GENERAL THEORY OF SINGULAR INTEGRAL
EQUATIONS WITH REAL KERNELS*

BY
W. J. TRJITZINSKY

1. Introduction. Amongst the outstanding theories of integral equations
of particular importance from our present point of view are those due to Vito
Volterra,t I. Fredholm,} D. Hilbert,§ E. Schmidt,|| and T. Carleman.§ With
respect to generality these contributions, in the order mentioned, form an
ascending hierarchy of theories, with those of Hilbert and Schmidt essentially
on the same level, while the developments of Carleman present the culminat-
ing aspects. In considering integral equations of the form

b
(1.1) 8 = [ K, 90y = 1),

b
(1.2) ¢(x) — kfa K(x, y)o(y)dy = 0

[f(%) given on (a, b); real K(x, y) givenona < x,y < b].

one may, with advantage and without any substantial loss of generality, con-
fine oneself to symmetric kernels K (x, ),

K(x, y) = K(y, ).

This can be inferred on the basis of certain considerations of Pérés.**
In the sequel, unless the contrary is stated, all kernels involved will be
supposed symmetric. All integrals not in the sense of Stieltjes will be in the

sense of Lebesgue.
Whenevertt

* Presented to the Society, September 7, 1939; received by the editors March 7, 1939.

t An exposition of Volterra's work and of many other developments in the field of integral equa-
tions as well as an extensive bibliography can be found in the book by V. Volterra and J. Pérés,
Théorie Générale des Fonctionnelles, vol. 1, Paris, 1936.

1 Ci. reference on page 344 of Volterra and Péreés, loc. cit.

§ D. Hilbert, Grundziige einer allgemeinen Theorie der linearen Integralgleichungen, Leipzig and
Berlin, 1912.

|l Cf. reference on page 347 of Volterra and Pérés, loc. cit.

¢ T. Carleman, Sur les Equations Intégrales Singuliéres & Noyau Réel et Syméirique, Uppsala,
1923; T. Carleman, La théorie des équations intégrales singuliéres et les applications, Annales de
I'Institut H. Poincaré, vol. 1, pp. 401-430.

** Cf. the book of Volterra and Péres, loc. cit., pp. 305-306 and pp. 263-264.

1t That is, the integrals / : f:K’(x, y)dxdy, j: f2(x)dx exist.
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SINGULAR INTEGRAL EQUATIONS 203
(13) K(x) y)CLz (in X, y)’ f(x)CLz,

the essential results of the Fredholm theory will hold.*
The results of Hilbert’s theory will hold in the essential particulars if

(1.4) K(x,y) cL, (in y; for almost all x),

f ab f:K(x’ )(2)é(y)dzdy = k* f ' s

(k independent of ¢(x)).

IA

(1.4a)

The highly important investigations of Carleman extend these theories
as follows. In some of his investigations (1.4) is assumed (for all x except for
x=4§, &, - - - ; the & possessing merely a finite number of limiting points),
while condition (1.4a) is delcted; in certain other developments he retains
(1.4), deletes (1.4a) and assumes the mean continuity relation

b
(1.4b)  lim [K (1, 9) = K(x, )]y = 0 (21, @0 % £, B, -0 ).
Il—’lz a
Carleman also has a still more general theory in which the conditions (1.4),
(1.4a),(1.4b)are deleted and it is merely assumed that K (x,y) is a limit (in the
ordinary sense or in the mean square with respect to y) of kernels satisfying
(1.3).

The applications of Carleman’s results (or of suitable extensions of them)
have been numcrous and important; witness, for instance, the application to
the Schrodinger wave equationt and to nonlinear ordinary differential equa-
tions (of the type occurring in dynamics).]

Our object in the present work is to develop a theory of equations (1.1) (with
f(x) € L), (1.2) with kernels K (x, ) which, while not necessarily of Carleman’s
type, are limits (in one sense or another) of kernels of Carleman’s type. The
kernels of this description will be said 1o be of rank two. More generally we shall
develop theories of equations whose kernels K(x, y) are of any rank n (=2). In
this connection K(x, y) will be said to be of rank n if K(x, y), whiie not neces-
sarily of rank n—1, is a limit (in a suitable sense)§ of kernels of ranks less than
n. In accordance with the above, Carleman’s kernels are said to be of rank 1.

* A more precise statement in this regard can be found in Carleman, Annales de 'Institut
H. Poincaré, loc. cit., pp. 401-402.

1 T. Carleman, Sur la théorie mathématique de I'équation de Schriodinger, Arkiv for Matematik.
Astronomi och Fysik, vol. 2418 (1934), pp. 1-7.

1 T. Carleman, A pplication de la théorie des équations intégrales linéaires aux systcmes d’équations
différentielles non linéaires, Acta Mathematica, vol. 59, pp. 63-87.

§ More precise formulation will be given in the sequel.
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In these pages we shall consider also equations whose kernels are of trans-

finite rank.
In the sequel Carleman’s book will be referred to as (C).
We shall have occasion to use the following known theorems.

TrEOREM 1.1. (Helly.) Let a(x, n) (n=1, 2, - - - ) be of bounded variation
for asx=b. If Var. a(x, n) <A (n=1, 2, - - - ; A independent of n) and if
lim, a(x, n) =a(x), then

b b
lim f w(x)d.(x, n) =f w(x)d ,; a(x) (for w(x) continuous).

TreOREM 1.2. (F. Riesz.) Suppose f,(x) € Ly, g.(x) € Ly (for v=1,2, - - -
and x on (a, b)) and f,(x)—f(x), g.(x)—g(x) (almost everywhere). Then, provided

b
f g.f‘(x)dx<6, |fV(x)| <'Y(x)cL2 (”= 172:"')’
one has

b b
lim f fa(x)ga(x)dx = f f(x)g(x)dx.
TrEOREM 1.3. (F. Riesz.) If f,(x) € Ly on (a,d) (v=1,2,---) and if
fbfyz(x)dx<M r=1,2,---),

then there exists a subsequence {f, (x)} (m<ve< ---) such that, as j—,
fr;(®)—f (%) weakly; that is,

li.lin j;zf,,,.(x)dx =f:f(x)dx;

moreover f:fz(x)dxéM .
TueoreM 1.4. (F. Riesz.) Let f,(x) €L, on (a, b) (v=1,2, - - - ) and sup-
pose f,(x)—f (x) weakly; then, provided g(x) c Ls, one has

b b
tim [ f2iz = [ j@ama.

TueoreM 1.5. (T. Carleman®) If [of?(x)dx<c, f,(x)—f(x) weakly,
gn(2)—g(x) and | g.(x)| <v(x) € L, then

b b
limf f,,(x)g,.(x)dx=f f(x)g(x)dx.

* (C), pp. 132-133.
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Another theorem necessary for our purposes will be the theorem of (C, pp.
21, 22), which constitutes an extension by Carleman of a result due to Hil-
bert. This theorem, in the sequel referred to as the “Compactness Theorem,”
gives conditions under which there exists a sequence of values &,
(r=1,2, - - ; 8,—0) such that

}in(}f(x) X1, * " yxnlsf) =F(x) X1, * ’xn)y

where f(\, 21, - - -, %] 8) is a given family of functions defined for (xy, - - - , %)
in a domain D for every X on (e, 8). On account of the length of this theorem
the reader will be merely referred to (C, pp. 21, 22).

In the sequel we shall give examples of kernels which come under our classifi-
cation and which at the same time are not of Carleman’s type.

In §2 (Definition 2.2) will be introduced kernels of finite rank # belonging
to classes designated as H,. The main results for K(x, y) ¢ H, are given in
Theorems 4.1, 5.1, 7.1.

In §10 (Definition 10.1) will be specified kernels of transfinite ranks g
(B of the second class), the results for which will be given in Theorems 11.1, 11.2.

2. Kernels of class H,. Let

(2'1) E=E0=(Ilyl2y‘.")

be a denumerable set of points on the closed interval (a, ). Let us take E
reducible closed with, let us say, the nth derived set,

(2.1a) E' =y, Is, )= (s, 58, , )

consisting of a finite number of points (with at least one point present). The
1st, 2d, - - -, (n—1)st derived sets of E will then be denumerable sets

(2.1b) E =51z ) b=1,2,---,n—1),
each actually containing an infinity of points.

DEFINITION 2.1. 4 set E, given by (2.1) and satisfying the above conditions,
will be said to belong to R,, E c R,.*

Given a set EcR,_; (n=1), we shall form sets of closed intervals
A%(30), A(81), « + + , A™H(8m1)
as follows. The intervals of A%(8,) will be
(2.2) AP(Bo) = (s, — B0, 854+ 80) [p=1,2,---,k; Et=(sy,---,51)].

Here and in the sequel the parts of the intervals exterior to (a, b) will be discarded.

* If E C Ry, E consists of a finite number of points.
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In (2.2) 8 (>0) will be chosen sufficiently small so that no two intervals of
(2.2) will have points in common; moreover, & is to be taken so that no end
point of the AP (8o) should be coincident with a point of E (except, perhaps,
a or b; analogous statements are implied in the sequel).*

With 8 (>0) chosen as stated above, consider the set

k
(2.2a) T'(80) = (a, b) — D AL (80).
v=1
It is open. Hence, since the limiting points s, (v=1, - - - | k) of E*2 are all

in the intervals (2.2), as specified, we obscrve that, on one hand, there is only
a finite number of points of E»~2 let us say

(2.2b) S5 s s:l?fo) (m(8) — o, as 6o — 0),

in I'(8,) and that, on the other hand, these points (2.2b) can be enclosed in
closed intervals (whose totality constitutes the set A'(4,))

(2.3) AY(@) = (072 =8y, 50724+ 81)  (v=1,2,---,m(d))

so that with 8, (>0) sufficiently small and suitably chosen the following will
be true. The intervals

(2.33) A,°(60) (1/ = 1, ey, k), Ay‘ (51) (1/ = 1, LR ,ﬂl(éo))

are all without common points; morcover, no end point of any interval A} (5,)
is coincident with a point of E. It is to be noted that the intervals (2.3a) will
certainly be without common points if we take 8, < 8:(8,), where 8:(8) (>0)
is sufficiently small but, gencrally, depends on 6.

Suppose 8o, 8: chosen as stated above. The set

k m (80)

(2.4) I'(80, 81) = (a,0) — DAL (o) — D AMSY)

v=1 v=1
will be open. An infinity of points of E*=2 are in the intervals (2.2); all the
other points of E*~2—the points (2.2b)—are in the intervals (2.3); thus, all
the limiting points of E=* are interior points of the closed intervals (2.3a).
Consequently there is only a finite number of points of E»—3, say

n—3 S T n—3
(2.4a) s, 8, S e

in the sct I'(8o, 8:) (2.4). The points (2.4a) can be enclosed in a sct A%(8.) of
closed intervals

(2.4b) AZ(8g) = (sp78 — By, 5173 + 8y) w=1,2,---,m(d, 61))-

* The point a (or b) will be considered interior to any subinterval (a, a’) (or (07, b)) of (a, b).
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Taking 0 <8, < 85(8o, 81) [8:(8, 8,) sufficiently small], with suitable choice
of & we secure the following. The intervals
A,°(6o) (v = L, k)) Al'l(al) (v = P 7m(50)),
A}@2) (v=1,---,m(d,d))
are all without common points; no end point of these intervals is coincident
with a point of E.

We continue this process a finite number of times, finally constructing
the # sets of closed intervals

(2.5) A¥(s:) (1=0,1,---,n—1)

(2.4¢)

possessing properties of the following description.
The set A#(3;) consists of the intervals

(26) A"‘ (6,) = (s,n—l—t' - 65: s:‘—l_i + 61) [V = 17 2} T m(60’ Ty 6i—1)]
fori=1,2, .- ,n—1. The set A°(§,) consists of the intervals (2.2). The num-
bers §;,

0 < 8 = 6:(00, 01, -+ + , 0i1) (=1,---,n—1;0 < =%

(2.6a
) 8:(8g, 01, - + -, 8;—1), 8° sufficiently small),

are so chosen that no point of E ((2.1)) is coincident with an end point of any
of the intervals of the sets (2.5) and that all the intervals of the sets (2.5) are with-
out common points. The set

k m (80)
(80, 81, + , 8aa) = (,0) — 22 80(30) — 20 A} (o)
r=1 v=1
(2.6b) GobD) i
— Z A2 (52) - .. — ZAf_l(lsn—l)
v=1 y=1
[m'=m(8, 8, - - -, 8.-2)] is open and contains no points of E. The totality

of all limiting points of E»~2 (that is, E*!) consists of the centers of the inter-
vals of A%(8y). The limiting points of E»=3 are partly contained in A°(8,) and
the rest of them, the points (2.2b), are centers of the intervals A!(8,). An
infinity of limiting points of E» (that is, the points of E*~%) are in

A%8o) + A(s1);

the rest of these limiting points, the points (2.4a), are the centers of the in-
tervals of A%(d,). In general, an infinity of limiting points of E#! (that is,
points of E¢) are interior to the set

(2.7 A%Bo) + A6y + - - -+ ATTT(Bais);
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the rest of the limiting points of E*!, the points

(2.7a) sl', s;, e § (m! = m(dy, - - - , On—i-2)),

consist of the centers of the intervals of the set A»=+1(§,_;_;). In particular,
the limiting points of E=E° (2.1), that is, the points E!, are distributed as
follows. A finite number of points of E,

1 1 1

(2.8) S1, S2, ", Sm (m! = m(8o, - - -, 6u=3)),
constitute the centers of the intervals of the set A*~2%(8,—.) (2.6); all the
other points of E* are interior to
(2.8a) A%8o) + - - - + A™3(6,3).
In the open set

Lo, -+ -, 8n2) = (a, 0) — A°80) — -+ + — A"*(3n—2)

there is only a finite number of points of E, say

0 0 0
(2.9) S1, S2,°* , Sm (m! = m(8q, - -+ , Ou—z)).

These points (2.9) constitute the centers of the intervals of A*1(8,_,).

DEFINITION 2.2. Let E be a closed reducible set on the interval (a, b). Sup-
pose EcR,_, where R, . is specified by Definition (2.1). Form sets A(8:)
(=0,1, - - -, n—1) of closed intervals (2.6), without common points and cover-
ing the set E, as described in the text above in connection with (2.2)—(2.9).

We shall say that a real symmetric kernel K (x, y) € H,, if

(2.10) K?B0.b1,- - 8n1(x y) € Ly (in x, y; fora £ %,y £ b),
the function in the first member of (2.10) being defined as follows:
Kbo. - bnmi(x y) = 0 [% in A°(80) + AYSY) + - - - + A™1(8p-r),
whilta £ y<b(ora s y<ux)l;
Koobei(y, 9) = 0 [y in A%80) + AYy) + - - - 4 A" (8am1),
whilta S x <b(ora = x<y)];

(2.11b)  Kb.--dni(x y) = K(x, y) [at all other points of a < %, y < b].

(2.11)

(2.11a)

Moreover, this definition will be applied only if (2.10) holds as stated for all ad-
missible* positive values 8; (1=0, - - - , n—1) no matter how small.

In conformity with this definition, K (x, y) € H, is to imply that

K(x) y)CL2 (in x, y),
* That is, values &; {i=0, - - - , n—1) such that the italicized statement preceding (2.6b) holds.
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so that in this case K(x, y) will be a kernel for which the results of the Fred-
holm type will hold. Kernels K (x, y) € H, are precisely Carleman’s kernels of
the type considered in (C; chap. 4). For any »>1 it is possible to show that
there exist kernels which belong to H, and at the same time do not belong
to H._:; we shall give such an example for #» =2.

The following observations regarding kernels included in H, are in order,
it being understood that everywhere in the sequel the values §; (=0, - - - , n—1)
are taken as “admissible” (cf. footnote to Definition 2.2).

The function
| Ktodn ez, 5)|

is monotone non-decreasing as 8,—,—0; the limit

(2.12) lim K0t 0m(g, y) = Koot s, y)

on—1
exists and

(2.12a) | Koo wbnm1(, g) | S | Koobr--ibnma(, y) |
In succession we obtain the limits
].im Kao""'s”_z(x, y) = Kao.---.ﬁn—a(x’ y), ceey,

Sn2

2.13
@19 lim K%-%(x, y) = K¥(zx, y), lglon Kb(x, y) = K(x, y).
81

It is also noted that
| Koo i, ) | S | Koo obima(, 9) |,

and that the first member in this inequality is monotone non-decreasing as

8;—0; this can be asserted for i=n—1, n—2, - - - | 0. In view of (2.13) one
may write
(2.14) K(x,y) = lim lim - - - lim lim K%su---8-1(x, ),

80 81 bn—2 Sn-1

where the order of the limiting processes, in general, cannot be interchanged.
It is also observed that the functions of the second members of (2.12), (2.13)
belong to the classes H; as follows

(2°15) Kﬁo.&x,'--,ﬁg(x, y)cHn-l—i (i = 07 1) R (S 1)'*

The above considerations lead to the conclusion that kernels K(x, y) € H, are
also of rank n, according to the terminology of §1.

Example of K(x, y) € Ha, but not belonging to H, (that is, not of Carleman’s
type). To construct such an example we shall take a=0, b=1 and define

* As indicated before, the class Hy is identical with the class of functions L, (in two variables).
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K(x, y) by the relations

(2.16) K(x, y) = g(x) (for 0 = y < %),
(2.16a) K(x, y) = g() (for0 = x < y),
the definition for y =x being immaterial;
(2.16b) g(x) = g.(x) Qe+ <x<1l/y;v=1,2,--"),
(2.16¢) &(x) =0 A+ 1) <zx<v=@2v+1)/(2v(@+ 1)),
1/2
(%) =’_£v““"_ (vv = x<1/v;¢6 > 0).

(,,—2 — x2)ll2

For this kernel the set E ((2.1)) consists of the points 0, 1/» (v=1, 2, - - -);
the derived set E! ((2.1a)) will be E'=(s;) (s1=0). Thus E c R, (Definition
2.1). The set A°(8,) will consist of a single interval (cf. (2.2))

(2.17) A1°(80) = (O, 50) (0 < 50 < 1),

where 8#1/7 (=1, 2, - - - ). For some integer m(3,)

(2.17a) 1/(m(8o) + 1) < 80 < 1/(m(80)).
The set A1(8,) will consist of the intervals (cf. (2.3))
(2.17b) Ayl (61) = (1/11 - 61, l/V + 81) (V = 1, 2, Tty m(6o)),

where 0 < 8, < 8:(8,) with 8,(8,) denoting a positive number less than each of
the two numbers

Then, by (2.11), (2.11a) and (2.11b), we have for y<x

K¥41(x, y) = 0
[%in AP (80), AL (8:) (v = 1, - - -, m(80)); cf. (2.17), (2.17b)];
(2.18a) Khi(x, y) = g() [ in (0, 1) — A%80) — 2 A (B1)];

for x>y the function of the first member of (2.18) is defined by symmetry.
Whence by virtue of (2.16b), (2.16¢), it is inferred that

1 1 1/m(80)—81 z .,
f f | Kboti(x, y) |*dxdy = Zf f gman (2)dydx
0 0 z=8 y=0

(2 ° 19) m(80)—1 1/v—81 z
+ 2 2 f f g? (¥)dydz,
z: y=0

v=1 =1/(v+1)+8

(2.18)

where
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1/v—81 z
(2.19a) 2f f g} (x)dydx = — N\, + log T(v, &1)
z y=0

=1/ (v+1)+8)
D = — o log (2 — 42); T(v, &1) = (26:/v — 82)~].

Hence, for all admissible &, (>0),
ff | K#ot1(x, y) |2dxdy — + (as 6, —0),

and clearly K%(x, y) does not belong to L, (in x, ¥). Consequently it is clear
that K(x, v), as given by (2.16)—(2.16¢), is a kernel satisfying the conditions
of the italicized statement preceding (2.16). It is essential to note that for the
example considered above the integral

1
f K*(x, y)dy
0

diverges; in fact, convergence of this integral would have meant that K(x, )
is essentially of Carleman’s type.*

Some of the developments for integral equations whose kernels are in-
cluded in H, will be given with the aid of operators L specified as follows.

DEFINITION 2.3. Given a kernel K(x,y) ¢ H, (Definition 2.2), a linear oper-
ator L.(¢| h(x)) (£ @ parameter) will be said to be associated with K (x, y) if

(2.20) Lo(¢| K(x, y)) € Ls (in );
(2.21) | La(g] Koodreeebma(a, ) | < v(E] 9),
where v(£|y) € Ly (in y) and v(£|y) is independent of &, 61, - - -, 8us;

lim L,(¢| Ko 81z, y)) = Lo(§] Koo 43(x, y)),

On—1

(2.22) lim L.(§] Koo b2z, 3)) = Lo(§| Koo dv3(x, 9)), - - -,
dn—2

lim L.(¢] K%(x, 9)) = L.(¢| K(x, y));

0
whenever f,(x) € L, converges weakly (as v—o0) to f(x) (aSx=<b) we have

(2.23) lim L.(¢ | fu(2)) = La(€] f(2));

b b
(2.24) f Lo (£] Koo idn(x, y))¢(y)dy=Lz(E| f K*o'-‘--‘"-l(x,y)qs(y)dy),

whenever ¢(x) € L,.

* This follows by Carleman, Annales de I'Institut H. Poincaré, loc. cit.
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Not1E. For n=1 an operator described in the above definition reduces pre-
cisely to the operator L given in (C, pp. 137, 138).

In order to make certain that those of the developments, with respect to
kernels included in H, (»>1), which are made with the aid of operators L
(Definition 2.3) should have a significance, it is essential to show the following.

There exist kernels K (x, ), included in H,(n>1) and not belonging to H,_,,
with which one can associate an operator L satisfying the conditions of Definition
2.3.

We shall give such an example for #» =2. For » >2 similar examples can be
given following similar procedures.* It will be sufficient to construct an oper-
ator L associated with the kernel K(x, v), given by (2.16)—(2.16c). Let us take

(2.25) Lte] ho) = [ 6(¢| ) h(x)d,

where, for v=1,2, - - -,

(2.25a) G(E| ») = G, (| x) (for v, £ x < 1/v; v, from (2.16c)),
(2.25b) G(E| x) = — G| 2v, — @) (for 1/(v + 1) < x = 7,);t
here we take

(2.25¢) G,(El x) = ¢ V22 — x2)”2w,(£| x), 0= w,(él x) < H,

where # is independent of », x and w,(¢|x) [included in L, in x on (y,, 1/7)]
is monotone non-increasing in x on (v,, 1/»). Moreover, the ¢, will be taken
subject to the requirement that the series

(2.26) Z.i

y  CVb
be convergent. We shall now demonstrate that the operator L.(f|/(x))
((2.25)), so defined, satisfies the conditions (2.20)—(2.24) with respect to the
kernel K (x, v) [(2.16)—(2.16c)].
By (2.25¢)

H2/ 1 H?
el s Z(5 - 7)< (n S = < 1/9);

» Cy”s

thus, in view of (2.25a) and (2.25b),

(2.27) [G(elx)|2<;:; A+ <x<pr=1,2---).

* This will not be done in these pages in order to save space.
t v, bisects the interval (1/(»+1), 1/»); (2.25b) implies symmetry of G(EI x) with respect to v,
as indicated.
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Hence

1 © 1/»
f |G(£| x) |2dx =, |G(£| %) l’dx
0 =1 1/0+1)

(2.27a)

= 1 /1 1 1
<H ) (——- )<522 ;

?
=1 G\ v v+ 1 vt

the series last displayed being convergent in view of (2.26), it is concluded
that

(2.28) G| x) Ly (inx;0 < x < 1),
By virtue of (2.16), (2.16a) and (2.25)

(2.29) L.(¢| K(x, y)) = B(E]y) + alt]y),

where

v 1
(2.292)  B(E|y) = &(y) OG(Slx)dx, altly) = f G(t|%)g(x)dx.

By (2.16b), (2.16¢)

(2.30) BEly) =0 (for 1/(» + 1) < y < ).
Now suppose

1
(2.31) WS y<-—;

14

then by (2.16¢) from (2.29a) we deduce

cvllz 0 1/i v
Bt y) = ﬁ[ > G| x)dx + G(t| x)dx];
(2 =y =1 1G4 1/ 41)
in view of (2.25a) and (2.25b)
1/1
f G(t|x)dx =0 G=1,2,---);
1/G+D)

whence

c,1/? y o2 29—y
Bt|y) = WL G| x)dx = T’T;———L G(¢| x)dx

/o41) ( b0 ARV VICTEY
Cyll2 fﬁ‘y,—y |
= - — G,(¢| 2v, — x)dx
(2 — y)Y2J 104
6'1I2 1/v

_-(v_’——yz)”z , Gy(Elu)du;
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in view of (2.25c) and in consequence of the monotone character of w,(£| %)
it is concluded that, under (2.31), the integrand last displayed satisfies the
inequality 0=<G,(¢|#) <G.((|y) (y=u=1/v); thus, by (2.25c)

12 1 1
(2.32) |B¢|y]| = _C—G'(Sly)<__ y) = <—_ y)” <0
(2 — g2 v v 2
(under (2.31)).

Inasmuch as (2.30), (2.32) hold for »=1, 2, - - -, it is inferred that
(2.33) | 8| )| < 5/2 O=y=1.
On turning attention to a(|y) ((2.292)) it is found that

ot 5 @ = [ 6|2 | ga)as
(2.34) N .
=2 |G| %) | gu(x)du;

v=1¢ 1/(v+1)

by (2.16¢), (2.25a) and (2.25¢)

1

0 1/» L] v
(2.342) a®) =X | |GE|»|aGladr =X |  w(E|x)de <n.

y=1 A v=1 Ty

By virtue of (2.33), (2.34), (2.34a), on taking account of (2.29) it is deduced
that (2.20) s satisfied for the example under consideration.

We shall now proceed to establish (2.21) (with #»=2). By definition of
Kbon(x, ) [(2.18), (2.18a)]

(2.35) L.(g| K%8(x, 9)) = Boodi(t]y) + adoti(E]y),

where

ﬁso'sl(s I y) j— gﬁo.sl(y) f G(E I x)dx,
z=0

(2.35a) .
anely) = [ 6] Mg,
v
ghh(x) =0 [for 0 < x < &; for x on closed intervals
(1/1/ — 61, l/V + 61) (V = ly 27 Tt ’m(‘so))]’
(2.35b) glodi(x) = g,(x) [/ +1)+86<x<1/v—20y

v=1,2,---,m@) — 1;cf. (2.16¢)];
g%:01(x) = gm@y (%) [60 < x < 1/m(30) — &.].
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Clearly
(2.36) 0 = ghti(x) < g¥(x) < g(x) (0= x=1);
here
(2.36a) g4(x) = lim goi(s),  g(#) = lim gh(a).
1 3

By (2.35a) and (2.36) in view of (2.29a) and (2.33)

v

[ 6l
Zw=0

On the other hand, in consequence of (2.35a), (2.36), (2.34) and (2.34a),

(2.37) | Brn(t|y)]| < gly)

H
=|B(E|y)|<—2—'

1 1
(2.372) |atn(g]y)| < f |G(&|2) | groir(x)dx < f |G| %) | g(x)dx < m.

In view of (2.35), (2.37) and (2.37a) it is inferred that condition (2.21) (Defini-
tion 2.3) holds with v(£|y) =31/2.

To demonstrate the first one of the relations (2.22) it is sufficient to prove
that

(2.38)  lim gonely) = 62| y),  limatnlE]y) = a(t]y),

where

@38 el =0 [ Gelnarn, @l = [ oD,
with g(y) denoting the first function displayed in (2.36a),

gh®) =0 (0= == d), gh(x) = g(x) (8o < x = 1).

The first of the equalities (2.38) follows immediately from the first relations
in (2.35a) and (2.36a). To justify the second relation in (2.38) it is sufficient
to show that

1 1
lim f G(t|x)ghh(x)dx = f G(t| x)gb(x)dx.
&1 v v
The passage to the limit under the integral sign is here justified because the

integrand displayed in the first member converges to the integrand displayed
in the second member while, as follows by (2.36),

|G| x)gbor(x) | < |G(¢] %) | g(%) € Ly (in x; cf. (2.34), (2.34a)).
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The second one of the relations (2.22) will certainly hold if
(2.39) lim B(¢]) = Be]y),  lim a®(E]y) = alt]y),
30 (]

where 8%(£|y), a2(£|y) are given by (2.38a) and B(£| ), a(£|y) are the func-
tions of (2.29a). The first of the equalities (2.39) is a consequence of the last
one of (2.36a). The other equality of (2.39), that is the relation

1 1
im [ G| agai = [ 6] Dpwas,

is seen to be true in view of (2.36a) and of the inequality
|G| ®)gh(x) | = |G| »)| g(x) e Ly (in ),

which is deduced from (2.36).

Accordingly it can be asserted that conditions (2.22) of Definition 2.3 all
hold for the case under consideration.

The condition stated in connection with (2.23) will kold for all sequences
{f.()} therein specified, since

lim fo lG(£|x)f,(x)dx = fo IG(£|x)f(x)dx;

in fact, passage to the limit under the integral sign is here justified in view of
(2.28) and of Theorem 1.4.
It remains to verify whether (2.24) holds, that is whether we have

) [ [ ctlmmncs, y)dx]«p@)dy

- [Teeln[ f _K( )6(2)dy s

z=0

(2.40)

for all ¢(y) € L,. The indicated change of order of integration can be justified
without difficulty.

The developments from (2.25) to (2.40) enable us to conclude that the
kernel K (%, v), as given by (2.16)—(2.16c) and with the ¢, (>0) such that the
series (2.26) converges, has associated with it an operator L (cf. (2.25)-
(2.25¢)) satisfying the conditions of Definition 2.3.

3. Formulation of induction for classes H,. With K(x, y) ¢ H, (Definition
2.2) and K@% -#-1(x, y) being the function specified by (2.11), (2.11a),
(2.11b), consider equations

b
(3.1) P t1(x) — )‘f Koo b1, y)gier s tmi(y)dy = f(x) (f() € La),
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b
(3.2)  ghdei(a) — f Kt -di(, y)gho - di(y)dy = 0.

By (2.10) the kernel in (3.1), (3.2) belongs to H, and is thus essentially a
Fredholm kernel. In accordance with known facts regarding such equations,
the spectrum of the kernel displayed in (3.2) is the function

g0 widnmi(, y| N) = 30 oo tnmi(x) o bni(y)

(A\>0; summation over values » such that 0 <\, &1 <\);
(3.32) gio.- - 8-1(x, y| 0) = 0;

gz, y | N) = = T e () i)

(A<0; summation over values » such that A S\,%.- - $-1<0).

(3.3)

(3.3b)

Here the sequence
{0+ tnm1() }

forms an orthogonal normal set. The \,%:---:3-1 are the characteristic values
of (3.2); thus

b
(3.3(:) ¢,30,...,5,,_1(x) —_ )\,6°""v5"‘1f K"°-""§"’1(x, y)¢y‘°"""n-!(y)dy.*

By induction we shall establish that certain facts, to be stated explicitly
in the remainder of this section, hold for all integral equations (1.1), (1.2)
whose kernels are included in H,,, where m is any finite integer (=0). Thus,
assume that the following facts, stated throughout the rest of this section, hold for
kernels included in H, (n=1, - - - , m—1). An examination of these statements
leads to the conclusion that they certainly hold true for m =2; that is, for Carleman
kernels Hy; this can be asserted on the basis of (C; chap. 4). In subsequent
sections these facts will be shown to hold for # =m; which will complete the
induction.

Form the function

(3.4) f ’ f Spinn b1z, y | Ndady = Qb y | V) (cf. (3.3)=(3.3b)).

Subsequences of positive numbers
(3.5) bnap (r=1,2,--+), bpgr (r=1,2,---),--+, dop(r=1,2,--+)
can be found so that
(3.52) lim 8u_1, = 0, - - -, lim 8o, = O,
r

T

* Many properties of 8% ***~1(x, y| \) can be inferred from (C).
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and so that the limits
lim Qb dnr(g, 3’| A) = Qo+ na(g, yl N,
5n—l.r

(3'6) lim 960"”'6"-2(55’ yl )‘) = 950'“.'6"_3(95) yl )‘), Ty
on_2,r

lim Q%r(z, 3| N) = Q(x, y|N)

50,7

exist for all (x, v, \),* convergence to the limits (3.6) being uniform with re-
spect to (x, ¥);

(3.7)  Var. 9z, y| N = [(x — a)(y — 9) V%5t 2w, ] 0) = 0;

| o, | M) — =, y| V)]
=s[@-a|y -]+ [6 -0 - x[]w
The function Q(x, y|\) may be discontinuous in  for certain values of X,

say Ay, Ag, - - - .
We have

(3.8) fab :

o Q(x’ y| )‘)
y

(3.7a)

2
dy=x—a

[integrand exists for almost all y;a < y < b].

With the numbers (3.5) suitably chosen one has

9 a
lim — @ity y | N) = — Qo bea(a, 3| V),
r ay ay

d a
(3.8a) lim — Qo0 sdnzr(x, y | N) = — Qoo ba(x, y | N), - - -,
r ay ay
a a
lim — Q%.r(x, y|N) = — Q(, y| N,
r ay ay
convergence being in the weak sense in y (a <y=<b).1 Also

(3.9) fab

2 b
dx §f h*(x)dx

a [ 3
[ #) = 9, 3| Ny
0xJ 4o dy

* That is, “in general” for a<x, y<b and for all real A.

t “Var.” means “variation with respect to N” for (— », + ) unless the interval is indicated
explicitly.

1 (3.8) is assumed for kernels of classes Hy, Hs, * - + , Hn—i; in particular (3.8) will hold for the
second members of (3.8a), which are defined for almost all y on (g, b).
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whenever k(x) ¢ L;; moreover,
9 3 3 [ )
@9)  tim = [ hG) = atertn, 3Ny = = [ b s,y Ny,
r 0xJ yq dy 0xdJ ys dy
convergence being weak in x (for a suitable sequence d,,).

Whenever g(x), k(y) € L, the following relations will hold (provided the
b0, are suitably chosen):

b a b ad
im [ g [ h0) - @orta, 3|y | i
r Ja 0x J yq dy

(3.10) \ s o
= [ e[ h0 e Inay o
- j;bg(x) [%fabh(y)%ﬂ(x, v X)dy]dx
=< [fab hz(x)dyc]l/2 [fabgz(x)dx]m;
Var. fabg(x) [%fabh(y)% Qz, v )\)dy] dx
(3.11a)

=< second member above.

Whenever a(\) is continuous on (A1, N2) and g(x), A(y) € L,

Ne b 9 » s
(3.12) f* a(k)dxfa =) [BZf h(y)a—}‘,ﬂ“'"(x, yl)\)dy] da

Ae

b aJ b 9
= [ e [ e[ | o) 5 a(z, 3| Ny | dx

A

(as r—0; suitable &,,).
With a(\) continuous on (A, Ne) and |a(\)| =M,

b9 Ae b 9 2
f [—f a()\)d)‘f h(y) — Qz, y| )\)dy] dx
a ox A a ay

(3.13) .
=< M2f h*(x)dx = A .*

The following interchanges of limits are justifiable for kernels of classes
II], 112, s ,Ilm_li

* We assume this for kerncls of classes Iy, Iy, « + + , H,n_y; for kernels I, this inequality follows
by developments in (C), but is by no means obvious.




220 W. J. TRJITZINSKY [September

f):za()\)dx fab g(x) [;;Lbh(y) -:—y Qx, y| )\)dy:l dx
(3.14) _ fab g(x) ;;[ L jza(}\)dx f b h(y) % (x, v| )\)dy] dx

= f "g(x);_x[ f..b (_96; [ L j'a(x)dm(x, y] x)] h(y)dy] dx;

for H, this is assured in (C, p. 135).
The generalized Bessel’s inequality for kernels of classes H, (n<m) is

(3.15) f_:dkl:j;b h(x) (%fabh(y)% Q(zx, yI )\)dy) dx] = fab k(x)dx

(whenever h(x) € L,).

Following the terminology of (C) one may call Q(x, ¥|\), corresponding to
kernels H,, closed in case (3.15) holds with the equality sign.

When Q(x, y|\) is closed then, for every h(x) c L,

(3.16) h(x) = %f_:dx[ﬁbh(y)%ﬂ(x, vl %)dy]

almost everywhere on (a, b).
Suppose there is an operator L, as specified in Definition 2.3, associated
with our kernel K(x, y) € H,. Consider the equations

b
(3.17)  L.(¢| ¢(x)) — Xf Lo&] Koo omi(x, 3))(3)dy = L] f(5)),

b
(3.18) L.(t] o(2)) — A f Lo(t| K(z, y)6(3)dy = L.(¢] (),

derived on the basis of (3.1) and (1.1), respectively. The following holds.
With IN=B%0 and ¢%: " 4~ (x) denoting a solution of (3.1), the repeated
limit, in the sense of weak convergence,
lim lim - - - lim @do.rdtr--bn1r(x) = ¢(x)  (suitable choice
d0,r O1,r on-1,r
(3.19) )
of b, (>0;r=1,2,---;»=0,:-++,n—1);lim,, = 0)
T

will exist and will constitute a solution of (3.18); moreover,

(3.19a) fb|¢2(x)ldx <M= ’)‘lgfblf(x)lzdx.




1939] SINGULAR INTEGRAL EQUATIONS 221

Corresponding to every function Q(x, y|N) defined as in (3.6a) the equation
(3.18) kas a solution

9 > 1 b a

@20 ¢@ =@ +r [ ——a [ 1) a5l
0xJ o 4 — N a dy

provided TN50; this solution satisfies the inequality (3.19a).

Suppose 4(y) € L, and write (with />0)
¢(x’ ll 0o, v, 6"—1)

(3.21) _ < fl "y f;’)% i, fa"aso,...,an.l(x, | wh(z)dy.

With the 8;,, [>0;7=1,2,---;4=0, - - - , n—1] suitably chosen,
¢(x’ lI 8o, - ¢, 573-—1.') '_)\b(xy l! 8o, 0 ¢ ¢, 8”—2)’
¢(x,l| 60’ T ’6"»—2.') —)‘l’(x’ ll 60: Y 6”-3); T
¥(=, 1] 80.) > ¥(a, 1) (asr— =),

convergence being in the weak sense in x; moreover,

(3.21a)

(3.21b) f a(a, D < _}2 f " W),
(3.21c) Jim L ¥(x, ) = 0.

For kernels K (x, ) of classes H, (n<m) and k(y) € L,

1
f L.(¢] K(x, 9)h()dy

14 b F) 5 9
(3.22) B f_l d“fﬂ Lu(¢| K (=, 5)) [B;f., h(2) 5 (s, ¢ M)dt:l ds
+ L.(¢]|¥(x, 1)

- f_:d“ fabLz(ElK(x, 5)) [% f: 70 a%ﬂ(s, t| u)dt]ds.

On writing (with 1>0)

3 i b d
(5.29) wlz,d) = ) = (5,0, 75,0 = [ o 1) 1) 5 905 | M,

a

we have ((3.23a) being a consequence of (3.13))

b b
(3.23a) [ e naz < [ o)y =,
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b
(3.23b) f w?(x, Ddx = 4q,
and
b
(3.23¢) (s, 1) — w(%), f wi(x)dx < 4q h<lh<--),

a

convergence being in the weak sense; moreover, w(y) satisfies the equation
b
(3.23d) f L.(¢| K(x, y))w(y)dy = 0.

A consequence of the statements in connection with (3.23)-(3.23c) is the fol-
lowing. If the equation

(3.24) f Lot | K(z, 9)é(y)dy = 0 (6(y) € Ly)

has only the solution ¢(n) =0 (almost everywhere), then every f(x) € L, has the
representation

d b ]
(3.24a) fx) = d—xf d\ f f(» a_y Q(x, yI Ndy (almost everywhere).

a

Let Ag(\) =¢g(\')—g(\'’) (real N, X', N’<\'’); then for all kernels of
classes H, (n<m) and for all k(y) € L,

L ol mna | n)d
(3 25) z(E ' a fa (3’)5; (x7 y ) y)
' b 3 r b F
-f Lz<z|K<x,s>)[5—s f " [ W), n(s,ylmdy]ds=

in particular,

ad
L, (z l PG | x))
(3.25a) » 8 M
- fa Lz(E‘ K(x: S)) ['5;];, [.td,,ﬂ(s, yl 'U')] ds = 0.

Also for K(x,y) c H, (n<m)

b
L.(t| K(x, ¥))h(y)dy

(3.26)

= —d,.L ( I— (y)aiy Q(x,y|u)dy)

—wu
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for all h(y) cL,. Furthermore the following relation will hold, for
K(z,3) cHa (n<m),

PR
L(g‘(;cfx 1d,Q(z, v | u))

b 9 N
(3.27) [ el k| [ et y0)]as

a N
= L.(t| 2 [ G- Mg yl0) Gn=o.

G

4. Developments without the aid of operators L. In §3 we have assumed
and have stated certain facts (refer to the text from (3.4) to (3.27))for classes
H, (n=1,2,---, m—1); an examination of Carleman’s work leads to the
conclusion that these statements certainly hold for Carleman’s kernels H,. We
shall now prove that the results asserted from (3.4) to (3.28) hold for kernels
K(x,v) € Hn, as well. This will establish the theory for kernels included in H,,
where » (>0) is any finite integer.

Let

(4.1) Ki(%, y) € Hp,

the spectrum corresponding to K% *-#»-1(x, y) being the function defined in
(3.3), (3.3a), (3.3b), with n=m. In the definition of the spectrum are in-
volved numbers A,%:-4n-1 and functions ¢,% " *#»-1(x) (orthogonal normal
set), satisfying equation (3.3c), where we now write

n=m,  Khohei(y, y) = Kforinmi(y, ).

If one forms the function
z v
(42) 9150""'8"‘“(36, y[ x) — f f 0180,-..,6m-1(x’ yl )‘)dxdy

(cf. (3.4)) and notes that this function is a. Q(x, y|\) belonging to H,, it is
observed that in consequence of (3.5)—(3.6), there exist limits

lim Qo+ dmtr(x, 3| N) = Qo dmoa(a, y| N),

dm—1,r

lim 9150-"‘:5m—2,f(x, yl x) — leo,...,am-;(x, yl x)’ e,

dm—2,r

lim 9160’61"(.’”, yl )\) = 9130(3{;’ yl )‘)

81,r

[limai,r=0;i=m_l)m_27"',1]‘
r
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The latter limit is a Q(x, y|\)-function belonging to the class Hn_;. This
function, accordingly, satisfies (3.7), (3.7a). Whence the “Compactness Theo-
rem” (§2) can be applied, thus enabling one to assert that

4.3) lim Q,%.(x, y| N = Qu(z, y| N (suitable 8g,p; r = 1,2, )

do.r
exists, with the limiting function satisfying (3.7), (3.7a). We note that
Qu(x, y|N) is a Q(x, y|\)-function belonging to our kernel (4.1) and that it
may be discontinuous in N for, say, A/, N, - - -
We supposed that (3.8) holds for Q-functions belonging to H,_i; thus

2
— 0z, y|N) |dy £ x — a5
y

(4.4) fab :

by Theorem 1.3 and in view of (4.3)

d d
o Qi%0r(x, v | N) ——>a— (=, |2 (as r — o ; suitable &g, > 0),
y y

convergence being in the weak sense in y; moreover,

(4.42) fab

These considerations enable us to assert (3.8), (3.8a) for the class H.
By (3.9), stated for Q% (x, y|\), with the aid of Theorem 1.3 we obtain the
relation

2
dy = x — a.

<]
- Ql(x7 y‘ )‘)
dy

9

b F) o ? a
i —f B(y) — Qdo(x, 9| N)d =—f h(y) — Qu(x, y| N)d
4.5) im — . (,)ay por(x, y | Ndy ol .. () P (=, y| Ny

[weak convergence in #; suitable §o,, (r = 1,2, - « - )15

moreover, (3.9) will hold for Qi(x, y|\).
With the aid of Theorem 1.4, in view of (4.5) and on writing

d b 0
@) = — f h(y) - Qubor(x, v| Ny,
0xJ 4 dy

we get (whenever g(x), k(x) € Ly)
b d b a
im [ ") [ [ ") = a5 Wy |5
1 a IxdJ 4 dy

(4.6) . e e s
S ECIE) CORLICE] Ndy | ds,

which is (3.10) for @ (x, y|N).
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Formula (3.11a) will hold in particular for Qor(x, y|\); on taking ac-
count of (4.6) it is concluded that (3.11a) holds in the limit, that is with
Q(x, y|\) replaced by Qi(x, y|\). The inequality thus obtained enables us to
assert that (3.11) will hold also for @(x, y|)).

By (4.6),(3.11a),with Q= Q%+ in virtue of Theorem 1.1 it is deduced that

A2 b 0 b a
I Nd )[-— B o, )\d:ld
im xla( ) fa g(x f (») o }'I )dy |dx

=j; a()\)d)‘f g(x)[ f h(y)—ﬂl(x ylk)dy]

1

4.7)

(whenever a(\) is continuous and g(x), #(y) € Ly); that is, (3.12) holds for
Ql(xy ylx)'
In (4.7) replace x by # and let

(4.8) gy =1 (east=sx), gB)=0 (x<t=0Dh);
then it is deduced that

lim a()\)dxf h(y) — 915° v (x, yl Ndy

r A\

(4.9) A2 b 9
= [ [ 36) =t I dy
M a dy
(a(X) continuous, k(y) € Ly);
the relationship (4.9) will hold also for Q-functions belonging to classes H,
(v<m). Now, we may write (3.13) for Q%-(x, y|\); the inequality so ob-
tained, together with Theorem 1.3, would imply that, if the &,, are suitably
chosen,

i)
(4.9a) — a()\)dxf h(y) — 9150 (%, y| Ndy = T(x, \) (as r — ),
dx M

convergence being in the weak sense (m x) ; by (4.9)

(4.9b) I(x, N) =a—8x a()\)dx k(y) —m<x ¥ Ndy,

and (cf. (3.13)), in accordance with Theorem 1.3,

fII‘(x, N |2dx < 4.

Thus it is concluded that (3.13) holds for the class H,; it is also clear that
(4.92), (4.9b) hold for all classes H, (v <m).
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We now proceed to establish the first equality (3.14) for @;. With Q,%:r be-
longing to H,_,, this equality takes the form

A2 b 9 b 0
ﬂ ety f ¢(®) [5 I} HO) e x)dy] ds
b a A2 b a
- f g(")a_x[ f o f o) 5 e x)dy] dz.

In view of (3.13) (for Qr), (4.9a), and (4.9b), application of Theorem 1.4
will yield the result

b a A2 b a
tim | Ma[ f a(\)dr f h(y)—w-«x,ylx)dy]dx

(4.10)

(4.10a) . s
= [Cer ] [t [ a0 o auta 59y e
[whenever g(x) € Ly; suitable 60,, (r=1,2,--)].
We shall have
A2 b F:] b 9
im [ ey [ g [ 40 aenta, 3|0y | ax

r M a 0xJ 4 dy

(4.10b)

Ae b a b a
= [Tetia [ s [+ [ 1)+ 0 5|0y [z,
M a dxd 4 ay
if it is shown that

b i) b a3
lim f g(x) [—f h(y) — Qo0 (x, yl )\)dy:l dx
r a IxJ , dy

b a3 b d
- g(x)[— f h(y)—szl(x,ylx)dy]dx,
a dxJ 4 dy
and that

b l¢] b ad
@ e [ [ o) 0r(z, 3 Ny |0 < B

(1)

where B is independent of &,,; this it is possible to assert in consequence of
Theorem 1.1. Now, (1) holds in view of (3.10) (with 2=;); on the other
hand, (2) is implied by (3.11a) (inasmuch as 2%+ is of class Hm_1). Thus
(4.10b) is seen to be true; together with (4.10a) this relation enables us to
deduce from (4.10) that the first equality of (3.14) holds for Q= (.

In view of (4.10a) the second equality (3.14) will be established for Q@ =,
provided it is shown that




1939] SINGULAR INTEGRAL EQUATIONS 227

s 2 “a<x>dmw<x,ylx) W)y |dz
e 0V
- f s~ [ %[ f " ahaz, | 0| wosey | ax

If one equates the first and the last member of (3.14), writing
Q = Qb g=1 (on (a’ x))’ g=0 (on (x, b)))
it is deduced that

A2 b a
[ Faan f Bo) 3 e,y My

A
-f "aay [ f (N (s, x)] K(5)dy;

by (3.13) (with @=Q%:r) the latter equality implies that

(4.10d) f : [% f b%[ j; jza()\)dml“,'(x, y| x)] h(y)dy:rdx <A4.

In view of (4.10d) and in consequence of Theorems 1.4, 1.3 it is observed that
(3) and hence the second equality (3.14) will hold for @i, provided that

hm f [ f a(x)dml*o'(x,ylk)]h(y)dy

_f I:j; a(N)d\Qi(x, yl )\)] h(y)dy (suitable dq,,).

1

In virtue of (4.10c) it is concluded that (4) will hold if

(4.10c)

(4)

lim a()\)d)\f k(y) ‘—y Q%0 (x, yl Ndy

L4 M L) Az
= f a a_y[ L 1 a(N)drQi(x, y| M] h(y)dy;

that is, in view of (4.9), if

Az 14 9
J o [0 0, v 104y

- f ,,baiy[ j; j’a(x)dml(x, y| X)] h(y)dy.

.3

(4.10e)
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Now, (4.10e) can be established with the aid of (4.10c). In fact, by (4.9) the
first member of (4.10c) will yield in the limit the first member of (4.10e); on
the other hand, for suitable &, (r=1,2, - - -)

b ] A2
(4.11) lim f h(y) [b—f a(N Q% (x, y| )\)] dy = second member of
r a y

M (4.10¢),
because, by (3.13) (with @=Q%:r and =1 on (a, y) and £=0 on (y, b)),
b k] A2 2
(4.11a) f [a—f a(N)dr Q%0 (%, yl )\):I ds =4 (r=1,2,---)*
a XV 2\,

and since
\e A2
(4.11b) lim a(N) Qo (x, y| ) = f aNdhi(x, y|N).t

T M M

To ascertain the truth of (4.11) on the basis of (4.11a) and (4.11b) one needs
only to take note of Theorem 1.3 and of Theorem 1.4. With (4.10e) estab-
lished we have (4) secured, as well as the second equality (3.14) (for .).

Thus, (3.14) holds for the class Hn.

To establish the generalized Bessel’s inequality for €, it is observed first
that, in consequence of (3.11a) with

Q= Yo, g(x) = h(x) € Ly,
it follows that

(4.12) Var. fabh(x) I:;;j:lbh(y) %9150-'(95, y| )\)dy] dx = f: h(x)dx.

Also
b a b a
lim f h(x)[— f h(y)——ﬂﬁow(x,ylx)dy]dx
r a dxd , dy

b J b a
= f h(x) [—a—-xf h(y) 3;91(95, y| )\)dy] dx,

which is deduced from (3.10) (for @ =, and g(x) =k(x)). In view of (4.12)
and (4.12a), with the aid of Theorem 1.1, and on writing (3.15) (with
Q= Q,%.r), and on letting r— oo, it is inferred without difficulty that

(4.12a)

* Here x and y may be interchanged.
t This relation is a consequence of the inequality Var. ©,%.7< [(x—a)(y—a)]*/2 and of the Theo-
rem 1.1; (4.11b) also follows (4.9).
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(4.13) f_: d\ I: fab h(x) [;; fab h(y) % Qi(x, v ] )\)dy] dx:l = fab h*(x)dx,

which is the desired inequality.

When Q is closed, so that (4.13) holds with the equality sign, we obtain
the representation (3.16), with Q@ =, by a device of the type employed in
(C). That is, replace k(x) in (4.13) by k(x)+g(x), obtaining

2 fab h(x)g(x)dx = f_: dx[ fabh(x) [a%cﬁbg(y) aiy Q(z, | )\)dy] dx:l
o[ [T e[ L] 0 w5104 ]

In the first term of the second member of (4.14) interchange x and y and then
let

(4.14)

g=1 (on (e %)), g =0 (on (x,0));

the representation (3.16) (with @ =Q,) will result immediately.

Thus, all the statements which have been made in §3 up to (3.16), in-
clusive, hold for the class Hn, as well. The statements of §3, just referred to,
have been made for classes H, (n <m) without the use of operators L (Defini-
tion 2.3). The results therein indicated have been extended in the above to the
class H,; in the process of the extension operators L have not been employed.
Hence the induction is complete with respect to the statements, in question,
of §3. We state this result as follows.

THEOREM 4.1. With classes H., specified by Definition 2.2, all the statements
made in §3 up 10 (3.16) (inclusive) will hold true for all classes H, (n=1,2, - - -).

5. Developments on the basis of operators L. Let L’ be an operator as
specified in Definition 2.3 and supposed to exist, associated with our kernel
Ki(x, y) € H.. We form the equation

b
(. L o) = n [ L6 Kals )y = L & 1)
(with given f(x) € L,), as well as the related equation

b
(5.2) L[ (| ¢s2or(x)) — >\f LI (] Kibor(a, 9))er®r(3)dy = L. (¢] f(x)).

It is essential to demonstrate that the operator L’ is “associated” (in the
sense of Definition 2.3) with the kernel K%+(x, y) € H,,_,. Thus the following
relations are to be verified, with K! = K,%:
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(1) L} (¢] K\(%, y)) € Ls (in 9);

) | L. (E] K10 tmmi(x, 9) | < v(E] ) €Ly (in y);
L. (| K11 om(g, y)) WL" (] K101 sdmms(, y))

3) ——— L (]| K101+ 8mm3(z, y))

— LI K ——L! (| K'(x, 9));

4) L E| (=) 7’)—')1-41, &| (%)), if f,(x) — f(x) in the weak sense;

b
© [ L2 Kmeang, y))¢<y)dy=L;(z

f Kot 0m=1( g y)¢(y)d3’)

(whenever ¢(y) € Ly).

If we designate by (2.20”)—(2.24’) the conditions (2.20)-(2.24), with K, L
and #» replaced by K, L', and m, the truth of (1)-(5) is inferred as follows.
Conditions (2), (4), (5) are precisely the conditions (2.21'), (2.23'), (2.24’).
The relations (3) are identical with those of (2.22’), the last limiting relation
in (2.22’) being omitted. As to (1), it is observed that, in view of (2) and (3),

| L2 (| K'(x, 9)| < v(E| y)eLs (in v),

which, together with other considerations, establishes (1).
By (3.19) and (3.19a) the equation (5.2) has a solution * ¢,%7(x), such that

;2]2fab|f(x)|2dx= M (Gf IN = B # 0).

In consequence of Theorem 1.3, applicable in view of (5.3), we have for suita-
ble 8., (>0;r=1,2,-- - ;lim, &,,=0)

(5.4) lim ¢%07(x) = ¢1(x),

(5.3) f | gro.r(2) |2dx <

convergence being in the weak sense; moreover,
b
(5.4a) f | 1(x) |2dx = M (M from (5.3)).

It remains to demonstrate that ¢;(x) is a solution of (5.1). Substitute the
function ¢:%r(x) (referred to in (5.3)) in (5.2) and let r—oo. We shall have

(5.5) lim L/ (¢| ¢1%.7(2)) = L (£] ¢1(%))

* This solution is obtained as a repeated limit, according to (3.19).
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by (5.4) and (2.23’). On the other hand,

b b
s.50) tim [ L] Katvrtw, sty = [ L2 6| Kw, i)y,
This is a consequence of (5.3), (5.4), of the last limiting relation (2.22’), and
of the inequality

| L2 (] Kator(x, 3)) | < v(¢| ) € Ls (in y);*

in fact, these conditions enable application of Theorem 1.5. In virtue of (5.5)
and (5.5a) it can be asserted that tke function ¢,(x), defined in (5.4) constitutes
a solution of (5.1) (for 370). In view of the definition of ¢,%:*(x) and in con-
sequence of (5.4) it is observed that ¢:(x) is a repeated limit. The statement in
connection with (3.19), (3.19a) can thus be made for the class H,,.
The important formula (3.20) will be extended to our equation (5.1) with

the aid of the following relation
lim

r — M A

i 1002 0w, 51

=f°° df f(y)—ﬂx(x y| way,

—o M — A a

(5.6)

which we shall now proceed to prove. Let us write (with /> |real part of \|)

) 1 l 1
f o) = [ ——— dpulo ) + Rusln, ),
bN _1Mm— N

—0 M
0 -1 1
Rl,r(xs )‘) = (f +f )— “17,-(36, .“))
1 o/ =N

b 9
pe ) = [ 10) S oueta, 5|y,

R =( [T+ f__) “Tlxdu [ ;—y 2z, 5| wds.

By (3.11a), with
Q = Qbr, h(y) = f(y), g=1 (on (d, x))> g=0 (on (x’ b)))

we have

(5.7)

(5.7a) Var. p.(x, u) = [ bfl(x)dx]m(x — a2 < A,

* This is the relation obtained immediately preceding (5.3).
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On the other hand, because of (3.9a) (with @=Q,)
b a
61 i = [ 10) o |y = o,

In view of (5.7a)
(5.7¢) Var. p(x,u) = 4.

In consequence of (5.7a) and (5.7b), application of Theorem 1.1 will yield the
result

l

! 1
(58) lim d#PT(xa :u') = N dﬂp(xy ”‘) .
r J_gmw—N —tu— N

It is also noted that, by (5.7), (5.7a) and (5.7¢),

1 1
Riol#,N| and |Rux,N] < A.
| Rz W] and | RGe )| (|z+>\|+|z—>\|)

Thus, for € (>0) however small,
(5.8a) | Rigo(2, N) | < ¢/3, | Ri(x,N) | < ¢/3,
provided /, is taken sufficiently great. We have, for x and N fixed (80),

[F = arm = [ ——antw

w b — N e M — A

! 1 l 1
+ [f—l P — dup(x, ) — f—l p— Lube(%, l‘)]

provided 7=/, is such that (5.8a) holds and provided r=r.(x, N) is taken
sufficiently great (cf. (5.8)). This establishes (5.6).

We come now to the consideration of (3.20). In consequence of (3.20),
applied to Q%+, it is concluded that a solution of (5.2) may be given in the
form

ng(x’ )‘) - Rlc"(x’ )\)

(5.9)

< e,

ad ® 1 4 a3
(5.10)  ¢ur(x) = f(x) + N — f —— [ 10) = ar(a, v | Wy
0xJ o u— N a ay
(for 8 #~ 0),
with

b
(5.102) f | r20.7(x) |2dx < M.

In virtue of (5.10a) and with the aid of a reasoning of the type previously
employed in connection with (5.3)-(5.5a) it is concluded that
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1
(5.11) lim pioe(@) = u®), [ i) |dn s 0

(suitable &,, (r=1, 2, - - - ); convergence in the weak sense), where ¢:(x) is
a solution of (5.1). Now (5.11) implies that (cf. (5.10))

f piv-r(x)ds = f A=)z + N f f f(y)—wo (3, 3| wdy

— H(z) [as r — o ; H(x) absolutely continuous],
where

d
(5.11a) = H(x) = ¢1(x) [¢1(x) from (5.11); almost everywhere].
x

Clearly, because of (5.6),
1 b i)
G.11b) HG) = [ faes 4 [ —4, ] 0) 5 ute, 3| 0.

From (5.11a) and (5.11b) it is deduced that ¢,(x) is represented by the formula

(3.20) (with @=,). On taking account of (5.11) it is finally concluded that

the italicized statement made in connection with (3.20) holds for the class H .
In accordance with (3.21) we write

‘l’l(x: ll 60: Ty 67"—1)

(5.12) - (fw+f:)id,,fbeﬁo'--"am-l(x, y| wh(y)dy

[A(y) € Ly; 6,00+ - #m—1 = spectrum of K%+ m-1(x, y)].
By (3.21a), applied to y; of (5.12), one may assert only the following:
'pl(x, ll 60, DY 8m—1.r) g ¢1(x) l| 80; Y 6m—2) ]

(5. 12&) \l/l(x, lI 50, t 5m—2.r) —>¢1(x, ll 60; T 87»—3)7 T
¥a(x, 1| 80, 81.r) = ¥a(x, 1] 80),
the 6,,, w=m—1,---,1;r=1,2,--.) being suitably chosen and conver-

gence being in the weak sense in x (as r—); moreover, in consequence of
(3.21b) and (3.21¢)

b 1 b
(5.12b) f Y2 (x, 1| d0)dx < m f h*(x)dx,

(5.12¢) lim L/ (¢] ¥a(x, ] 80.)) = 0.
l

In virtue of (5.12b) with the aid of Theorem 1.3 it is deduced that
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lim ¢1(x, 1] 80.r) = ¥a(x, 1)

[convergence in the weak sense; suitable &,, (>0)—0],

(5.13)

b 1 pb
(5.13a) f Vi (2, D < — f s,

From (5.13a) it is inferred that

f zn/q(x, Ddx

z 1/2 1
< (- a)‘”[f Vi (%, l)dx] < TA,

so that
lim f Yi(z, Ddx = 0.
l a

Thus, Y1(x, }) converges weakly (in x) to zero, as [—w. Hence, in view of
property (2.23")

(5.13b) lim L't (s, D) = L'(¢| 0) = 0.

The relations (5.13), (5.13a), (5.13b) smply that the statements made in con-
nection with (3.21)—(3.21c) hold true for the class Hn.
By (3.22), applied to the kernel K%:(x, ),

b
f L (| Kibor(x, ) h(9)dy

(5.14) l b 4 0,r i b i 0,r
_f_ld,,fa L. (| Kyor(a, s))l:asf,, h(2) Py Q,%. (s,tlp,)dt] ds

+ L) (]| (=, 1] 60.)) (W1(x, I| 8o) from (5.12a)).

In the limit, as »—c (the &,, being suitably chosen) we get

b
f L. (8] Ku(s, ) h(y)dy

(5. 142) = [ af e min D [ [ H) s oy s

+ L (¢] ¥a(x, 1)) (W1(x, 1) from (5.13)).

In fact, the first member of (5.14a) is obtained as a consequence of (3), (1),
(2) and of Theorem 1.2, where we put g,(y) =k(y) and

() = LI (| Kidor(x, 9)),  v(y) = v(E| y).

The integral displayed in the 2d member of (5.14a) is obtained from the corre-
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sponding integral in (5.14) with the aid of the following considerations. Since

) = [ - auserts, o]y
r\S, =_— " ACH
P =3, M K

—+—a—fbh(t)—a—$l(st| Vit = p(s, )
9s . ot 1\, I _P y M)y

convergence being in the weak sense in s, and since
L.(¢| Kytor(x, 5)) = LY (| K(x, 5)) (asr— ),
| L2 (| Kator(a, )| < v(E] ) e Lo (ins),
by Theorem 1.5 it is inferred that

1
0) = [ L] Ko, ), s
(5.15) “b
—’f L (¢| Ki(x, 5))p(s, w)ds = q(u) (asr— ).

Moreover, by (3.11a) with
g(S) = L,;’ (£| Kl&o"(x7 S))y Q= Qlao":
and in view of (3), (2), it is concluded that

V‘f‘r- g-(p) = [fbhz(x)dx]m[fabl L (®)K%.r(x, 5) |2ds:|”2

<[ ,,b h%x)dx]m[ [ abw(sl s)ds]”2= 4@,

where A (£) is independent of 7 and u. In consequence of (5.15) and (5.15a),
application of Theorem 1.1 is possible, yielding the result

f _ll dg,(u) — f _ll dq(u),

which accounts for the integral in the second member of (5.14a). With
¥i(x, 2] &,) converging weakly (in x, as 7—) to Y1 (x, I), we have

lim L. (¢] ¥1(x, 1] 60.)) = L (¢ ¢¥a(x, 1))

(5.15a)

in view of the condition (4). Accordingly, one may consider (5.14a) estab-
lished.

On letting / in (5.14a) approach infinity, in consequence of (5.13b) it is
inferred that (cf. (5.15))
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b ©
[ L6l Km0y = [ dat).

Accordingly, we observe that (3.22) kolds for the class Hn.
In accordance with (3.23) write

i) ' b a
7/ (%, 1) = —f d)‘f f(y) — Qyb0r(x, yl Ndy,
ax -1 a 8y

w/ (%,1) = f(x) — 7/ (2, 1) (f(=) € Ly).
By (3.232)~(3.23¢)

(5.16)

b b
[ rrwnassq= [ pa,
(5.16a) ¢ ¢

w/! (x,1,) = w/ () (asl,— »), fb w/?(x)dx < 4q,
convergence being in the weak sense; moreover, in view of (3.23d)
(5. 16b) [ L2 Kiort, s )iy = 0.
Let 7/(x, ) be 7, (x, I), with &,, in the integrand of (5.16) deleted, and let

w’(x, ) =f(x) —7'(x, 1). Then because of (3.13),applied with a(\) =1 to &, one
has

b
(5.16¢) f 7'¥x, l)dx < ¢,*
in consequence of which
b
f w'%(x, l)dx < 4q.

By Theorem 1.3 the latter inequality implies that there exists a subsequence
(0<l <l ;lim, I/ = o) such that

b
(5.16d) w'(x,0l)) > w'(x) (asy— »), f w'2(x)dx < 4q,
convergence being in the weak sense (in x). The function w’(x) can also be

obtained by a limiting process with the aid of (5.16) and of the last inequality
(5.16a); we obtain (cf. Theorem 1.3)

* (5.16¢) can also be obtained by a limiting process applied on the basis of (5.16a), with the aid of
Theorem 1.3.
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(5.16e) w/(x) — w'(x) [as # — = ; weak convergence in x; suitable &,,].
In view of (5.16€) and since (by (2.22’) and (2.21"))

Lz, (EI K16o,r(x’ y)) - Lz, (El Kl(x7 3’)) )
| LY (] Kibor(x, 9)) | < v(&] %) € Lo,

application of Theorem 1.5 to the first member of (5.16b) is possible; thus,

(5.16f)

b
(5.17) f L] Ku(x, 9)w/(9)dy = 0.

Hence it is observed that the statements previously made in connection with
(3.23)—-(3.234) will hold for the class H.

If the only solution (included in L) of the equation (3.24) [with L=L’
and K =K;] is ¢(y) =0 (almost everywhere), then in consequence of (5.17),
w’(y) =0. Now, according to the statement subsequent to (5.16b)

w,(x) l*‘,) = f(x) - 7’(x1 li‘,);
thus, by (5.16d),
7'(%,1)) — f(x) (as» — «;in the weak sense).

That is, in view of (5.16) (with &,, deleted)
z 14 b 9 z
f 7'(%, 1) )dx =f dxf f(») o Q4(x, y| Ndy —->f f(x)dx (as v — =),
a —l; a y a
Hence
o b 9 z
[ o[ 10 o sinay = [ fans
This formula implies the representation (3.24a), as stated, for the class H,,.

With A designating the operation indicated preceding (3.25) it is observed
that, by (3.92) (for @ =), we have in the sense of weak convergence (in x)

F b 3 3 b F)
— Af h(y) — Qudor(x, y| Ndy —> — Af r(y) — (=, y| Ndy;
ox y=a ay dx y=a dy

(3.9) will hold for Q;%:. From (4) it is deduced that

4

) b 3
lim L,(E' — Af h(y) — Qibor(x, y | X)dy>
dx a ay

3 b 9
= Lz($’ — Af h(y) — u(x, y| %)dy)-
ox a dy

* The integral of the first member is convergent.

(5.18)
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It is noted that
a XII b a
(.19 @ =— [ wh [ M) s ylwdyels  Gn),
as A a ay

and that (with dy,, suitably chosen)

i) A b a
(.19 timg() =— [ wd [ Ho) s, vl iy =g
T as A’ a ay
(weak convergence). In fact, (5.19) follows from (3.13) (with a(u) =p and

Q= Q:r), while (5.19a) is a consequence of (3.13), (3.12) [with a(u) = and
g=1on (e, x),g=00n (x, b)] and of Theorem 1.3; we have (cf. (3.13))

b b
(5.19b) f g*(s)ds = M2f h2(s)ds.
In virtue of (5.19), (5.19a), and (5.16f) from Theorem 1.5 it is inferred that
b b
(5.20) tim [ 12| Kiorr, Nao)ds = [ L2 €| Kata, 9Dalo)ds.

With (5.18) and (5.20) in view, write (3.25) for @=Q%0.r, L=L’, and K = K%+
and pass to the limit, thus obtaining the formula

o

(5.20a)

9 J 3
—A f h(y) — Qu(x, ¥ | %)dy)
dox e dy

b
— [ 2R, Dato)is = 03
accordingly, it is observed that (3.25) kolds for the class H ., the same being true
for (3.25a) (which is obtained from (3.25) by specializing 4).

The proof of the important formula (3.26) (for the class H.) can be ef-
fected as follows. In view of (3.22) (with L=L’, K=K, 2=Q), (3.26) will
hold, for L=L', K=K, Q= Q,, provided

© b a b a
f_,,d" ] L6 K s))[gg ] Ho) -0t u)dy] ds
=f°° idL'(s‘ifbh(y)ifh(x ymdy) = NQ).
o p T oz . ay

(5.21)

On writing

d
(5.21a) N (§) = -—dL (‘— (y)a—xﬂx(x,ylu)dy),
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and
—l=XN<M< - <Ay =1 (A, corresponding to (A,—1, \,)),
we have
(5.21b) Ny(§) = lim Niym,(8),
mi
where

m1

1 a b a
(5.21¢) Nim() = Z — L, (E l 5‘; Arfa h(y) '@Ql(x: yl ”’)dy)

=1 My

(s in (N\—1, N)). By (3.25) (for L', K1, @) and (5.21¢)

.21 Yem® =2 — f L (EIaKl(a:, 9) -

Applying to the integral displayed in (5.21d) the first identity (3.14), with
8(3) =L/ (EI Kl(x: S)), a(ﬂ) =u, Q=Q,
it is concluded that (5.21d) may be written in the form

m 1 A,
Nl,ml(E) = E - M

vl My ),

(5.21¢) . s b s
af [ L6 K ) RS 25| wayJis

Thus

mi

1 ]
6210 Nim® =2 —200), 16 = [ u{ -},

vl My

and, in view of (5.21b),

11
(5.22) Ny = f — dyy(p).

1 u

By definition of y(u) (cf. (5.21f)), with { - - - } from (5.21€), we have

Ni® =f_li [waf - - }]

[

-f _idn{ ) "L | Kz, 9) = f :”(” aiy (s, 3| way |as}.

(5.22a)
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By (5.22a), (5.21a)
lim N,(§) = N(¢) = first member of (5.21).
1
W hence it is observed that (5.21) and consequently (3.26) (for L', K1, @) have
been established.

We shall now proceed to prove the statement in connection with (3.27)
for the class Hn». The identity to be proved is

, a xll
L& — f pd (%, y| )
Ix A

b 9 PN’
(5.23) L K )| 5 [ w31 [

xl
y (g

In view of (3.25a) (for L’, K1, %), (5.23a) will hold if

9 [N 9
L! (s | ) LY #)) AL (e‘ 2 peus, v x))
dx J - ax

(e~ f = M40, 5| 9);

a a A’
(5.233.) L;’ (E ' —AQl(x, yl )\)) = L,’ <£ ‘ —_— d,.Ql(x, yl /.t)).
ax Ix A’

o [
> (u—)\)duﬂx(x,ylu))-

A

that is, if

Now, (5.23a) holds since

A7
AQy(x, y| N\ = d, 2 (x, yl ©).
xl

Thus, the result previously stated with respect to (3.27) holds for the class
H,.

The developments of this section may be summed in the theorem:

THEOREM 5.1. Suppose classes H, are specified by Definition 2.2. For every
finite m (>0) the following will hold. If K(x, y) € Hn and if “associated” with
K (x, y) there is an operator L (cf. Definition 2.3), then the statements made in §3
will hold true with respect to this kernel and this operator.

6. Kernels of class H,. For kernels of class H; with which operators L
(Definition 2.3) can be “associated,” as remarked by Carleman many results
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of (C, chap. 2) can be extended. In view of the purpose to examine the possi-
bility of such extension to our classes H, it will be essential to investigate in
some detail the situation with respect to H,.
Thus, suppose K (x, y) € Hy, an operator L being “associated” with K (x, v).
We write down the equations

1
6.1) o*(z) — A f Kn(z, y)¢%(3)dy = /(s),

b
6.18)  Lult] 85—\ [ Lle] K(x, )00y = LaGe] 100,

a

b
6.2) L] #(2)) — f L.(t| K(z, y)6(n)dy = L(&| f(x)),

b
6.22) Lt o) = [ Lule] Kz 3000y = 0.

As indicated in (C), if ¢%:7(x) is a solution of (6.1) (for d=J,, suitably
chosen; r=1, 2, .- ; lim &,,=0), then ¢ (x)—>¢p(x) (weakly in x) and
(3.19a) will hold; moreover, ¢(x) will be a solution of (6.2). On writing, con-
forming with (C),

ix’ ixl
(6.3) $¥(x) = e [f(x) + ¢¥(x)], é(x) = % [f(x) + ¥(2)],

where N’ is the conjugate of N, we conclude that

b b
(6.3a) f | poo.r(x) |2da = f | f(x) |2da

and, in the limit,

b b
(6.3b) [ 1wz s [

It is observed that (6.3a) can be established with the aid of the relation,
found in (C),

I)\Iz f | () [2dx = ——f f(x)¢%(x)dx
(6.3c)

= [ T,

Here and in the sequel, ¢ denotes the conjugate of ¢.
We shall prove the following fact. In order that (6.3b) should hold (when
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IN=B50) with the equality sign it is necessary and sufficient that
(6.4) lim fb| pPo.r(z) |2dx = fbl #(x) |2dx.
In fact, it is noted that
tim [ sz = [ e,

inasmuch as f(x) € L, and other conditions of Theorem 1.4 hold. Thus, by
(6.3¢)

et [ Lot s = El‘f oo
(6.4a)

o~ f F@)e(2)ds = v,

and, if (6.4) holds, there will be on hand an equality like (6.3c) with ¢(x)
replaced by ¢(x); from this relation with the aid of the second one of (6.3)
we obtain (6.3b) with the equality sign. Thus (6.4) is a sufficient condition.
If, on the other hand, (6.4) does not hold, it is observed that, inasmuch as
the limit in (6.4a) exists,

b A2 b
(6.4b) lim f | plo.r(x) Iﬁdx = ‘YI—BI = \%I l A |2 > f l o(x) lzdx;
this inequality follows by a theorem of F. Riesz according to which

lim supf | £(x) |2dx _Z_f | () |2d=,

whenever f,(x) € Ly and f,(x)—f(x) (in the weak sense). Now, in consequence
of (6.4b)

(6.4c) ]Ifilzf | o(x) Izdx < | 7] (v from (6.4a));
substitution of ¢(x) from (6.3) and (6.4c) will result in (6.3b), with the in-
equality sign. Hence the statement in connection with (6.4) is seen to be
true.*

Of special interest appear to be operators L, which in addition to the condi-

* The corresponding result in (C) depends on the possibility of interchange of order of integra-
tion in a certain double integral.
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tions of Definition 2.3 satisfy the following. L s defined for & in a set T’ dense
in itself; moreover, for &, &, in T,

b
(6.5) f | Lot | K%(x, 3) — Lu(ts| Ko(=, 9) ['dy < G, £),

where G(£1, &) is independent of 8, and
(6.5a) G(£1, £2) >0 (as &1 — £2> 05 £y, £2in T).

In consequence of (2.22) the limit of the integrand (for 8,—0) in (6.5) exists;
by (2.21) the integrand is less than

[v(t1] 9) + v(82| 9) ]2 Ly (in y)
for &, & on I'. Hence by passage to the limit, from (6.5) it is inferred that

b
(6.5b) f | L(t1]| K(x, 9)) — Lu(&:| K(x, 9)) |*dy < Gy, £).

Let ¢(x) be a solution of (6.2) obtained by a limiting process as indicated
subsequent to (6.2a). Then, by (6.2) and by the inequality of Schwartz,
| Lot | 6(2) = f(2)) = Lalte| o) — f(2) |2-

b 2
=\l [ ] K ) - Lutes] K, ) lo(0)ay

1] b
< |>~|’f | 6(3) |2dyf | L.t | K(%, 9)) — L.(k:] K(x, 3)) |*dy.

If (6.5) and (6.5a) hold, then in consequence of (6.5b) and of (3.19a)
| L& ] ¢(2) = f(2)) = Lalta] 6(2) — f(2)) |2
(6:6) | :P f | 1) 1aaGa, £)

<
B

(for &1, & on T); thus, under (6.5) and (6.5a), for every solution ¢(x), included
in Ls, of (6.2) the function

(6.62) L.(¢| ¢(x) — f())

will be continuous in & for £ on T (8%0).
When ¢%(x) satisfies (6.1), in consequence of (6.1a) one has

b 1/2 b 1/2
|2t o | = [ 1 Late Koot 0 Py ][ [ 9000 e ]
1Ll 1),
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whence, by (3.19a) for (¢*(x)) and (2.21) (for n=1),

.a | LAE19 = ||le1[ 1] abl e |2dx]“2[ [ a"w<g| y)dy]‘”

+ | La(E] ) |
Similarly

A4 po b
(6.6c) | La(¢| ¢*(x) — f(a)) |* = | ﬁ2| f | 7(x) [2d f vi(E| 3)dy.

On the other hand, by (6.1a) (for £ and &) we obtain the inequality subse-
quent to (6.5b), with ¢(x) and K(x, y) replaced by ¢*(x) and K%(x, y), re-
spectively; an application of (3.19a) (for ¢?(x)) will yield

| L.(&:] ¢%0(x) — 7(%)) — Lu(t2]| ¢%(x) — f(x)) |2
©6.7) A ] | 1) [2daGets, &),

<
=g

(for &, & on I') if L is such that (6.5) holds.

If (6.5) and (6.5a) are assumed, in view of (6.6b) and of (6.7) application
of Vitali’s theorem (on limits of analytic functions) is possible in a manner
analogous to that in (C, p. 55). The following result is obtained.

Let K(x, v) € Hy and L be an “associated” operator (Definition 2.3), satis-
fying (6.5), (6.5a) and let IN=pB5%0. For a suitable choice of &,, not only will
dbor(x) converge (weakly) to a solution ¢(x) satisfying (6.2) but the function
L.(t| ¢(x) —f(x)) will be continuous in & (for £ in T) and will be regular in \ for
all non-real X (when & is in T').

The analogue of (C, Theorems III;, IV;), for kernels K(x, y) ¢ H, and
having “associated” with them an operator L, is obtained by passage to the
limit. The result reads as follows. Given a value A=Ny (Ao =ao+1B0; Bo#0),
there exists an operator Ty (depending on N, but independent of f) so that

(6.8) ¢(x) = To(f())

will constitute a solution of (6.2); moreover,

(6.82) f To(fa(a)) - fu(#)ds = f To(fu(%)) - fa(#)dw,

whenever f(x), fo(x) € Ly. In particular, if for N =X\, the equation (6.2) has only
one solution ¢(x) € Ly, (6.8), (6.8a) will hold.
The analogue to (C, Theorem II,) will be as follows.
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If the operator L is such that L.(£|q(x)) is real for q(x) real and the
(6.9) conjugate of Lo(£| 4(x)) = L(¢| (),

and if for a particular No (INe=PBo50) the homogeneous equation (6.2a) has no
solutions included in L, except ¢(x) =0 (almost everywhere), then for all non-real
values of N\ (6.2a) will have no solutions included in L, except zero (almost every-
where).

The proof of this theorem is closely analogous to that of (C, Theorem II).
However, in view of the extension, to be given in the sequel, of this result to
classes H, it is desirable to outline briefly a sketch of the proof.

If the theorem is not true, then

b
(6.10) L.(¢| ¢(x)) — )\of L.(¢| K(x, 9))6(3)dy = L.(¢]| (1 = N/N)e(2)),

a

where ¢(x) € Ly, ¢(x)50, and ¢(x) is a solution of (6.2a) for a value A
(IN=B0). Using (6.9) one obtains

(6.10a) Lz(fldu(x)) - )\of Lz(f‘ K(x, y))¢1(y)dy = Lz(El (1 —=No/N)pa(x)).

In consequence of the statement in connection with (6.8) and (6.8a),

(6.11) (1 - %f)fﬁ é(x) |2dx = (1 - %)f:} o(x) |2dx,

and, inasmuch as [|$|2dx 0, necessarily 8 =0 which is contrary to hypothe-
sis.

Similarly, following the lines indicated in (C) one may prove the following
analogue to the important result of (C, Theorem V).

If the operator L (associated with K (x, v) € Hy) satisfies the condition (6.9),
then the number of linearly independent solutions [included in L,] of the homo-
geneous equation (6.2a) is the same for all X (IN=B0).

With respect to linear independence of solutions of (6.2a) the following
will hold.

Let ¢1(x), - - -, pa(x) be solutions included in L, of the homogeneous equa-
tion (6.2a), corresponding to the distinct values of \,
A,y M ()‘V#O;”=l""7”);

the ¢ ;(x) will be linearly independent if L (“associated” with K(x, y)) is such
that

(6.12) L(t| g(2)) = 0 (q(x) € Ly)
implies that q(x) =0 (almost everywhere).
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In fact, if this theorem is not true, then for some ¢,
c11(y) + - - -+ Catn(y) = 0 (notall ¢, = 0).
Multiplying by L.(¢| K (x, y))dy, integrating and making use of

b
(6.13) L] 6:(2) = N f Lat| K(z, 3)é(5)dy,
we obtain ‘
"¢, ro¢,
(6.13a) § )‘—'Lz(£| é,(%)) = Lz<£ g :qbv(x)) = 0.

In view of the property in connection with (6.12),

z; 2dn(ac) = 0.
Repeating this process a number of times and at each step making use of
(6.13) and of the property referred to above, a set of equations is obtained
which cannot be satisfied, unless all the ¢, are zero.

Let us examine now the question of the range of values which, for x and
A=\ (8:%0) fixed, could be assumed by the solutions of (6.2).*

According to the italicized statement subsequent to (6.11) the number of
linearly independent solutions of (6.2a) (where K(x, y) ¢ H, and L is an asso-
ciated operator) is the same for all non-real \. It can be arranged to have
these solutions forming an orthogonal and normal set (for a fixed \). Let
®,(x), ®o(x), - - - constitute a full set of such description for ;. Let ¢(x) be
any solution of (6.2) for \;, the corresponding ¥(x) being defined (cf. (6.3))
by
(6.14) o(x) =

N/

28,

Then the result of the same form as given in (C, pp. 71, 72) will hold for equations
(6.2):

(6.15) | o(x) = clx, M) | S 7(2, M) [e(m, M) = (N /28:)(f() + w(a))],

(f(x) + ¢¥(x)) (M = conjugate of A).

(6.158)  rx(x, ) = | Mlzf U0 = | e S| 2. |,
482 J, y

where w(x) is from the Fourier-expansion (in terms of the ®,(x)) of Y(x),

(6.15b) ¥(x) = w(@) + 2 ®.(x)

* A problem of this type is treated in (C) for kernels not of class H; and without the aid of opera-
tors L. :
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(cf. (6.14)), and is independent of ¢(x).* To establish this one needs only to
take note of the inequality (6.3b) and to follow the procedure indicated in (C).

Corresponding to the function w(x) (of (6.15b)) there is a particular solu-
tion (for \; 30) of (6.2),

(6.16) dol) = % (1) + w(=)).

In view of the statement in connection with (6.4), from (6.15) and (6.15a)
it is inferred that, if there exists a sequence {¢*+(x)}t which converges in the
weak sense to ¢o(x), while

b b
(6.16a) lim f | plo.r(x) |’dx = f I do(x) |2dx

(cf. (6.16)), then ¢o(x) is the only solution (for \,) included in L, of (6.2).

Consider a value A =\; (with 8,0). If not every solution of the homogeneous
equation (6.2a), for A =X\, is zero (almost everywhere), then the number r(x, \1),
involved in (6.152), will be distinct from zero at least for some f(x) € L, provided
the operator L satisfies the condition (6.9). In fact, with the aid of the latter
condition the procedure given in (C) (for the demonstration of an analogous
result) is applicable, leading to the stated assertion.

7. Extension of the results of §6 to the classes H,. With a view to proof
by induction let us assume that the following holds for kernels K (x, v) of classes
H, (n=1,2,---,m—1), it being understood that “associated” with every
kernel K(x, y), under consideration, there is an operator L (Definition 2.3).
For convenience we collect the requisite’equations:

b
(7.1) glor () — %f Koo ibnmi(, y)gptodnmi(y)dy = f(a),

b
L(g| g0 41(x)) — Xf Lo(&| Koo 01z, y))gplo+5n1(y)dy

7.1

(7.1a) — L] 1),
b

(7.2) L] 6(x)) — A f L.¢t| K(x, 9)é(3)dy = L.(¢] f(2)),
b

(7.2a) La(¢] 6(x)) — 2 f L.(¢] K(z, »))é(3)dy = 0.

If a solution ¢(x) (for a value A\, with 80) of (7.2) is the repeated limit
in the weak sense of solutions of (7.1) (cf. (3.19)), then
* w(x) is the analogue of yo(x) of (C, p. 71); that is, w(x) minimizes f()%dx (for ¢() satisfying

(6.2)). Thus, w(x) is a particular function y(x). Obviously fw®,dx=0.
1 ¢%0.7(x) a solution of (6.1) (for so=do.,).
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(7.3) f | ¥() |2dx = f | f(x)|2dx  [e(x) = (N/28)(f(%) + ¥(2))].

The necessary and sufficient condition under which (7.3) holds with the
equality sign is that

b b
(7.4)  lim lm --- lim | goo.rdtre - bntr(2) |2 = f | () |2da

So,r O1,r n-1,r vV o

(the 4,,, from (3.19)).
If the operator L (“associated” with K(x, y)) is defined for £ in a set T,
dense in itself, and if

(7.5) fbl L(k1] Koo oti(, ) — L] Koo tnaa(, 3)) [2dy < G(%y, £2)
’ [6(s, £2) = 0as £ — £2— 03 &1, &2 in T,
then (7.5) will hold also for K(x, y).
Every solution ¢(x) € L, of (7.2) is such that
(7.52) L.(¢] ¢() — f(2))

is continuous in £ for £ in T, provided (7.5) holds.
Let a solution ¢(x) of (7.2) be defined by the repeated limiting process of
(3.19). If (7.5) holds, then with a suitable choice of the §,,,,

(7.5b) L.t ¢(2) — f(x))
will be continuous in £, for £ in T', and will be regular in X for all non-real A
(¢inT).

(1) The statement in connection with (6.8), (6.8a) holds with respect to the
nonhomogeneous equation (1.2) for kernels of classes H, (v <m).

Also the following holds.

(2) If L.(¢|q(x)) is real for q(x) real and (6.9) holds and if the equation
(7.2a) has no solutions included in Ly, except zero, then the same will be true for

all non-real values of \; the number of linearly independent solutions, included
in L,, of (7.2a) is the same for all non-real \.

(3) Regarding linear independence we have the result, previously stated in
connection with (6.12), holding for classes Hy, - - -y Hu-1.

(4) The result stated in connection with (6.14)—(6.15b) kolds for H, (n<m).

If ¢o(x) is a solution for A\; (8:50) of (7.2), which is a repeated limit (in
the weak sense) as indicated in (3.19) and which is such that

(7.6) w(x) = (2B/iN) (¢o(x) — f(x))
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renders
b
(7.6a) f | ¥(=) |2dx

[¢(x) = (\'/2B1) (f(x) +¢(x)) solutions for Ay of (7.2)] minimum, then ¢o(x)
is the only solution included in L. of (7.2), provided (7.4) holds (with
¢(x) =o(x)).

(5) The italicized statement at the end of §6 holds with respect to the homo-
geneous equation (7.2a) for classes Hy, - - - |, Hpy.

All of the above properties have been verified in §6 for kernels of class H,
(with “associated” operators L). We shall now establish these properties for Hn.
Let K'(x, y) € H,, and let L' be an “associated” operator. Then K'%(x,y) € Hps;
moreover, as indicaled al the beginning of §5, L' will be also associated with
K “‘°(x1).

By (7.3), applied to K'%(x, y),

b b
(7.7 f | yoo() |2dx < f | /(%) |2dw.

With ¢!(x) =lim ¢%-+(x) (in the weak sense) we shall have y!(x) =lim .- (x)
(in the weak sense), where

¢%(x) = iN/28(f(x) + ¢%(x)),  ¢'(x) = N/2B(f(x) + ¥'(x)).
In view of the theorem of Riesz, stated subsequent to (6.4b),
b b
(7.7a) lim sup f | Poo.r(x) de = f | Yi(x) ‘2dx.

By (7.7) and (7.7a)

b b
(7.7b) f Iz/xl(x) |2dx =< f |f(x) Izdx,

which is (7.3) for the class H,,.
Since Kb -:#n-1(x, y) € L, (in %, y) the identity (6.3c) (for ¢ - on-1(x))
will hold:

1 p?
| )\ |2f | o bmm1( ) ‘2dx -—1)\f f(x)d,lso,. “bme1(5)d
(7.8) .

cdmei(x)d
24N ®)

Suppose (7.4) holds for ¢!; thus
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b b
(7.9)  lim lim --- lim |¢"°""“"m-l.'(x)|2dx=f | () |2dx.

do,r O1,r dm—1,r Y a

Now (cf. (3.19) for ¢?)

lim ¢50,f,"',5m—l,r(x) = ¢50.n"'.6m—2,r(x)’

5m—l,r
lim ¢5o,r."',5m-2,r(x) = ¢50,r."'.5m—3,r(x), SN lim ¢60,r(x) . ¢1(x)
Sm—2,r So,r

[in the sense of weak convergence], with the functions involved included
in L,; hence repeated application of Theorem 1.4 to the second member of
(7.8) is possible yielding the result (when 6,=3,,,)

1 b 1 b
i P | J— 80, -, 0m— _— 30, - ,dm—1
lim lim [Zi)\fa f(x)p1 Y(x)dx Zi)\f., f(x)e (x)dx:l

50,1‘ 5m—l,r
1 b
= — x
=

This, together with (7.9) implies

— 1
@0 =5 [ le@lan = f<x)¢1 (x)dx — —— f(x)¢‘(x)dx
In[2J. 20N

Substituting in (7.9a) ¢!(x) in terms of Y!(x) we obtain the equality

(7.9b) [ 1v@ = [ 11 lras,

which is observed to be a consequence of (7.9). Suppose now that (7.9) does
not hold. Since the repeated limit displayed preceding (7.9a) exists even if
(7.9) does not hold, in consequence of (7.8) it can be asserted that

b
lim - .- lim | gto.r - bom1(g) |2da = 5
8o, r dm—1,r a

(7.10)
[ [ row@an - — [ foe ]'”2
=\|— X x)ax — X xX)ax
20NJ . 24N
By the theorem of Riesz (text subsequent to (6.4b)), (7.10) will imply

b
vzf | $1(x) 2dx.

This, in view of our previous assumption that (7.9) does not hold, yields the
inequality

b
(7.10a) ¥ >f | ¢(x) |2dx.
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Substituting in (7.10a) the expression for 4 from the last member of (7.10)
and replacing ¢!(x) in terms of y!(x), we infer that failure of (7.9) to hold
implies

b b
(7.10b) f | i) 2dx < f | f(x) |2da.

Accordingly, the statement with respect to (7.4) holds for the class H.,.

The property stated with reference to (7.5) will hold for K'(x, y) and L*
in consequence of (2.22), of (2.21) (applied to the kernel in question) and
of Lebesgue’s theorem on passage to the limit under the integral sign (we
keep #0).

Under (7.5) (for K%o.---4m-1 and L') the function L2} (£|¢!(x)—f(x)),
where ¢'(x) is any solution included in L of (7.2) [that is, of (7.2) with L!
and K], will be continuous in £ (£ in T'). In fact, by the same method as used
before we obtain the inequality (6.6) for L and ¢, which justifies the above
assertion.

If ¢'(x) is a repeated limit in accordance with (3.19), then

(7.11) pPo.r(x) — ¢'(x) (weakly),
where
¢%.r(x) = lim - - - lim @Por+dr-- s 4 1r(x) (weakly),
81,r dm—1,r

and ¢%:+(x) satisfies
b
(7.11a) L] ¢%r()) — )\f L2 (&| Koor(x, y))¢%r(y)dy = LE(E| f(x)),

with K%+ formed corresponding to K'(x, y). Proceeding with respect to
(7.11a) as before one obtains the inequalities (6.6b), (6.6c), (6.7) (for LY);
the latter inequality will hold under (7.5) (for L, Ko.- - -.#=—1), With the aid of
Vitali’s theorem these inequalities enable us to assert that the statements
made with respect to (7.5c) hold for L! and ¢!, as well.

We shall now extend the property (1) to L' and K* (cf. (6.8), (6.8a)).
Now in (7.11a) K?%:(x, y) € Hn,—y; thus, by hypothesis, given any
N=No=ao+7Bo (B:0), there exists an operator T~ (depending on A, in-
dependent of f) so that ¢d.r(x) = To%.r(f(x)) € L, will be a solution of (7.11a)
for all f(x) € L, and so that

b b
1.12) [ T = [ Te @@ Gor i, aeLs).

The &,, can be so chosen that »
(7.12a) Tobo.7(f(x)) — ¢(x) (in the weak sense),
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where ¢!(x) € L, constitutes a solution of (7.2) (for K, L!, \¢), and so that
the relationship (7.12a) holds for all f(x) ¢ L,. The function ¢'(x) of (7.12a)
will then be related to an operation T,

(7.12b) To (f(%)) = ¢*(x) (T independent of f),

defined for all f(x) € L,. By Theorem 1.4 and since T%:(f(x)) € L. and (7.12a),
(7.12b) hold, from (7.12) by passing to the limit it is inferred that

b b
(7.12¢) f T¢ (fo(x)) fr(x)dx =f T¢ (fu(®))fo(x)dx,

whenever fi, f> € L. The extension of (1) to the class H, is immediate.

To establish the first part of (2) we assume (6.9) (for L?) and, using (7.12c),
repeat the steps (6.10)—(6.11) with reference to L! and K*. It remains to
demonstrate that the number of linearly independent solutions, included in
L,, of (7.2a) (for L', K') is the same for all non-real N\ (under (6.9) for L*).
This is inferred with the aid of the operator T'¢ of (7.12b), using arguments of
the type given in (C, proof of Theorem V).

The property (3) (for L!, K') is established as in the text in connection
with (6.12)-(6.13a).

The statement (4) is extended to the class H,, on the basis of the inequal-
ity of (7.3), which has been already demonstrated for kernels included in H.,.

A consequence of this extension is that we are now able to assert that the
result stated with regard to (7.6), (7.6a) holds for the class Ha, as well.

Similarly, it is seen that (5) will hold for K and L.

THEOREM 7.1. The statements made, from (7.1) to (7.6a) and (5) (inclusive),
will hold true, with respect to the equations (7.2), (7.2a), for all classes H,
(finite n).

8. Some further results for classes H,. The following formulas (cf. (8.1)-
(8.4)), which were established in (C) for the class H,, will hold for all classes
H,, provided that we envisage only kernels with which one may “associate”
(Definition 2.3) operators L and provided that (7.2a) (IN#=0) has ¢(y) =0 (al-
most everywhere) as the only solution included in L.

One has

fab [a_ax fA nd,(x, y| #)] [5% A%, 2| u)] dx
= fab[%fA2udnﬂ(x,z| u)] [(%Axﬂ(x,yl M)]dx-*

* If the difference operator A corresponds to the interval (\’, N’’), integration extended over A
will be understood to be between the limits A/, N/,

(8.1) !




1939] SINGULAR INTEGRAL EQUATIONS 253

When the intervals corresponding to A;, A, are nonoverlapping,

(8.2) f ab [aix AQ(x, y | x):l [% A:0(x, 3 | x):l dx = 0;

moreover,

3
L,(z' — AQ(%, 2| x))
dx

_L< afbasz( lx)an( |)\)d)
= xs‘ax . 3y %,y 3y Y, % y)-

When the only solution of L(£|¢(x)) =0 (¢(x) € Ls) is zero,

(8.3)

b9 i)
(8.4) 20w, 510 = [ a6, 51N = 0,5 Ndy.
dy dy

a

To demonstrate (8.1) one may proceed as follows. By (3.27) the equations
b
LuCel i) =) [ Lule] K(x, Den(s)as

8.5) =L’(E|a%fh (= Va2, ylm),

1
L] 9a2) =\ [ Lule] K(w, 9)uls)ds

‘ )
~2.(e| 2 f - vaaesl0)
dx Ay
possess solutions
d a
#.5)  oi() = [ e 3lw), 6o = [ pdoeslw),
9xJ 4, dx

Ay

respectively. Now, by Theorem 7.1 the result stated in connection with (6.8)
and (6.8a) holds for all classes H,; thus, on writing

=2 d =2 d |
filx) = o (w — N2, y| 1),  falw) = a_fo,(” — Nd.Q(x, 2| u),

4,

it is inferred that

fb[a%f b= Naat | m] [% f , (| u)] dx
= f:[& N (k — Nz, z| u)] I:(%Llud,,ﬂ(x, y| #)] dx.

(8.5Db)
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Finally, (8.1) is obtained if one takes A=1+418 (30) and equates the imagi-
nary parts of the two members in (8.5b).

In demonstrating the property (8.2) for any class H, one may follow a
method analogous to that indicated in (C) for the class H;. We shall not give
the details.

The identity (8.3) may be established by induction by consecutive pas-
sages to the limit.

The property (8.4) is a consequence of (8.3).

The results (8.1)-(8.4), which have been verified for all classes H,
(n=1, 2, ---) are of interest in themselves as well as with a view to further
developments for the case when operators L, of a more specialized character than
required by Definition 2.3, are available.

9. Regarding reducible sets. In the sequel, throughout, we let 8 denote
a number of class I or IL* Let E be a nondense closed set on (a, b) with a de-
numerable derivative E'. Then E will be denumerable and we may write

(9°1) E=(II;I'A’,"')’

(9.13,) El=(Ill,Izl,“');

moreover, E will be reducible and the derivative of order 8 will be zero,
(9.1b) B =0,

for some (3 of class I or II (we take 3 as the least number so that (9.1b) holds).
In §§2-8 the case corresponding to S of class I has been already considered.
This is the reason why our attention will now be confined to the case of
(in (9.1b)) of class II. Necessarily 8 will be not a limit number.{
We shall need the following result.

Let Gy, Ga, - - - be a simply infinitel sequence of closed sels, each containing
the next and each having some points not in the next. Let
9.2) G=GGy - €O,
where O 1s an open set. Then either Gy c O or there exists a number j so that
(9.2a) G,cO v=j+1j+2---),
while
(9.2b) G;¢0.§

* It is to be recalled that the numbers of class I are the ordinals 1, 2, - - - . The numbers not of

the first class, but obtainable by the use of the two Cantor generation principles, are of class II.
As usual w will denote the first number of class II.

t That is, there will be a number g—1.

1 An infinite sequence ¢, g2, * * * , gn, - - * is simply infinite if n <w.

§ ¢ in (9.2b) signifies that G; has points not in O.




1939] SINGULAR INTEGRAL EQUATIONS 255

Suppose the above is not true. Then every set G, (v»=1,2,---) has a
point b, exterior to O. The point &, will be in each of the sets Gi, Gy, - - - , Gn,
and will be not in G,,41; in fact, if this were not the case b, would be in G
and, by (9.5), it would be in O. The point b,,41 (exterior to O), being in Ga 41,
will be distinct from b;; b,,41 will belong to the sets

Gn1+1, Gn1+2y Tt :an [bn1+1cG"z+1]J
since otherwise one would have
bn1+l CGnl+IGn1+2 e = GCO:

which presents a contradiction. Thus, step by step we obtain an infinite se-
quence of points {b.,41} (0=n<m< - - - ), which are all distinct and are all
exterior to O, with the point b, 41 belonging to the finite number of sets

9.3) Grott, Girry =+ Gggas

and not belonging to G, 41 (such a point is obtained for =0, 1, - - - ). Let
(9.3a) {ck} (k=1,2,---)
be a subsequence of {b,,41} such that

(9.3b) lim o = ¢ [ex = bnypr; &/ = iy i1 < 42 < - - -}

exists.

Now, the points ci, ¢, - - - are all in Ga.41 (¢'=1,); the latter set being
closed, ¢ will be in it. In general, the points ¢k, cx41, - - - Wwill be all in G, 41
(¢’ =1x) and hence, this set being closed,

(9. 3(:) c CG,.;'+1 (i' = ik) .

The relation (9.3c) is asserted for ¢’ =4, <4 < - - - . Clearly ¢ belongs to every
set G, (v=1, 2, - - - ) and thus is a point of G; hence included in O. The latter
set being open there exists a closed interval A, containing ¢ in the interior and
contained in O. In A there will be some points ¢,; that is, some points b,; this
is contrary to the italicized statement preceding (9.3). Whence we deduce the
truth of the statement in connection with (9.2)-(9.2b).

Conforming with the notation introduced in §2, a set E satisfying (9.1b)
(as stated) will be said to belong to Rs_, (Definition 2.1). By definition of 8 the
set Ef~! will have some points; in view of (9.1b) the number of these points
will be finite. Thus

(9.4) EfF'=(IFL I -, 1EY) = (s, 82 -, %) (B — 1of class IT).

We may also write
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9.5) Ee=(I#, I, ) (a<p—1).

The sets E= (¢ <B—1) will be all denumerably infinite.
We form a set A!(8,) of closed intervals

(9.6) A}(8y) = (s, — 01, 5» + 81) (wv=1,--,k; 81> 0;cf. (9.4)

in such a way that they have no points in common and that no end point of
them is a point of E. Given ¢ (>0), however small, such a construction can
always be effected with

(9.6a) 0<d;<e.

This is established using the fact that E is nondense. In fact, without loss of
generality one may assume (for the purposes of demonstration) that the s, are
interior to (a, b) and take e sufficiently small so that the intervals*

(9.6b) (s, — ¢ 5, + € =1, ---,k)

are without common points and are interior to (a, b). In the interval (s;, s1+€)
we find a subinterval (s;4ad, s1+5¢) void of points of E; in the interval
(s1—b2, si—a) we then find a subinterval (s;— b1, s1—a.) free of points of E.
We now consider the interval (s;+a1, s:+b1) [ € (sz, s2+¢€) ]; in it is found an-
other interval without any points of E, say (s:+ay, s2+b:1). Turning our at-
tention to (se—b, s—ai!) we find a subinterval (s;— bs, s: —a») free of points
of E. Clearly, the intervals

(s, — bsy s, — a2), (s, + ag, s, + b2) r=1,2)

will be void of points of E. Continuing in this manner one finally obtains num-
bers ay, bi so that

(sr - bk, Sy — a’k)c(sv'_ €, Sy),(5y+ak, sv+bk)c(sv; Sv+ 6) (V =172y Ty k)’

and so that the intervals here displayed in the first members are free of points
of E. Accordingly, if one takes

ar <0 < bk,
all of the conditions stated in connection with (9.6), (9.6a) will be satisfied.
A choice of the §,, according to the above scheme, will be implied throughout
in the sequel.

Inasmuch as g8 is not a limit number, there exists a limit number y <8 —1
so that there exists no limit number 7 for which v <7 <B. The sets correspond-
ing to 6_1; 6_2; ) 'Y+1’

(9_7) Eﬂ—l’ Eﬁ—2, S E'r+1’ Er

* Unless stated otherwise, all the intervals will be supposed to be closed.
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can be covered in succession by the 8 —+ sets

(9.7a) A(81), A%(32), - - - 5 AFTYTH(Bp—y—1), AP (B5—s),

each set (9.7a) to consist of a finite number of closed intervals, the totality of
all intervals, involved in (9.7a), being without common points, no end point of
any of these intervals being coincident with any point of E. The consecutive sets

(9.7a) are constructed following the procedure described in §2. Thus, A%(82)
will consist of the intervals

A2(8g) = (sf72 — 8, 5f2+8y) (=1,---,m(s)),

where the s,6~2 (1 <v<m(8:)) are the points of E#-? exterior to the set A'(4y).
The set A%(8;) will consist of the intervals

AB(83) = (873 — 83, 83 4 §3)

[v=1, - - -, m(8,, 8;); the s5,5-3 are points of Ef-3 exterior to the set A!(dy)
+A2(8,) ]. The set Af~7=1(85_,_1) will consist of the intervals
AP (8y—1) = (8,7 — gy, S + 8p51)

[V = 1) Tt m(&;, 62) Tty 65—7—2)];

where the s,7*! are points of Ev+!exteriortotheset A1(8;)+ - - - +AF~72(85_,_).
Since Ev+! is the derivative of E it is observed that the limiting points of E¥
are all interior to

(9.7¢) Al(oy) + A%(83) + - - -+ AFTTT(Ep_y1);

only a finite number of the points of E7, say

(9.7b)

(9.7d) S5, sm (mt = m(3y, 8, - - -, S5_q),

will be in the open set (e, b) minus the set of (9.7c). Hence the points (9.7d)
can be covered by the set A#~7(§5_,), consisting of intervals

(9.7€)  AB V() = () — Bgy, Sy 4+ 05_y) v =1, -, m! (cf. (9.7d))].
On taking account of the italics subsequent to (9.7a) it is clear that the points
belonging to the sets (9.7) are all in the open set

(97f) I‘(&l, dg, - -, 65—‘1)’

obtained by taking the sum of all the intervals involved in (9.7a) and discarding
the end points of these intervals.

Suppose now that the limit number v, obtained above, is
(9.8) v =1w.

In view of the results (9.2)-(9.2b), on noting that E“ cO,, where O, is the
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open set (9.7f), it is inferred that either all the sets of the simply infinite se-
quence*

(9.8a) E B\, Er, -

are in O, or there exists a number j [=7(8, 8, - - -, 8s_,) <w] so that

(9.8b) Eitre0, b=1,2--),
while

(9.8¢) Ei¢O0.,.

The derivative Eit! of E7 being contained in O,, only a finite number of
points of E’, say

(9.8d) 311, ) s:nl [ml = m(8y, 82, - - -, aﬂ—'l)]’

will be exterior to O., no point (9.8d) being coincident with any end point of
the intervals constituting O,. The points (9.8d) can be covered by the set
AB—v+1(§g_,.1), consisting of the intervals

AS T (8g_yp1) = (57 — 8pyp1, SF + p—yq1)

9.8e
(08¢) [v=1, ---,m';m from (9.8d)]

in such a way that the intervals in (9.7a), (9.8¢) have no points in common,
while no point of E is an end point of these intervals. Following the pro-
cedure of §2 we find that the remaining sets
Ei-1 Ei~2 ... El\ E'= E

are covered by the sets
(9.9)  APTYRE(Gp_yys), APTYFI(Gg_yys), - o, APTYRI(Gg ), ABTYRIL(G oy ipa).
Each set (9.8¢), (9.9) will consist of a finite number of intervals

AF=TH(Bg_yys) = (ST — Bpnii, ST+ Spyi)
(9.92) . .
[V= 1: T ’ml;ml=m(61;62y' T 65—1+i—1); 1= 1)23 T )]+ 1]’

where s,” is in E7; moreover, the construction is so effected that tke closed in-
tervals (which are finite in number), involved in the sequence of sets

(9.10) AY(81), A2(8g), - - -, AFTTHI(Gg_yyj1a),

are all without common poinis and that no point of E is an end point of these
intervals. It is to be noted that the choice of 8, (>0) (1<vr=<B—vy+j+1) de-
pends on that of &, 6, - - -, 8,_1; however, the choice of &y, d;, - - -, 8,1 once

* By definition E*=E'E?- -« En- . - (n<w).
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made, one may take §, arbitrarily small and thus one may let 8, approach zero
through suitable values.

We thus obtained a type of a covering theorem for the set E in the case
when the limit number v involved in (9.7f) is of the form 1-w.

Suppose now that a covering theorem of the above description holds for
all sets E for which

(9.11) Y = 1w, 1=19<a,
where « is a number of 1st or 2d class. We wish to establish such a theorem
for n=q.

CASE 1. « is not a limit number. In this case we make use of the fact that
the theorem holds for a—1.

CASE 2. a is a limit number. In considering Case 1 it is noted that, by
hypothesis, there exists a finite number of sets

(9.12) AY(31), A%(3o), - - -, AH(3m),

each consisting of finite number of closed intervals; the totality of these in-
tervals will be without common points; every point of E will be an interior
point of one of these intervals; it may occur that some of the subscripts in
(9.12) (1<v<H) depend on 68y, &, - - -, 8,—1. The number B (cf. (9.1b)) will
be, of course, of the form

(9.12a) B=(a—Nw+gq (0 < g < w);

moreover, according to the hypothesis, a covering theorem of the stated type
will hold for every B8 (« fixed) with¢=1, 2, - - - , where ¢ <w. It is desired now
to obtain such a result when 8 has a value

(9.12b) B*=oaw+p 0<p<w.

With Ef" =0, EF*-! will consist of a finite number of intervals which can be
covered by a set A*1(8*) of intervals; in succession we construct sets

(9.13) A*1(3), A*2(85), - - -, A*P(8,F),

analogous to the sets (9.7a), and with similar properties. In particular, the

last set in (9.13) will consist of the intervals

(9.13a) AP = (s =88, s+ 6 =1, ,m],

where m'=m(8%, &F, - - -, §;-1). The 5,2 in (9.13a) will be points of E««;

all the other points of E** (an infinity of them) will be interior to the set
A¥(EF) 4 - - - 4 AXPI(5 K.

By definition
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(9.14) Eev = Ela—DetlE(a—De+2 . . . Ela—Daetn . . . (n < w).
Also, in view of the preceding it is observed that
(9.14a) E=vcO,
where O is the open set obtained by discarding in

ARIGF) + - -+ AFP(S)

the end points of the intervals involved. On taking note of the result (9.2)—
(9.2b), as applied with G,=E@Detr it is accordingly concluded that for
some finite ¢ (>0)

Ete=DetreQ (V=9,9+1,"'),
while

(9.14b) Etebete1¢0,

unless Et=—De+1 ¢ Q. It is arranged so that no points of Ete—De+e-1{g 3 bound-
ary point of O. Only a finite number of points of E(—De+e-1 gay

(914C) syleDeta—l [V =12 ,mim = m(al*y ] 59*)]’

will be exterior to (9.14b).} If we consider the closed set

(9.15) G = E-[(e,0) — 0],

the consecutive derivatives of G will be

(9.15a) G’ = E*-[(a, b) — O] =12, (a— Dw+yq),
where G»—De+e-1 consists of the points (9.14c) and, consequently,

(9.15b) GF=0 B=(a—Dw+yq).

In view of the hypothesis made in conjunction with (9.12), applying the state-
ment, just referred to, to the set G, we obtain a finite number of sets (9.12)
covering G, as stated subsequently to (9.12).1

Every point of G is interior to (e, b)) —O; G being closed, the sets (9.12)
(covering G) can be replaced by subsets

(916) A (81)7 Af (62)> ) AIH(‘SH):

respectively, obtained by replacing the intervals involved in (9.12), whenever
necessary, by suitable subintervals in such a manner that not only the proper-
ties (with respect to (9.16)) of (9.12) are maintained but also every closed in-
terval involved in (9.16) is interior to (e, b) —O. The finite sequence of sets
(cf. (9.13))

+ That is, will be interior points of (g, b)—O.
1 In the aforesaid statement replace E by G of (9.15).
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A*l(sl*)7 A*2(62*): T A*p(ap*)’ A1l (61), A12 (62)y T AIH(BH)

will have all the required covering properties with respect to the set E, for
which EF* =0 (cf. (9.12b)). In other words, if Case 1 (introduced subsequent
to (9.11)) is on hand and if the theorem holds for «—1, then it will also hold
for o (a from (9.11)).

We now consider Case 2, when o in (9.11) is a limit number. Thus, it is
assumed that every set E with Ef =0, where

(9.17) B=nw+gq 1=9<a1=g¢<w),t
can be “covered” by a finite number of sets
(9.17a) AY(81), AX(S2), « - -, AH(bn),

each consisting of a finite number of intervals. Let E be a set, with Ef* =0,
where

(9.17b) B*=aw+p 0 < p<w.
It is observed that E=« could be considered as the set common to all the sets
(9.17¢) Er 1=9<a).
We again form a finite number of sets (cf. (9.13)-(9.14a))

(9.17d) A*IE), - - -, A*P(3),

each consisting of a finite number of intervals; the last set displayed will be
of the form (9.13a), where the s,2¢ (finite in number) are points of E=¢, the
other points of E** being interior points of A¥1(§*) 4 - - - +A*»=1(§*,). The
sets (9.17d) “cover” the sets Ef*~1, Ef*-2, . . . Eee, We again have

(9.18) E«cO,

where O is the open set, obtained by taking the sum of the sets (9.17d) and
discarding the end points of the intervals involved.
The sequence of sets

(9.19) -Elw, E2w’ tte )‘E’,w) R (77 < a))

even though denumerable, may be not a simply infinite sequence. It is not
difficult to see that the set E=¢, which is the product of the sets (9.19), could
also be considered as the product of the sets of the following simply infinite
sequence:

t It is understood that £%-! has some points. In (9.17a) the last set contains just a finite number
of points of E, all the other points of E being in the other sets of (9.17a).
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(9.19a) Eno, Eme, - - - m<n<---5mn<a),

provided the 7, are suitably chosen.}
With (9.18) and the above in view, the theorem (9.2)—(9.2b) can be ap-
plied with G=E= and G,=Em~. Thus there exists a finite number 5 so that

(9.20) EvcO w=j+1,j+2---),
while
(9.20a) Er ¢0,

unless Ene ¢ 0. No points of E%¢ will be coincident with any of the boundary
points of O. Form the set E,=E%*[(a, ) —O0] and write

(9.21) E = E[(a,b) — O];

then

(9.21a) Ev = E"[(a,0) — O] (y=1,2,--+),
(9.21b) Ene = E.

Now, by (9.20)

(9.21¢) Emne = 0.

Thus, for some B=7n;0+7=7;110 we have
(9.214d) Ef = Fr =

Since ;41 <a one has B <oaw; hence in (9.21d) B is of the form (9.17). Let
(9.17a) constitute the set “covering” E. By taking suitable subintervals of
the intervals constituting the sets (9.17a) we correspondingly obtain other
“covering” sets:

(9.22) At(81), A2(82), - - -, AH(dw),1

having the same properties as (9.17a) but which at the same time are interior
to (a, b) —O. The reasoning in this connection is the same as that previously
made in connection with (9.16). Adjoining the sequences (9.22), (9.17d),
and

(9~23) A*l(al*)y A*2(62*)7 ] A*p(ap*)y Ay (61)’ T AIH(aﬂ)’
we obtain a finite number of sets, each consisting of a finite number of closed

intervals, the totality of these intervals possessing no common points, every
point of E being an interior point of one of the intervals involved; the se-

t Thus, for instance, if a=w?, one may take n,=rw?. With « a limit number, 7, (<a) must be
chosen so that, given any y <, one may find a value » (» <w) for which y<#n,<a.
1 Here the 3, may be different from the original ones.
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quence (9.23) will “cover” the set E in the sense previously attributed to the
word “cover.”

This completes the transfinite induction.

THEOREM 9.1. Let E be a reducible set as stated at the beginning of this sec-
tion (cf. (9.1)—(9.1b)). The sets

E,E\E? .-, Ef1 (B of 1st or 2d class)t
can always be “covered,” in the sense indicated above by a finite number of sets
(9.24) Al(al); A2(62)’ B Aq(aq) (61 >0,---, 0y > 0)’

the set A”(8,) consisting of a finite number of intervals of length 26,, no point
of E being an end point of any of the intervals involved.

Nortk. It is observed that in (9.24) the choice of a particular §, (v>1) de-
pends on that of 8y, - - - , ,_1; moreover, having chosen 6y, - - - , §,_;, we may
take the number §, arbitrarily small. It is also to be noted that the number q
in (9.24) may depend on the choice of &1, 8, - - - .

10. Kernels of transfinite rank. Such kernels will be introduced by means
of the following definition.

DEeFINITION 10.1. Let E be a closed reducible set on (a, b), as described in
the beginning of §9, with E#=0 (B a non-limit number of class II) and EF~! con-
sisting of some points (necessarily finite in number). Let A*(8,) [v=1,2, - - - | ¢
(<w)] be the corresponding covering sets, referred to in Theorem 9.1. A kernel
K(x, y) will be said to belong to the class Hpg if, for all “admissible” values &,
(>0; v=1,---, Q))

(10.1)  K®#-da(x, y) € Ly (in %, y; for a < x, y < b).

Here

(10.2)  Kobrowba(x, 3) =0 [win 3508%(,);a S ySb(ora < y < 0);

(10.2a) Koo da(z, 5) =0 [yin 3 ,0A'@);e S v < b(ora < 2 < 9)];

(10.2b) K?¥:92--8e(x, y) = K(%, ¥) [at all other points of a < x, y < b].
We get in succession

lim K ote(s, 3) = Koo 8, 3),

3q

(10-3) lim Kﬁl.'--,aq—l(x, y) = Kﬁl.-",ﬁq—z(x, }’), T

b
8g—-1

lim K°v%(x, y) = K%(x,y),  lim K%(x, y) = K(x, ).
d2 81

Thus K (x, ) is a ¢-fold repeated limit of the function of the first member in

t As noted before, necessarily 8 is not a limit number.
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(10.1).1 Here and in the sequel it will be implied that the 8, have “admissible”
values} and that, whenever we let 8,—0, 8, approaches zero through such val-

ues.
Unless stated otherwise the number (3, referred to in Definition 10.1, will

be taken of the special form

(10.4) B=ow+p (0<p < w;wthe first number of class II);
this is in order to gain simplicity of exposition. Most of the facts established
for the case of (10.4) could be extended without difficulty to kernels for which
Bis any transfinite number of class II. In this connection the method of trans-
finite induction, along lines already employed in §9, would suffice for demon-
stration of the majority of the results.

Example of a kernel included in H,.,,. We shall construct a set E with
E«+1=0 and E“ containing at least one point. Following a device indicated
by H. Lebesgue§ we define E as follows. Let F; be the operation such that, if
H is a set of points on (0, 1), F;(H) is the set of points obtained by a homo-
thetic transformation of H upon the interval (1/(:+1), 1/2).|| Let O represent
the point zero. Form in succession the sets

A; =04+ F,(0) +F(0) + - -+,
A2=0+F1(A1)+F2(A1)+ SR
(10.5) e ,

With the aid of the sets (10.5) one may form the set
(10.5a) E=A,=0+F(4)) + Fo(42) + - - - + Fu(dm) + -+ - ;
E will be reducible and
(10.5b) Ec =0, Eetl = 0.
Let us find the consecutive derivatives of E. It is observed that

E'= 0+ Fi(4) + F#(Ae) + - -+ = 0 + Fy0) + Fo(dy) + Fs(ds) + - - - .

Continuing thus, it is found that

t The values on the lines x (or y) =s," (the s,” being points of Er) are of no importance for our

purposes.
1 That is, values for which the conditions specified in §9 hold.
§ H. Lebesgue, Legons sur I’ Intégration et la Recherche des Fonctions Primitives, Paris, 1928, p. 315.
|| That is, if % represents a point of H, the corresponding point of F;(H) will be represented by

1/G+1)+(1/i—1/G+1)h.
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(10.6) E" = O 4 Fu(0) + Fry1(41) + Fopa(ds) + - - -

for n=1, 2,--- (n<w). It is noted that E” is in the closed interval
(0, 1/(n+1)), the point 1/(n+1) being an isolated point of E=.

To cover E, as defined by (10.5a), by a finite number of sets of intervals,
following the scheme which we established previously, we proceed as follows.
The set A'(8,) will consist of the single interval

(10.6a) AR (3y) = (0, 8y) (0 <8 < 1/2),

where 8, is not coincident with any of the points of E. The set (10.6a) “cov-
ers” E«. Corresponding to §; there exists a number j=4(38;) [j(8:)— with
1/8,], such that every point of each of the sets

(10.6b) Eitl, Eit? .

is interior to* (0, &;), while the set E7 has points not in A,}(8,); that is, there
are points of E7 in the interval (8 <x<1). In view of the statement subse-
quent to (10.6) one clearly has

1 1
—— <ua<——;
Jj+2 Jj+1
that is,

1 1
(10.6¢) ——2<j<——1.%

o1 01
The points of Ei exterior to A!(6;) will be F;(0), that is 1/(41), and those
points of F;11(41) which are to the right of 8. The points of A, being
0,1/2,1/3, - - -, those of Fj;1(4,) will be

1
(10.6d) 12 + il (= 1/G+1) —1/G+ 2)),
where »=0, 1/2,1/3, - - - . Accordingly it is concluded that the points of Ei,

exterior to A'(4,), will consist either of the single point 1/(j+1), or of the m!
(>1) points

;1 L1
S1= 7"y S22 =T i+l
+1 2 2
(10.6¢) J It
;1 +1l ; 1 +1l
S3 = ——m —_— . ’...’ Sm _——_— —_— . ,
3 j+2 3 i+1 1 j+2 ml i+1

where m! =m(8,) and

* According to previously made conventions, “interior to” here means “in the interval a<x < é,.”
t Given an “admissible” §, this defines the integer j uniquely.




266 W. J. TRJITZINSKY [September

l; l;
(10.6f) —  _t<m<— .
- G+ 2 -G+ 2
In succession “covering” sets A7(8,) (r=2, 3, - - - , j+2) are obtained, with

Ar(3,) consisting of intervals

i+2—r J+2 —r

(10.7) A, (5) = (s, 8,5y +5)
[" =1,2,---,m;m = m(al; 2, - - - ’6r-1)]’
so that Ei is interior to A!(8;)+A2%(8:) (a finite number of points of E7 in

A%(3;)), Ei-1is interior to A'(8;)+ - - - +A3(83) (a finite number of points of
Ei~1in A3(§;)) and so on, with E= E? interior to the set

(10.7a) AYy) + - - -+ AF2(54),
only a finite number of points of E lying in Ai+2(§;,2).*
Let
(10.8) K(x, y) = g(x) (for0 = y < 1),
(10.8a) K(x, v) = g(y) (for0 = x<y),

where g(x) is defined as follows. The set E of (10.5a) being closed nondense,
the complementary set (0, 1) — E will consist of a denumerable infinity of open
(except at 1), nonoverlapping intervals

(10.8b) (@i, b)) O=ai<b;=1;i=1,2,---),

some of them being adjacent. We let g(x) =0 for 3/4<x=<1 and in the other
intervals (10.8b) we take

g(x) =0 (for a; < x < (a: + b:)/2),
10.8c
( ) g(x) = (for (a; + 8,)/2 < x < bi;¢: > 0).1
b2 — x?
In accordance with Definition 10.1 related to K(x, y) will be the kernel
(10.9) Kb eebiva(, y) = gheentivi(g) 0=y<a),
(10.9a) Youeedina(x, y) = gl oobiva(y) 0==x<y),
where
(10.9b) ghina(x) = 0 [for x in 357134%(,)],
’ gor e bin(x) = g(x) [for x in (0, 1) — 2°7*A%(5,)].
* The numbers m! involved in (10.7) can be specified by inequalities in terms of 8y, - - - , 81

in succession, making use of the fact that the 8, are chosen so as to secure “covering” in our sense.
t The definition for x equal to a number corresponding to a point of E is immaterial.
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Now the G; in (10.8c) are points in E and they are interior to the finite num-
ber of nonadjacent nonoverlapping intervals constituting (10.7a). The set
+2

(10.9¢) (0,1) — 22 A(3)

will consist of a finite number of open intervals I'. Any particular interval T'

will be, together with its end points, interior to some interval (a;, b;). In view
of (10.8c) and (10.9b) e
(23

B dity(g) 2 S — x in interval T).

¥ ()| TR ( )

With b; exterior to the given interval T, | g1 --%i+2(x)| will be uniformly

bounded in this interval. Hence this function will be uniformly bounded in the

total set of intervals constituting I'; inasmuch as the number of these inter-

vals is finite. On taking account of the first relation (10.9b) it is finally con-

cluded that
(10.9d) | gortia(x) | < B(oy, - - -, Bive) 0=2x=1),

where the second member is independent of x and is finite whenever
81, - - -, 8;42 have positive “admissible” values. In consequence of (10.9),
(10.9a), and (10.9d) K% -di+x(x, y) € L, (in x, y; for 0<%, y<1). Thus,
(10.8), (10.8a) furnishes an example of a kernel K (x, y) ¢ H,1. Now, we recall
that convergence of

1
(10.10) f K*(x, y)dy (almost all x on (0, 1))
0

would imply that K(x, y) is essentially of one of the classes of kernels con-
sidered by Carleman. Tkis, however, is not the case. In fact, the integral
(10.10), if convergent, could be written as

(10.10a) xg%(x) + f g*(y)dy.

For every 0<x<3/4 the interval (x, 1) would contain at least one point b;
(cf. (10.8c)). The presence of such an infinite discontinuity implies that there
exists no integral (10.10a).
On determining in succession the limits
lim Kb bive(x, y) = Kou- hi(x, ),
Sit+2

(1011) lim Kﬁl,‘-',5i+1(x’ y) = K"l."'.5i(x’ 3’), )

Si41

lim K = Ko(x, ), lim K% (x, y) = K(x, ),
S

[ 1
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itis observed that

Kslv""‘iﬂ(x, y) CH], K&l,.--,a,’(x’ y) CHz, e .
Kby, y) cH; K% (x, ) CHjy,.

)

(10.11a)

The latter relationship above implies that K (x, y) is a limit of a simply infinite
sequence of kernels each of which belongs to a class H, (v <w). It is of interest
to assure that

1
(10.11b) f | Ko1(x, y) |2dy (all “admissible” 5, > 0)
0
diverges, since in the contrary case K% (x, y) would be essentially of Carle-
man’s type and K(x, ¥), itself, would be of rank two. Now
0 0=2x2x=6;0=9y<u),
Koy, y) = { ( ¥ ! Y %)
0 0=y=6;0=x<y),

and K%(x, y)=K(x, y) at the other points of 0<x, y<1.* The integral
(10.11b), if it exists, is of the form (10.10a), where g(x) is replaced by g (x),

0 (0 é X é 61))
glx) (1< =z =1).
Thus, the integral (10.11a) will exist if and only if

(10.11c) f | g%(y) |2dy

g (x) = {

exists. The expression last displayed is identical with

1
f g*(y)dy (for0 = x < 8)),
LY

which diverges for 8, <3/4 (cf. the statement subsequent to (10.10a)). When

61<x<1
1 1
f | g8(y) |2dy = f g2(3)dy;

this diverges for reasons previously given with reference to (10.10a). Hence
it is inferred that (10.11b) diverges, as stated. It remains to make certain
that K(x, y) does not belong to a class H,, where #»<w. In fact, suppose
K(x, v) ¢ H,. Then by Definition 2.2} there exists a set E=E?, with

* In accordance with certain previous remarks, the values of K(x, v) on lines x=number corre-
sponding to a point of E are immaterial.

t To conform with the present notation, §,, A”, in Definition 2.2, are replaced by 8,41, A**?, re-
spectively.
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E~1= (51, ) §k)’

and sets Ay(3,) (v=1, - - -, u) of intervals such that the points of E»—i are
interior to A1(8,)+ - - - +AF(8;) (=1, - - -, n), the only points of E»—¢ in
A¢ (3;) being the centers

5:_‘ [V = 1; T ’ml;ml = m(sh 52) Ty -6-,'_1)]
of the constituent intervals of Ay (3;). Moreover,
(10.12) Ko dn(x, y) € Ly (in x, y);

here the first member equals K («, ¥), except for xin G =A4:1(8,)+ - - - +A,"(5,)
(0=y<x) and also for ¥ in G (0=x<y), where the first member of (10.12)
is zero. The complement of G could not contain an interval (0, ) (£>0), in
fact, if it did one would have

h h h h
[ [ g, ) pasiy = [ [ Ko, pyinay.
0 0 1] 0

The integrand last displayed has an infinity of infinite discontinuities within
the field of integration, each of which, alone, would suffice to secure diver-
gence of the integral in question. Thus (10.12) does not hold for all “admissi-
ble” sufficiently small §,, unless G contains an interval (0, ) (4>0) for every
“admissible” choice of &y, - - -, 8..* Hence the point 0 must be the center
(that is, end point, in this case) of an interval of G. Suppose this point is the
center of an interval T of the set A;"(8,). We recall that having made an
“admissible” choice of 8y, 8, - - - , 8,1, the choice of §,, - - -, §, depends on
that of &y, - - - , 8,_1; however, §, may be taken arbitrarily small. Thus, with
8, suitably small, there will exist an interval T, adjacent to and nonoverlap-
ping with I'y, which will be in the complement of G and in which K (x, y) will
have infinite discontinuities (cf. (10.8)—(10.8c)); on the other hand,

Ksl"“}”(x’ 3’) = K(x, y)

for xinT'; and 0=<y=<1 and also for y in I'; and 0 =x < 1. The presence of the
above discontinuities implies that (10.12) does not hold, as stated. Thus, our
kernel K (x, v), as given by (10.8)—(10.8c), is of the transfinite class H,., and
does not belong to any class of index less than w+1.

Following the procedure indicated from (10.8) to the italicized statement
above, obvious generalizations can be made regarding existence and construc-
tion of kernels of various transfinite classes.

11. Results for classes Hs. Let K(x, y) c Hp where B=w+p (0<p<w).

* hmay depend on 3y, - - - , &n.
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For the corresponding set E we shall have
(11.1) Eetrt = (s,) (v=1,---,k).
Sets A’(8,) each consisting of a finite number of intervals are constructed so
that
(11.1a) Eetr~1cAld),  E“trcAlé) + A%(S), - - -,

EeticAY8) + - - - + A7 (3,1), E“cA(d;) + --- + A?(3,) =T,

where G c H signifies that every point of G is an interior point of H.In
(11.1a) the only points E«*+?-% which are in A?(é;) are the centers

(11.1b) s::+p—t' =1, -, mm =m@y, - - L8 ]*
of the constituent intervals of A¥(§;); this assertion is made fori=1, - - - | .
Furthermore, for some j=3(8y, - - -, 8,)

EitreT [V= 1,2,---;cf. (ll.la)],
while
(11.1¢c) Ei¢rT,

the points of E7, not in T, being finite in number,

i i
S, 0y Sml (m' = m(dy, - -+, 8,)).

Furthersets A*(8,) (v=p+1,p+2, - - -, p+j+1) of intervals are constructed
so that
EicT 4+ AP*(5,,,),  E1eT + APH(5,,,) + AP*2(5,,0), - - - ,
(11.2) E'cT + A?*1(6,41) + - - - + APHI(8,4),
E' = EcT + AP (5,0) + - - - + APFH1(5,,141),
the symbol ¢ having the same meaning as in (11.1a), the only points of Ei~*
in AP+r+1(§,,,.1) being the centers

j-r j—r j—r

(11.28.) S1 , %82 5, Sm [ml = m(al: ) BP-H')]

of the intervals constituting A?+™+(8,4,41) (r=0,1, - - -, 7).
According to Definition (10.1), associated with K (x, y) will be the function

(11.3) Kotz da(y, ) (g=p+7+1),

satisfying the conditions of that Definition. In succession we define the limits

* For i=1, m'=k.
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lim Kooodini(y, y) = Koo doti(s, y),

Sp4i+1
(11.3a) lim Kot wioti(x, y) = Koo wdminiz, y), -« -
Op4i
lim K- dwhi(a, 5) = Koo ba(, 3),
dpy1

where, in particular,

Ko idp(x) y) = 0 forxinT;0 <y £ 1],
(11.3b) (%, y) ’ [ y 1]
=0 [for yinT;0 < x < 1; cf. (11.1a)],

and K% %s(x, y) =K(x, y) at the other points of 0<x, y<1. It is essential
to note that the kernels involved in (11.3a) are all of finite ranks. The next
limiting process

(11.3c) lim K- s32(x, y) = K% -:8r1(x, y)
L

is essentially distinct from those of (11.3a); it yields a kernel which may be
actually of transfinite rank.* Further limiting processes will yield

lim Ko bmi(y, y) = Koo bry(a, ), - - -

(11.3d) bt .
lim K&;,&z(x, y) = Kal(x’ y)7 lim K&(x’ y) = Yo(x) y) = K(x’ y)'
82 6,

Clearly

(11.4) | Kwb(n, g) | S| Kot y) | 0 =0,1,- -0, p + 7).

Corresponding to the last member of (11.3a) we form the equations

(11.5) ¢“""""(x)'— )\f bK“"""”(x, y)pdt: - 3(y)dy = f(x) (f(x) cLy),

b
(11.6) % "¥(x) — )‘f Ko 80(x, y)gtr e et(y)dy = 0.

Inasmuch as K% *:82(x, y) (8,>0, - - -, §,>0) is of some class H, (n <w)
the results of Theorem 4.1 will be applicable to the equations (11.5), (11.6).

Thus, corresponding to K% *+#»(x, y) there exists a function %" *:3»(x, y)
such that

(11.7) Var. @-b(z, 3| X) £ [(x — a)(y — o) ]2, @%-¥5(x, y| 0) = 0,
it 31 3) — s, 3 )|
<5 - a)ll2(| yl — y|112+ I 2! — x|1/z);

* That is, in some cases K% * *+%-1(x, y) will belong to H,,41 and will be not of class H, (»<w).

(11.7a)
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this function may be discontinuous in A for a denumerable infinity of real
values \. In view of (11.7), (11.7a), application of the “Compactness Theo-
rem” (§1), with respect to 8,, leads to the conclusion that the limit
(11.8) lim Q%" "dp(x, yI ) = Qo by, y| \) [suitable 8,,; lim §,, = 0]
Sp,r
exists and satisfies
Var. @i bmi(x, y|N) £ [(v — a)(y — o) ]2, @0 1(x, y | 0) =0,

11.8a
( ) I (VTR e TE yll N — Q‘l"""rl(x,yl)\) I < second memberof (11.7a);

moreover, Q%.**#-1(x, y|\) will have the same descriptive properties as
Q1.+ -.35(x, y|\). Continuing in this manner along the lines of §4 we conclude
that the results of Theorem 4.1 all hold for the kernel (which is generally of
transfinite rank) K% -.#2-1(x, ). Continuing the reasoning of the type em-
ployed before, passing to the limit, it is established that results of such type
hold for K (x, ), itself. Finally, by transfinite induction the following Theo-
rem is established.

THEOREM 11.1. Let K(x, y) be a kernel of class Hg, where B is any number
of the first or second class (Definition 10.1). With respect to this kernel all the
results (stated in appropriate form) of Theorem 4.1 will hold.

Many more significant results for kernels Hg (3 >w) can be obtained when-
ever with the kernel in question one may associate an operator L satisfying
the following definition.

DErFINITION 11.1. 4 linear operator L.(£| h(x)) (& a parameter) will be said
to be associated with K (x, y) € Hg (3>w) (cf. Definition 10.1) if

(11.9) Lo¢| K(x, y) e Ly (in 3);
(11.10) | Loe] Koree o, 3)) | < (] 9),
with y(£|y) € Ly (in v), the function v (| y) being independent of &, - - - , &;;

Lo(¢] Kb de(x, y)) 7L=<el Kbu-odei(x, )

11.11
(11.11) — La(e] K ene(n, ) = - o L] K, )3

dg—1

(11.12) limL.(¢ | 7,(%)) =L.(¢| f(x)) [when f,(x),included in Ly, — f(x) weakly];

a1y [ "L(E] Ko a(x, ))e(y)dy = L,,(s‘ ) CKh (s, y)¢<y)dy)

for all $(x) € Ly. Here 8y, - - - , 8, are the numbers referred to in Definition 10.1.

Before proceeding further it is essential to give an example of a kernel of
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transfinite rank, which is at the same time not of any finite rank and with
which one can “associate” in the sense of Definition 11.1, an operator L.
For this purpose consider the kernel K(x, y) defined by (10.8)—(10.8¢c) (cf.
text from (10.5) to (10.8¢c)); K(x, y) € H,11 and K(x, ¥) does not belong to
any H, with v <w. The associated operator will be taken of the form

(11.14) Ll = [ 6| Dpwas,

where ’

(11.14a) G([x) =0 GB/asx=s),
(11.14b)  G(¢| x) = cr12(b2 — a?)2wi(g| x)  (yi = (e + b)/2 = 2 < b)),
(11.14c) G| %) = — Gi(k| @i + b — ), (a; < % < v4),
the a; and b; being the numbers from (10.8b),

(11.144) 0 < wi(t| #) <m, wit|x)cL, (in %;v: < & < by),

the function w;(£| x) being monotone non-increasing in x on (v, b:).
By (11.14b) and (11.14d)

Hz
lG(flx)lzéz(bsz—‘Yf) (vi £ 2 < by),
and, in view of the symmetry relation (11.14c),
H2
(11.15) |G| ») | = — (b2 — 72) (a:s < © < by).
Ci

Thus

fblc(gl x) |2dx

a

Zfb.l G(E[ x) ]2dx

(11.15a) .
s ; - (b2 — v2)(bi — ai) = RS.
Herewith we choose the c; so that the series S of the last member in (11.15a) con-
verges.* Accordingly,
(11.16) G(t| x) e Ly (inx;0 < x < 1).
In consequence of (11.14), (10.8), and (10.8a),
L.(¢| K(x, 9)) = B¢ 9) + alt] 9),

11.17 v 1
D a3 = g [Tol9an el = [ 6] Meia,

* This, obviously, it is always pcssible to do.




274 W. J. TRJITZINSKY [September

g(x) being defined by (10.8¢). By (10.8¢c)
(11.17a) BE| 9 =0 (u<y<v;3/4=y=1).
On the other hand, for v; <y <b;,

f vG(£| x)dx = f 'fc(zl x)dx + Dt f f"G(s| x)dz,

where the summation symbol is over the subscripts 7, corresponding to the
totality of all those numbers b; for which b;<b;. Now +; is the mid-point of
the interval (a;, b;); thus, on taking account of the symmetry relation (11.14c)
(for 7) we conclude that

b,
(11.17b) f iG(El x)dz = 0.
Hence
v v
[ el 9az = [l yas (v < 3 < b),
0 ag
so that, by (11.14c), (11.14b), and in view of the monotone character of
w$($|x)7
v 2vi—y b¢
f G(t| x)dx = f G(t| wydu = — f G(¢| wydu
at.17e) °° o . v
= - cr”zf (b2 — w)Pwi(E| wdu (v; S y < b);
v
v
(11.17d) f G| #)dx | < cV2(b2 — ) 2wi(E| 9)(b — ) (s S y < b).
0

Thus, in consequence of (11.17), (10.8c), and (11.17d), it is inferred that

| 8| )| < wilt]| 9)(b: = 7 (vs £ y < b,
whence by (11.14d)

|8t| »)| < 8 — ) <n (vs S ¥ < b)),
which, together with (11.17a), implies that
(11.18) |8E] )| < n 0=<y=1).

For the function a(£|y), involved in (11.17), one has

|atel )] 5 a® = [ 16&] )| gz = T [ "l6te] 9] saa,
0 : ag
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and, in consequence of (10.8c), (11.14b), (11.14d),

bg C',llﬁ
Ia(EIy)l éa(f) = ;fhlc(glx)lmdx

= Zfb‘wi(fl x)dx < H

for 0<y=<1. Consideration of (11.17), (11.18), (11.18a) leads to the conclu-
sion that condition (11.9) of Definition 11.1 holds for the case under considera-

tion.
Consider the related kernel K¢ -:3i+(x, y) (cf. (10.9)-(10.9b)). One has

(11.19)  L,(&] Ko+ Biva(x, y)) = Bon---diva(g | y) + afre---diva(g] y),

Bsh...,aiﬂ(zl y) = g81,---.5i+z(y)f G(El x)dx,
0

(11.18a)

(11.192) .
abi e ding| ) =f G(g| w)gor- - bi(x)da.
vy
We have, as can be seen from (10.9b),
0= I g“""""+’(x)| < g(x), lim lim --- lim g% - -3i+2(x) = g(x).
81 o2 diye

Thus, by (11.17) and (11.18),

lﬁsx.n-,&iﬂ(g[ y)l =< g(x) = Iﬁ(gl y)l <H

- fo "6t v)da

(11.19b)
0=sy=s1).
Also, in view of (11.18a),
1
Jatersarote] )| 5 [ 6|9 | gt i
(11.19¢) g
< [ 16l 9| gz = a®) < 1.
[1]

By virtue of (11.19), (11.19b), (11.19c) it can be asserted that condition
(11.10) of Definition 11.1 holds, with v(§|y) =28.*
To demonstrate the first relation (11.11) it will suffice to

establish
lim gt diva(g | y) = Boue-mdin(g] y),
(11.20) b
lim adt. - Sia(g l y) = abuebiti(y),
Siye2

* Or, more precisely, with v(¢|y)=]|8(t| )| +a(®).
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gor - dina(g] y) = g“"""’f“(y)f”G(EI %)dz,
(11.20a) . ’
adiee - bin(g] ) =f G| w)gh---t(x)da
where !
(11.20b) girrtin(x) = 0 [xin AYSy) + - - - + A1) ],

gh o din(a) = g(x)  [xin (0, 1) — (AYEy) + - - - 4+ AF(E0)) ]
Now, the first relation (11.20) follows from (11.19a), since
(11.21) lim got. -+ diva(y) = gbu - disi(y),
Sjy2

The remaining part of (11.20) will hold if

1 1
(11.22) lim G(E| x)ghr - ¥i+2(x)dx =f G(E| x)gdr- ¥+ (x)dx.

dive vy

In view of the inequality subsequent to (11.9a)
|G| gt tina(x) | = | G(E| 2) | 4(=).

The last number, here, is contained in L, (in %), as can be inferred from the
existence of the function a(£), introduced subsequent to (11.18). On the other
hand, in consequence of (11.21) the limit (as 8,;2—0) of the integrand in the
first member of (11.22) converges to the integrand of the second member.
Thus the passage to the limit under the integral sign, indicated in (11.22), is
justifiable. The first condition (11.11) accordingly holds. All the other conditions
(11.11) can be demonstrated in succession following the indicated procedure.
In view of (11.14) justification of (11.12) amounts to that of

(11.23)  lim fo G(t| x)f.(x)dx =f G(E| »)f(x)dx  (f.(x) — f(x) weakly).

This relationship, however, holds in consequence of (11.16) and of Theorem
14.

Finally, demonstration of the condition (11.13) for the case under consid-
eration is effected by noting that, in view of (10.9d), the change of order of
integration, involved in the relationship

1 1
[ [ Gle| Ko -(, y)dx] o(5)dy

(11.24) 1 1
- G<s|x)[ [ g, y)¢(y>dy]dx (6(3) € L9,

is justifiable.
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Thus, K(x, v), as defined by (10.8)—(10.8c), belongs to H,., and does not
belong to any H,, with v <w; moreover, “associated” (in the sense of Definition
11.1) with K (x, y) there is an operator L of the form (11.14)—(11.14c).

Let K(x, y) be any kernel of a transfinite class Hz (any B of 2d class) such
that with K (x, y) there is “associated” an operator L. Then it is of interest to
study the equation

b
(11.25)  Lu(e| 6(@) = [ Lule] K(x, 2y = Lute] 1),
For this purpose it is advantageous to consider the auxiliary equation

Lo(g] 60 da()) — A f "Lu(] Ko, 9))ote - a(y)dy
: = L.(¢] f(%));

here the 8, (v=1, - - -, ¢) are the numbers involved in Definition 10.1. Of
importance is also the homogeneous equation

(11.25a)

(11.26) L] (%)) — xf bL,(£| K(x, y))¢(y)dy = 0.

Using the results of Theorems 4.1, 5.1, 7.1, 11.1, partly by direct methods
and partly by transfinite induction and following the lines which were em-
ployed previously, we arrive at the following theorem.

THEOREM 11.2. For kernels K(x, y) € Hg (any B of 2d class) [classes Hj
are specified in Definition 10.1), for which there exist “associated” operators L
(Definition 11.1), all the results of Theorems 5.1, 7.1 will hold, if appropriately
stated with respect to the equations (11.25), (11.26).

In conclusion we shall point out that if K (x,y) € Hg (8 possibly transfinite;
Definition 10.1) and if

(11.27) ] C(K(x, y) — K1, 3)dy = g(x, )

exists for x and x! in (e, b) — E (E the set of §9), g(x, x') being continuous in
and «' in (a, b) — E, then the following will hold:

9 ]
lim — Q1+ wba.r(x, yl N) = — Qb be(y, y| N,
dq,r ox 0x

(11.27a)

.0 )
lim — @5e(, 3] ) = — (%, 3| V;
i) dx

81,r
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d d
(11.27b)  lim — Q% dar(x, y|N) = — Q- dei(x, y|N), - - - ;
5g,r 0y dy

2 a2
lim Qo1 baur(g, y| N = Qb (g, yl N
5q,r 00y dxdy
(11.27¢) . \
lim 961"(:”7 yl k) = Q(x’ yl )‘) [= O(x, yl )‘)])
81, 920y 9x9y

provided the §,,, are suitably chosen. Convergence in the above relations will
be uniform in any closed subset of 0 <x, y <5, which has no points in common
with the lines x=1,, y=1I, (v=1,2,-- - ).*

To prove this fact we need only to replace in (C, pp. 145, 146) 6; and K;
by %% and K%' -3, respectively. This will yield

| o da(z, y [ V)|

< [(bl —1a1)1/2 + bllilalf: [fab [K(x, 5) — K(at, S)]2ds]mdxl:|
'[(bl —lal)uz + bx|_x.la1 fa“ [fab [K(y, s) — K(, s)]%is]u2 dxl]

[(al, B!) a closed subinterval of (a, b)— EJ,
grr ooz, | N) = oo (at, 3 | N |

< || [fbl K(x,s) — K(x1,s) I%is]m

[e=m+ =) k0,9 - k6 9vas] V],

Using these inequalities, the stated result will follow with the aid of consecu-
tive applications of the “Compactness Theorem” (§1).

12. Non-symmetric kernels. Let K(x, ¥) be a kernel not necessarily sym-
metric. We let

(12.1) El) Ez

denote reducible sets on (e, b), each of the description given in the beginning
of §9, with

(12.1a) Ehr=0, Er=0,
where ;, B; are non-limit numbers of the 1st or 2d class and the sets
(12.1b) Epl, Pt

each have some points. In accordance with Theorem 9.1 the set E; will be

* E consists of the points represented by the numbers I,.




1939] SINGULAR INTEGRAL EQUATIONS 279
“covered” by sets of intervals

(12.2) AL*(3y,,) =12 ,q < w)
and the set E, will be “covered” by sets of intervals

(12.2a) A2(5,,,) b=1,2,-,q0 <.

DEFINITION 12.1. 4 non-symmetric kernel K (x, y) will be said to belong to
the class H(By, B2) if, with the text from (12.1) to (12.2a) in view, the following
is true for all “admissible” positive values 6,,,, 0s,,:

(12.3) G(z, y) = Kpvra(x, y)c Ly, (inx, y;fora = 2,5 S b).
A

61,1,81,2, -,
Here
(12.3a)  G(x,9) =0 [x in 2 PAL(31,), ¢ < 3 < b];
(12.3b) G(x,9) =0 [y in D2 7A22(5,,), 0 < % < b);
(12.3¢) G(x, v) = K(=, y) [at all other points of a < x, y < b].

Using the well known method of Schmidt one may associate with a non-
symmetric kernel a pair of integral equations, whose kernels are symmetric.
However, we shall find it more convenient to employ the device of Pérés*
and, thus, associate with our kernel T'(x, y) a Single symmetric kernel 7 (x,y)
defined as follows

T(x,9) =0 (e <% 9<b),
(12.4) T(x,9)=0 b<%y<2b—a)),
T(x,y) = K(x,y+a—10) (6<2<bb<y<2b—a),
T(x,y) = K(y, x4+ a—b) b<x<2b—a,a<y<b).

Inasmuch as K(x, y) € H(B,, B:) (Definition 12.1), one clearly has (Defini-
tion 10.1)

(12.5) T(x) y)cHﬂ;

where (8 is the greater one of the numbers 8;, 8;. The set E, which according
to Definition 10.1 is used in the description of a kernel of class Hg, consists
(in the case on hand) of the points of E; on (a, b) and of the points b+15,,
[v=1,2,- - - ; the I, represent points of E,].

We apply to T'(x, ) the results of the previous sections; this will lead to
conclusions with respect to the given non-symmetric kernel K (x, y).

* Volterra and Pérés, loc. cit., p. 306.
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