation, in L, of this in-

equality denies the distributive law. On the other hand, if only the distribu-

tive sums and distributive products of K are preserved in L, then the exten-

sion is not uniquely defined. We find, however, that the problem has a unique

solution if all products, but only distributive sums, are preserved. Further-

more, the form of an extension may require that the given set be closed under

certain operations and it is natural to require that the extension be closed

under these operations, too. Hence, for an extension, we are given two suit-

ably chosen sets of operations, 0 and $, of which 0 is a subset of <p, and an

arbitrary ordered set, K, closed under 0. We are to construct a set, L, which

is a canonical extension to 3> of K.

Theorem 9.11 gives us the conditions under which canonical extensions

may be combined. We now seek the conditions under which canonical exten-

sions may be split up.

9.13 Theorem. If L is a canonical extension to <3? of K, where the only

restrictions on K are that it be an ordered set closed under 0, a specified subset

of <£, and <!>', a subset of contains 0, then the set V of elements of L required

by <E>' and K is a canonical extension to <£' of K, and K is a subsystem relative

to 3> of V.

Theorems 9.11 and 9.13 enable us to derive a large number of extensions

from the few which we actually give. It is our aim to give extensions which

may be used as a basis for all extensions possible under the operations which

we consider, in that all such extensions may be derived from the given ones.

We fall short of this goal in a few cases.

An ordered set is said to be given if its elements and ordering relation are

defined. The operations, which we consider, are determined by this informa-

tion. We assume that this determination can actually be carried out. In per-
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forming a sequence of extensions it is necessary to work out the internal

properties of each before proceeding to the next. An ordered set is said to

be constructed when its elements and ordering relation have been defined,

that is, it can be used as a given set for successive constructions.

The elements of an extension, L, to $ of a given set, K, closed under 0

are usually suitably restricted subsets of K, such that the ordering relation

of L can be defined in terms of the known properties of the elements of L

immediately involved. We shall characterize three types of extension by the

methods allowed in defining these subsets. The first type, an absolute exten-

sion, is algebraic in nature and is characterized by the fact that the elements

required by 3> and a subsystem of K relative to $ and closed under 0 can

be defined as subsets within the subsystem. Such an extension has the prop-

erty that the extension of a subsystem of K relative to <3? and closed under 0

is isomorphic with the corresponding subsystem of the extension of the entire

set. An absolute extension does not require the calculus of classes. The second

type, a relative extension, depends upon the calculus of classes, including the

theory of infinite sections, but does not involve the well ordering hypothesis.

That is, elements of L are classes of K where the classes of K are so defined

that the admission, or rejection, of an element to a class does not depend upon

the disposition of elements already considered. On the other hand, the sub-

sets of K by which the elements of L are represented involve the entire set K

in their definition and the property of absolute extensions with respect to

the invariance of subsystems need not hold. The third type of extension em-

ploys the well ordering hypothesis! in the definition of subclasses of K to

represent elements of L.

Each successive type of extension permits greater liberty in the definition

of classes or, to put it in another way, requires stronger assumptions as to

the existence of classes. Each type of extension includes its predecessors. In

order to get by with as few assumptions as possible, we give preference to an

absolute extension. If an absolute extension is not possible, we have recourse

to a relative extension. In no case do we require the well ordering hypothesis.

In a canonical extension it frequently happens that equal elements of L

can be represented by different subsets of K. If a uniquely defined member is

selected to represent each class of equal elements in L, then the extension has

been reduced to normal form. In other words, if the elements of an extension,

L, have been reduced to normal form, then elements are equal only if the

subsets of K by which they are represented are identical. A normal form is

found for each extension which follows. In each case the normal form is neces-

t Fraenkel (7) and Zermelo (27).
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sarily relative to the entire set K, even though the extension may be absolute.

Here again we have no recourse to the axiom of choice.

In the light of this discussion we now list the steps which are required

in the construction of a canonical extension. In each case we consider the

construction as de facto evidence that such an extension is possible. We then

take up the cases where an extension cannot be made and point out the cases

which have not, as yet, been solved. In presenting the extensions which fol-

low, we shall pass from step to step without comment, assuming that the

motives behind the various steps have been made sufficiently clear in this

section.

9.14 Construction. A canonical extension to 3> of K, where K is closed

under a subset, 0, of <!> has been constructed when the following steps have

been completed:

a. The elements of L have been defined;

b. The ordering relation of L has been defined;

c. The closure of L under * has been established;

d. An isomorphism has been established between K and a subset of L

such that the image of if is a subsystem of L relative to $>;

e. All operations not in f> relative to which the image of if is a subsystem

of L have been found; (Strictly speaking, this information is not needed for

the construction of a canonical extension, but it is needed in applying 9.11.)

f. A unique representation, required by $ and K has been assigned to

each element of L ;

g. All the relations of L have been shown to be required by K and the

unique representations of the elements of L;

h. The possibility of adjoining new operations to both 0 and 3> has been

investigated; (Strictly speaking, this is not necessary except to show the full

power of the method of extension under consideration. Theorem 9.13 shows

merely the possibility of adjoining operations of $ to 0.)

i. If the extension is relative, the impossibility of an absolute extension

has been shown;

j. A normal form has been found for the elements of L.

10. The adjunction of units. It has been shown in §4 that Postulates 1.1

and 1.2 for an ordered set do not imply Postulates 4.4 and 4.4* for units.

The adjunction of units may be done directly and presents no difficulty.

However, we make a precise statement of the construction in order to avoid

ambiguity in the sections which follow. We are given an ordered set, K,

closed under specified operations, but not satisfying Postulate 4.4. An ex-

tension, L, satisfying Postulate 4.4 is constructed as follows.
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10.1 Definition. The elements of L are the elements of if and an ele-

ment 0.

10.2 Definition, a c b in L if a and 6 are in if and a c ö in if and Oca

in L for every element, a, in L.

10.3 Theorem. L is an ordered set, closed under the operations for which

the closure of if is specified, and satisfies Postulate 4.4.

10.4 Theorem. If every element of if corresponds to itself in L, then all the

operations of §3 which can be performed in if are preserved in L.

10.5 Theorem. Every set, closed under the operations for which the closure

of if is specified, which satisfies Postulate 4.4 and has a subset isomorphic with if

has a subset of isomorphic with L.

It is clear that if if is a multiplicative system, a lattice, or a modular or

distributive lattice, then so is L. If if does not satisfy Postulate 4.4*, then a

unit I can be adjoined in an entirely analogous manner.

11. Imbedding an ordered set in a complete lattice. Given an arbitrary

ordered set, K, with units, we construct a canonical extension, L, of if to a

complete lattice. The assumption that if have units involves no loss of gen-

erality, for units can be adjoined to any ordered set by the method of §10.

The extension to a complete lattice is accomplished by means of a generaliza-

tion of the cuts used by Dedekindf to define irrational numbers. This method

has the advantage of preserving in form the essential dualism between sums

and products. A cut can be interpreted either as a sum or as a product. This

extension is necessarily relative.

11.1 Definition. A cut [A, B], of if consists of two sets, A and B, of

elements, a, and bj, of if which satisfy the following conditions:

a. a, c bj for every a,- in A and every bj in B,

b. aiCx for every a< in A implies x in B,

eye bj for every bj in B implies y in A.

The unit 0 of if is always in the initial set, A, of a cut and the unit I is

always in the final set, B, of a cut. By assuming that if has units we have

eliminated the possibility that either of the sets of a cut be void. Further-

more, if the two sets of a cut have elements in common, the common elements

are equal.

11.2 Definition. The section, \ A,\, of an aggregate of sets, A{, is the set

of elements common to every A{.

11.3 Lemma. If [A,, B{] is any set of cuts in K,Ais\Ai\ (Bis \B{\), and

t Dedekind (5).
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B (A) is the set of all elements bk (a,) such that a, c bkfor every a,- in A (bk in B),

then [A, B] is a cut.

Proof: [A, B] satisfies 11.1a and 11.1b by definition of B. Since [Ai, B(]

is a cut and A is a subset of A,, a,- c bik for every a, in A and every b,k in P,.

Therefore, B{ is a subset of B. Hence, y cbk for every bk in B implies y c bik

for every bik in P, and, since [Ai, Bi] is a cut, y is in A{. This holds for every

A,. Therefore, y is in A and [4,P] satisfies 11.1c.

We are now ready to construct the complete lattice extension, L, of the

given ordered set, K, with units.

11.4 Definition. The elements of L are the cuts in K.

11.5 Definition. [A, B] c [C, D] if every element of A is an element

of C.

11.6 Theorem. [4, B]c [C, D] if, and only if, every element of D is an

element of B.

Proof: Since D is a subset of B and [A, B] is a cut, a{ c d, for every a{ in A

and every d,- in 77. Hence, since [C, D] is a cut, 4 is a subset of C. On the

other hand, if D is not a subset of B, then a, <t i,- for some at and d,, and A is

not a subset of C.

11.7 Theorem. L is a complete lattice.

Proof: [4, P] c [C, 7)] and [C, 77] c [E, F] imply [4, B] c [£, P], for if

A is a subset of C and C, of E, then 4 is a subset of P. [A, B] c [A, B], ior

every element of 4 is an element of A. Given any set of cuts [Ai, B{] and, if

[A, B] is the cut defined in 11.3, then [A, B] =Y[[Ai} P,]. For, since every

element of A is an element of A{ for every Ai, [A, B]c [At, Bt] for every

[Ai, Bi] and, since any subset of every A{ is a subset of A, [X, F] c [Ai, P,]

for every [Ai, B{] implies [X, F] c [A, B]. Similarly, if [A, B] is the cut de-

fined in 11.3*, then [A,B]=zZ [At, Bi].

11.8 Lemma. If a is any element of K, A consists of all elements atca,

and A consists of all elements a c <fthen [A, A] is a cut.

11.9 Theorem. The correspondence a<—>[4,^4], where [A, A] is defined

as in 11.8, establishes an isomorphism between K and a subset of L which pre-

serves the relation c , units, sums, and products.

Proof: [A, Ä] c [B, B] if, and only if, a c b. For at c a c b implies a, c b

and at in B, for every a< in A. Conversely, if every a{ in A is in B; then, in

particular, a is in A; hence, in P; and a c 6. 0<—>[0, K] and I<—>[K, I], pre-

serving units. [B, B] =11 [4,-, Ai] if, and only if, 6 =LTa<- For * =IIfl; implies

bca{ and [P, P] c [A{, Z,]. If [X, F] c [4,-, Zt], then xf c a,-,    c b, and
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is in 73. Hence, [X, F] c [B, B]. Conversely, if [B, B]=Jl[A{, A{], then

oca, and xca, implies [X, X] c [A{, At], [X, X] c [73, 73], and xcb. An

analogous proof holds for sums.

11.10 Lemma. [A, 73]=TT[73„ B{] ([A, B]=zZ[A, j,]) andJl[Bit 73;]
(X! [4<, Ai]) is distributive.

11.11 Theorem. The correspondence a<—* [A, A] preserves modular and dis-

tributive sums and products, complements, and sum and product complements.

Proof: [73, B] =Y[ [Ai, Ai] is distributive if, and only if, 6 =IIa> is distrib-

utive. For, if [B, B] c [X, F], then [73, B] c [Y,-, 7t] and 6cy,-. Therefore,

since IJa< is distributive, y, =Uz3Jt where, for each zjk, a{ exists such that

0,-cz,*. But, since [X, F] =Y[[Yh F,], [X, Y] =TKl[Zjk, Zjk] and, for each
[Z]k, Zjk], [Ah Ai] exists such that [Ai, A{] c [Zjk, Zjk]. Therefore, JJ [A,-, ~4,]

is distributive. Conversely, if [73, 7?]=TL[4;, Ai] is distributive and bcx,

then [73, B] c [X, X] and x can be distributed since [X, X] can. An analo-

gous proof holds for distributive sums. By a similar proof it can be shown that

[A, A ] [73, B] is modular with respect to [A, A ] if, and only if, ab is modular

with respect to a. In this case we have [A, Ä] [73, B] c [X, F] c [A, ~Ä].

Hence, by deleting fromJF[F3-, Yj] all factors such that [A, A] c [F,-, F,],

the proof goes through as before. An analogous proof holds for modular sums.

Complements are preserved, since sums, products, and units are. Let

a<—>[A, A] and a'<—>[A', A']. Then [A', A'] is the product complement of

[A, A] if, and only if, a' is the product complement of a. If a' is the product

complement of a, then aa'=0 and [A, A][A', A']=[0, K]. Furthermore,

if [A, Ä][X, F]=[0, K] then [A, Ä][X,, X]=[0, K], aXi = 0, XiCa', and

[Xi, X]c [A', T]. Since [X, F]=X[Xt-, X,] by 11.8*, [X, Y]c[A', 2']
follows. Hence, [A', A'] is the product complement of [A, A]. Con-

versely, if [A', A'] is the product complement of [A, A] and ax = 0, then

[A, J] [X, X] = [0, K], [X, X] c [A', A'],xc a', and a' is the product com-

plement of a.

From Lemma 11.10 we see that any cut [A, B] can be represented in

terms of 4> and K either as \\bi or XX'- We choose XX as the unique repre-

sentation of [A, 73 ].

11.12 Theorem. All the relations of L are required by K and the representa-

tion       of [A, 73 ].

Proof: If [A, 73] c [C, 77], then A is a subset of C and 27XC2TX- 11
XX cXc/> then dk in 77 implies c, c dt, Xc/c dk, XJa»' c A and aic #V There-

fore, dk is in 73, 77 is a subset of 73, and [A, 73] c [C, 77].

Since K is an arbitrary ordered set with units, modular and distributive
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lattices are eligible for extension by cuts. The question as to whether the ex-

tension by cuts of a modular or distributive lattice is itself a modular or dis-

tributive lattice has not yet been answered. The corresponding question for

Boolean algebras is answered by the next theorem.

11.13 Theorem. If K is a Boolean algebra, then the extension, L, by cuts

of K is a complete Boolean algebra.

Proof: Postulates 1.1 and 4.5 hold by Theorem 11.7. If [A, B] is a cut

and A' and B' consist of the complements of the elements of A and B, then

[73', A'] is a cut, the product complement of [A, B] and [A, B]<—>[B', A']

is a dual automorphism.

From Theorem 9.13 we find that the canonical extension of K to a multi-

plicative system is the subset of L consisting of the image of K and products

of finite numbers of these elements. The canonical extension of K to a com-

plete multiplicative system is the subset of L consisting of the image of K

and products of any number of these elements. The subset of L consisting

of the image of K and all sums and products of finite numbers of these ele-

ments is the canonical extension of K to a lattice. However, since a complete

multiplicative system with a unit I is a complete lattice, the canonical ex-

tension of TT to a complete multiplicative system is the entire set L.

11.14 Theorem. The extension to a complete lattice of an ordered set with

units is necessarily relative.

Proof: Consider the set of elements a, b, c, and d satisfying 1.2 and no

additional relations except dca and deb. In the entire set, ab = d^abc. In

the extension of the subset a, b, and c, ab = abc.

The elements of this extension are already in normal form.

12. Extension of a multiplicative system to a distributive lattice. The

next problem is the construction of a canonical extension, L, to a lattice with

completely distributive sums of an arbitrary multiplicative system with

units, K. To be precise, the operations © under which K is closed are units

and finite products. The operations $> under which L is to be closed are units,

finite products, and unrestricted distributive sums. As usual, subsets of K

are denoted by capital letters.

12.1 Definition. The elements of L are the subsets of K.

12.2 Definition. A c B if, for every aB- in A, a; =zZiai°i> where the sum is

taken over every 6,- in B, and zZiai°i is distributive.

12.3 Theorem. The relation c of Definition 12.2 orders the elements of L.

Proof: If AcB and BcC, then ai=zZiaibi for every at in A and
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bj =X Ac* for every b,- in 73. Substitute for each b,- in the first set of equations

its value as a sum from the second set of equations, then use the first set of

equations multiplied through by an element of C and distributed to eliminate

the elements of B. That is, ai=X;aA"=XE*aA^*=E*a<c*- Since XiaA"

and zZkbjCk are distributive, X*aA'c*> E,Eta^i£'i and X*aic* are distribu-

tive. Therefore, A c C. Clearly, Ac A. Hence, L is ordered by the relation c .

12.4 Theorem. L contains units, 0 and I, namely, the elements of L con-

sisting solely of the 0 or I of K.

12.5 Theorem. 73 =\\Ai for any finite set of elements A{ of L, if B is the

set of all products with one component from each A, as factors.

Proof: For each bk in B there exists some aih in each A{ such that bkaa = bk,

for each bk has a factor from each At. Therefore, =Xj°*a«7 and X)'°*a»'j

is distributive, since bk appears as a summand. This implies BcA{ for

every A{. If X cA( for every Ai, then xOT=XjXmaty and zZixman is distribu-

tive. Hence, xm=YL^ix™aii=zZx'^iai}=zZlkx<nbk and X^»»0* is distribu-

tive. This implies X c B. Therefore, 73 =114,-.

12.6 Theorem. 73=E-4i/or any set of elements Ai of L and X^t is dis-

tributive, if B is the set of all elements which are components of some A.

Proof: Since every component ai;- of every Ai is an element bk of 73,

ai,-=X*fl«7°* and zZkan°k is distributive, for at;- appears as a bk. This implies

A i c 73 for every AIf A ,• c X for every 4 *, then a,,- =Xm#ij#m and ^.ffijj;.

is distributive for every a,7 in every Ai. But every bk is an a*,-, hence,

bk =X™° A> and X>»& A> is distributive for every bk in B. This implies Z3 c X.

Therefore, 73 =X^,- X cY^,- implies xm=zZ,iHix™aa and that XX

distributive. It follows that #m = XEjX^'A0« and that X^X^X^m^*0«'/

is distributive. Hence XcX<X4j, but X<-^4,cX in any ordered set.

Therefore, X = Xi-^4t- and X^; is distributive.

Since L is closed under unrestricted sums and has a unit 0, it is a com-

plete lattice. That is, L is closed under unrestricted products. If if is a com-

plete multiplicative system and the multiplicative axiom is assumed, then

Theorem 12.5 holds for unrestricted products and we have a representation

of all products in terms of the components of their factors. However, we

make no use of this representation. Furthermore, by Lemma 7.6, every ele-

ment of L has a product complement.

12.7 Theorem. The correspondence a^>A, where A is the subset of K con-

sisting solely of the element a, is an isomorphism between K and a subset of L

such that units, finite products, and unrestricted distributive sums are preserved.
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Proof: acb implies a = ab which is trivially distributive. Hence, AcB,

where a<—>4 and o<—>73. Conversely, AcB implies a = ab and a c b. Units are

preserved, as shown in 12.4, and finite products are preserved, as shown in

12.5. Distributive sums are preserved, for, if a =Xa»15 distributive and a*—>A

and as—>Athen a{ c a and A , c A. If A, c X for every A,-, then a< =X">a«^m

and Xmfl.Xm is distributive. Adding and applying the distributive property

of /     a =z~lmaxm and X mCLdCrn is distributive. Therefore A cX and 4 .-.

12.8 Theorem. The isomorphism of Theorem 12.7 preserves unrestricted

products and product complements.

Proof: If a=IJaf, then acat and 4 ci;. If Xci,- for every At, then

for every xm and a,-. Multiplying, for every #m and XcA.

Therefore, 4 =[]>.• If a' is the product complement of a and a<—>4 and

a'*—>Ar, then AA' = 0. By Theorem 12.5, 4X = 0 implies axm = 0 for every xm

in X. Hence, ', and Ici'. Therefore, A' is the product

complement of A.

12.9 Theorem. The isomorphism of Theorem 12.7 does not preserve, in gen-

eral, sums which are not distributive or sum complements.

Proof: Consider Example [4.7, 4.10, 4.7]. This set is a multiplicative sys-

tem. When extended to a distributive lattice, neither a+c nor c*, of 4.10,

are preserved.

Complements are not necessarily preserved, since sums are not preserved,

in general. From Theorem 12.6, it follows that each element of L can be

represented as the distributive sum of its components. We choose this repre-

sentation. Thus an arbitrary element, X, of L is represented by XX«, where

/ ,^"rn is distributive.

12.10 Theorem. All the relations of L are required by K and the representa-

tion XX», where X       distributive, of X.

Proof: If c1Lyn, then, since x( cYJxm for every %t in X, cX^n and

Xi x/y \yn =Z~lnXiyn, by Theorem 6.3, and X^O*» is distributive, by Theorem

6.6. Hence, Xc F. If Xc F, then Xi=zZnXiyn = x^yn and x.-cXy,,. There-

fore, X*™CX)V

Since L is closed for unrestricted products and product complements and

the isomorphism of Theorem 12.7 preserves these operations, they may per-

fectly well be added to the set $> of operations to which K has been extended,

without any further changes. Since the isomorphism of Theorem 12.7 does

not, in general, preserve non-distributive sums and sum complements, these

operations may not be added to the set <£.
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If the finite subsets of K are taken as the elements of L, the canonical

extension of if to a distributive lattice is obtained.

This is an absolute extension.

We now seek a normal form for this extension. Although it is desirable

that a normal form preserve the finiteness of an element which has a finite

representation, in this case it is easy to construct examples to show that this

is not possible without the introduction of a finite descending chain condition

or some other type of well ordering. For example, let K be the set of proper

subsets of the positive integers where a c b if a is a subset of b. K does not

have a unit I. The extension, L, has a unit I which can be represented in

infinitely many ways as the sum of two or any finite number of elements of K,

but, lacking any form of the axiom of choice, we are unable to choose one

from among them. The normal form is obtained by selecting a subsystem of L

in which the converse of the following lemma is true.

12.11 Lemma. If A and B are in L and A is a subset of B, then A cB.

12.12 Definition. An element A of L is in normal form if x=52aix and

zZa'x distributive imply x in A.

L denotes the subset of L containing all the elements of L which are in

normal form. If an element is in L, it will be denoted with a bar as A. L, being

a subset of L, is ordered by the ordering relation of L.

12.13 Lemma. IfAc B, then A is a subset of B.

12.14 Theorem. A c B if, and only if, A is a subset of B.

12.15 Corollary. A = B if, and only if, A and B are identical.

12.16 Theorem. If A is in L and C consists of all elements cu such that

Ck=zZaick where \Zaic* is distributive, then C is in normal form and A=C.

Proof: If x=zZci--x and Xc*-X is distributive, then x=zZkZ~liaickX

=zZi/L,kaiCicx='22iaix and zZaix is distributive. Hence, C is in normal

form. Cci by definition of C and 12.2 and, since ö£=X;ai<z* where X»a»flt

is distributive, A is a subset of C and A cC by 12.11. Therefore, A = C.

The elements of L can be characterized as follows.

12.17 Definition. A subset, A, in K is an ideal in K, where K is any

partially ordered set, if a, in A and x c a( imply x in A and x = >.,■«.•,-. where

Z~Liaa is the distributive sum of a subset A, of A, implies x in A.

12.18 Theorem. If K is a multiplicative system with unit 0, then L is the

set of ideals in K.

Proof: If A is an ideal, then x ="%2aix and         distributive imply x in A,
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since, for each a{, atx c a,. Hence, A is in L. If A is in L, then * c a, implies

x =~52aix> where XX^ is distributive, and x =XJj'a»'j> where zZian is distribu-

tive and At is a subset of A, implies x=XX# and XX* distributive. Hence,

A is an ideal.

The term ideal has been used because, if A is an ideal in K, then the

product of any element in A with any element in K, if it exists in K, is in A

and the sum, interpreted as distributive sum, of any subset of A, if it exists

in K, is in A. The extension of any partially ordered set K, with unit 0, to a

lattice with completely distributive sums can be effected at once by letting L

be the set of ideals in K and defining A c B if A is a subset of B. The initial

set of a cut is an ideal. In fact, by Theorem 5.17, the sum, not necessarily

distributive, of any subset of the initial set of a cut, if it exists in K, is in the

initial set of the cut. However, cuts cannot be so characterized.

Extension by ideals is necessarily relative.

13. Extension of a distributive lattice to a Boolean algebra. We now con-

struct the canonical extension to a Boolean algebra of a distributive lattice

with units. The first step is to imbed the given distributive lattice, K, in a

multiplicative system, K', where the product complements of the image of K

exist and are isomorphic to K with respect to the dual relation. The second

step is the application to K' of the previously established extension to a dis-

tributive lattice of a multiplicative system. The resulting distributive lattice

is shown to be the sought for Boolean algebra.

13.1 Definition. The elements of K' are the ordered pairs, (a, ä), where

a and ä are arbitrary elements of K.

13.2 Definition, (a, a) c (b, h) if a c ä+b and ab c ä.

13.3 Theorem. The relation c of Definition 13.2 orders the elements of K'.

Proof: (a, ä) c (b, 5) and (b, B) c (c, c) imply a c ä+b, ab c ä, b c b~+c, and

bccb. Hence, a c ä+b c ä + b+c, a = a(ä+B+c) =aä+ab+ac cä+al+c

= ä+c, and ac = ac(ä+b) =aäc+abc caäc+ab caäc+ä = ä. Therefore,

(a, ä) c (c, c). (a, ä) c (a, ä), since a c ä+a and aä c ä.

13.4 Theorem. HXa,-, = dTflf, Xa<), ^/ITa< an& XX ex^st *n K an^
are distributive.

Proof: Ha,- c^äi+an and ö„IjX c d„ c^äi for every an and än. If

(x, x) c (an, än) for every dement in H(X, a<)> tnen xcx+an and xäncx.

Multiplying or adding and distributing we get x cTT/a+<!,•) =x4-IJa< and

aXX =zZxdi c x.

13.5 Corollary. K' is a multiplicative system.
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In general, sums do not exist in K', so a theorem for sums corresponding

to Theorem 13.4 for products must necessarily be much more restricted.

Theorem 13.6 is not the most general theorem possible, but it covers the

cases which we require.

13.6 Theorem. XXa»', *») = (Xa«'jLT*«') a»<7X(a«'> ä,) is distributive ifzZai
andY[di exist in K and are distributive and a,äj cak-\-äk whenever (a,-, <z,) and

(ak, äk) are summands 0/XXa«'> *»)•

Proof: Since a, cXa<+ä, anc« aLT*» c*j whenever (a,-, a,) is a summand

of XJ(a»> ai)> (ai> dj) c (^a,, LT*»)- If (ah d~j) c (x, x) for every summand of

XXa»> ai)> tnen ßjCäj+x and a;xcä,-. Hence, aj = ajäj+ajx c afijA-x c ak

c äi+x, XX c ä*+x, and XX CLL [*»+#] =LT*«+x. Similarly,
ajxc.afijxc[ak+äk]xc.akx+äkxcäk, \^2,ai\x=YJaix cäk, and [XX«']* CLT*»-

Therefore, (Xa»'> LT*») c (x> *) and (XX, LT*«) =X(a«', *»)• Furthermore,

by Theorems 6.6 and 6.6*, Xa«° and LT [ä» + 5] exist and are distributive and

üjäj c ak+äk implies ba^bA-dj] c bak + b + äk. Therefore, (öXX, 6+IL*»)

= (X^a»', IT [£+*«']) =XX^a«', 5+äi) andXX«», *«) is distributive.

13.7 Corollary. XXa«'> *»)= (XX> IT*»') tfzZai aw* LT*»' ö»*" ß*"«
distributive and if, for every two different summands (a,, a,) and (ak, äk) of

XXa»', *»), at least one of the relations a, c ak, a} c äk, <z,- c ak, or ä,- c äk holds.

13.8 Corollary. XJ(a»'> *) = (a, *) aw^XX0», ä) is distributive if a=XX
awd Xa« is distributive.

13.9 Corollary. XJ(a, dt) = (a, ä) and^ia, ä%) is distributive if ä=LL*.

and\\\äi is distributive.

13.10 Corollary, (a+ä, ä) = (a, ä) = (a, aa).

13.11 Corollary, (a, ä) + (ä, a) = (aA-ä, ää) and (a, ä)A-(ä, a) is dis-

tributive. In particular, if äcäca, then (a+ä, da) = (a, a).

13.12 Theorem. (0, 0) is a zero and (I, 0) is a one of K'.

Proof: 0cO+ß, OäcO, ocä + I, and aO c ä, where (a, ä) is any element of

TT.
It follows from Corollary 13.10 that we could have restricted the ele-

ments, (a, a), of K' to those ordered pairs of K elements which satisfy the

condition dca. We make use of this fact later in finding a normal representa-

tion of this extension.

13.13 Theorem. The correspondence a<—>(a, 0) is an isomorphism between

K and a subset of K' which preserves units, distributive sums, and complements.

Proof: a c b implies (a, 0) c (b,0) and conversely. 0<—>(0,0) and I<—►(!, 0).
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Distributive sums are preserved, by 13.8. If a and b are complementary in K

with respect to I and 0, then ao = 0 and a + b = I. Since if is a distributive lat-

tice, ab, a+b, and 04-0 are distributive. Hence, by 13.4, (a, 0)(6, 0) = {ab, 0)

= (0, 0), the zero of K' and, by 13.8, (a, 0) + (b, 0) = (a + b,0) = (I, 0) the one

of if'.

13.14 Theorem. The correspondence a*—*(a, 0) preserves distributive prod-

ucts in K as products in K'.

Proof: If a=TJat and IJa» is distributive, then, by 13.4, since 2^0=0 iS

distributive, LT (a.-, 0) = (a, 0).

The images in K' of distributive products in K are not, in general, dis-

tributive. Sum and product complements in K are not, in general, preserved

in K'.

13.15 Theorem. (I, a) and (a, 0) are mutually complementary with respect

to I and 0, and each is the product complement of the other.

Proof: (I, a){a, 0)=(a, a) = (0, 0). By 13.11, (I, a) + (a, 0) = (I, 0). If

(a, 0)(y, ;y) = (0, 0), then aycy implying (y, y) c (I, a), and if (I, a)(z, z)

= (0, 0), then z c a-fz implying (z, z) c (a, 0).

13.16 Theorem. The correspondence (a, 0)<—>(I, o) is an isomorphism be-

tween the image of K and its product complements ordered by the dual relation.

Proof: acb is necessary and sufficient for both (a, 0) c (ö, 0) and

(I,6)c(I, a).

Since (o, ä) = (a, 0)(I, a), any element, (a, ä), in K' can be represented

in terms of K, products, and product complements as ad', where ä' is the

product complement of ä. We choose this as the unique representation of the

elements of K' in terms of K and the operations of a Boolean algebra. We

recollect that in a Boolean algebra complements are identified with product

complements and any element is equal to the product complement of its

product complement.

13.17 Theorem. All the relations of K' are required by K and the represen-

tation ad' of (a, ä).

Proof: If ad' ebb', then, multiplying through by b' and by b, ad'b'' = 0

and aä'b=0. These conditions imply aeä+b and abed, by 7.13, 7.16, and

7.30. Hence, (a, ä) c (6, b). If (a, a) c(b, b), then aeä + b, abcä, ad'b' = 0,

ad'b = 0, ad' c b, ad' cb', and aä' c bb'.

We have shown that every Boolean algebra with a subset isomorphic with

K has a subset isomorphic with K'. Since K' is not necessarily closed with

respect to product complements, it is not, in general, a Boolean algebra. Let
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L be the canonical extension of K' to a distributive lattice. Then the ele-

ments of L can be represented as distributive sums of finite subsets of K',

and L satisfies Postulates 1.1 and 4.1 of the postulates for a Boolean algebra.

Furthermore, since a Boolean algebra is a distributive lattice, every Boolean

algebra with a subset isomorphic with K has a subset isomorphic with L.

In particular, if L is a Boolean algebra, then it is the sought for extension

of jr.

13.18 Theorem. L, the canonical extension to a distributive lattice of K',

is a Boolean algebra.

Proof: Postulates 1.1 and 4.1 hold in L. Since the extension from K' to L

preserves distributive sums and products, 13.11 and 13.15 imply that (a, 0)

and (I, a) are mutually complementary with respect to I and 0 in L even

though the extension from K' to L need not, in general, preserve comple-

ments. Since (a, d) = (a, 0)(I, a), (a, d) has a complement in L, by 7.32 re-

membering that all finite products in L are distributive. Again applying 7.32,

all finite sums, X(a<, *»)> have complements in L. But these sums include

all of L. By 7.30, each of two complementary elements in L is the product

complement of the other. Hence, each element of L has a product complement

and, applying 3.20, 7.3 holds. Therefore, L is a Boolean algebra.

The extension from K to L is absolute.

Applying Theorem 11.13, L can be extended by cuts to a complete

Boolean algebra. This can also be done directly by extending K' to a lat-

tice with completely distributive sums. Both these extensions are canonical

and are, therefore, isomorphic. The first of these methods is a relative ex-

tension, the second, absolute. We can now state the following general theo-

rem.

13.19 Theorem. Any ordered set, K, can be extended by a canonical ex-

tension to a complete Boolean algebra, L, so as to preserve units, finite products

and unrestricted distributive sums.

Theorem 13.19 is not a complete statement of the results of the extensions

which we have considered, for further restrictions on K or fewer restrictions

on L may make it possible to preserve in L more of the properties of K. To

to ascertain this, it is necessary to refer to the operations preserved by each

extension, separately.

We now seek a normal form for the extension from a distributive lattice,

K, to a Boolean algebra, L. That is, the elements zZ(ah *») of L can be' di-

vided into mutually exclusive and jointly exhaustive classes of equal ele-

ments, and we propose to select a unique representative from each of these
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classes. Since the elements of L are finite sums of elements of K', we may

use the integers from 0 to n as subscripts for an element of w+1 terms. We

first show that the subset, L, of elements zZi=0(ai> *»') 01 which satisfy the

conditions a, cdkcak for k <j is an extension of if to a Boolean algebra and

must, therefore, contain elements from each class of equal elements in L.

Elements of L will be denoted with a minus sign, zZi=0(ai~*<)• This is in

keeping with the fact that elements of L may be considered as the symmetric

difference of the elements of K involved. Abstractly, the elements of L| are

the set of all finite descending sequences of K elements with an even number

of terms.

13.20 Theorem. If IXoO — O is in L, then X"=0 (äi-i — where

ä_i = I and an+i = 0, is in L and zZi=Q(a>— *>) and Z1=0 (*>-i— a<) are mutually

complementary in L.

Proof: X"_0(fl« — ä«)+X"^o(*»-i—a<) = (I — 0)> by repeated application of

13.11.

r   n -II- n+1 -1 n n+1

zZ (a< — äi)\\ zZ        — «>)   = Z) X («.äj-i, ä,- + a,-) = (0 — 0),
L i=0 J L i=0 J i=0 )'=0

since af 7,_] cäi+a,- for all values of i andj.

13.21 Theorem. 7/ Z"=0(ffli — *»•)  and S-        5/) are *w A

Za=o (c* —wÄere c* =Z*=0a»°*-i ^ c4 = Z,=0(öiö*-» + a^*-<), *s *w L ana^

E^0(«.-^]E,lo(^-^)]=2II!.o(c*_^-

Proof: c* et;*, for äi0i_s- c and a^i-,- catöi_i. c,cck if ß </, for

aibj^i c aibk-i c äibk-i+aihk-i. Hence X(c*— Y) is in 7- Furthermore,

a: /     k k v

X (o.j&*_i, 5< + 5*_0 = ( X LT [äi + &*-<] ) = (c* — ck),   by 13.7,
i=0 \ i—0 t'=0 /

k k

since c äj-f-i*-,- for i     and by 13.10, since El_oaA-»]L[f=o +

Hence,

tn —1 r~    m                                          71      m m+n

X (ßi - «i)      X (*» — *i)   = EE (a>°)> *< + = zZ (ck — Ck).
i=0                    J L )'=0                    J         i=0 )'=0 k=0

We remark that if Z"=0(a'' — *»') *s represented symbolically as the

ordered pair of polynomials (A—A), where A =a0xn+aixn~1+ ■ ■ ■ -fa" and

A =ä0xn + äixn~1+ ■ ■ ■ +dn, then, using the usual laws for the addition and

multiplication of polynomials, (A - J)(B-B) = (AB- [ÄB+AB]). This

f Hausdorff (11), p. 78 defines L in this way for the case where the elements of K are subsets of

a set of points.
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symbolic formula is given merely as an aid to carrying out multiplications

in L.

By Theorem 7.30, we know that complements and product complements

are identified in L. Hence, since L is a subsystem of the Boolean algebra L

and is closed under finite multiplication and product complementation, it is

a Boolean algebra. Since a<—>(a — 0), the image of if is in L, L is a canonical

extension of if to a Boolean algebra, and L is isomorphic to L. It is easy to

show directly that each element of L is equal to an element of Z. For each

element of K' this is true by 13.10. Hence,

E (a;, di) = E (a,-, ß(äf) =    FJ [(1 — a;) + (didi — 0)] ,
i=0 i=0 L i=0 J

where the latter expression can be reduced to the required form by 13.20

and 13.21. We next make a direct attack on the ordering relation in L and Z.

13.22 Lemma. E"=0(a<' = ^ *f> ano^ *f> ai c *i/or * "=0, • • • ,«.

Proof: If diCäi, then (a,-, ä;) = (0, 0) and E"=0(a,'> *<)=(0) 0). If

E"=0(ai>     = (0, 0), then (a,-, ä.) c (0, 0) and a; c d{.

13.23 Theorem. E"=0(ai> *0 CE™ 0(°» *j) z/> awa" ow^y ff> a<Il% c öt+E^j

for i=0, • • • , n and for all combinations of the indices j = 0, • • • , m such that

each index occurs either in b} or in b, but not in both, and YL^i = I if no index

occurs on the left and E^' = 0 if no index occurs on the right.

/roof: By 7.27, E"=0<X, «<) CZ*L0(^, h) if, and only if, «<)]
U^,0(I, 6,) + (oy, 0) ] = (0, 0). Distributing this product,

I" E («<>      fl [(I, 6/) + («* 0)] = E («ill    * + E ,
L ;=o J j'=o

where the sum is taken over i from 0 to n and over all combinations of j as

specified in the statement of the theorem. Applying 13.22, E(aH^u *i+E°j)

= (0, 0) if, and only if, ö,H5j c äi+E°» for the combinations of indices speci-

fied.

13.24 Corollaey. E"=0(a» —*«) cE310(°j — W z7*» */»
Ei=0«<*a-<-i cIj=0(«iiii-i-i+<JjJi-i) /or £ = 0, 1, • • • , m+n+l.

13.25 Corollary. E"=(/a<~ CE™=0(^/—&/) z/, «wd o«7y i/, a<5,-i

c di-\-bjfor i = 0, ■ ■ ■ , n andj = 0, ■ ■ ■ , m\\.

13.26 Corollary. E"=0(a*'> CE310^» z7> aw<^ 7~or any iwo

elements x and y of K,xcy whenever x c a,-, #4 cy/or sorwe subscript i and either

x c   or 6j c y/or euery subscript j.
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Corollary 13.26 is in a form which extends immediately to infinite sums

as it depends only on the ordering of K, whereas Theorem 13.23 depends on

sums and products in K which might not exist in the infinite case.

13.27 Theorem. Et-=0(a»'> di) = (a, *)> where a=X,=0ß> ana^ *=IX=o^''

if, and only if, for any two elements x and y of K, x cy whenever xca, dcy

and either x c ät or a(c y for each subscript i.

If Ea«' andTJä, exist and are distributive, Theorem 13.27 can be general-

ized at once to the infinite case yielding both necessary and sufficient condi-

tions for the validity of the addition formula of Theorem 13.6.

If we define the degree of Ei==0(a<> as w> then the degree of E,.=0(a», «•■)]'

is 2n+1 —1, that of XJt._0(a;, *») + Hj=0(bj, b~i) is m + n + l, that of

Ei=0(a*> di)][zZ ._0(bj, b,)] is (w-r-l)(w + l) — 1, and the number of condi-

tions required to establish E,-_0(a<> <*d cZ,_0(°j> ^j) is (« + l)2m+1, assuming

no reductions are made. However, in L, the degree of [zZi=0(ai~*«') ]' is only

n + \, that of [V,. 0(a« — äj) ] [zZ]=0(.b, — bj) ] is m+n, and the number of condi-

tions required to establish X)i=0(a>' — c zZij=0(bj—b,) is m+n + 2, though it

is frequently easier, in practice, to apply the (n+\)(m+2) conditions of

Corollary 13.25. We now agree to make the following elementary reductions in

the degree of z~Zi=0(ai~whenever possible. Whenever YJ,_0(^t—ös) = (0,0),

by Lemma 13.22, it will be written (0, 0). Whenever 2f_0(a< —*<) ̂  (0, 0),

(at — a,) is omitted if a{ = di as, in this case, (a, — di) = (0, 0) and (a; — a,-)

+ (ai+i — di+1) is written (a,- — di+i) if äi = ai+1, applying Corollary 13.11. The

order in which these latter two reductions are applied does not effect the

final result which is to strengthen the relations on the a's to ai<äy<a,- for

j<k. When these reductions have been performed, it follows that the degree

of zZi=0(ai~di) +zZ1=0(bi — ti) is not greater than m+n + 1 and that for every

element of L an equal element can be found in L of equal or lower degree.

Hence the apparent advantages of operating in L, derived from considera-

tions of degree, are real. We remark that the elementary reductions in L are

so called because they are the only reductions which are obtainable from the

application of the operations and ordering relation of K upon the elements a,-

and di. In the reduction so far we have preserved the absolute character of

the extension, the final step is necessarily relative to the entire set, K.

To continue with the reduction to normal form, we must assume that K

has completely distributive products. This involves no real loss in generality,

since any distributive lattice may be so extended by the dual of the extension

from a multiplicative system to a lattice with completely distributive sums

and this extension can be put in normal form. As a preliminary to finding a

normal form we discuss the theory of minimal covers.
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13.28 Definition. An element, c, of if is a minimal cover of ]C"=0(ö> — *«)

in L if Hi=0(ai~äi) c (c—0) and if zZi=0(ai~di) c (# —0) implies cci

13.29 Theorem. //c a«d a* are minimal covers o/S,_o(a<—**')'       c = d.

13.30 Theorem. 7/ ZL0(a.-a,) is i« L, /Aew c, the minimal cover of

2^s._0(af — a<), exists in K.

Proof: Let c=TJx,- where the product is taken over all elements in K

such that XJ,_0(a» — di) c (x, — 0). Since YLxi is distributive, it is preserved, by

13.14, in K' and hence in L and L. Therefore, zZi=0(ai~di) c (e—0). Also,

Yji=0(ai —ä.) c (x—0) implies cci, for every such # is an x,-. The set x,- is not

void, for I is an */.

13.31 Theorem. If c is the minimal cover of ]C"_0(a»—*<)> then cca0.

Proof: Z)"_0(ai-*<) c («o-0).

13.32 Theorem. If c is the minimal cover of S"=0(a< — di), d /Äe minimal

cover ofzZ.^bj—Bj), and zZi=0(ai~di) cX! /Aew ccd.

Proof: ZL(«.-*.) c (d-0).

13.33 Corollary. 77X"=0(ai' — **') =2DJ1„(°/—^»')> then c = d.

13.34 Corollary, c+d w ̂ e minimal cover of X)"_0(a<—ä<) +2™.0(^'— •

13.35 Corollary, feed, where f is the minimal cover of E"_n(ö'—*«')]

Thus the correspondence zZi=Jßi—*;) from L to TT is a homomorphism

which preserves sums but not, in general, products.

13.36 Definition. zZPk=0(ck — ck) is the normal form of Xll"=o(ai'—*»')

5^(0—0) if ck is the minimal cover of zZi=k{ck-\ai — c*_iä,), ck is the minimal

cover of zZi=k(ckdi — ckai+y), and ^> is the greatest subscript for which cp^0.

(0—0) is the normal form of zero.

13.37 Theorem. 2^^_0(c& — £*) is    L and p^n.

Proof: By 13.31, ck c ck-\ak c c*_i and    c c^a* c ck. Also        for cn+1 =0.

13.38 Lemma. 7/ Xt"=*(^-ia>"~ ̂ t-iä,-) = zZ™_k{ck-\b,— Ck-iBj), then

H,i=k(ckdi -ckai+1) -J^^AfiJbi-ckbm).

Proof: By 13.33, c* is the minimal cover of both sides of the hypothesis.

Also, ckcck-\ and ckak = ckbk = ck. Taking complements multiplying through

by (c* — 0) on both sides, the first term on each side drops out, and the con-

clusion remains.



458 h. m. macneille [November

13.39 Lemma. IfzZ"=k(ckdi—ckai+1)=zZj=k(ckbj — ckbj+i), then

z2i.m(Z**i - Ckäi) =zZj=k+1(5kb> - Skb,).

Proof: The proof is analogous to that of 13.38.

13.40 Theorem. If X^=0(c* — c*) is the normal form of 2~Z"=o(a*' — **)>

2^4=o(**—*s ^e normal form of EH(^_*i)i 2^"=0(fl«'—5<)

= X™,0(*/ —     ^en ck = dk, ck=dk, and p = g.

Proof: The proof is by induction. Since 2Dj_0(a*' — *•') =zZ™=0Q>j~ h)>

co = do and the hypothesis of 13.38 is satisfied for k = 0. Hence, the conclusion

of 13.38 for £=0, which is in turn the hypothesis, for £ = 0, of 13.39, is ful-

filled. In general, if for any value of k, ck-\ = dk-\ and the hypothesis of 13.38

holds, then ck = dk and the hypothesis of 13.39 holds for k. In an analogous

manner, if for any value of k, ck = dk and the hypothesis of 13.39 holds, then

ck = dk and the hypothesis of 13.38 holds for k + 1. Since cp^0 and cp+i = 0,

dp^O and dp+i=0. Hence, p = q.

13.41. Corollary. If Xfc=0(c* — £*) and zZ"k=ü{dk—dk) are normal forms

ofzZi=Q(ai — di), then ck = dk, ck = dk, and p = g.

13.42 Lemma. Let~J2P._0(cj — Cj) be the normal form of' 2E"=0(at' —*<) and de-

fine expressions A(k) and B(k) as follows:
[» —\f k n

zZ («i — äi)   = zZ (c")'-i — ci) + zZ (ckäi — ckai+1),
i—0 J j=0 i=k

n k n

B(k) zZ («i — äi) = zZ (ci — si) + 1Z fea< — Mi) •

Then A(k) implies B(k) and B(k) implies A(k + l).

Proof: By 13.36, zZ^i=k(Ckäi~c*a;+i) =S"_^(ct*i — ckai+1). Substituting

this in A(k) and taking the complement, since ckdk = Ck, B(k) results. Simi-

larly, since zZi^k+S£kCli~Skä^ = Si=4+1(c*+ia< — Ck+idi) and ck+xak+\ = Ck+\,

A (&4-1) results from substituting and taking the complement.

13.43 Theorem. If zZ"- 0(ci~^i) ^s the normal form of 2E"_0(a< —*<), then
zZ%(cj-c,) =zZni=0(ai-di)-

Proof: Since 2D"=0(a< —*») =2Dj=0(c°a'' — c°*0 and c0ao = Co, by substituting

and taking the complement A (0) is established. B(p) follows from this by in-

duction employing 13.42. But zZi=p+i(c~pai — cpä,) = zZi=p+1(cp+iai~ Cp+idi)

= (0—0), since ^1=0. Hence, B(p) reduces to the required result.

In each class of equal elements in L there must be at least one element of

degree not greater than that of any other element in the class. The normal

form of this element falls within the class by Theorem 13.43, hence cannot be
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of lower degree than the element of least degree. However, by Theorem 13.37,

its degree cannot be greater. Furthermore, each class of equal elements has

but one normal form, by Theorem 13.40. Hence, we conclude that the degree

of an element in normal form is not greater than the degree of any equal ele-

ment. This implies that no elementary reductions can be performed on a

normal form.

In general, there is no upper bound for the degrees of elements in normal

form in L. Consider Example [4.11, 4.7]. After elementary reductions have

been made, each element is in normal form and such elements of any degree

can be constructed.

Since the reduction of L to normal form also reduces K' to normal form,

either of the methods of extending TT to a complete Boolean algebra can be

put into normal form by using the normal forms of the component extensions

employed.

If the given distributive lattice, K, does not contain a unit I, then the

extension to L, with trivial changes, yields a Boolean ring. However, the de-

pendence of the extension upon the unit 0 is essential.
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