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INTRODUCTION 

The famous lemma of H. A. Schwarz is doubtless one of the basic theo-
rems in the theory of analytic functions. In this paper I propose to study the 
lemma from a topological point of view. The results have been announced, 
without proof, in a previous note. t Several changes, corrections, and addi-
tions have been made; I use the opportunity to state here my indebtedness 
to D. W. Hall for his inspiring interest and helpful criticism. 

The theory to be presented is a by-product of a more comprehensive 
treatment of conformal mappingst which will be communicated elsewhere. 

Like the theories of Kerekjart6§ and Stoilowll our investigations are made 
with a direct view to the characterization of conformal mappings. Yet both 
authors deal with the conformal mappings individually, whereas we aim more 
at the characterization of the system of all conformal mappings of a Riemann 
surface S in itself. As an equivalent to this simplification of the problem we 
attempt to keep the space S general as long as possible, whereas usually S 
is supposed to be locally plane from the outset. 

The theory of Schwarz' lemma has been separated from the rest because 
of its independence and also because it seems to be of value for the study of 
the hardest characterization problem, the problem of Brouwer. 

The present paper is divided into three parts. Part I is of a rather general 
nature and can be read without any topological preparation. For the other 
parts a certain familiarity with topological notions and theorems is necessary. 
Parts I and II together lead up to a theorem which is formally identical with 
the Schwarz lemma. In III, particularly in §8, we show that this formal 
identity is material identity; in §9 we derive, with the aid of the geometric 
theorems from II some interesting topological features of the underlying 
space. 

* Presented to the Society, February 25, 1939; received by the editors September 9, 1938. 
t Sur Ie lemme de Schwarz, Comptes Rendus de I' Academie des Sciences, vol. 206, p. 725. 
t Cf. Topological studies in the theory of analytic functions, Bulletin of the American Mathemat-

ical Society, ,!bstract 43-11-415. 
§ Cf. B. de Kerekjart6, Sur la structure des transformations topologiques ... , Enseignement 

Mathematique, vol. 35 (1936), p. 297. 
II Stoilow, Le~ons sur les Principes Topologiqlles de la Theorie des Fonctions A nalytiques, Paris, 

1938. 
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Notations. We use only italic letters; consequently, concepts of different

logical types are of ten denoted by letters of the same alphabet: di} i, mi, n, a

are indices, d, i and m, n natural numbers, a is arbitrary; e, p, q, r, s, x, y, z,

are points (most of them in S) ; S, A, C, E, K, L, 0, Ux, Vy denote sets of

points, usually contained in S; F, F*, F', G, Hi, P{, R, Rp, R{, i?(l) are trans-

formations, usually continuous single-valued mappings of 5 in itself ; N is a

family of transformations; in general the transformations F, and so on, will

belong to N.

If all Xi are in a set such as C, we call xt a sequence from C. A "subse-

quence" of a sequence, say xit is formed by choosing an increasing sequence

(in+i>in) of indices; it is convenient to denote the new sequence by as/ ; a

subsequence of the subsequence would be written as".

Theorems and definitions are numbered together; a definition is indicated

by brackets, a theorem by parentheses.

Part I

1. Continuous transformations. We make the following definition :

[1.1 ] S is a lopological space which we assume to be metrizable. The metric

of the space does not occur explicitly, but we shall have to use limit relations like

lim xn = x, functions like the closure A, the boundary Bd(A), the frontier Fr(v4),

and properties like open, closed, connected, locally connected; the terms compact,

limited are defined explicitly for obvious reasons.

In Part I, however, we do not need all the consequences of the metriza-

ability; it is sufficient to assume that S is an Z*-space as defined, for example,

in KuratowskPs book on topology, f

[1.1.1 ] 5 is an L*-space if convergence of sequences is defined and satisfies

the following conditions :

I. If lim xn = x, then lim xñ = x.

II. If Xn = x, then lim xn = x.

III. If for every subsequence xn' of xn a subsequence x" with lim x" =xcan

be found, then lim xn = x.

[1.2] A point x is a limit point of A if a sequence Xi from A exists such that

lim Xi = x. A point x is a limit point of a sequence Xi if a subsequence x¡ with

lim as/ = x exists.

If every sequence x( from A has at least one limit point, then A is called

"limited."

A is "compact" if every sequence from A has a limit point in A.

f C. Kuratowski, Topologie I, Warsaw, 1933, pp. 76-77; cf. also the literature mentioned there.
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In the sequel we shall be concerned mostly with a family N of single-

valued, continuous transformations F, G, Hi, I, P, R, ■■ ■ . The domain (of

definition) is always S, the range (of values) F(S) is a subset of S. The natural

definition of continuity in Z,*-spaces is the following :

[1.3] £ is continuous if lim x„ = x implies lim £(xn) =£(x).

Convergent sequences of (continuous) functions £ will occur rather often;

it seems that the type of convergence which has been introduced as "con-

tinuous convergence"! is the most appropriate one for the abstract theory of

conformai mappings.

[1.4] A sequence of transformations Fn is said to converge towards F, that is,

lim £n = F, if lim xn = x implies lim £„(x„) = £(x).

Obviously this implies lim £„(x) =£(x); but the converse is not true.

By virtue of the definition [1.4] any set of continuous mappings £ forms

an £*-space. We shall have to use the corresponding property III in our

proofs; hence we state explicitly the following theorem:

(1.4.1) If every subsequence F „' contains a subsequence F" withliraFn' =F,

then]im.F„ = F.

Indeed, let lim x„ = x, and consider the sequence of points £„(x„). From

every subsequence £„'(xn') we can select £„"(x„") such that lim £„"(xn")

=£(x). Consequently, lim £„(x„) =£(x), which implies lim £„ = £.

[1.5] A sequence Fn is called "properly divergent" if for no point x the se-

quence £„(x) has a limit point.

We recall the usual notations and conventions about composition of func-

tions :

[1.6] The product H = FG of F and G (in this order) is defined by

H(x) =FG(x) =F(G(x)). The identity is the transformation I which leaves all

points invariant, I(x) = x. A function G is the inverse of F if GF = I;it may not

exist, but if it does, then it is unique and satisfies FG = I. Powers F" are defined

as usual; if the inverse exists, it is always written as F~l.

(1.7) If lim £„ = £ a«d lim Gn = G, then lim £„G„=FG.

This is an immediate consequence of the "continuity" of the convergence.

Let lim x„=x. It follows from lim Gn(xn) =G(x)  that lim Fn(G„(xn))

= £(lim G„(x„)) =F(G(x)) =£G(x).

(1.8) If lim £„ = £ awd lim £„-1 = G, then G = F~\

In other words, if the inverses Fn1 exist and converge towards a limit, then

t Cf. C. Carathéodory, Conformai Representation, Cambridge Tracts, no. 28.
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MmFñ1 = (lim is,)"1.

The proof is an algebraic consequence of (1.7), for GF = (lim ^„"^(lim F„)

= limFn-lFn = I.

(1.9) F is called nilpotent if a point p exists such that lim xn = x implies

limF"(x„) = p.

[1.10] The transformation which maps every point on the same point p is

called "constant" and denoted by P.

With this terminology we can say that F is nilpotent exactly if its powers

converge towards a constant.

(1.11) The point p is a fixed point of F, F(p) =p. It is also the only fixed

point of F.

Indeed, writing p in the form lim F"(p), we obtain F(p) =F(lim Fn(p))

= lim Fn+1(p) =lim F"(p) =p.

If, on the other hand, F(q) =q, the relations Fn(q) =q, lim Fn(q) =q, and

lim Fn(q) =p giveq = p.

2. The family A7'. In this section we introduce a group of definitions and

assumptions which describe abstractly some features of the analytic mappings

of the unit circle in itself.

[2.1 ] The family N is a set of transformations with the following properties:

I. Continuity. The elements of N are single-valued continuous transfor-

mations of S into itself, F(S) cS.

II. Composition, identity. The identity I is in N, and if F and G are in

N, then their product FG is in N.

III. Cancellation. // F, G, H are in N, and if F is not constant, then the

equality GF = HF implies G = H.

IV. Normality. Every sequence Fn from N contains a subsequence Fn' which

is either properly divergent or else converges towards an element F of N.

If we want »S to be the unit circle of the complex number plane and N

the set of all analytic mappings F, F(S) cS, we speak of "the classical case."

In the classical case, I-IV are fulfilled; I—III are elementary, whereas IV

has perhaps a more advanced character and belongs to the theory of normal

families, f

From these assumptions alone we shall derive a topological version of the

Schwarz lemma. In Part II a geometrical formulation will be established on

f Cf. R. Montel, Sur les Familles Normales de Fondions Analytiques et leurs Applications, Paris,

Gauthier-Villars, 1927; cf. also Kerékjártó, loc. cit., p. 308; K. Szilárd, Untersuchungen ueber die

Grundlagen der Funktionenlheorie, Mathematische Zeitschrift, vol. 26, p. 653.
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the basis of further restrictions on S and N. Finally we show how the abstract

theorem yields the ordinary Schwarz lemma in the classical case.

The geometry in S will be provided by those elements of N which have

an inverse in N. In particular, the analogue of the ordinary rotations is of use.

[2.2] A transformation R is called a rotation if

(a) R is in N;

(b) the inverse 2?_1 exists ;

(c) R-1 is in N;

(d) R has a fixed point p.

We shall also say that 2? is a rotation "about p" or "with center p" ; the

fixed point will often be indicated by the subscript p: RPip) =p.

The point p, unless stated otherwise, may be considered fixed in advance.

In particular, it will be fixed for the following definitions of "rotatory," "in-

variant," "circumference."

(2.3)  The rotations about p form a group.

That means that RiR2 is a rotation, iRiR2)R3 = RiiR2R3), I is a rotation,

and Rr1 is a rotation satisfying Rr1Ri = RiRr1=I- (The proof is omitted.)

[2.4] If the set A contains its image R„iA) under every rotation, it is called

invariant. Since Rf1 is also a rotation, we might have said RPiA) = A.

[2.5] A set A is "rotatory" if for any two points q, r in A, there exists a

rotation Rp such that RPiq) =r.

[2.6] A set which contains a point q is called a circumference Lq if it is in-

variant and rotatory.

If necessary, we say "circumference through a with center p."

This definition is justified by the fact that Lq consists of all points of the

form2?j,(<7).

The definitions and assumptions set forward in these two introductory

paragraphs enable us now to formulate and prove the first (topological) ver-

sion of Schwarz' lemma. The rotations will hereby play a quite important

role; we shall establish first some of their properties.

3. Rotations and circumferences. We make the following assertion:

(3.1) Let {Fa} be a subset of N, the index a ranging over an arbitrary set of

symbols. If for one single point p the set {Faip)} is limited, then for every point

x the set {£0(x)} is limited.

We derive this from the normality property IV in the following more gen-

eral form:
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(3.1.1) // {F„(p)} is limited, then every sequence Fai contains a subsequence

Fai' which converges towards an element of N.

Indeed, we only have to select a subsequence Fai> which is either conver-

gent or properly divergent. The second possibility cannot arise, since Fai'(p)

has at least one limit point. Consequently, any sequence Fai(x) has at least

the limit point lim Fai<(x). From the theorem (3.1) we shall generally use the

following special case :

(3.1.2) If Fi(p) =p, then Ft has a convergent subsequence F,!.

Two other consequences are the following :

(3.1.3) The circumferences Lq are limited.

(3.1.4) // the transformations Ft are in N, and if the sequence Fi converges

"pointwise" towards F, that is, for every x lim F((x) =F(x), then F is in N, and

the convergence

\\mFi = F

is continuous.

The theorem (3.1.3) is obvious since Lq consists of all points RP(q), and

Ep(p) =p. We shall afterwards show that Lq is even compact. The second

statement is based on (1.4.1), and we prove it in a more general form. We

do not need the generalization; it is inserted merely as the abstract back-

ground of the theorems of Stieltjes-Porter-Vitali-Blaschke.f

(3.1.5) Let A be such that F(x) =G(x) for all x in A implies that F = G in S,

in case F and G are in N. Suppose that for all x in A lim Fi(x) exists. Then

Fi(x) converges for all x in S, towards say F(x) ; F(x) is in N, and we have

UmFi = F.

Indeed, for every subsequence Fñ there exists a convergent subsequence

F„", with the limit F" contained in N but formally dependent on the subse-

quence Fñ'. Yet all these possible limit functions are identical on A; con-

sequently, they are identical throughout. That is sufficient (cf. (1.4.1)) for

the relation lim F< = F.

The foregoing theorems are now applied in the case of rotations (about p).

(3.2) Every sequence Rn of rotations contains a convergent subsequence; the

limit mapping is in N.

This is again a special case of (3.1.2). But we can make the following

stronger statement :

(3.3) The limit of a sequence R{ of rotations is again a rotation R.

f Cf. Bieberbach, Funktionentheorie, vol. 2, 1st edition, p. 158.
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Anticipating the result, we write lim Ri = R. Since Riip)=p implies

Rip)=p, and R is (cf. (3.2)) in N, we have only to prove that R has an

inverse in N.

Consider the sequence of rotations Rr1. There will be at least one con-

vergent subsequence £/_1, lim R¡~1 = G, where G is N. Since the limit of the

corresponding sequence Rl is R, (1.8) yields that G is the inverse 2?_1 of R.

(3.4) If lim Ri = R, then lim Rr^R'1.

Take any subsequence R/-1 of the sequence Rr1. The proof of the forego-

ing statement shows that we can select a convergent subsequence Rl'-1 which

converges towards 2?_1. On account of (1.4.1) this implies lim Rr1 = R~1.

These theorems may be condensed into the statement that the rotations

about p, under the continuous convergence, form a compact £*-group.

(3.5) The circumferences Lq are compact.

Let a< be a sequence from Lq; then by definition qi=Riiq). Selecting a con-

vergent subsequence R{ with the limit R' we see that the corresponding sub-

sequence ql =Rl (a) has the limit point R'iq), which is in Lq.

(3.6) If S has more than one point, then a rotation is not nilpotent.

4. Topological version of the lemma. The theorem (4.1) is, in the classi-

cal case, one of the numerous consequences of Schwarz' lemma. It expresses

as far as possible the tendency of a mapping £ which has a fixed point p but

is not a rotation, to move the points of 5 "nearer" p. Why we call it a topologi-

cal version of the classical lemma will be evident afterwards, when the appli-

cation to the classical case is made.

(4.1) A transformation F in N with the fixed point p is either a rotation

iabout p) or is nilpotent.

The proof is made in two steps, (4.2) and (4.3). We show first that £ is

already nilpotent if only one subsequence £n< of the sequence £n converges

towards the constant P. If then £ is not nilpotent, there must be a convergent

sequence Fmi with a nonconstant limit F* in N. It is shown in (4.3) that in

this case £ has an inverse £_1 in TV, which is more or less explicitly con-

structed as a limit of a sequence of powers of £.

All transformations occurring in this paragraph will be in ¿V, either by

assumption (as in the case of £) or because they are limits of mappings in N.

(4.2) If Fip) =p and if a sequence £"*', where «i+i>»¿, tends towards the

constant P, then F is nilpotent and Km £n = P.

It is sufficient to show that every sequence Fmi, mi+i >mi, contains a con-

vergent subsequence Fmí with the limit P.



8 MAX ZORN [July

We select two subsequences m¡, »/ such that

(a) a, = ni — mí is increasing, and

(b) the sequence Fdi is convergent with lim Fdi = F'.

Such a sequence exists; the first condition can be fulfilled because «,■ and

m¡ are strictly increasing; the second condition, because F(p) =p, Fn(p) =p.

The relations lim F"í=lim Fn' = P, lim Fd> = F' imply (cf. (1.7)) that

lim Fm' =lim Fn'iFd' = PF' = P.

We note that while the normality has been used freely, the cancellation

property has not yet appeared in the proofs.

(4.3) If F(p) =p and if a convergent sequence Fn •' with the nonconstant limit

F* exists, then F has an inverse in N.

The proof is somewhat similar to the preceding one, but F' is defined

slightly differently and the cancellation property III is essential.

We select again a subsequence »/ such that

(a) di = ni+i — n{ —1 is strictly increasing, and

(b) Fd< is convergent with lim Fdi = F'.

From these assumptions we derive the equality F*=F*F'F, for

]xmF»< = lim Fní+i = lim Fn'<Fd<F = (lim F».!+i)(lim Fd>)F.

Writing this in the form F*I = F*(F'F) and using the fact that F* is not a

constant, we obtain, by virtue of the cancellation law, F'F = I.

In F ' we have, therefore, the inverse of F, the existence of which was as-

serted in our theorem.

The principal theorem follows now as indicated before. If F(p) =p, then

Fn(p) =p shows that a convergent sequence Fni exists. If the limit is constant,

then (4.2) implies that F is nilpotent; if it is not, then (4.3) shows that F has

an inverse and consequently is a rotation (about p).

As an interesting corollary we obtain the following :

(4.4) A transformation with two different fixed points p and q is a rotation.

In the classical case one knows more : the rotation F is the identity. This

generalization suggests itself as an additional axiom, which (see the end of the

paper) permits a more precise description of S and N. In view of the theory

of Kerékjártó we call attention to the fact that instead of N we could have

studied the subsystem formed by powers of F and their limits.

Part II

5. New restrictions on 5 and N. From now on we shall use more freely the

topological terminology, indicated by the words open, neighborhood, closed;

closure A, boundary Bd(^4) of a set A ; connected, component, locally con-
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nected; separate, cut point; semi compact, locally compact, (perfectly) sepa-

rable, and metrizable.

The set AB is the common part and A -\-B the union of the two sets, and

5—A is the complement of A in S.

[5.1] S is now a metrizable space with the following additional properties:

I. S is connected and contains more than one point.

II. 5 is locally connected.

III. S has no cut points; that is, for all points x the set S — {x} is connected.

In Part II we shall use III generally for x = p, where p is arbitrary but

fixed.

Before we set down the restrictions on N we define the geometrical con-

cepts "circle" and "closed circle."

[5.2] The component of S — Lq which contains p is called the circle with

center p determined by q and is denoted by Cq.

In other words, the circle is the largest connected subset of the comple-

ment of the circumference Lq which contains p. If (and only if) a is identical

with p, then Cq is empty.

We note that this describes the interior of the circular area determined by

a circular curve in euclidean geometry, which has p as center and q on the

curve.

[5.2.1 ] The closure Cq of Cq, comprising Cq and all its limit points, is called

a closed circle.

The restrictions on N are now phrased as properties of circles and circum-

ferences.

[5.3] N is from now on a family of transformations which has not only the

properlies I-IV of [2.1] but the following :

V. Ifq^p, then Lq separates S; that is, S—Lq is not connected.

VI. The space S is not representable as a finite sum of circles (with possibly

different centers).^

These two axioms constitute very heavy restrictions on N, but in ex-

change we obtain a quite rich geometry (topologically speaking) for S.

6. Circles and circumferences. We can make the following assertion :

(6.1)  The circles Cq are open and connected.

t This property was not contained in the before mentioned note; my proof for the central theo-

rem, loc. cit. (II, 5), contained a mistake which was pointed out to me by Mr. Hall and which I was

not able to correct without a new assumption. The particular form of VI has been chosen since it is

also useful for the justification theorem (§8).
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If q =p, then Lq — \p), and S — Lq does not contain p. In this case we have

to interpret Cq as the empty set, which may be considered open and con-

nected.

If q^p, then p is in 5 — Lq, since R(q) =p implies q = R_1(p) =p.

Lq is closed (even compact); its complement S — Lq is consequently open.

Now S is locally connected; that is, in every neighborhood Ux (open set con-

taining as) there exists a neighborhood Vx which is connected.

It follows that a component (largest connected subset) of any open set

in a locally connected space is open; Cq is such a component, hence it is open;

it is connected by definition. If it is not empty, it contains p.

(6.2) The circles Cq and their boundaries Bd(C9) are invariant.

This is a consequence of the following group of statements :

(6.2.1) R(A+B)=R(A)+R(B);R(AB)=R(A)R(B);R(S-A) =S-R(A).

This holds for subsets A, B of S and for any (1-1) mapping of S on itself,

in particular, for a rotation.

(6.2.2) R(1)=R(A).

This holds at least for topological mappings (where R and R-1 are con-

tinuous).

(6.2.3) R(Bd(A))=Bd(R(A)).

The boundary, as the set of all points which are limit points of sequences

from A but not in A, can be written as

Bd(A) =~A - A.

(6.2.3) follows algebraically from this definition and the preceding identities.

(6.2.4) Any function of invariant sets A, B, C which is composed from sums,

products, complements, and closures is invariant.

For example the "frontier Fr(A) of A" is equal to R(Fr(A)) because by

definition

Fr(.4) = J(S - A),        R(AS - A) = £(J).R(S^4),

R(Ä) =^R(I) = A,        RiS^A) = R(S - A) = R(S) - R(A) = S - A.

Also

R(Bd(A)) = R(I - A) - R(2) - R(A) = ~R(Ä) - R(A) - Bd(R(A)).

In order to derive (6.2) we have only to go back to the definition of Cq.

The set Lq is invariant; hence S — Lq is invariant; a rotation R maps S — Lq
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topologically on itself, a connected subset on a connected subset, a largest

connected subset on a (possibly different) subset of the same character, and,

since R(p) =p, the component Cq of p on itself.

The boundary Bd(Cg) is invariant as a function of an invariant set; this

invariance we use now for the determination of Bd(Ca).

(6.3) The boundary Bd(C5) is exactly Lq, if q^p; if q=p it is, of course,

empty.

If q = p, then C3 = 0; hence Fr(C3) =Fr(0) =0. Hence we assume C^O.

Since q is in Lq, q is not in Cq and Cq is not equal to S.

The set Cq could not be closed, for an open and closed set in a connected

space S is either 0 or S. Hence there is a point which is limit point for Cq

but not in Cq; let r be such a boundary point. The point r cannot be in S — Lq,

for Cq is a component oiS — Lq; hence it contains all its limit points in S — Lq,

and it is "relatively closed" with respect to S — Lq. The point r, that is, any

boundary point of Cq, is therefore in Lq.

The boundary is not only a non-empty subset of Lq, it is also invariant.

Since 0 and Lq are the only invariant subsets of Lq, the boundary Cq is ex-

actly Lq.

The connectedness of S and C will be used so often in the proofs to come

that we deem it advisable to insert the following theorem :

(6.3.1) The connectedness of a space is equivalent to the following implica-

tions :

(a) If a set A is open and closed, it is either 0 or the whole space.

(b) If an open set A has no boundary, then it is 0 or the whole space.

(c) If one knows, for an open set A, that Bd(^4) c A, then A is 0 or the whole

space.

(d) The space is not the sum of two disjoint open proper subsets.

These statements are trivial consequences of the following definition:

[6.3.2] A space S is connected if A +B=S and A~B=0 imply that either A

or B is empty.

Since Yià(A) = A —A, we get from (6.3) the corollary:

(6.3.3) Cq = Cq+Lq, if p?*q.

For p = q this is not true since C„ = 0 ; but Cq c Cq+Lq is always true.

(6.3.4) Lq is also, for q^p, equal to the frontier Fr(C,).

We show that every point of Lq is a limit point of S— Cq. Since 5 — Cq is

invariant, we need this for one single point r of Lq.
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We know that Cq is an open and closed set with respect to S — Lq; its com-

plement in 5 — Lq is exactly (S—Lq)—Cq = S — (£,+Cq) = S — C„ ; such a com-

plement is also open and closed in S—Lq. Therefore S— C„ has no limit points

in Cq. It is not empty since, because of property V, S — Lq is not connected

whereas Cq is connected.

In S itself S— Cqis open ; it could not be closed because it is neither empty

nor equal to S. There must be a boundary point r, and this point is necessarily

on Lq.

We shall now have to derive a series of relations between different circles

and circumferences; it will be convenient to write Li, L2, Lit G, C2, G instead

of Lq„ Cqi, and so on; it is always understood that C,- is the circle determined

by Li.

(6.4) The product L,C2 is either empty or Lx.

For ZiG, as a product of invariant sets, is invariant; 0 and Li are the only

invariant subsets of La.

(6.4.1) Lx c Cy and xiCv are equivalent.

A non-trivial statement is the following:

(6.5) ZiG = 0 implies C2 c G-

We shall derive this by showing that the product CXC2 is equal to C2. If C2

is empty, then C2 c G is trivially true. If not, we shall see that GG is a non-

vanishing open and relatively closed subset of G; GG = G follows because

G, as a circle, is connected.

To this purpose we determine the relative boundary of GG in G, that is,

the set of all limit points of GG which are in G but not in GG; in other

terms, the product GBd(GG). Here and later we shall often use the follow-

ing formulas:

(6.5.1) Bd(¿ +B) c BdiA) +Bd(B) ; Bd(AB) c Bd(A) +Bd(B).

Now we have Bd(GG) c Bd(G) +Bd(G) <= Li-\-L2; consequently,

GBd(GG) c GLi + C2L2.

The set C2L2 is always empty, G cS — L2; C2£x is empty by assumption.

Hence C2Bd(GG) =0. Since GG, absolutely open, as a product of open sets

in S, is a fortiori relatively open in G, it is either empty or equal to C2. How

could GG be empty? Only if one of the factors is empty, for otherwise both

will contain the point p. The case that G is empty has been disposed of; if G

were empty, L\ = {p} would imply £iG = £i \*0, contrary to our assumption.

Property VI has not been used yet.
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(6.6) LiC2 = Li implies CicC2.

Considering (6.5) we see that it suffices to prove L2Ci = 0. The proof is

indirect and based on property VI.

Suppose that ¿¡¡G^O; then it is equal to L2 and L2cCi.

Now consider the (open) set G+G and in particular, its boundary

Bd(G+G). The relation

Bd(Ci + Ct) c Bd(Ci) + Bd(C2) c£, + L2

implies together with

Li c C2,        L2 c Ci,        Li + L2 c Ci + C2

the fact that the open set G+G contains its boundary. Hence it is equal

to 5 or to 0. Since Li is in C2, C2, and a fortiori G+G, are not empty, and in

this way we have derived from the assumption L2Ci^0 that the space S is

a sum of a finite number of circles S = Ci+C2. That is excluded by property

VI; hence ZoG^O is wrong, Z.2G = 0 is true, and that implies G cC¡, as we

know from the preceding theorem.

As an immediate formal consequence of (6.4), (6.5), and (6.6) we obtain

the next theorem:

(6.7) If Ci and C2 are two circles (as always with center p), then at least one

of the inclusions G c C2, G c G íí true.

The next theorem states the equivalence of several other inclusion rela-

tions, which we have to use later on:

(6.8) The following properties are equivalent:

(a) Lx c Cy (we know that this is equivalent to xz Cv).

(b) Cx c Cy, and Cy is not empty.

(c) Ly<zS—Cx, and if x = p then y?¿x.

(d) G4G-

We show that every one of these relations implies the succeeding one and

that the last implies the first.

(a) implies (b). LxcCv shows that Cv is not empty. From (6.6) we get

GcC„; consequently, Cx = G + Bd(G) cCx+LxcCv+Cv = Cy.

(b) implies (c). Cv is not empty; hence if x = p, y is not equal to x, for Cq is

empty. In both cases the set LyCx is invariant, and hence either 0 or Ly. If

it is Ly, then Ly c Cx, Cx c Cy would yield the contradiction Lv c Cv. Hence

LyCx = 0 or Ly cS—Cx.

(c) implies (d). In view of (6.7) let us show that C,cC, is impossible.

Indeed, if x = p, Cx is empty and C„ c G would make Cy empty, whereas y is
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not x. If x?¿p and y^p, then LycS— Cx, Ly c Cy c G constitutes a contra-

diction.  If  Xr¿p and if y=p, LycCx would contradict  the  assumption

L/y  C xj Ca;.

(d) implies (a). From Cy <t Cx we infer that G c Cy, but not G = G, also

that G is n°t empty, Cy o Lv. Consequently,

tjt ^i/j -"X^ ^y  —  ^V ~T~ -L'y •

Hence we get for Lx

The set £*£„ must be empty ; for in the opposite case Lx = Ly, G = G, C„ c G

would ensue. It follows that Lx — LxCy, which is (a).

Abstract absolute values, symbols of the form | x \, where x is a point in S,

and the number 0 are now introduced by the following definition :

[6.9] |x| <|y| or \y\ >\x\ shall mean LxcCy; \x\ =|y| shall mean

Lx = Ly; \x\ =0 shall mean x = p; |x| >0 shall mean x^p; \x\ ^|y| shall

mean \x\ > \y\ or |x| = |y|.

(6.10.1) For any two points x, y exactly one of the relations \x\ <|y|,

|x| = |y|, |x| >|y| is true.

Suppose that neither |x| <|y| nor |x| >|y| is true; in other terms,

neither Lx c Cy nor Ly c Cx is true. On account of (6.4) we have then

LxCy = LyCx = 0; from (6.5) we conclude CxcCy and CycCx; hence G = G>

Lx = Ly, or | x | = | y |, which was to be shown.

(6.10.2) |x| < \y\, \y\ <\z\ imply |x| < |z|.

We know Lx c Cy and (cf. (6.8)) Cy c G; we have a fortiori Cy c Cz; hence

Lx c G or | x| < | z\ by definition.

(6.11) lim ,Xi=p is true if and only if for every \e\ >0 a» index i* can be

found such that for i>i*, | x¿| < | e\.

For the set of all points x with | x| < | e\ is the circle G, which is, because

of the relation |e| >0, a neighborhood of p, and must contain almost all

points of any sequence which converges towards p.

7. Geometrical version of the lemma. The following statement is of use:

(7.1) If | x| < | y |, then a z exists which satisfies \x\ <\z\ <|y|.

The relation | x| < | y\ implies, as we know, Cx c Cy, and Cy is not empty.

We maintain that Cy— Cx is not empty; for otherwise the open set Cy, neither

empty nor S, would be equal to the closed set G, which is impossible.
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It is also impossible that Cv — Cx is equal to the one-point set {p}, for

{p} is closed and a difference "open minus closed" is open. Since x?*y, the

set {p} is not equal to S. Hence we see that Cv—Cx is not only not empty but

contains a point z which is not p. Any such z will do in (7.1) because z zCy

gives LzcCy and |z|<|y|. On the other hand, z is in S—Cx, hence

LzcS—Cx; and if x = p, then z^x, for we took z^p; (6.8c) reveals this as

as an equivalent of | x \ < | z |.

(7.1.1) For every x there exists a y with \y\ > \x\, if S has more than one

point.

If |a;| =0, take y^p; if |x| > \p|, take any point from 5— Cx, which is

not empty since S — Lx is not connected.

(7.2) If lim Xi = x, lim yi = y, \x\ < \y\, then there exists an index i* such

that for i>i*, \xí\ <|y»|-

Choose a z exactly as before ; then \x\ <\z\ yields x z G, and | z | < | y | im-

plies y zS—Cz. The sets G and S—Cz are open ; consequently, there exists an

index i* such that for i >i*

The first formula is equivalent to \x{\ <\z\, the second to | z | < | y | since

z^p. The transitive law (6.10.2) furnishes |as,-| <|y¿|, which was to be

proved.

We may state the following corollary:

(7.2.1) If the sequences as<, y< are convergent, |*,-[ = |y¿| for all i implies

| lim Xi\ = |limy<|.

[7.3] If F is a (single-valued) mapping of S in itself, then S = Si+S2+S3,

where Si, S2, S3 in this order are defined by the relations \F(x)\ <|*|,

\F(x)\ -|*|, |F(*)| >|*|.

The geometric version of Schwarz' lemma is a statement about the Si of a

transformation F in N with F(p) = p. We derive first, with the aid of (7.2),

a simple statement for continuous transformations.

(7.4) If F in [7.3] is continuous, then Si and S3 are open sets.

We prove that Si is open; the proof for S3 is virtually the same.

For a point x \nSi we have, by definition, | F(x) \ < | x\. Let lim xt = x; then

we have to show that for almost all indices i, \ F(x¡) \ <|*<[. This follows from

(7.2) if we define y = F(x), y<—F(*<), and use the relation (continuity)

\imF(x¡) =F(x).

Again we note without proof that S2 is closed.
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(7.5) If F is a continuous mapping of S in itself and if neither Si nor S»

is empty, then there exist at least two points p, q with p^qin S2.

This is a well known theorem about continuous functions coupled with the

fact that S1 has no cut points. If S2 were empty, S = Si+S3 would be a non-

trivial decomposition of 5 into two disjoint open sets, which does not exist

in a connected space. If S2 = {p\, then 5i+53 would be a non-trivial decom-

position oí S—{p) into open sets, and p would be a cut point of 5.

(7.6) Let F be in N, Fip) =p, such that S2 contains p. If now S2 contains

another point q, q^p, | £(a) | = | q\, then F is a rotation.

For a rotation | £(x) | = | x | is identically true and Si and S3 are both

empty.

Proof. Since £(a) and a are in the same circumference, there exists a rota-

tion R such that R(F(q)) =q. What do we know about the transformation

££? The relations RF(p) = R(p) =p, ££(a) =a show that RF, which is in N,

has two different fixed points. The corollary (4.4) tells us that RF is a rota-

tion Ri. From RF = Ri we get £ = 2?_12?i, which is a rotation since it is the

product of two rotations.

(7.7) If F is in N and Fip) =p, then one of the sets S¡ and S3 is empty.

Indeed, if none were empty there would exist two different points in S2

(cf. statement (7.5)), and £ would have to be a rotation; Si and S3 would be

empty.

(7.8) If F is in N, F(p) =p, then S3 is empty. In other words, \ F(x) | ^ | x|

for all x.

This is the geometrical version of the Schwarz lemma.

Proof. If S3 is not empty, then Si is empty on account of (7.7). The set S2

is not empty, for it contains the point p. It does not contain any others, for in

that case £ would be a rotation and S3 would be empty (as well as Si). There-

fore the inequality | £(x) | > | x| would hold whenever | x| ¿¿0. But this con-

tradicts the topological alternative (cf. (4.1)) that £ is either a rotation or

nilpotent. Indeed, £ is not a rotation, and |£(x)| > |x| for all |x| >0 is in-

compatible with nilpotency. For |x| >0 implies (by mathematical induction)

| £n(x) | 5^0 and | £"(x) | ^ | x| ; and this would show that the Cauchy condi-

tion (6.11) for lim £"(x) =p cannot be fulfilled with \e\ = | x|. If our theorem

were wrong, we should have a contradiction; therefore, assertion (7.8) is

true.

Combining (7.6) and (7.8), we formulate the final geometrical theorem,

(7.9), which corresponds to the classical Schwarz lemma together with its

standard corollary.
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(7.9) // F is in N, F(p) —p, then for all x in S we have \ F(x) \ 5= | x\. If

equality holds for one point distinct from p, then it holds throughout. In the latter

case F has an inverse which is an element of N.

The classical lemma would be a consequence provided we know that the

abstract relation \x\ <\y\ is equivalent to the analytically defined inequality

\x\ < \y\. In §8 we shall prove a theorem to the effect that the analyticity

of linear homogeneous functions together with simple topological properties

of the euclidean circles make the abstract and analytical order relations

equivalent.

Part III

8. Characterization of circumferences. Our definitions of absolute value

relations are such that if 51 is the unit circle in the plane of the complex num-

bers, p the origin, L„ the circular curve through q with center p, and Cq the

interior of the corresponding circular area, then | x \ < \ y | is equivalent to

saying that the classical absolute value of x is less than the classical absolute

value of y.

But we wish to know if the euclidean circumferences are circumferences

in the sense of our definition. Of course it is well known that in the classical

case an abstract rotation is an ordinary rotation; but this is usually shown

as an application of the Schwarz lemma, or at least derived in an analogous

fashion.

Let us therefore denote a euclidean circumference with K and the corre-

sponding circle with E; and let us discuss the case where K contains a point z

but not the point p.

If we use the analyticity of linear homogeneous transformations, we see

immediately that, N being the set of all analytical mappings of 5 in itself, K

is rotatory; that is, that there exists a topological mapping in N which carries

p into itself and a preassigned x on K into an arbitrary y on K. Applying

some elementary topology of the euclidean plane, we can make the following

assertion :

(8.1)  (a) K cS is not empty; it contains a point z but not the point p.

(b) S — K is not connected; the component of S — K which contains p is E.

(c) K is the boundary Bd(-E) of E.

(d) K is rotatory.

(e) E = E+K is compact.

We maintain that from these statements and the properties I-VI of N

and I—III of S it follows that AT is a circumference. (The case K= \p\ is

trivial, since Lp = p.)
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Let us forget the euclidean origin of (8.1) and make the following defini-

tion:

[8.2] "iK, E, z) is circular" shall mean that the sets KcS, EcS, and the

point z satisfy the relations (8.1).

The "justification theorem" in question is now simply the following :

(8.3) Let N and S be as in Part II. If iK, E, z) is circular, then K is a cir-

cumference and E a circle ; in short K = LZ, £ = G.

Due to the definition (in (8.1a)) of £ and [5.2] of G it is sufficient to

show K = Lz.

The proof is arranged backwards:

(8.4) If iK, E, z) is circular and if no point of the circumference Lz is in E,

then K = Lz.

Consider the set G£; this set, the product of two open sets, is open.

(The set £ is open since K, being a boundary, is closed.) The set CZE is not

empty because p is in G and in £.

We study, as we always did in questions of this type, the relative bound-

ary of G£, this time with respect to both G and £.

Note that K is a subset of Lz, for it contains z and is rotatory. We get

Bd(G£) cBd(G)+Bd(£) cLz+K cLz. Of course we cannot conclude di-

rectly that equality holds, for we do not know yet that K is invariant. But at

least we can say that the relative boundaries GBd(G£) and £Bd(G£) are

empty. That GZ2 = 0 follows from the definition of Cz; whereas LzE — 0 is an

assumption of our theorem. Hence the relative boundaries of CZE with re-

spect to the (connected) sets G and £ are empty as subsets of CZLZ and ELZ,

respectively. Since CZE is not empty, we obtain CZE = CZ, CZE = E; hence

CZ = E. Taking boundaries on both sides, we have LZ = K, which was to be

proved.

(8.5) If iK, E, z) is circular and if S is not compact, then Lz has no point

in common with E.

The proof is indirect: If a is in LZE, then Lq = Lz, and to every point x

in Lq — Lz there will exist a rotation RM such that 2?(x)(ç) =x. The open^set £

is transformed into open sets RM(E), and a s £ implies Rlx)(q) =x s RM(E).

In other terms,

L2c Y.R^(E).
l£l,

Now we have to use, for the first time, the metrizability of the space 5. Since
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Lz is a compact subset (cf. (3.5)) of a metrizable space, the Heine-Pincherle-

Borel-Lebesguef theorem is valid, and already a finite number of sets Rix)(E),

say Ri(E), ■ ■ ■ , Rn(E) covers Lz; that is,

n

L,c 2ZR<(E).
1

We set S' =2~2"Ri(E) and propose to show that S' = S. This is again done

with the standard device based on the connectedness of S.

The set S' is open as a sum of open sets; it is not empty because it con-

tains Lz. What is its boundary? We obtain

Bd(S') = Bd( ¿Ri(E))c ¿ Bd(Ri(E)) = ¿i?,(Bd(£)) c ¿ R{(L,)cL..
\   i /      i i i

(We have applied (6.6.1), (6.2.4), K = Bd(£), K c Lz, and Ri(Lz) c Lz.) Isolat-

ing the first and the last terms, we have Bd(S') cLz; and since Lz c 5' we see

that the open, non-empty set S' contains its boundary ; 5 is connected, hence

(cf. (6.3.1)) S' = S.

From S=2Z"Ri(E) we obtain a fortiori S=2ZïRi(Ë). Since (K, E, z) is

circular, E and its topological images it,(S) are compact; the sum of a finite

number of compact sets is compact; hence S is compact, which contradicts

the assumption of the theorem. Hence we have seen, indirectly, that if S is

compact, LZE = 0, which was to be shown.

Finally, we remove, in (8.6), the last condition.

(8.6) 5 is not compact.

For if it were, it would have to be bicompact, being metrizable. Consider

the covering which is defined by assigning to p the open set Cq and to every

other point x the circle with center x determined by p. If 5 were bicompact,

a finite number of these circles would have the sum S, which is excluded by

property VI.

With (8.6) the proof of the justification theorem (8.3) is completed.

9. Separability and local compactness of S. If we use the foregoing the-

ory for variable centers p, we see that every point is contained in arbitrarily

small neighborhoods with compact, metrizable and hence separable bounda-

ries. From a theorem of F. B. JonesJ we could infer the next theorem:

t A space S is called bicompact or the Heine-Pincherle-Borel-Lebesgue theorem holds in 5 if

from every covering of S by open sets a finite set of elements (open sets) can be extracted which has 5

as its sum.

î F. B. Jones, A theorem concerning locally peripherally separable spaces, Bulletin of the American

Mathematical Society, vol. 41 (1936), p. 437.
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(9.1) The space S is (perfectly) separable.

This result will also appear as a corollary of the theorem (9.8). Independ-

ently from (9.1) we are going to show that the closed circles Cq are compact,

and that the space 5 is representable as the sum of a countable number of

circles.

(9.2) Let Xi be a sequence of points such that a point x, a subsequence x/

a«á a sequence of rotations 2?¿ can be found with lim 22,(x/)=x. Then there

exists also a limit point for the sequence x¿.

We select corresponding subsequences Rl, xi' such that lim 22/ =22 exists;

we know then that lim 22/-1=22_1, and from lim R- (xi') =x it follows that

xi' =Rl (R'r^xl1)) is convergent (with the limit R~l(x)).

(9.3) Suppose that the sequence x, is such that sequences x/, 22¡, as described

in (9.2), do not exist. Then for every point y in S there exists a neighborhood Uy

and an index i* such that for i>i*, Uy is completely in G, or completely in the

exterior of CXi.

In other terms, i > i* implies that either Uy c G or UycS — CXi.

As before, we shall write G for CXi, Li for Lx..

We first choose a neighborhood Vy and an index i* such that for all indices

i>i* LiVy = 0, and in addition for i>i*, G^O. Such a Vy exists; for £¿ con-

sists exactly of the points 22 (x,), where 22 is arbitrary. With the first counta-

bility axiom of Hausdorff (a trivial consequence of the metrizability of S)

a sequence RïQcî) with limit y could be constructed. If C' =0 for a subse-

quence C'i, then xi ==^>, Ri = I yields lim 22,(x/) =p.

Since S is locally connected, Vv contains a connected neighborhood Uy

of y. Now consider the formula

Uy = GG + Uy(S - C,) ;

if i>i*, then G^O and G = G+G; hence

Uy = UjCi + UiLi + UV(S - Ci).

Yovi>i*, UiLi is 0"; the resulting equation

G = GG + Uy(S - Ci)

is a decomposition of Uv into two disjoint open sets. One of these must be

empty, since Uy is connected and not empty; but that means that either

Uy c d or UycS — d, which was to be shown.

(9.4) Let the sequence x, be such that to every y in S there belongs a neighbor-

hood Uy and an index i* such that for i > i* either Uy c G or UycS — Ci is true.

Then the set S' =EC. iwhich is trivially open) is closed.
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In order to prove this we show that if y¿ is a convergent sequence from S',

its limit y is also an element of S'.

Without loss of generality we may assume y,- e G ; this corresponds to the

deletion of some C's and introduction of a new index, which does not affect

the validity of our theorem.

Now let i* be such that for i>i* (a) y¿ t Uv and (b) either £/„cG or

UycS-Ci.

(a) may be satisfied since lim y i —y; (b) has been explicitly assumed. Since

for i>i*, y i e Uv, y i z G, we see that y¿ e Uvd; that decides the alternative (b)

in favor of t/„cG; but Uvcd (any special case such as i = i* + l will do)

implies y zd and a fortiori y s 23 G =S'.

(9.5) If a sequence xs has no limit point, then S =23G, ( =23G).

Since Xi = p can be true only a finite number of times, almost all G are

not empty; a fortiori the open set S' =23G is not empty.

(9.2), (9.3), (9.4) together guarantee that S' is closed; the connectedness

argument yields S' = S.

(9.6) The circles Cg are limited, and their closures Cq compact.

The proof is indirect. Let as< be a sequence from Cq. If it had no limit point,

we would have 5 =23G,-. On the other hand, xt z Cq implies Cxi c Cq,

(cf. (6.6)) since G^O. That would lead to the contradiction ScCq, since

q is not in Cq. Hence every sequence xt from Cq must have a limit point,

which was to be proved.

We could express and slightly generalize this in the following familiar

form:

(9.6.1) If all points x of a set satisfy \x\ ^ | q\, then every infinite sequence x{

has a limit point.

As a consequence we have the statement :

(9.7) S is locally compact.

For if x is an arbitrary point, there exists a point y such that | x\ < \y\,

x z Cy. Hence every point is contained in a limited open set.

(9.8) 5 is semicompact; that is, it is the sum of a sequence of compact sets C,-.

(They will be closed circles.)

If S were compact (which is excluded by (8.6)), then it would be trivially

semicompact. If it is not, then there exists a sequence *< without limit points.

In that case we have (cf. (9.5)) 23G,='S' and a fortiori 23G=5; and the C¿

are now known to be compact.
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From the theorem (9.8) (all theorems in this section are proved without

recourse to (9.1)) we get (9.1) as a trivial consequence, using metrizability.

Conclusion. It would be possible to obtain valuable new properties of 5

and N by adjunction of new postulates. We could demand that the circum-

ferences be connected; this would permit us to conclude that for every pair

x, y a center p and a rotation R exist such that Rp(x) =y. If we postulate that

a transformation with two fixed points is the identity, Lq would be homeo-

morphic to a connected compact continuous group. These groups are rather

well known, and together with the fact that the abstract absolute values can

be interpreted as real numbers, this additional axiom would heavily restrict

the structure of the space S. If, finally, 5 is supposed to be homeomorphic

to the euclidean plane, the application of a theorem of Hubert would show

that the invertible transformations in N induce an absolute, that is, either

euclidean or hyperbolic, geometry in 5. The decision as to whether these

axioms together with a maximality axiom are categoric will largely depend,

we believe, on the better understanding and proper generalization of the

Schwarz lemma.
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