
ON INTERPOLATION BY FUNCTIONS ANALYTIC
AND BOUNDED IN A GIVEN REGION*

BY

J. L. WALSH

The writer has recently formulatedf the following problem, but without

proving in detail any results on convergence of the sequences involved :

Problem A. Let the points ßni, ßn2, • • • , ßnn, not necessarily distinct, lie

interior to the region R of the plane of the complex variable z. Let the function f(z)

be analytic in each point ßnk. Let /„(z) be the (or a) function which coincides

with f(z) in the points ßni, ßnn, ■ • • , ßnn, which is analytic in R, and the least

upper bound Mn of whose modulus in R is a minimum. To study the functions

fn(z), especially the approach to f(z) of the sequence f„(z), and study the sequence

Mn as » becomes infinite.

A function /„(z) always exists (loc. cit.), and is unique if R is simply-

connected.

It is the object of the present note to establish some results concerning

Problem A, especially

Theorem 1. Let R be the interior of a Jordan curve G. Let each of the points

ßnk He on or interior to a Jordan curve G interior to G, and let us suppose the

relation

(1) lim | iz-ßni)iz -ßni) ■ ■ ■ (z - /3„„)|1/n = eT¿*-»>, z=x+iy,
n—♦ »

to hold at every point z exterior to G, uniformly on any closed bounded set ex-

terior to G. Let V2(x, y) denote the function which coincides with V\(x, y) on G

and is harmonic interior to G, continuous in the corresponding closed region.

Let us suppose the function V(x, y) = Vi(x, y) — V2(x, y) to be continuous in the

closure S of the annular region S bounded by G and G, and to take the constant

value y at every point of G. We denote generically by G the locus V(x, y) =X,

(y<X<0), in R, so that G is a Jordan curve separating G and G; we denote

by R\ the interior of G, and by R\ the closed interior of G-

Let the function f(z) be analytic throughout the interior of Rp but not through-

out the interior of any £p-, (p'>p). In the notation of Problem A, the sequence

fn(z) converges uniformly to f(z) on any closed set interior to Rp. Moreover we

have (y<a<p)

* Presented to the Society, April 8, 1939; received by the editors October 3, 1938.

f Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 477-486.
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(2) lim sup [max | f(z) — /„(z) |, z on C„]1/n = e"-",
n—*«

(3) lim sup [l.u.b. | /„(z) |, z in i?]1/n = e~".
n—>°o

1. Proof of Theorem 1. The technique of our study of Problem A is quite

similar to the technique developed in a recent work* by the present writer,

to which we shall make frequent reference.

The mere existence of the limit in (1) in R exterior to C2 implies the

uniformity of the limit on any closed bounded set exterior to C2 (compare

op. cit., p. 266). The function

(4) Un(x, y)=- log | (z - /3nl) • • ■ (z - ßm) \
n

is harmonic exterior to C2, so its limit Vi(x, y) is also harmonic exterior to C2.

Consequently the function V(x, y) is harmonic in S.

If T is an analytic Jordan curve separating Ci and C2, and if v denotes the

exterior normal for Y, then the integral over Y of dUn(x, y)/dv is 2t, whence

(compare op. cit., p. 268)

C   dVi C    W
(5) 2tt =  I    -ds =  I    -ds.

J t   dv J r   ÓV

A consequence of (5) is the inequality y <0.

Let C/ be an analytic Jordan curve near Ci containing Ci in its in-

terior. We shall eventually allow C{ to approach Ci. Let V2 (x, y) denote

the function which coincides with Vi(x, y) on Ci and is harmonic in-

terior to Ci', continuous in the corresponding closed region. The function

V'(x,y) = Vi(x,y) - VI (x, y)

is continuous in the closure S' of the region S' bounded by Cí and C2 and

vanishes on C{. As in the proof of (5) we have

dVi r   dV'
(6) 2tt =        -ds=        -ds.

r dVi        r dv
2r = -ds =   I     -

J cy 9f J cy dv

As in the book cited, §9.11 (p. 265), we may write the following equations

for (x, y) interior to C{ ; the second of these equations is a consequence of the

corresponding equation with Vi replaced by Un ■

* Interpolation and Approximation by Rational Functions in the Complex Domain, American

Mathematical Society Colloquium Publications, vol. 20, New York, 1935. All references in the

present note not otherwise indicated are to this book, to which the reader is also referred for

terminology.
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1   r    /      alogr dVl\
Vi(x,y)=-\     [Vi-^--log r—Ads,

¿irJci' \ av dv /

-If/      d log r dV'\
Vi(x,y)=—-\     (V—-logr— )ds,

L-K  J d' \ dv dv /

1   r dV'
(7) Vi(x,y)=—\     log r — ds.

¿TT J dr av

The integrals are to be taken in the counterclockwise sense, and v indicates

the exterior normal.

When CÍ approaches G, the function V2 (x, y) approaches V2(x, y) uni-

formly on and within G, by Lebesgue's results on harmonic functions in

variable regions.* Then the function F'(x, y) approaches V(x, y) uniformly

in S, and on G the function V'(x, y) takes on values uniformly as near as

desired to y<0, provided merely that C{ is sufficiently near to G. Thus

when G' is sufficiently close to G, in S' we have V'(x, y) <0 because V'(x, y)

is zero on CÍ and negative on G, and on C{ we have dV'/dv^O; the equality

sign is excluded here by our choice of G' as an analytic Jordan curve.

Let now the points ani, a„2, • • • , cv„,„-i be chosen uniformly distributed

on G' with respect to the parameter whose differential is the positive quan-

tity (dV'/dv)ds (compare op. cit., §§8.7 and 9.11). From (6) and (7) we have

lim  | (z - a„i)(z - a„2) ■ • ■ (z - an,n-i) |1/n = eV(*.»)(
n—.eo

uniformly on any closed set interior to G' ; so by virtue of (1) we may write

(8) lim
(Z  -  ßni)   •   •   •   (Z  -  /3„„)

(z — a„i) • ■ ■ (z — a„,„_i)

l/n

=   pV'(X,y->

uniformly on any closed set interior to S'.

We denote by r„(z) the rational function of degree » — 1 whose poles lie

in the points ani, an2, • • • , a„,„_i and which interpolates to/(z) in each of the

points ß„i, ßni, • • • , ßnn', the sequence rn(z) has been studied in some detail

(op. cit., §8.3), and in particular there can be established! the formula

(9) lim sup [max | rn(z) \, z on C¿ ]u" = e"-"',

* Rendiconti del Circolo Matemático di Palermo, vol. 24 (1907), pp. 371-402.

t Inequality (9) is an immediate consequence of equation (8) and the standard formula for r„(z)

(op. cit., p. 186), which is valid even exterior to Cp. Indeed, the sign ^ in (9) can be replaced by the

equality sign, as the writer expects to indicate in a forthcoming paper in these Transactions.
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where G' denotes generically the Jordan curve V'(x, y) =X in S', where/(z)

is analytic interior to C'p> but is not analytic throughout the interior of any

Cp", (p">p'), and where ix>p'.

When C/ approaches Ci, the locus G' approaches uniformly the locus G.

Given any e>0, we can choose Ci so near to G that | V'(x, y) — V(x, y)\ <e

uniformly in S. For such a particular choice of Ci we have p'>p — e; the

curve Ci lies interior to some G', whence from (9)

(10) lim sup [max | rn(z) |, z on G]1/n ^ e"-o+« ^ er**'.

We have now exhibited functions rn(z) analytic in R, interpolating to f(z)

in the points ßnk, and satisfying (10). For the functions/„(z) whose least

upper bound in R is a minimum we consequently have by (10)

(11) lim sup [l.u.b. | f„(z) |, z in ic]1'" g e-»+'.
n—*«

A combination of (10) and (11) yields

lim sup [l.u.b. | fn(z) — rn(z) \, z in R]lln ^ f**,
n—>oo

whence for suitably chosen M,

(12) | fn(z) - rn(z) | ^ Afe"<-'+2'\ z in R.

The function/„(z) —rn(z) vanishes in each of the points ßnk; so the familiar

reasoning used in the proof of Schwarz's lemma gives, for z interior to G,

(z - Otnl) ■ ■ ■  (z - a»,»-i)

[/*(*) - rn(z)\—-—-——
(Z   -   ßm)   ■   ■   ■   (Z   -  ßnn)

^ jlfe"(-P+2«) /    mm   -   , z on G   .
I    Y.        \(z — «„i) ■ • ■ (z — a„,„_i) J

For z on G we have F = 0, V>— e; for z on C„, (y<cr<p'), we have

F'<cr+t; then by (8) we may write

(13) lim sup [max | /„(a) — rn(z) \, z on G]1/n Ú e"-"+it.
n—»»

But we know also (op. cit., p. 198) for a' <p'

lim sup [max | f(z) — rn(z) |, z on C^-]1/n ^ e"'-"',
n—*«j

whence

(14) lim sup [max | f(z) - rn(z) |, z on C]1/n g e'-'+2'.
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Inequalities (13) and (14) when combined now imply by letting e approach

zero (y<<r<p)

(15) lim sup [max | f(z) — fn(z) |, z on C,]1'" ^ t—*.
n-*w

Likewise in (11) we may allow e to approach zero:

(16) lim sup [l.u.b. | fn(z) \, z in ic]1'» g e'".
n—»no

To complete the proof of Theorem 1, it remains merely to show that the

inequality sign cannot hold in (15) or (16). The proof is indirect; let us

assume for instance

(17) lim sup [l.u.b. | fn(z) |, z in ic]1'" ^ <r% Pi > p;
n—»oo

we shall reach a contradiction.

If 17 > 0 is arbitrary, we have from (15) for n sufficiently large

| /n+i(z) - fn(z) | è e<*->+'>", a on C„

and we have from (17) for n sufficiently large

| /n+i(z) - fn(z) | Ú »HtW», z in R.

By an extension of Hadamard's Three-Circle Theorem* applied to the region

bounded by G and G, we deduce for z on G, (o"<M<0),

(18) I   fn+l(z)   —   fn(z) I   ÍÍ    [g(o—P+i)"]m/o'. [g(—Pi+5)»l(»-ri/'  =   gOwH-il»—iip-Pion-CPi)"/«^

Since <r is negative, the sequence f„(z) converges uniformly on G provided

merely

<p(p) = pa + rja — pp — pio- + ppi > 0.

For the value m = P the continuous function cp(p.) takes the value

<b(p) = pa + ya — p2 — pio- + ppi = (<r — p)(p — pi) + ■qc.

By virtue of pi>p and a<p, it follows that when r¡ is sufficiently small,

<p(p) is positive. Consequently, <p(p) is positive also for suitably chosen values

of p. greater than p. The limit of the sequence/„(z) is/(z) interior to C„, hence

is the analytic function f(z) throughout the interior of some curve G,

(ju>p), which contradicts our definition of p.

* R. Nevanlinna, Eindeutige Analytische Funktionen, Berlin, 1936, p. 42. We are here using the

Two-Constant Theorem (Zweikonstantensatz) in the form due to F. and R. Nevanlinna. A somewhat

less precise form is due to Ostrowski. In the situation of Theorem 1 itself, but not in the more general

situation described in §3, the Three-Circle Theorem can be applied after a conformai map by means

of the function w = exp { V(x, y)-\-iW(x, y) j, where W(x, y) is conjugate to V(x, y) interior to 5.
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We have now shown that the inequality sign in (16) is impossible. Pre-

cisely the same method shows that the inequality sign in (15) is impossible;

so Theorem 1 is established.

A limiting case of (2) is also valid, namely

lim sup [max | f(z) — fn(z) \, z on Cs]1/n = ei~p;
n—.«

indeed the obvious relation

max [ | f(z) — fn(z) |, z on C2] = max [ | f(z) - /„(z) |, z on G]

by approach of a to 7 establishes the precise analogue of (15), and the

previous method shows the impossibility of the inequality.

2. Complements to Theorem 1. A complement to Theorem 1 isthe

Corollary. Under the conditions of Theorem 1 we have (0>¿u2;p)

lim sup [max | /„(z) |, z on G]1/n = e"-"-
n—.00

From (15) and (16) respectively we have (a<p)

lim sup [max | /„+i(z) — f„(z) |, z on C,]lln ^ e?-',
n—»oo

lim sup [l.u.b. I fn+i(z) - fn(z) I, z in T?]1'" g e~",
n—*oo

from which we deduce as in the proof of (18),

lim sup [max | /„+i(z) — /„(z) |, z on C„]1/n é e""".
„—♦CO

We are now at liberty to write

lim sup [max | /„(z) |, z on G]1/n = &~"•
re—*oo

The impossibility of the inequality sign here follows precisely as in (16) for

p>p and is trivial for p, = p (we should otherwise have/„(z) approaching zero

uniformly interior to G) ', so the corollary is established.

It is of interest to note that when G is a curve V'(x, y) = const., it follows

from (9) that the rational functions r„(z) have maximum modulus on G,

(0>/i>p), of the same order of magnitude as the maximum modulus of the

extremal functions /„ (z) ; a similar remark holds also of G. Under these con-

ditions it is likewise true that max |/(z)—r„(z)| and max |/(z)—/„(z)| have

the same order of magnitude on G, (p><r>y), and also on G-

A relation which essentially includes (2) (granted the convergence of

/„(z) to/(z) in Rp) as well as the corollary, and thereby unifies the preceding

results is
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lim sup [max | fn+i(z) — /„(z) |, z on Gjl;" = e"~",
re—.00

0>a^porp>a>y. This relation with the equality sign replaced by ;£ has

been pointed out in the proof of the corollary; if the inequality sign were to

hold we should have the inequality sign in (2) or in the corollary, according

as a <p or a^ p, which we know to be impossible. The corresponding limiting

equations also hold and are similarly proved:

lim sup [l.u.b. | /„+i(z) — /„(z) |, z in R]lln = e~p,
n—»oo

lim sup [max | f„+i(z) — /„(z) |, z on G]1/n = e^-?.
n—»»

It is an obvious consequence of Theorem 1 that under the hypothesis of

that theorem there exists no sequence of functions £„(z) analytic in R and

coinciding with/(z) in the points ß„h ßn2, ■ ■ ■ , ß„„ such that we have

lim sup [l.u.b. | Fn(z) |, z in 2c]1/n < er".
re-* oo

We note too that Theorem 1 can be applied under the hypothesis of that

theorem where G, (p>p), plays the role of the original G. The function

V(x, y)—p. now takes the role of the original V(x, y), and it follows from

Theorem 1 that there exists a sequence of functions £„(z) analytic in R and

coinciding with f(z) in the points ß„i, ßn2, • • • , ßnn, namely the extremal

functions/„(z) pertaining to R, such that we have

lim sup [l.u.b. | Fn(z) |, z in R„}lln = e"-p;
n—»oo

but there exists no sequence of functions £„(z) analytic in £„ and coinciding

with /(z) in the points ß„i, ßn2, ■ • • , ßnn such that we have

lim sup [l.u.b. | F„(z) \, z in 2?M]1/n < e"-".
re—»oo

Thus the extremal functions/„(z) of Theorem 1 have maximum moduli on G>

(p>p), which are of the same order of magnitude as the least upper bounds

of the corresponding extremal functions which pertain to £„ itself.

Still another remark is appropriate in connection with Theorem 1, relative

to functions f(z) analytic throughout R. Under these conditions we can set

p = 0 in inequality (10), whence for the extremal functions/„(z) defined as in

Theorem 1,

lim sup [l.u.b. | /„(z) |, z in 2?]1/n ^ e'.
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Here we may allow e to approach zero, whence

lim sup [l.u.b. | /„(a) |, z in ic]1'" ^ 1.
n—»oo

The inequality sign cannot hold here except in the trivial case/(z)=;0, for

the inequality sign implies that/„(z) approaches zero uniformly in R. As in

the proof of (15) we have for every a, (y<o-<0),

lim sup [max | /(a) — /„(a) |, a on G]1/n á e".
n—»eo

If /(z) is analytic and bounded in R, the sequence /„(z) is uniformly

bounded in it, for/(z) itself satisfies the conditions of interpolation:

[l.u.b. |/„(a) |, a in it] è [l.u.b.  |/(*)[,* in JR].

There is evidence to indicate that the present methods alone do not en-

able us to determine the exact value of

lim sup [max | /(a) — /„(z) |, a on G]1'", 0 > a > y,
n—»oo

when f(z) is analytic throughout R. First, there are various comparison

sequences r„(z) any one of which is adequate in the proof of Theorem 1 itself

but which yield different results for

lim sup [max | /(a) — rn(z) I, a in i?]1/n

when f(z) is analytic throughout R. This is shown for instance by choosing

/(z) = 1/(2" —z), (T>1), the ßnt as all zero, and the ank as the (»— l)st roots

of ^4B_1, where 1 <A <T, and by choosing ßnk = 0 and G as \z\ =1. Equation

(8) is fulfilled. The sequence rn(z) serves as a comparison sequence in the

proof of Theorem 1 for an arbitrary function f(z) satisfying the hypothesis of

Theorem 1 without the necessity of allowing A to approach unity; that is to

say, without the necessity of allowing Ci to approach G: this is always the

case when V'(x, y) is constant on G. It follows (as in op. cit., p. 185) that we

have with the special choice of f(z)

/(a) - rn(a) = zn(Tn~l - A*'1)/ [Tn(zn^ - An^)(T - a)] ,

where r„(z) is found by interpolation to f(z) in the points ßnk and has the

poles ank. Consequently we may write

lim sup [max | /(a) — rn(z) \,   for   | a | = r ^ l]1/n = r/A ,
n—»oo

whereas A is completely arbitrary within the limits 1<A<T, and its use is

entirely accidental in the study of the functions/„(z).
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Second, even when the singularities of the function f(z) fall in the region

in which (8) is valid, and when V'(x, y) is constant on G so that Theorem 1

itself can be established without varying the curve C{ or the points ak„, it is

not true that the degree of convergence to/(z) on C„ (0><r>y), is necessarily

the same for the sequences rn(z), /„(z). Let ß be arbitrary, (0 <ß < 1), and set

fiz) = iz + ß)/il+ßz).

Well known methods (see for instance op. cit., §10.2) show that/(z) is the

unique function analytic and in modulus less than unity within R: \z\ <1

which takes the value ß for z = 0 and has the derivative 1 — ß2 for the value

z = 0. In the notation of Theorem 1 we set ßnk = 0; the extremal properties of

fiz) indicate that each of the functions/2(z),/3(z), • ■ • is identical with/(z).

Thus we have

lim sup [max | f(z) - /„(z) |,   for   \z\ ^ r < l]1'" = 0.
re—»oo

But the natural comparison sequence, according to the method of proof of

Theorem 1 in somewhat simplified form, is found from the Taylor develop-

ment of/(z) ;* we take rn(z) as the sum of the first n terms of this development:

lim sup [max | /(z) — rniz) \,   for   \ z\ á r < l]1/n = r/ß,
re—»oo

in contrast to the preceding relation.

3. Extensions of Theorem 1; examples. Merely for the sake of simplic-

ity, we chose in Theorem 1 a region R bounded by a single Jordan curve.

The theorem and corollary, together with their proofs, remain valid if R is

an arbitrary limited region whose boundary consists of a finite number of

mutually disjoint Jordan curves. Likewise the G of Theorem 1 may be re-

placed by a finite number of mutually disjoint Jordan curves interior to R,

no one of which separates any other from the boundary of R or separates any

two components of the boundary of 2?. Under these conditions the locus G

also consists of a finite number of mutually disjoint Jordan curves in the

region 5 bounded by G and G, except that for certain values of X the locus

G may have a finite number of multiple points, each shared by a finite num-

ber of Jordan curves.

The formal statement of this generalization of Theorem 1 lies immediately

at hand, and is left to the reader. A number of special cases of this gen-

eralization are worth stating explicitly; in each case we use the notation of

Problem A.

* We may equally well choose here the ank as the (« —l)st roots of An~l, with A>\/ß. This

choice does not alter the relation involving the functions r„(z).
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(i) Let i? be |z| <1, each ßnk = 0, the function/(z) analytic for |z| <r<l

but not for |z| <r', with r'>r. Then the situation is analogous to that of

Taylor's series; we have

lim sup [max | f(z) — fn(z) |,   for  | z | Sí fi < r]lln = ri/r,
n—»oo

(19) lim sup [l.u.b. | /„(a) |,   for  | a | < l]1'» = 1/r,
n—»oo

lim sup [max | /n(a) |,   for   | a | = r2 > r]1/n = r2/r,  r2 < 1.
n—»oo

(ii) Let R be |z| <1; let each ßnk=ß, interior to R and independent of

» and k ; let the function f(z) be analytic in the region

| (a - ß)/(l -ßz)\<r<l

but not throughout any region

| (z - ß)/(l -ßz)\<r'> r.

This represents a generalization of (i), and we have obvious equations

analogous to (19).

(iii) Let R be | z| < 1 ; let the numbers ßni, ■.■ ■ , ßnn be the first n numbers

of the sequence ßi, ß2, ■ ■ ■ , ßh ßi, ß2, ■ ■ ■ , ßi, ßi, ß2, ■ ■ ■ , with each ßk in-

terior to R; let the function/(z) be analytic on the set |/»(z)| <r<l but not

throughout any set | p(z) \ <r'>r, where

p(z) = n T—g- ■
¡=1    1  — PjZ

The point set | p(z) \ <r is not necessarily connected. The situation is analo-

gous to that of a certain series of interpolation (op. cit., §9.5). The equations

corresponding to (19) are

lim sup [max | /(a) | — /„(a) |,   for   | p(z) | ^ ri < r\lln = ri/r,
n—»oo

(20) lim sup [l.u.b. | /„(a) |,   for   | /»(a) [ < l]1'« =. 1/r,
n—»oo

lim sup [max | fn(z) |,   for   | p(z) | = r% > r]lln = r2/r, r2 < 1.

(iv) Let R be \p(z)\ <1, where p(z)=q(z-ßi)(z-ß2) ■ ■ ■ (z-ßt); let

the numbers ßni, ßn2, ■ • • , ßnn be the first n numbers of the sequence

ßi, ß2, ■ ■ ■ , ßi, ßi, ß2, ■ ■ ■ , ßi, ßi, ß2, ■ ■ ■ , with each ßk interior to R; let the

function /(z) be analytic on the set | p(z) \ <r < 1 but not throughout any set

\p(z)\ <r'>r; the set |/»(z)| <r is not necessarily connected. The situation
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is analogous to that of the series of interpolation related to the Jacobi series

(op. cit., §3.4). Equations (20) are valid also in the present case.

(v) Let 2? be | z | < 1 ; let the set ßni, ß„2, • • • , ßnn be the roots of z" — bnn = 0,

i\bn\ ^ô<l); let the function/(z) be analytic for |z| fír>b, r<\, but not

analytic throughout |z| =r' with r'>r. Then equations (19) are valid pro-

vided merely n ^ b.

(vi) In the statement of Theorem 1, let G and G be arbitrary (satisfying

the conditions imposed), and let V(x, y) denote a function harmonic in S,

continuous in the corresponding closed region, taking on the values zero and

7<0 on G and G, respectively, where y is so chosen that the integral of the

normal derivative of V(x, y) over an analytic Jordan curve separating G and

G is 27T. Let the points ßnk be uniformly distributed on G with respect to the

function conjugate to V(x, y) in S. Then (op. cit., §8.7) all the conditions of

Theorem 1 are fulfilled. This situation is a generalization of (v) if |¿»„| =b.

Theorem 1 can be extended, as we have indicated, by lessening the re-

strictions on G and C%. Still another extension of Theorem 1 (and of the

more general results outlined) is obtained by requiring the limit (1) to hold

not at every point exterior to G, but to hold at every point exterior to G

except at the points of a set T having no limit point exterior to G, and to

hold uniformly on any closed set exterior to G having no point in common

with T. The points ßnk are no longer required to lie on or interior to G, but

must lie in R. No modification need be made in the proofs already given to

meet this new hypothesis, except that in the proof of such a relation as (13)

where C, passes through a point of T, we give the proof first with a replaced

by ai>a, where G, does not pass through a point of T, and then allow ai to

approach a. With this new requirement on (1), it is not always essential to

suppose all the points ßnk interior to the region Rp in which /(z) is assumed

defined and analytic; methods for the study of the corresponding sequence

rn(z) are developed in the book already referred to (chap. 11) ; those methods,

together with the present ones, apply directly to the study of Problem A.

We state but a single illustration of the remark just made. Let R be the

region |z| <1; let the sequence ßi, ß2, ■ ■ ■ lie interior to |z| =1 and approach

zero as its limit, and let us identify ßni, ßni, • • ■ , ßnn with ßi, ß2, ■ ■ ■ , ßn; let

the function/(z) be analytic for |z| <r<l but not throughout |z| <r' with

r'>r. If some of the points ßk lie on or exterior to |z| =r, the prescription

that/„(z) shall interpolate to/(z) in those points may be interpreted as re

quiring that/„(z) shall interpolate to any function, analytic or not, but nol

depending on », in those particular points ßk. The equations (19) are valid.

4. Invariant properties of Theorem 1. Problem A as formulated is in-

variant under an arbitrary one-to-one conformai transformation. Thus each
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of the special situations (i)-(vi) yields, by such a transformation, a new result

which the reader can easily express in invariant terms. Theorem 1 itself,

especially with regard to condition (1),* has no invariant properties that are

obvious, but does have certain relations to invariance, as we shall now pro-

ceed to show. The following theorem, previously suggested (op. cit., p. 276)

for formulation and proof, is analogous to a theorem already established

(op. cit., p. 272, Theorem 20):

Theorem 2. Let C be a Jordan curve of the w( = u+iv)-plane, let the points

w = ßnk lie on or within C, and let us suppose

(21) lim ¡ (w - ß'ni)(w - ß'n2) ■ ■ ■ (w - ßnn) I1'" = eu^.v)
re—»oo

exterior to C, uniformly on any closed bounded set exterior to C. Let a bounded

region D' containing C in its interior be transformed conformally and one-to-one

into a bounded region D of the z( = x+iy)-plane by the transformation w = 4>(z),

z = \f/(w), with C transformed into the Jordan curve C and the points ß'„k trans-

formed into the points ßnk = ^(ß'ni) interior to C. Then the limit

(22) lim | (a - ßni) • • • (a - ßnn)\lln = ew<*^
n—»oo

exists in every finite point exterior to C, uniformly on any closed bounded set

exterior to C.

We introduce the notation

Un(x, y) = — ¿ log | <b(z)
n s_i

U:'(x,y)

whence Un(x, y) = Un' (x, y) + U„" (x, y). Let Y denote an arbitrary analytic

Jordan curve in D containing C in its interior. Then we have (op. cit., p. 266,

Lemma IV) for (x, y) exterior to Y

If/        dlogr dU:\
U: (x, y) = —        u:-log r- J ds.

2ttJ r\ dv dv  /

* Thus if the points ßnk are the « roots of unity, equation (1) holds exterior to d : \z \ = 1 with

Vi(x, y) = log \z |. Under the transformation z=(w—ß)/(l—ßw), with \ß \ <1, the points ß„k corre-

spond to the roots of the equation [(w—ß)/(l—])w)]n—l = 0, and the analogue of (1) is for |a»|>l

\r / w — fl v      "1(1— ßw)" |1/n     , .
lim      (-=-)-l    r-+^H     -   *-0.

n-.«|L\l -pW Jl-(-ß)"| ' '

1 A
- 4>(ßnk) |, Ui (x, y) = — 2Z log | a - pV

n k=i

1    "
= -Eiog

n k=i

<P(Z)   -  <b(ßnk)
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The function Z7„" (x, y) is harmonic without exception on and interior to Y

(when suitably defined in the points z=ßnk); so we have for (x, y) in D ex-

terior to r

¿iv J r\ dv dv   /

by addition we write for (x, y) in D exterior to V

If/      ôlogr dUn\
(23) u:ix, y) = —     ( G-log r-las.

2ttJt\ dv dv  /

By hypothesis (21) holds; so the function Un(x, y) approaches uniformly

on T the function U(x, y), the transform in the (x, y)-plane of the function

U(u, v) in the w-plane; moreover the derivatives of Un(x, y) on Y approach

uniformly the corresponding derivatives of U(x, y) ; so by (23) the limit (22)

exists, with the relation

1   CÍ    d\ogr dV\
(24) W(x, y)=— \  [U-^ -\ogr— )ds,

2-K J r\        av dv /

where it is understood that Y shall be chosen to contain C but not (x, y) in

its interior. Equation (22) is first proved for (x, y) exterior to Y but interior

to D; however (see op. cit., p. 266) the sequence t/„' (x, y) is a normal family

of harmonic functions in the region exterior to C; when (22) holds in a sub-

region, that relation holds uniformly on any closed bounded set exterior to G

Theorem 2 is established.

Theorem 2 extends at once to the more general situation outlined at the

beginning of §3.

The significance of Theorem 2 in connection with Theorem 1 lies in two

remarks, (i) Although .condition (1) is not itself invariant under conformai

transformation, and to that extent is unsuited to a discussion of Problem A,

condition (1) is shown by Theorem 2 to have certain properties related to

invariance, and thereby to be a not unreasonable hypothesis to use. Thus

the geometric configuration of Theorem 1 may be subjected to a transforma-

tion which carries the closed interior of G into the closed interior of another

Jordan curve G' conformally and one-to-one. Theorem 1 applies also to the

new configuration, (ii) If there is given a region R of simple or multiple

connectivity, such that a single Jordan curve or a set of Jordan curves G

contains the points ßnk not on G in its interior with (1) satisfied, but if R is

infinite or if the boundary of R consists not of Jordan curves but of a finite

number of other continua, none of which is a single point, then 2? can be
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mapped conformally onto a finite region bounded by a finite number of

mutually disjoint analytic Jordan curves, so that condition (1) persists in

character, and hence the extension of Theorem 1 applies.

5. Invariant formulation of Theorem 1. Even though Theorem 1 itself is

not expressed in form invariant under arbitrary one-to-one conformai trans-

formation, an equivalent result can be so expressed with relative ease, as we

shall now proceed to indicate. But our immediate methods apply rather to

Theorem 1 itself than to the extension of Theorem 1 to multiply-connected

regions R.

Theorem 3. Let R be a simply connected region of the extended plane whose

boundary G consists of more than two points, and let the function w = <p(z) map

R conformally and one-to-one onto \w\ < 1. Let C2 be a Jordan curve interior

to R, let G separate the points ßnk not lying on G itself from G, and let

[<b(Z)   -4>(ßnl)]-   ■   ■    [4>(Z)   ~<t>(ßnn)]        ""
(25) hm

l<t>(ßm)<b(z) -!]••■  [<b(ßnn)<b(z)

pU(x,y)

hold at every point of the annular region S bounded by G and C2, uniformly on

any closed set interior to S. Let the function U(x, y) be continuous in S and take

the constant value y on the curve C2. We denote generically by G the locus

U(x, y) =X, (y <X <0), in R, so that G is a Jordan curve separating G and G;

we denote by R\ the region bounded by G containing G in its interior, and by R\,

the closure of R\.

Let the function f(z) be analytic throughout the interior of Rp but not through-

out the interior of any i?p», (p'>p). In the notation of Problem A, the sequence

/„(z) converges uniformly to f(z) on any closed set interior to i?p. Moreover we

have (fory<a<p) equations (2) and (3).

The functions harmonic in R except in the points ßnk,

[0(a)   -  4>(ßnl)\   ■   ■   ■    [4>(Z)   -4>(ßnn)]1
Un(x, y) = — log

n [4>(ßni)4>(z)   -!]••■    [4>(ßnn)<t>(z)   ~   l]

when suitably defined on G are all continuous in the two-dimensional sense

on G, except of course that the functions need not be defined exterior to R,

and they take the value zero on G. Their uniform convergence on a curve G

therefore implies their uniform convergence in the closed region bounded by

G and C\; so U(x, y) also is continuous in the two-dimensional sense on G

and vanishes there. Of course Un(x, y) is negative in R, and indeed by the

hypothesis on the ßnk is uniformly bounded from zero on any closed set

interior to S; so the relation y<0 can be made a matter of proof rather than

hypothesis.
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Our discussion of Theorem 3 is quite similar to the proof of Theorem 2.

Let us transform R conformally without change of notation so that it be-

comes the interior of an arbitrary Jordan curve G. We introduce the notation

1    "
Uñ ix, y) = — 2~1 log | z - ßnk \,

n it_i

Un" (x, y) = — ¿- log
«   *_1       '   |   [z - ft,*] [£(j3»*)*M   -   1]

whence U„(x, y) = Un' (x, y) + Uñ ' (x, y).

The function Unn(x, y), when a suitable definition is provided in the

points j8„t, is harmonic throughout the interior of R; so if Y2 is an analytic

Jordan curve containing G in its interior, but to which (x, y) is exterior, we

have (op. cit., p. 265, Lemma III) for (x, y) either in S or on or exterior to G

1    C   ( a log r aVV\
0 = H    \yñ'-f--logr—-)ds,

Z7T J r, \ oV oV   /

where j» indicates the interior normal for Y2 and the integral is taken in the

clockwise sense. Under these circumstances we also have (op. cit., p. 266,

Lemma IV) for (x, y) either in 5 or even on or exterior to G

If/        dlogr dUñ\
Uñ (x, y) = —        ( Uñ-log r-) ds,

2t J r2\ dv dv /

whence for (x, y) anywhere exterior to G,

1      C     ( d  l0S r dUn\
(26) Uñ ix, y) - — I    ( G-log r-) ds.

2ir J r.¿\ dv dv /

The sequence U„(v, y) converges uniformly to U(x, y) on r2, and the deriva-

tives of Un(x, y) converge uniformly on T2 to the corresponding derivatives of

U(x, y) ; so it follows from (26) that Uñ (x, y) converges at every finite point

exterior to G, uniformly on any closed limited set exterior to G, to the

function

\   C   I    d log r dU\
(27) U'(x,y)=~\    (u—^-\ogr—)ds,

¿■K J r, \ dv dv /

where it is understood that Y2 is so chosen that (x, y) lies exterior to r2, and G

interior to Y2. With this understanding, the functions Uñ (x, y) and Z/'(x, y)

defined by (26) and (27) are harmonic at every finite point of the plane even

exterior to G, and are independent of the particular curve T2 (depending on

i%, y)) which is chosen.
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Let Ti denote an arbitrary analytic Jordan curve containing in its interior

both G and the point (x, y). Then we have

1   f   I        ölogr dUl'\
uy(x, y) = -       lu:'—-*-- log r—-)ds,

¿it J r1 \ ov av   /

where v indicates exterior normal for Ti and the integral is taken in the

counterclockwise sense. We also have (op. cit., p. 265, Lemma II)

If/        cUogr dU:\
0 = r        \U¿—*-logr—-)ds,

¿it J r, \ av av /

whence for (x, y) interior to Fi,

If/      óUogr dUn\
(28) U:'(x, y) = — I       G-— - log r-) ds.

2ir J r,\ dv dv  /

The sequence Un(x, y) converges uniformly to U(x, y) on Yi, and the various

derivatives of Un(x, y) converge uniformly on Ti to the corresponding de-

rivatives of U(x, y) ; so it follows from (28) that Uñ' (x, y) converges at every

point interior to G, uniformly on any closed set interior to G, even interior

to G, to the function

If/    d log r dU\
(29) U"(x, y) = -        [U—^- - log r — )ds.

It J r, \ av av /

It is of course understood that Ti is chosen interior to G, with both (x, y) and

G in its interior. With this understanding, the functions Ul'(x, y) and

U"(x, y) expressed by (28) and (29) are analytic throughout the interior of G,

and are independent of the particular curve Ti (depending on (x, y)) chosen.

The function U'(x, y), harmonic at every point of the plane exterior to

G, can now be identified with the function Vi(x, y) of Theorem 1. From

U(x, y) = U'(x, y) + U"(x, y) ,

valid interior to S, and from the continuity of U(x, y) and U'(x, y) on G,

it follows that U"(x, y) when suitably defined on G also is continuous on G,

and takes on the values —U'(x, y) there. Then U"(x, y) is precisely the

negative of the function V2(x, y) of Theorem 1. That is to say, we have shown

that under the conditions of Theorem 3 with R the interior of a Jordan curve,

the hypothesis of Theorem 1 is satisfied, with V(x, y) of Theorem 1 equal to

U(x, y) of Theorem 3; this first yields a proof* of Theorem 3, and second

* A much shorter proof of Theorem 3, which however does not tend to show the equivalence of

Theorems 1 and 3, can be given from Theorem 1 by use of the substitution w = ¡j>(z) in (25).
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shows part of the equivalence of Theorems 1 and 2. The complete equivalence

of Theorems 1 and 2 will be established by our showing now that the hy-

pothesis of Theorem 1 implies condition (25).

We interpret Uñ' (x, y) as the unique function harmonic in R and con-

tinuous in the corresponding closed region which equals — Uñ (x, y) on G.

By hypothesis* the functions Uñ (x, y) converge uniformly on G to the

function Fi(x, y); then the functions Uñ'(x, y) converge uniformly on G

to the function — Fi(x, y), and hence converge uniformly in the closed region

£+G, to some function — V2(x, y) harmonic interior to R, continuous in

2?+G, and equal to — Vi(x, y) on G. Then the functions Un(x, y) converge

uniformly on any closed set interior to S, to the function Fi(x, y) — F2(x, y).

Consequently, equation (25) is satisfied with U(x, y) equal to the function

V(x, y) of Theorem 1, as we desired to show.

Theorem 3, like Theorem 1, applies without further change in proof even

if G consists no longer of a single Jordan curve but of several mutually

disjoint Jordan curves interior to R, no one of which separates any other from

G or separates any two of the components of G; of course G must separate

the ßnk not lying on G from G; the region 5 is bounded by G and G. The

expression of the examples (i)—(vi) in invariant form already suggested is the

formulation of several special cases of this extension of Theorem 3.

To Theorem 1 corresponds an expression in form invariant under con-

formal transformation, namely Theorem 3. Similarly the extension of Theo-

rem 1 to a multiply-connected region R can be expressed in a form invariant

under conformai mapping, provided that the connectivity of R is finite and

that no component of the boundary G of R consists of a single point; we

continue the lighter conditions on C2. But here we replace condition (25) by

the condition that

(30) lim — ¿ G(x, y; ßnk) = U(x, y),
n-»°o   n   fc_i

uniformly on any closed set in the region S bounded by G and G, where

G(x, y; ß) denotes generically Green's function for R with pole in the point ß

interior to 2?, and with running coordinates x and y. Condition (30) is a

generalization of condition (25), for if R is simply-connected we have the

relation

* In the hypothesis of Theorem 1 it is sufficient to assume that (1) holds uniformly merely in S,

by virtue of the equation

¿irJT%\ dv dv  /

used in the proof of Theorem 3.
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G(x, y; ßnk) = log
4>(z) - 4,(ßnk)

<t>(ßnk)<t>(z) - 1

the right-hand member is harmonic interior to R except at ß„k, is continuous

and equal to zero on G, and when diminished by log | z—ßnk\ is bounded in

the neighborhood of the point z = ßnk.

The methods already set forth above show that condition (30) implies

the hypothesis of Theorem 1 extended, provided R is a limited region

bounded by a finite number of mutually disjoint Jordan curves, and that

conversely condition (30) is a consequence of the hypothesis of Theorem 1

extended. We do not emphasize (30) further, however, for it is apparently

much more difficult to apply than (25), in the absence of a simple formula for

G(x, y; ßnk) when R is multiply-connected.

A consequence of the remark just made is that Theorem 1 extends not

merely to a region R bounded by a finite number of mutually disjoint Jordan

curves, but also to an arbitrary region R of finite connectivity each com-

ponent of whose boundary G consists of more than a single point; we still

suppose G to consist of a finite number of mutually exterior Jordan curves

which separate each of the points ß„k not lying on G from the point at

infinity. If R is finite, our hypothesis (1) implies, by the reasoning already

given in connection with (25) and (30), that equation (30) is valid uniformly

on any closed set in S; consequently Theorem 3 in its extended form applies,

and so also does the conclusion of Theorem 1. If R is infinite, we may replace

(1) by the condition

(31) lim
(z 3»i) ■ ■ ■ (z - ft,,) Un gV^x.y)

(a  - ft)" z-ß

where ß is an arbitrary fixed point separated by G from the point at infinity.

The function

Wn(x, y)
1

log
(Z   -   ftnl)   ■   "   ■    (a   -   ftnn)

(a - ft)"

is harmonic even at

Wn(x, y) converges

suitably defined at

bounded exterior to

to R, continuous in

Wn(x, y) on G; the

converges uniformly

infinity, when suitably defined there, and the sequence

to the harmonic function V¡(x, y)—log [a—ß[ (also

infinity), uniformly on any closed set bounded or un-

G- Denote by gn(x, y) the function harmonic interior

the corresponding closed region, which coincides with

sequence gn(x, y) converges uniformly on G, and hence

in the closed region ic + G, to a function g(x, y) harmonic
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in R, continuous in 2?+G, equal to Fi(x, y) — log | z — ß\ on G. We obviously

have in the notation of (30)

— H G(x, y; ßnk) = Wn(x, y) - G(x, y; ß) - g„(x, y);
n fo-i

so equation (30) is satisfied uniformly on any closed set in S with

(32) U(x, y) = Vi{x, y) - log | z - ß | - G(x, y; ß) - g(x, y).

Consequently Theorem 3 in its extended form applies, and so also does the

conclusion of Theorem 1, if we identify U(x, y) as defined by (32) with the

function V(x, y) of Theorem 1.

Of course the Corollary to Theorem 1 has an exact analogue in the

situation of Theorem 3 extended.

6. Supplementing a given incomplete sequence ßnk. It is to be noted

that such relations as (2) and (3) involve the superior limit as n takes on all

the values 1, 2, 3, • • • . Our proofs remain essentially valid if the ß„k are

defined merely for an infinite sequence of indices n¡, (j=l, 2, ■ ■ ■), with

»J+i>«,-, provided the difference n¡+i — n¡ is bounded. But the proofs are no

longer valid if the difference »,-+i— n¡ is not bounded, and (in the absence of

specific examples) the analogy with Taylor's series suggests that the conclu-

sions do not remain true. It seems therefore of interest to be able to start

with a set ßnk satisfying (1) for a suitable sequence of indices n, and to enlarge

the set so that (1) is fulfilled for the entire sequence w = l, 2, • • • . Methods

of solving this problem lie now at hand, as we proceed to indicate.

By our present hypothesis, namely (1) for a suitably chosen sequence of

indices », the function Vi(x, y) is harmonic at every point exterior to G.

We define Un(x, y) by means of (4). Let r2 be an analytic Jordan curve con-

taining G in its interior, but to which (x, y) is exterior. Then we have

(op. cit., p. 266, Lemma IV)

If/      d\ogr dU„\
Unix, y) = — I       G-log r-) ds,

2ir J r„ \ dv dv  f

where the integral is taken in the clockwise sense and v indicates interior

normal for Y2. The function Un(x, y) approaches Fi(x, y) uniformly on r2,

and the derivatives of Un(x, y) approach uniformly the corresponding deriva-

tives of Vi(x, y); so we have for (x, y) exterior to Y2

\    C   I      d\ogr dVi\
V¿*> y) - -I    [Vi —-log r -Ads.

¿ir J v., \ ov av /
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By the harmonic character of V2(x, y) on and within Y2, we may write

(op. cit., p. 265, Lemma III) for (x, y) exterior to T2

If/      d log r dV2\
0 = H    (F2^-log r—)ds;

Z7T J r2 \ dv dv /

so for (x, y) exterior to Y2 we have

1   f   /    alogr dV\
Vi(x,y)=-        (V—-logr— )ds.

¿ir J r2 \ dv dv /

If G is an analytic Jordan curve, this integral can be taken over G itself;

by the constancy of V(x, y), now assumed on G, we have for (x, y) exterior

to G

-If dV
(33) Vi(x, y) =-        log r-ds.

2ir   J c., dv

Even if the Jordan curve G is not analytic, equation (33) is valid if the

integral is taken in an extended sense (op. cit., §7.6). If the points ßnk are

uniformly distributed on G with respect to the parameter a, where

dV
da = — -ds,

dv

it follows from (33) and the equation

/da = 2ir,

a consequence of (5), that

(34) lim  | (a - ft'u) • ■ ■ (a - ß'nn) |u" = ev'(*-B)
n—»oo

for (x, y) exterior to G, uniformly on any closed limited set exterior to G.

If now the given ßnk do not appear in (1) for every n, we need merely set

ßnk = ßnk for the omitted values of n. Then the new set ßnk is defined for every

n, and it follows from (1) and (34) that (1) holds uniformly on any closed

bounded set exterior to G, when n takes all the values 1, 2, 3, • • • . Such

equations as (2) and (3) apply to the new set ßnk.

These remarks on supplementing a given incomplete sequence ßnk apply

without essential change to the more general situation outlined at the be-

ginning of §3.
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