
GENERAL THEORY OF SINGULAR INTEGRAL
EQUATIONS WITH REAL KERNELS*

BY

W. J. TRJITZINSKY

1. Introduction. Amongst the outstanding theories of integral equations

of particular importance from our present point of view are those due to Vito

Volterra,f I. Fredholm,J D. Hubert,§ E. Schmidt,|| and T. Carleman.H With

respect to generality these contributions, in the order mentioned, form an

ascending hierarchy of theories, with those of Hilbert and Schmidt essentially

on the same level, while the developments of Carleman present the culminat-

ing aspects. In considering integral equations of the form

(1 • 1) «(*) - X f   K(x, y)<p(y)dy = f(x),
» a

4>(x) - X I    K(x, y)<p(y)dy = 0
(1.2) J a

[f(x) given on (a, b) ; real K(x, y) given on a ^ x, y ^ b].

one may, with advantage and without any substantial loss of generality, con-

fine oneself to symmetric kernels K(x, y),

K(x,y) = K(y,x).

This can be inferred on the basis of certain considerations of Pérès.**

In the sequel, unless the contrary is stated, all kernels involved will be

supposed symmetric. All integrals not in the sense of Stieltjes will be in the

sense of Lebesgue.

Whenever ff

* Presented to the Society, September 7, 1939; received by the editors March 7, 1939.

t An exposition of Volterra's work and of many other developments in the field of integral equa-

tions as well as an extensive bibliography can be found in the book by V. Volterra and J. Pérès,

Théorie Générale des Fonctionnelles, vol. 1, Paris, 1936.

i Cf. reference on page 344 of Volterra and Pérès, loc. cit.

§ D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Leipzig and

Berlin, 1912.

|| Cf. reference on page 347 of Volterra and Pérès, loc. cit.

Il T. Carleman, Sur les Équations Intégrales Singulières à Noyau Réel et Symétrique, Uppsala,

1923; T. Carleman, La théorie des équations intégrales singulières et les applications, Annales de

l'Institut H. Poincaré, vol. 1, pp. 401-430.

** Cf. the book of Volterra and Pérès, loc. cit., pp. 305-306 and pp. 263-264.

ft That is, the integrals f*faK*(x, y)dxdy, fif(x)dx exist.
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(1.3) K(x,y)cL,(mx,y),        f(x)cL2,

the essential results of the Fredholm theory will hold.*

The results of Hubert's theory will hold in the essential particulars if

(1.4) K(x, y)  cLj (in y; for almost all x),

/» 6      /» b /* b
K(x, y)<t>{x)<t>{y)dxdy ^ k* j    4>*(x)dx

a     Ja Ja

(k independent of d>(x)).

The highly important investigations of Carleman extend these theories

as follows. In some of his investigations (1.4) is assumed (for all x except for

# = £i, £2, ■ • • ; the £„ possessing merely a finite number of limiting points),

while condition (1.4a) is deleted; in certain other developments he retains

(1.4), deletes (1.4a) and assumes the mean continuity relation

(1.4b) lim    f   [K(xi, y) - K(x2, y))Hy = 0 (xu *i *&,&,•■•)■

Carleman also has a still more general theory in which the conditions (1.4),

(1.4a), (1.4b) are deleted and it is merely assumed that K{x,y) is a limit (in the

ordinary sense or in the mean square with respect to y) of kernels satisfying

(1.3).
The applications of Carlcman's results (or of suitable extensions of them)

have been numerous and important; witness, for instance, the application to

the Schrödinger wave equationf and to nonlinear ordinary differential equa-

tions (of the type occurring in dynamics).!

Our object in the present work is to develop a theory of equations (1.1) {with

f(x) cZ2), (1-2) with kernels K(x, y) which, while not necessarily of Carlcman's

type, arc limits (in one sense or another) of kernels of Carlcman's type. The

kernels of this description will be said to be of rank two. More generally we shall

develop theories of equations whose kernels K(x, y) are of any rank n (si 2). In

this connection K(x, y) will be said to be of rank n if K(x, y), while not neces-

sarily of rank n—\,is a limit (in a suitable sense) § of kernels of ranks less than

n. In accordance with the above, Carleman's kernels arc said to be of rank 1.

* A more precise statement in this regard can be found in Carleman, Annales de l'Institut

H. Poincaré, loe. cit., pp. 401-102.

t T. Carleman, Sur la théorie mathématique de l'équation de Schrödinger, Arkiv for Matematik.

Aslronomi och Fysik, vol. 2415 (1^34), pp. 1-7.

X T. Carleman, Application de la théorie des équations intégrales linéaires aux systèmes d'équations

différentielles von linéaires, Acta Mathematica, vol. 59, pp. 63-87.

§ llore precise formulation will be given in the sequel.
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In these pages we shall consider also equations whose kernels are of trans-

finite rank.

In the sequel Carleman's book will be referred to as (C).

We shall have occasion to use the following known theorems.

Theorem 1.1. (Helly.) Let a(x, n) (n = 1, 2, • • • ) be of bounded variation

for aSx^b. If Var. a(x, n) <A (w = l, 2, • • • ; A independent of n) and if

lim„ a(x, n) =«(#), then

w(x)dx(x, n) =   I     w(x)dxa(x) (for w(x) continuous).
a J a

Theorem 1.2. (F. Riesz.) Suppose fv(x) cL2, gy(x) cL2 {for v = l, 2, ■ ■ ■

and x on (a, b)) andfv(x)~^>f(x), g,(x)-^g(x) (almost everywhere). Then, provided

Í    g?(x)dx<c,        |/,(*) | < ?(*)c£,    (v= 1,2, • • • ),

one has

f„(x)gn(x)dx =   I    f(x)g(x)dx.
a ¿a

Theorem 1.3. (F. Riesz.) If f,(x) cL2 on (a, b) (v = \, 2, ■ ■ ■ ) and if

f  P(x)dx < M (x= 1, 2, • • • ),
J a

then there exists a subsequence {f„¡(x)} (vi<vt< - • •) such that, as j—><x>,

frj(x)->f(x) weakly; that is,

/»   X J%   X

fVj(x)dx =   I    f(x)dx;
a J a

moreover fj2(x)dx ts M.

Theorem 1.4. (F. Riesz.) Letfr(x) cl¡ on (a, b) (v = \, 2, ■ ■ ■ ) and sup-

pose f,(x)-^>f(x) weakly; then, provided g(x) cZ2, one has

fv(x)g(x)dx =   I    f(x)g(x)dx.
a J a

Theorem   1.5.   (T.   Carleman.*)   If flfi(x)dx<c, fr(x)—*f(x)   weakly,

gn(x)^g(x) and \g„(x)\ <y(x) cL2, then

/* b /» 6
f„(x)g„(x)dx =   I    f(x)g(x)dx.

a v a

* (C), pp. 132-133.
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Another theorem necessary for our purposes will be the theorem of (C, pp.

21, 22), which constitutes an extension by Carleman of a result due to Hu-

bert. This theorem, in the sequel referred to as the "Compactness Theorem,"

gives conditions under which there exists a sequence of values 5r

(r = l, 2, • • • ; ôr—*0) such that

lim /(X, Xi, ■ ■ ■ , x„ I ôr) = F(\, Xi, ■ ■ ■ , x„),
Sr-0

where/(X, xu ■ ■ ■ , xn\ 5) is a given family of functions defined for (xx, ■ ■ ■ ,xn)

in a domain D for every X on (a, ß). On account of the length of this theorem

the reader will be merely referred to (C, pp. 21, 22).

In the sequel we shall give examples of kernels which come under our classifi-

cation and which at the same time are not of Carleman's type.

In §2 (Definition 2.2) will be introduced kernels of finite rank n belonging

to classes designated as H„. The main results for K(x, y) c H„ are given in

Theorems 4.1, 5.1, 7.1.

In §10 (Definition 10.1) will be specified kernels of trans finite ranks ß

(ß of the second class), the results for which will be given in Theorems 11.1, 11.2.

2. Kernels of class Hn. Let

(2.1) £ = £"= (/1;/2, •.• •)

be a denumerable set of points on the closed interval (a, b). Let us take E

reducible closed with, let us say, the nth derived set,

(2.1a) En = (h, /;,••■) = (ii, s2, ■ ■ ■ , sk)

consisting of a finite number of points (with at least one point present). The

1st, 2d, • • • , (n — l)st derived sets of E will then be denumerable sets

(2. lb) E" = (/;, /;,•••) (v - 1, 2, •••,»- 1),

each actually containing an infinity of points.

Definition 2.1. A set E, given by (2.1) and satisfying the above conditions,

will be said to belong to Rn, E c Rn*

Given a set EcRn_i (w^ 1), we shall form sets of closed intervals

tffa), A»(li), • •■ ,A»-H«.^0

as follows. The intervals of A°(o0) will be

(2.2) A.«(io) = (s, -So, s, + «o)      [*= 1,2, ••• ,k;E"-i -(*!,.-• ,i»)].

Here and in the sequel the parts of the intervals exterior to (a, b) will be discarded.

* If E C iJo, E consists of a finite number of points.
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In (2.2) d0 (>0) will be chosen sufficiently small so that no two intervals of

(2.2) will have points in common; moreover, 50 is to be taken so that no end

point of the A„° (è0) should be coincident with a point of E (except, perhaps,

a or b; analogous statements are implied in the sequel).*

With ôo (>0) chosen as stated above, consider the set

k

(2.2a) r(«o) = (a, b) - £a«(Ío).

It is open. Hence, since the limiting points s, (v = \, ■ ■ ■ , k) of E"~2 are all

in the intervals (2.2), as specified, we observe that, on one hand, there is only

a finite number of points of E"~2, let us say

(2.2b) s;-2, s;~2, • ■ • , ^o)     (*(*,)-» oo, as 5o-»0),

in r(S0) and that, on the other hand, these points (2.2b) can be enclosed in

closed intervals (whose totality constitutes the set A'(ó'i))

(2.3) a;(5i) = (s,-* -li,sr*+ h)      (v = 1, 2, • • • , w(5„))

so that with ôi (>0) sufficiently small and suitably chosen the following will

be true. The intervals

(2.3a) A»(i0)    (* = 1, • ■ • , *),   A,»(ii)    (" = 1, ■ ■ ■ , m(ô0))

are all without common points; moreover, no end point of any interval A} (Si)

is coincident with a point of E. It is to be noted that the intervals (2.3a) will

certainly be without common points if we take dLS 5i(S0), where Si(S0) (>0)

is sufficiently small but, generally, depends on 50.

Suppose ôo, Si chosen as stated above. The set

(2.4) r(«o, Si) - (a, b) - 2 A » (S0) -   £ A; (5,)
.•=1 y=l

will be open. An infinity of points of E"~2 are in the intervals (2.2); all the

other points of E"~2—the points (2.2b)—are in the intervals (2.3); thus, all

the limiting points of £"~3 are interior points of the closed intervals (2.3a).

Consequently there is only a finite number of points of E"^, say

(2 4a1 v"-3     s™""3   ■ ■ •      v""3y¿-^ílJ -i    -   -2    ' '    m(«o,»i>'

in the set r(50, ôi) (2.4). The points (2.4a) can be enclosed in a set A2(52) of

closed intervals

(2.4b) A,2(Ô2) = (s?-* - Ss, s?'* + h) (r = 1, 2, • • • , m(5a, 5,)).

* The point a (or b) will be considered interior to any gubintcrval (<;, a') (or (b1, b)) of (a, b).
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Taking 0<S2^ô2(o0, ôi) [ô2(50, Si) sufficiently small], with suitable choice

of 52 we secure the following. The intervals

A«(io)    (r - 1, • • • , k),    A,»(iO    (v - 1, • • • , m(ô0)),
(2.4c)

A*(it)    (v = 1, • • • , f»(i0| 0l))

are all without common points; no end point of these intervals is coincident

with a point of E.

We continue this process a finite number of times, finally constructing

the n sets of closed intervals

(2.5) A'(ô{) (¿ = 0,1,    -.,»-1)

possessing properties of the following description.

The set A*(Si) consists of the intervals

.(2.6)      A/(«<) = (s»-1"' - 8(, *r*-* + Si)       [v = 1, 2, • • • , m(«0, • • • , S^)]

for¿ = l, 2, ■ ■ ■ , n — í. The set A°(ô0) consists of the intervals (2.2). The num-

bers 5,-,

0 < Si á 8^0, «i, • • • , S*-i)        (*=» 1, •••,»- 1;0 <<•£«•;
(2.6a)

o¿(oo, 5i, • • • , 5<_i), 5° sufficiently small),

are so chosen that no point of E ((2.1)) is coincident with an end point of any

of the intervals of the sets (2.5) and that all the intervals of the sets (2.5) are with-

out common points. The set

k *n(5o)

r(«o, «i, • • • , 5n-i) = (a, b) - £ A„o(5o) -   £ A,1 (Si)
»=i "-—i

(2-6b) „(».,.,)

- ¿¿,»W - • • ■ - ¿ Ay-Ks-i)
r=l v=l

[m1 = m(S0, 5i, • • • , 5„_2)] is open and contains no points of E. The totality

of all limiting points of En~2 (that is, £"_1) consists of the centers of the inter-

vals of A°(ô0). The limiting points of En~3 are partly contained in A°(ô0) and

the rest of them, the points (2.2b), are centers of the intervals A^ô^.An

infinity of limiting points of En~* (that is, the points of En~z) are in

A°(o„)+Ai(5i);

the rest of these limiting points, the points (2.4a), are the centers of the in-

tervals of A2(ô2). In general, an infinity of limiting points of £i_1 (that is,

points of El) are interior to the set

(2.7) A°(o0) + AH«i) + • ■ • + A«--2(5n-¿-2);
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the rest of the limiting points of E^1, the points

(2.7a) $i, Si , • • • , s «)       (ml = m(S0, ■ • ■ , 5n_i_2)),

consist of the centers of the intervals of the set An-i~1(5„_,_i). In particular,

the limiting points of E = E° (2.1), that is, the points E1, are distributed as

follows. A finite number of points of E1,

(2.8) S! ,  Í2 , • • ■ ,  sm\ (m1 = m(S¡¡, • • ■ , 8«_«)),

constitute the centers of the intervals of the set An_2(5„_2) (2.6); all the

other points of E1 are interior to

(2.8a) A»(So) + • • • +A«-3(Ô„_3).

In the open set

r(«0> • ' ■ , 5n-2) = (a, b) - A°(ô„) - ■ ■ • - A»-2(5n_2)

there is only a finite number of points of E, say

(2.9) si, s2, ■ ■ ■ , smi (m1 = w(50, • ■ ■ , Sn-s)).

These points (2.9) constitute the centers of the intervals of An-1(5„_i).

Definition 2.2. Let E be a closed reducible set on the interval (a, b). Sup-

pose EcRn_i where Rn-\ is specified by Definition (2.1). Form sets A'(5¿)

(¿ = 0, 1, • • • , n— 1) of closed intervals (2.6), without common points and cover-

ing the set E, as described in the text above in connection with (2.2)-(2.9).

We shall say that a real symmetric kernel K(x, y) c Hn, if

(2.10) Ä*1»-'»'-•••*»-»(*, y) cL2 (in x, y; for a fi x, y S b),

the function in the first member of (2.10) being defined as follows:

£*••• "•*-*{*, y) = 0 [* in A°(°o) + AK81) + ■ • ■ + A—K*—i),

while a ^ y ^ b (or a ^ y < *)];

«:*•••• ••««->(*, y) = 0 [y t» A°(50) + A^i) + • • • + A—K&—i),
(2.11a) .

while a ^ x ^ b (or a S x < y)\;

(2.11b)       iSr5o'---'s"->(x, y) = K(x, y)        [at all other points of a g x, y ^ ô].

Moreover, this definition will be applied only if (2.10) holds as stated for all ad-

missible* positive values S¿ (i = 0, ■ ■ ■ , n — 1) no matter how small.

In conformity with this definition, K(x, y) cH0 is to imply that

K(x,y)cL2 (rax, y),

* That is, values S¿ (i=0, • • • , » — 1) such that the italicized statement preceding (2.6b) holds.
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so that in this case K(x, y) will be a kernel for which the results of the Fred-

holm type will hold. Kernels K(x, y) c Hi are precisely Carleman's kernels of

the type considered in (C; chap. 4). For any «>1 it is possible to show that

there exist kernels which belong to Hn and at the same time do not belong

to Hn-i, we shall give such an example for n = 2.

The following observations regarding kernels included in Hn are in order,

it being understood that everywhere in the sequel the values Si (i = 0, ■ ■ ■ , n — 1)

are taken as "admissible" (cf. footnote to Definition 2.2).

The function
|    #Í0,5l,---.í„-l(Xj    y)   I

is monotone non-decreasing as 5„_i—>0; the limit

(2.12) lim £*>•«»• •••>'«-i(x, y) = £«•.*»•• "'»»-»(a;, y)
on—1

exists and

(2.12a) | Ks<>- ■ ■ ■ '*-»{*, y)\ ^ | Ks<>-6^ ' ' ' •*"-•(*, y) |.

In succession we obtain the limits

lim K1"'---'1"-^, y) = Z5o'---'{»-'(x, y), ■ • -,
Sn—2

(2.13)
lim KiaM(x, y) = Ks<>(x, y),    lim Ks"(x, y) = K(x, y).

Jl ä0

It is also noted that

| £*•• ••••«<*, y)\ú\ K6"----^-^, y)\,

and that the first member in this inequality is monotone non-decreasing as

ô<—>0; this can be asserted for i = n — l, n — 2, • ■ • , 0. In view of (2.13) one

may write

(2.14) K(x, y) = lim  lim  • • • lim  lim £«».»».• •••»»-»(*, y),
SO 3i 5n—2     6n—\

where the order of the limiting processes, in general, cannot be interchanged.

It is also observed that the functions of the second members of (2.12), (2.13)

belong to the classes Hj as follows

(2.15) Ks°-^----t<(x,y)<zHn-1-i (i = 0, 1, •••,«- 1).*

The above considerations lead to the conclusion that kernels K(x, y) c Hn are

also of rank n, according to the terminology of §1.

Example of K(x, y) c Hi, but not belonging to Hi (that is, not of Carleman's

type). To construct such an example we shall take a = 0, b = 1 and define

* As indicated before, the class Ho is identical with the class of functions L¡ (in two variables).
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K(x, y) by the relations

(2.16) K(x,y)=g(x) (ÍOYQ^y<x),

(2.16a) K(x, y) = g(y) (for 0 ^ x < y),

the definition for y = x being immaterial ;

(2.16b) *(*)-*,(*) (l/(*+l)<*< \lv;v= 1,2, ••■),

(2.16c) g,(x) = 0 (l/(r+l) <*<Y, - (2i-+1)/(2Kp4-1))),

•?"(*) = /  , '   .m,. (t- = * < V»; c > o).
(v~2 — X2)112

For this kernel the set E ((2.1)) consists of the points 0, \/v (v = \, 2, ■ ■ ■);

the derived set E1 ((2.1a)) will be E1 = (si) (îi-0). Thus EcRi (Definition

2.1). The set A°(50) will consist of a single interval (cf. (2.2))

(2.17) Ai»(So) = (0, So) (0<5o<l),

where So^l/i (t = l, 2, • ■ • ). For some integer w(50)

(2.17a) l/(»(«o) + 1) < So < l/(«(fio)).

The set A*(50 will consist of the intervals (cf. (2.3))

(2.17b) A;(5i) = (í/v-Si, 1/v + íx) (v= 1,2, • • • .»(«o)),

where 0<5igSi(5o) with 51(ô0) denoting a positive number less than each of

the two numbers

(2.17c) l/(2W(5o)(w(5o) - 1));  l/(»(«o)) - «o.

Then, by (2.11), (2.11a) and (2.11b), we have for y<x

K'°.'i(x, y) = 0
(2 18)

[x in A!» (So), A; (SO (,- 1, •■• ,»(«„)); cf. (2.17), (2.17b)];

(2.18a) K^(x, y) = g(x) [x in (0, 1) - A°(50) - ZAHSi)];

for x>y the function of the first member of (2.18) is defined by symmetry.

Whence by virtue of (2.16b), (2.16c), it is inferred that

1/ m(5o)~Í1    I* x

\w(x)dydx
/* 1      /» 1 /» l/m(öo)—5i    /» x

I     | K"'^(x, y) \2dxdy = 2 I I     g
0      » 0 »   x=3o *^ V=0

;5o)—1 /» 1/p—5i /» a:

E   2 g2(x)dydx,
»=1 •/  i=l/(i.+ l)+S1 •/ v=0

(2.19)

+

where
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(2.19a) l\ f    g?(x)dydx= -\, +log T~l(v, Si)

[X, - - c, log (v~* -y})\ T(v, 8x) = (2Si/v - fix»)«']-

Hence, for all admissible 50 (>0),

f f | Ks°-Si(x, y) | Hxdy -^ + oo (as Si -> 0),

and clearly KH(x, y) does not belong to L2 (in a;, y). Consequently it is clear

that K(x, y), as given by (2.16)-(2.16c), is a kernel satisfying the conditions

of the italicized statement preceding (2.16). It is essential to note that for the

example considered above the integral

r k\x,
•f a

y)dy
o

diverges; in fact, convergence of this integral would have meant that K(x, y)

is essentially of Carleman's type.*

Some of the developments for integral equations whose kernels are in-

cluded in Hn will be given with the aid of operators L specified as follows.

Definition 2.3. Given a kernel K(x, y) c H„ (Definition 2.2), a linear oper-

ator Lx(^\h(x)) (£ a parameter) will be said to be associated with K(x, y) if

(2.20) Lx(t\K(x,y))cL2 (in y);

(2.21) |£*(*|S*'"'"-'M*,y))| <7(*ly),

where y(£\y) cZ2 (in y) and y(£\y) is independent of S0, Si, ■ ■ ■ , 5„_i;

lim Lx(t | Ç*.• • • ■*-»(*, y)) = Lx(í | £*•■•• ■•s-s(x, y)),
än-l

(2.22) limLx(z\Ks°'---^->(x,y))=Lx(ï\K>°'----s"->(x,y)),--- ,
Sn-2

lim Lm(i\K*(x, y)) = i,(f | K(x, y));

whenever f„(x) cL2 converges weakly (as p—>°o) to f(x) (a^x^b) we have

(2.23) Um £,(£I/,(*))=£,(£I/(*));

(2.24) J*   Lx(i\K'°----->»-i(x, y))4>(y)dy = LxU\ j K°°--■■■*»-*(*, y)<t>(y)dy\

whenever 4>(x) cL¡.

* This follows by Carleman, Annales de l'Institut H. Poincaré, loe. cit.
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Note. For n = \ an operator described in the above definition reduces pre-

cisely to the operator L given in (C, pp. 137, 138).

In order to make certain that those of the developments, with respect to

kernels included in Hn (n>\), which are made with the aid of operators L

(Definition 2.3) should have a significance, it is essential to show the following.

There exist kernels K(x, y), included in Hn(n > 1) and not belonging to ff»_i,

with which one can associate an operator L satisfying the conditions of Definition

2.3.

We shall give such an example for n = 2. For n>2 similar examples can be

given following similar procedures.* It will be sufficient to construct an oper-

ator L associated with the kernel K(x, y), given by (2.16)-(2.16c). Let us take

(2.25) L,(f| *(*)) =  f  G(¿| x)h(x)dx,
J o

where, for v = 1, 2, • ■ • ,

(2.25a) G(í | *) = G,(J | x) (fory, á * < 1/r; 7„from (2.16c)),

(2.25b) G({ | x) = - G,(£ | 27, - x) (for l/f> + 1) < x ^ y,) ;f

here we take

(2.25c) G,(|| x) = cr1'2^"2 - *2)1/2w,(ê| *), 0 ^ w,({| x) ^ h,

where u is independent of v, x and w„(£|#) [included in L\ in x on (7,,, I/p)]

is monotone non-increasing in x on (7,,, \/v). Moreover, the c„ will be taken

subject to the requirement that the series

(2.26) j:.—

be convergent. We shall now demonstrate that the operator Lx(í\ h(x))

((2.25)), so defined, satisfies the conditions (2.20)-(2.24) with respect to the

kernel K(x, y) [(2.16)-(2.16c)].

By (2.25c)

|G.(Í I x) |2 Ú —(— - yi) <—% (y,ikx< l/v);
c, \v2 /        c,v%

thus, in view of (2.25a) and (2.25b),

(2.27) \G(ï\x)\2<— (l/(*+l)< x< \/v;v= 1, 2, • • • )•
c„v3

* This will not be done in these pages in order to save space.

t y, bisects the interval (l/(y+l), 1/"); (2.25b) implies symmetry of G(í| x) with respect to -yv,

as indicated.
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Hence

(2.27a)

f iG(*i*)i»a*=¿ r iG(fi*)i*¿*
Jo »-=1* i/ch-1)

< «2 E — (-—r) < ** Z — ;
,= 1    C,Vl \V V +   1/ ,      C,I/5

the series last displayed being convergent in view of (2.26), it is concluded

that

(2.28) G(t\x)cL2 (in*;0 ^ X ̂  1).

By virtue of (2.16), (2.16a) and (2.25)

(2.29) ¿Jil | *(*, y)) = (8({ 1 y) + a(f | y),

where

(2.29a)       0(| | y) = g(y) f " G(£ | *)d*.      «(* | y) -  f  G(£ | *)«(*)á*.

By (2.16b), (2.16c)

(2.30) ß(t\y) = 0 (for l/(* + 1)< y <y,).

Now suppose

(2.31) T,.y<-;

then by (2.16c) from (2.29a) we deduce

c 1/2 r        °o ,. l/i /. y -1

^ly) = ,   2  '    2WJ    E G(«|*)á*+I G(é|*)¿*;
(v 2 _ yiyn\_ tW+1J1/(i+1) •'1/(14-1) J

in view of (2.25a) and (2.25b)

/. l/i
G(k\x)dx = 0 (i = 1, 2, • • • );

i/(tfi)
whence

. 1/2 n 2y,-y

Htt
c 1/2 /.  1/ c 1/2 /» 27,-y

y) =- I G(£ I *)<** =- I G(| I *)¿a;
(^-^»Jw«       N (,-2-y2)^J1/(„+1)

Crl/2 /. 27,-1/

- I G,(£   27, - x)dx

- I    Gif «p;
(„-2_   3,2)1/2 Jv «I
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in view of (2.25c) and in consequence of the monotone character of w,(£\u)

it is concluded that, under (2.31), the integrand last displayed satisfies the

inequality 0SG>ft|«) ^G,ft|y) (y^u^l/v); thus, by (2.25c)

<2-32)    l^ly)l^(^-,^G'«ly)(7-y)^(7-y)'<¿

(under (2.31)).

Inasmuch as (2.30), (2.32) hold for v — \, 2, • • • , it is inferred that

(2.33) | 0(f | y) I < a/2 (0 á y á 1).

On turning attention to aft|y) ((2.29a)) it is found that

I «(í | y) | á aft) = J   | Gft | *) | «(*)d*
(2.34)

-1 l/v

I Gft I x) | gv(x)dx;
00 y»  \jv

v-l*7 l/tH-X)

by (2.16c), (2.25a) and (2.25c)

QO y»  1/V 0Oí»1/ii

(2.34a)      aft) = Z I       I G,ft I *) I «-ft I *)d* =  Z I       «»»ft I x)dx < »■

By virtue of (2.33), (2.34), (2.34a), on taking account of (2.29) it is deduced

that (2.20) is satisfied for the example under consideration.

We shall now proceed to establish (2.21) (with n = 2). By definition of

K'»^(x,y) [(2.18), (2.18a)]

(2.35) L»ft| K*°^(x, y)) = ßhM(i\y) + a5o'8lft|y),

where

(2.35a)

ßh.»l(i\y)  = g«..«i(y)   f" Gft | *)<**,
J i-O

a'«',»ft|y)=l   Gft I x)gä»'{i(^)^;

g»o,«i(x) = o [for 0 ^ x í£ 50; for x on closed intervals

ÜA - i», i/p + so (» = l, 2, • • • , »(8o))];

(2.35b) «•••«»(*) = «,(*) [l/(v + 1) + 5, < x < 1A - 5i;

y = 1, 2, • • • ,w(5o) - l;cf. (2.16c)];

g*°^(x) = «-«.)(*) [So < x < l/»(ôo) - «i].
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Clearly

(2.36) 0 ^ gs°-s*(x) ̂  gs°(x) g g(x) (0 ^ x ^ 1);

here

(2.36a) gs«(x) = lim gs°'Sl(x),       g(x) = lim gh"(x).
», »0

By (2.35a) and (2.36) in view of (2.29a) and (2.33)

(2.37) I |8««.«»(È I y) I gf(y)| f" G(f|*)¿*   - |/J({|y)| < i..
I •/ i—o 2

On the other hand, in consequence of (2.35a), (2.36), (2.34) and (2.34a),

(2.37a)      \a*°-HH\y)\è  f   | G(£ | *) | ««••'»(*)«** ^   f   |G(£|*) |g(x)dx < E.
J y •/B

In view of (2.35), (2.37) and (2.37a) it is inferred that condition (2.21) (Defini-

tion 2.3) holds with 7(£|y) =3h/2.

To demonstrate the first one of the relations (2.22) it is sufficient to prove

that

(2.38) lim j34"-4K£ | y) = /35o(£ | y), Hm a4»'4'(£ | y) = a4»(£ | y),

where

(2.38a)     ßs°(t\y) = gh(y) (" G(i;\x)dx,       a4»(£ | y) =  f  G(t\x)g*>(x)dx,
<*  i—0 •/ y

with gSo(y) denoting the first function displayed in (2.36a),

£«»(*) = 0    (0^x^5Q), gSa(x) = g(x)    (80<*ál).

The first of the equalities (2.38) follows immediately from the first relations

in (2.35a) and (2.36a). To justify the second relation in (2.38) it is sufficient

to show that

lim   f   G(£ | x)g<">^(x)dx =  f  G(| | x)gs«(x)dx.
01 •/   y J   y

The passage to the limit under the integral sign is here justified because the

integrand displayed in the first member converges to the integrand displayed

in the second member while, as follows by (2.36),

|G(£| x)gs"^(x)\ £\G(t\x)\g(x)cL1 (in*; cf. (2.34), (2.34a)).
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The second one of the relations (2.22) will certainly hold if

(2.39) \imßHl\y)=ß(.i\y), lima8«ft|y) = aft|y),
it Jo

where j3J°ft | y), a5oft| y) are given by (2.38a) and ßft | y), aft| y) are the func-

tions of (2.29a). The first of the equalities (2.39) is a consequence of the last

one of (2.36a). The other equality of (2.39), that is the relation

lim   f  Gft | x)g>°(x)dx =  f  G(i\x)g(x)dx,
¡O        J  y J   y

is seen to be true in view of (2.36a) and of the inequality

I Gft | x)g*°(x) | á | Gft | *) | g(x) c It (in x),

which is deduced from (2.36).

Accordingly it can be asserted that conditions (2.22) of Definition 2.3 all

hold for the case under consideration.

The condition stated in connection with (2.23) will hold for all sequences

{/»(*)} therein specified, since

lim   I    Gft | x)f,(x)dx =   I    Gft | x)f(x)dx;
"    J o Jo

in fact, passage to the limit under the integral sign is here justified in view of

(2.28) and of Theorem 1.4.

It remains to verify whether (2.24) holds, that is whether we have

f f   G(t\ x)K»>H*, y)dx\4>(y)dy
(2.40) J-°LJ*=°

=  f    Gft|x)      f    Kl°'Hx, y)<t>(y)dy \dx
J x-0 L J v-0 J

for all 4>(y) c L2. The indicated change of order of integration can be justified

without difficulty.

The developments from (2.25) to (2.40) enable us to conclude that the

kernel K(x, y), as given by (2.16)-(2.16c) and with the c„ (>0) such that the

series (2.26) converges, has associated with it an operator L (cf. (2.25)-

(2.25c)) satisfying the conditions of Definition 2.3.

3. Formulation of induction for classes Hn. With K(x, y) c Hn (Definition

2.2) and K5a----'Sn-1(x, y) being the function specified by (2.11), (2.11a),

(2.11b), consider equations

(3.1)   <ps<>'---'s"-i(x) - X i   Ks«'---'s"-i(x, y)<ps«'---'s»-i(y)dy = f(x)   (f(x)<zL\),
J a
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(3.2) £»•• ••••»*-*(#) - X f   Ks°'---^-i(x,y)<j>*°'---'i»-i(y)dy = 0.
J a

By (2.10) the kernel in (3.1), (3.2) belongs to H0 and is thus essentially a

Fredholm kernel. In accordance with known facts regarding such equations,

the spectrum of the kernel displayed in (3.2) is the function

0So,---,J»-i(Xj y\\) = J2<t>'5,'''"'S"~1(x)<l>'S'','"'S"~1(y)
(.3.3)

(X>0; summation over values v such that 0<X,So'""'5',-"1<X);

(3.3a) ö5«'---'4»-i(*, y | 0) = 0;

0to.---.Sn-ifX) y|x) = — X) ^«••■•■5»-i(x)</>,4»'"-'4»-1(y)
(3. 3b)

(X<0; summation over values v such that X^X,So'--''Sn-1<0).

Here the sequence

{*,*•■• •••••-K*))
forms an orthogonal normal set. The X,4»' " •••»•-« are the characteristic values

of (3.2); thus

(3.3c)    ^»•■•■■4»-i(z) = x,5»'---^-i f   ,£«••• ••■!»-»(*, y)0,4»'---'5»-Ky)ay.*
J a

By induction we shall establish that certain facts, to be stated explicitly

in the remainder of this section, hold for all integral equations (1.1), (1.2)

whose kernels are included in Hm, where m is any finite integer ( ^ 0). Thus,

assume that the following facts, stated throughout the rest of this section, hold for

kernels included in Hn (n = \, ■ • ■ , m — i). An examination of these statements

leads to the conclusion that they certainly hold true for m = 2 ; that is, for Carleman

kernels Hi; this can be asserted on the basis of (C; chap. 4). In subsequent

sections these facts will be shown to hold for n = m ; which will complete the

induction.

Form the function

(3.4) |      J    e^----s'^(x,y\\)dxdy = Us«'"--S^(x, y | X) (cf. (3.3)-(3.3b)).
J a    Ja

Subsequences of positive numbers

(3.5) 5n_lir (r = 1, 2, • • • ), 5„_2,r (r - 1, 2, • • • ), • • • , 50,r (r = 1, 2, • ■ • )

can be found so that

(3.5a) lim ôn_i,r = 0, • • ■ ,   lim ôo.r "■ 0,

* Many properties of 6s".*"_1(*, y|x) can be inferred from (C).



218 W. J. TRJITZINSKY [September

and so that the limits

(3.6)

lim 0So'---'ä"-r(a;, y\ X) = Í2S°''"■■s»-t(x, y\\),

lim ^»■••••s»-2(x, y| X) = n5»'---'8»-3(x, y | X),
in-2,r

lim Q*».'(*, y | X) = fi(x, y | X)
áo,r

exist for all (x, y, X),* convergence to the limits (3.6) being uniform with re-

spect to (x, y) ;

(3.7) Var, Q(x, y|X) ^  [(x - a)(y - a)]1/2;t    0(z, y | 0) = 0;

' n« y' I X) - Q(x, y | X) |
(3.7a)

[(b-a)\y' - y|]1/2 + [(b - a) \ x' - z|]>'2.

The function Sl(x, y|X) may be discontinuous in X for certain values of X,

say Xi, X2, • • • .

We have

(3.8) \—Q(x,y\\)
J a     13-V

dy ^ x — a

[integrand exists for almost all y; a g y ^ b].

With the numbers (3.5) suitably chosen one has

d . d .
lim — 0s«. • • • ■{»-i.r(«, y | X) = — S2S»' • • •■'»-*(*, y | X) ,

T   dy dy

(3.8a) lim — &<>■■■ ■■s»-*.'(x, y\ X) = — &<>■■■ ■■"^(x, y\ X), ■ ■ • ,
r    dy dy

a .a
lim — iïs«-r(x, y | X) = — Í2(*, y | X),

r   dy dy

convergence being in the weak sense in y (a ^ y ^ ¿>). Î Also

— I      A(y) — Q(x, y I X)rfy   d* S   I     h2(x)dx
a    \dxJ v=a dy Ja

* That is, "in general" for a ¿x, y á& and for all real X.

t "Var." means "variation with respect to X" for (— «>, -(-<») unless the interval is indicated

explicitly.

Í (3.8) is assumed for kernels of classes Hlt H¡, • • ■ , ffm_i; in particular (3.8) will hold for the

second members of (3.8a), which are defined for almost all y on (a, b).
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d  rb d d  rb d
(3.9a)       lim — h(y) — üs"-'(x, y | X)dy = — I      h(y) — Q,(x, y \ \)dy,

T   dxJy^a dy dxJy=a dy

whenever h(x) c¿¡; moreover,

d   rb d d   fb â
— üs«-r(x, y I \)dy = — I      h(y) —

v=a dy dxJy=a dy

convergence being weak in x (for a suitable sequence o0,r).

Whenever g(x), h(y) cL2 the following relations will hold (provided the

ô0,r are suitably chosen) :

r"        \~d   rb d "I
lim   I    g(x)   — I      h(y) — Üs"-T(x, y \ \)dy   dx

t    Ja LdxJy^a dy J
(3.10)

= f *(*)[¿/ Hy)--n(x,y\*)dy~]dx;

(3.11)

I    g(x)   —J    h(y)—Q(x,y\\)dy\dx

dy

<ïl(x. y I \)dv \dx I
dy

r    /• b -11/2 p     /. b -11/2

á       I     A2(x)cte I     £2(x)¿x       ;

Var.    I    g(x)   — I    Ä(y) — Q(x, y | X)dy U*
J a LdxJ a 3y J

(3.11a)
^ second member above.

Whenever a(\) is continuous on (Xi, X2) and g(x), h(y) cL2

/.\2 pb      rd  rb       d .       "i
a(\)dx       g(x)   —       h(y) — 04».-(x, y | \)dy   dx

x, J« Ldx./,, dy J

J.x2 ~f, r-ô    pb Q -1
a(X)4        g(«)   —        h(y) — Ö(*, y | X)dy   áx

x, •/<. \_dxJa ay- J

(3.12)

(as r—>0; suitable o0,r).

With a(X) continuous on (Xi, X2) and   a(X)| ^M,

(3.13)

/■ 6pa      /.X, «Ö 3 -12—        a(X)dx        Â(y) — Ö(*, y I \)dy   dx
a  LdxJx, Ja dy J

^ M2 f   Â2(x)<f* = A.*

The following interchanges of limits arc justifiable for kernels of classes

III, H2,   •   •   •   , Ilm-l'-

* We assume this for kernels of classes H\, 11% • • • , Hn-\\ for kernels Il¡ this inequality follows

by developments in (C), but is by no means obvious.
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«(XK       g(*)   -       Â(y) — Q(z, y | \)dy   dx
x, ''a Lc»xJ0 dy J

g(«) - a(X)dx A(y) - 0(«, y | X)rfy   dx
3ïL^x, •/„ 3y J

= f gix)dx\_f d~\J ''Mé»M*,y\*)\*(y)*y\dsi

for Hi this is assured in (C, p. 135).

The generalized Bessel's inequality for kernels of classes Hn (n<m) is

(3.15) f   dJ f   h(x)(—f  h(y)—Q(x,y\X)dy)dx\gf   h2(x)dx

(whenever h(x) cL2).

Following the terminology of (C) one may call íl(x, y | X), corresponding to

kernels Hn, closed in case (3.15) holds with the equality sign.

When Q(x, y | X) is closed then, for every h(x) c L2,

¿    -•     r  ft Q -i
(3.16) h{x)=TxJ     dx[j    h(y)j-n(x,y\\)dy\

almost everywhere on (a, b).

Suppose there is an operator L, as specified in Definition 2.3, associated

with our kernel K(x, y) c Hn. Consider the equations

(3.17) ¿,ft| *(*)) - x f ¿,ft| £«••••-'M*, y))*(y)dy = ¿«ft I/(*)),

(3.18) L.(f| *(*)) - X f  I.(|| JC(*, y))*(y)áy = £.ft|/(*)),

derived on the basis of (3.1) and (1.1), respectively. The following holds.

With T\=ß^0 and ^"■■■■■s"-^(x) denoting a solution of (3.1), the repeated

limit, in the sense of weak convergence,

lim   lim • • •  lim £*».«■.*».>•.••••**-».'(*) = <¡>(x)      (suitable choice
ÖQ.r     01  r 5n_l,r

(3.19)
ofd,,T(> 0;r = 1, 2, • • • ; v = 0, • • • , n - 1); lim«,., = 0)

îot// exist and will constitute a solution of (3.18); moreover

X

¡8

/\ I I   Xl2    rb  :
| <t>2(x) \dx Ú M = ¿-j- I     I f(x) \2dx.
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Corresponding to every function Q(x, y|X) defined as in (3.6a) the equation

(3.18) has a solution

(3.20)       <¡>(x) = /(*) + X— f    --d, f /(y) — Q(x,y\ridy,
dxJ-„fi — \     J a dy

provided 7X^0; this solution satisfies the inequality (3.19a).

Suppose h(y) c L2 and write (with / >0)

\p(x, 11 8a, • ■ ■ , on_x)

(3.21) ar~'\ i     r *+ J   /d"J eSa,'",Sn~<x>y\^h^dy-

With the 8i,r [>0; r = l, 2, • • • ; i = 0, ■ ■ ■ , n — l] suitably chosen,

,,   a.   x ^(X> * I 5o> ' ' '  ' '»-*•') ~* ̂ (*> ¿ I Ô°> ' ' '  ' 3"-2) '
(3.21a) |

yp(x, l\ So, ■ • ■ , ôn_2,r) -^ip(x, l\S0) ■ ■ ■ , ô„-3), • • • ,

\[>(x, l\ oo.r) —»iK*, I) (asr-^co),

convergence being in the weak sense in x; moreover,

(3.21b) j   ^(x,l)dx^— f   h\x)dx,
Ja I2 J a

(3.21c) lhnLx(t\t(x, I)) = 0.
I—► «

For kernels iT(#, y) of classes Hn (n<m) and A(y) c L2

f   Lx(t\ K(x, y))h(y)dy

(3.22) -/^/^I^^K/.^ï^'lH*
+1^1 *(*,!))

= f   ¿m f  £.(é|*(*, s)) |~— f   Ä(0 — Q(s, t\ ß)dt\ds.
•/-„       Ja LdsJa dt J

On writing (with l>0)

(3.23) «,(*, l) = /(*) - t(x, l),    r(x, l) = — f   ¿x f  /(y) — ß(«, y | X)dy,
dxJ-i      Ja dy

we have ((3.23a) being a consequence of (3.13))

(3.23a) J   t\x, l)dx S J   /2(y)dy = <?,
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(3.23b) f   w2(x,l)dx ̂  4q,
J a

and

(3.23c) w(x, ly) -► w(x), J    w2(x)dx ̂  4q (h < h < ■ ■ • ),
J a

convergence being in the weak sense; moreover, w(y) satisfies the equation

(3.23d) J   Lx(S\K(x, y))w(y)dy = 0.

A consequence of the statements in connection with (3.23)-(3.23c) is the fol-

lowing. If the equation

(3.24) f  Lx(t\K(x, y))<l>(y)dy = 0 (<t>(y) <= L2)
J a

has only the solution <f>(r¡) =0 (almost everywhere), then every f(x) cZ2 has the

representation

d   r™      Cb   .     d

dy

d   C*      rb d .
(3.24a) f(x)=— I     d\ I    f(y) — Q(x, y \ \)dy        (almost everywhere).

dxJ _«,    Ja dy

Let Aq(\)=q(\')-q(\")  (real X', X", \'<X"); then for aU kernels of

classes Hn (n<m) and for all h(y) c L2

Lx[t   — A       h(y) — Q(x, y\ \)dy)
\   I dx    J a dy }

(3.25)

-  f LJJt | K(x, s)) \— f     y.d» (   h(y) ̂ Q(s, y | M)dyl ds = 0;
Ja LdsJx' Ja dy J

in particular,

LA S — AQ(*, y|x)J
\    I ÖX /

- J L.ft | £(*, 5)) T—J   M<W*, y I m)1 ds = 0.

Also for K(x, y) c £T„ (n <m)

f   Lx(t\ K(x, y))h(y)dy
J a

rx   1 /  I d   Cb        d .        \
=        — d,LM —I   *(y) — a(*. y |/Ody )

J-„   p \   \dxJ a dy /

(3.25a)

(3.26)
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for   all   h(y) c L2.   Furthermore   the   following   relation   will   hold,   for

K(x, y) cHn (n<m),

lÁ^\T~ I      pd„n(x, y\v))
\   I dx J x- /

(3.27) -xj* Lx(t\K(x,s))ï—J    Md„Q(s, y | M)"U

= L'U\— \      0» - X)d„n(x, y | ß) )     (if A = 0).
\   IdxJx' /

4. Developments without the aid of operators L. In §3 we have assumed

and have stated certain facts (refer to the text from (3.4) to (3.27))for classes

Hn (n = \, 2, ■ ■ ■ , m — 1); an examination of Carleman's work leads to the

conclusion that these statements certainly hold for Carleman's kernels Hx. We

shall now prove that the results asserted from (3.4) to (3.28) hold for kernels

K(x, y) c Hm, as well. This will establish the theory for kernels included in Hr>

where v ( > 0) is any finite integer.

Let

(4.1) Ki(x,y)cHm,

the spectrum corresponding to KiBa- ' •••tm~x(x, y) being the function defined in

(3.3), (3.3a), (3.3b), with n = m. In the definition of the spectrum are in-

volved numbers X,*0,",,,~-1 and functions ^,40i""',i»-1(a;) (orthogonal normal

set), satisfying equation (3.3c), where we now write

n = m, Kt"-"'-tn-l(x, y) = KiSo-- ■••Sm-1(x, y).

If one forms the function

/.!      ç yJ    014<k---.s>»-i(x, y\\)dxdy
a     "a

(cf. (3.4)) and notes that this function is a Q,(x, y]X) belonging to H0, it is

observed that in consequence of (3.5)—(3.6), there exist limits

lim ßi'«--•••»»-».••(#, y I X) = fi14»-"-'{'»-2(x, y\ X),
**-.i.r

lim   iV«----'5"'-».'-(jc, y | X) = ûis"-----!'m-'(x, y | X), ■ • • ,
àm-1, r

lim Uil"-il-r(x, y I X) = 015»(x, -v | X)
»i.f

[lim Si,r = 0; i = m — 1, m — 2, • • • , l].



224 W. J. TRJITZINSKY [September

The latter limit is a Q(x, y |X)-function belonging to the class /7m_i. This

function, accordingly, satisfies (3.7), (3.7a). Whence the "Compactness Theo-

rem" (§2) can be applied, thus enabling one to assert that

(4.3) lim f2ia».'(x, y | X) = Qi(*, y| X) (suitable S0,r; r = 1, 2, • • • )
So.r

exists, with the limiting function satisfying (3.7), (3.7a). We note that

Qi(x, y|X) is a Q(x, y|X)-function belonging to our kernel (4.1) and that it

may be discontinuous in X for, say, Xi', X2', • ■ • .

We supposed that (3.8) holds for Q-functions belonging to Hm-i; thus

(4.4) f     — «!«•(*, y | X)
J a I dy

by Theorem 1.3 and in view of (4.3)

dy iS x — a;

d . d
— f2i5°'r(x-, y I X) —> — üi(x, y | X) (as r —> oo ; suitable So,r > 0),
dy dy

convergence being in the weak sense in y; moreover,

(4.4a) f      — at(*,y|X)
dy

dy ;£ x — a.

These considerations enable us to assert (3.8), (3.8a) for the class Hm.

By (3-9), stated for UiSo(x, y ¡ X), with the aid of Theorem 1.3 we obtain the

relation

d   rb d d   rh d .
lim — h(y) — IhM*. y | \)dy = — h(y) — Q1(x, y \ X)dy

(4.5)        r   dxJ y=a dy dxJ y=,a dy

[weak convergence in x; suitable 5o,r (r = 1, 2, • • • )];

moreover, (3.9) will hold for Qi(x, y|X).

With the aid of Theorem 1.4, in view of (4.5) and on writing

d   rb d .
fr(x) = —       Ky) — üis^(x, y \ X)dy,

dxJ a dy

d

dy

we get (whenever g(x), h(x) c L2)

/b       r d  ri       d .       1
g(x)   — I    h(y) — fiis».'(x, y | \)dy   dx

a \_dxJ a dy J

(4.6) b b

= J    ë(x)\--J    h(y)—Q1(x,y\\)dy\dx,

whichis(3.10)forß(x,y|X).
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Formula (3.11a) will hold in particular for Çlis»-r(x, y|X); on taking ac-

count of (4.6) it is concluded that (3.11a) holds in the limit, that is with

Q(x, y\\) replaced by tii(x, y|X). The inequality thus obtained enables us to

assert that (3.11) will hold also for Sli(x, y|X).

By (4.6), (3.1 la), with ß = oiîo", in virtue of Theorem 1.1 it is deduced that

J. x2 ç. b       r d   rb        d .        "I
a(\)dx    I     g(x)   —        h(y) — Ü^-'(x, y \ \)dy   dx

Xl Ja LdxJ a dy J

r*2 Cb        To   Cb à , 1
a(X)¿x       g(x)   —        h(y) — Q^x, y \ \)dy   dx

J\i Ja LdxJ a dy J

(whenever a(X) is continuous and g(x), h(y) cL2); that is, (3.12) holds for

ßt(*,y|X).
In (4.7) replace x by I and let

(4.8) g(t) = 1    (atktúx),        g(t) = 0    (x<t^b);

then it is deduced that

/•X2 çb Qa(\)d\ I    h(y) — Ois»"-(x, y | \)dy
x, Ja dy

(4.9)
=   i     a(\jax I   n\y)

J\x Ja dy

(oi(X) continuous, h(y) cL2)~

the relationship (4.9) will hold also for Si-functions belonging to classes H,

(v<m). Now, we may write (3.13) for ^"^(x, y|X); the inequality so ob-

tained, together with Theorem 1.3, would imply that, if the 50,r are suitably

chosen,

d   /•X2 rb d .
(4.9a) —        a(\)dx I     h(y) — ^«-'(x, y \ \)dy -> T(x, X)   (asf->oo),

dxJXl Ja dy

convergence being in the weak sense (in x) ; by (4.9)

(4.9b) T(x, X) = — f   a(X)rfx f   Ky) — Qi(x, y\\)dy,
d.Wx, Ja dy

and (cf. (3.13)), in accordance with Theorem 1.3,

f | Y(x,\)\2dx g A.

Thus it is concluded that (3.13) holds for the class Hm; it is also clear that

(4.9a), (4.9b) hold for all classes H, (v^m).

«Xl r>b ß

«(X)dx I   h(y)—üí(x,y\\)dy
J\. Ja dV
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We now proceed to establish the first equality (3.14) for fíi. With ßi4»'' be-

longing to Hm-i, this equality takes the form

(4.10)

/.x2 /.* fd    Cb d , "I
a(X)dx        g(x)   —        h(y) — a,'«.^*, y | \)dy   dx

X! Ja LdxJ a dy J

/-» äff»! /•» Ô "I
g(x) — a(X)áx        *(y) — Oi4°''(x, y | X)dy   dx.

a dxLJ\1 Ja dy J

In view of (3.13) (for ßi4o'r), (4.9a), and (4.9b), application of Theorem 1.4

will yield the result

b d . 1
h(y) — Qi'°-r(x, y\ \)dy \dx

(4.10a)

/•b      ar /•»! r b
g(x)—\ a(X)dx

a dxLVXi Ja

/.»      a p /.x2 /.&       a 1
g(x) - a(X)dx       A(y) — Í2i(x, y | X)dy   dx

a dxLJxi Ja dy J

[whenever g(x) cL2; suitable o0,r (r = I, 2, ■ ■ ■ )].

We shall have

J.xí ç.b       fd   rb        d ,        1
a(X)4 I    g(x)   — I    h(y) — Qi^.^x, y | \)dy   dx

X! Ja LdxJ a dy J

/.xi /.!.      ra  r6       3 "1
«(X)dx       «(*)   —      *(y) — Oi(*, y I X)dy  dx,

X! Ja LdxJ a dy J

(4.10b)

if it is shown that

dy
(1)

lim   I    g(x)   — (    A(y) — ßi4».'(x, y \ X)dy   dx
r    J a LdxJ a dy J

/b      rd  rb       d i
g(x)   —       Ä(y) — Oi(a;, y | X)áy \dx,

j l_dx./a dy J

and that

(2) Var.    {    g(x)   — I    Ä(y) — ßi4°.'(x, y | X)dy dx ^ 5,
J„ LdxJa dy J

where B is independent of 5o,r; this it is possible to assert in consequence of

Theorem 1.1. Now, (1) holds in view of (3.10) (with ß=ßi); on the other

hand, (2) is implied by (3.11a) (inasmuch as ßi4""- is of class Hm-i). Thus

(4.10b) is seen to be true; together with (4.10a) this relation enables us to

deduce from (4.10) that the first equality of (3.14) holds for ß = ßi.

In view of (4.10a) the second equality (3.14) will be established for ß = ßj,

provided it is shown that



(3

'X! *> a dy
(4.10c)
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/»       d r rb d r rx* .    ~i ~i
g(x) —    J    —    J     a(X)dxßi4».'(x, y | X)    h(y)dy   dx

rb       d r rh d r rx* .   ~| i
= J    g(x)dÛ_)    d~\_J    a(-x)d^(x>y\V\h(y)dy\dx.

If one equates the first and the last member of (3.14), writing

ß=ß!4°.',        g=l    (on (a, at)),        g = 0    (on (x, b)),

it is deduced that

f   a(\)dx f   h(y) — Q1»«.'(x, y | \)dy
J\, Ja 3y

by (3.13) (with ß = ß4»"-) the latter equality implies that

— I    — «(X)dxßiMx, y|X)   h(y)dy\dxSA.
a  LdxJ a âyLVx! J J

In view of (4.10d) and in consequence of Theorems 1.4, 1.3 it is observed that

(3) and hence the second equality (3.14) will hold for ß1} provided that

— a(X)dxßi4».--(x, y|X)   Ä(y)iy
. dyL^x, J

(4)

=  1 a(X)dxßi(x, y I X) U(y)dy (suitable 8,,r).

In virtue of (4.10c) it is concluded that (4) will hold if

/. X2 /. b Q
a(\)d\ I     h(y) — Qi4».'(x, y | \)dy

Xl J a dy 6 ^ x2

= / d~[/ 2a(x)dxi2i(a;'y Ix)] *Mdy;

that is, in view of (4.9), if

a(X)dx        h(y) — ßi(x, y | \)dy
xi */a        9y

/' d r rX2 ,i— M     a(X)axßi(*,y|X)jÄ(y)iy.

(4.10e)
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Now, (4.10e) can be established with the aid of (4.10c). In fact, by (4.9) the

first member of (4.10c) will yield in the limit the first member of (4.10e) ; on

the other hand, for suitable 50,r (r = l, 2, • • • )

/¡» [- d      /• X2 -i*(y)   — I     a(X)dxSV°'r(#, y I X) \dy = second member of
LdyJx, J ,

(4.10e),

because, by (3.13) (with ß = ßi8°"- and h = \ on (a, y) and h = 0 on (y, b)),

(4.11a) J    \—f   <*(X)dxOiM*, y | X) 1 dx ̂  A (r = 1, 2, • ■ • ),*

and since

/» X2 /• X2a(xKOi5o-'(s, y | x) = |   a(x)áxai(*, y | x). t
Xl JX!

To ascertain the truth of (4.11) on the basis of (4.11a) and (4.11b) one needs

only to take note of Theorem 1.3 and of Theorem 1.4. With (4.10e) estab-

lished we have (4) secured, as well as the second equality (3.14) (for üi).

Thus, (3.14) holds for the class Hm.

To establish the generalized Bessel's inequality for ßi it is observed first

that, in consequence of (3.11a) with

n = nl5«.',      g(x) = h(x)cL2,

it follows that

dy

Also

/'*      rd r*       d I rb
h(x)   — I    h(y) — ais"''(x, y\\)dy\dx ^ h2(x)dx.

a LdxJ a dy J J a

lim   I     h(x)\— (    h(y)—ÇlxH-'(x, y \ \)dy \dx
t    Ja LdxJ a dy J

/>»       rd  rb       d "i
h(x)   — I    h(y) — Oi(x, y | \)dy   dx,

LdxJ a dy J

which is deduced from (3.10) (for ß = fli and g(x) =h(x)). In view of (4.12)

and (4.12a), with the aid of Theorem 1.1, and on writing (3.15) (with

ß= ßiSo,r), and on letting r—»°o; it is inferred without difficulty that

* Here x and y may be interchanged.

f This relation is a consequence of the inequality Var. í2i3o.'g [{x—a)(y—a)]1'2 and of the Theo-

rem 1.1; (4.11b) also follows (4.9).
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J00   r cb     vd cb     d        .     i  "i    rb
4     I     h(x)\—\    h(y) — Üi(x,y\\)dy\dx\<,\     h2(x)dx,

which is the desired inequality.

When ßi is closed, so that (4.13) holds with the equality sign, we obtain

the representation (3.16), with ß = ßi, by a device of the type employed in

(C). That is, replace h(x) in (4.13) by h(x)-\-g(x), obtaining

2J   h(x)g(x)dx = j   dlj  k(x)\—f  g(y) — Oi(*, y| \)dy~\dx~\
(4.14)

In the first term of the second member of (4.14) interchange x and y and then

let

1=1    (on (a, x)), g = 0    (on(x,b));

the representation (3.16) (with ß= ßi) will result immediately.

Thus, all the statements which have been made in §3 up to (3.16), in-

clusive, hold for the class Hm, as well. The statements of §3, just referred to,

have been made for classes Hn (n <m) without the use of operators L (Defini-

tion 2.3). The results therein indicated have been extended in the above to the

class Hm; in the process of the extension operators L have not been employed.

Hence the induction is complete with respect to the statements, in question,

of §3. We state this result as follows.

Theorem 4.1. With classes II'„ specified by Definition 2.2, all the statements

made in §3 up to (3.16) (inclusive) will hold true for all classes Hn (« = 1,2, • ■ • ).

5. Developments on the basis of operators L. Let L' be an operator as

specified in Definition 2.3 and supposed to exist, associated with our kernel

Ki(x, y) c Hm. We form the equation

(5.1) £,'({| *,(*))-x f jt;(t|ii(», y))*i(y)«*y = £/ft|/(*))
J a

(with given f(x) c L2), as well as the related equation

(5.2) L„'ftUiM*))-x f £»ft| iiM*. y))*iMy)<*y = £,'({|/(*)).
J a

It is essential to demonstrate that the operator L' is "associated" (in the

sense of Definition 2.3) with the kernel K~i6a-r(x, y) c Hm-i. Thus the following

relations are to be verified, with Kl = K\H:
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(1) LJ(Z\KKx, y))cL2 (iny);

(2) | U (£ | K^ ■ ■ ■ •»-»(*, y) | < y(£ | y) c ¿2 (in y) ;

L:(ü\K^'----s^(x, y))->LJ(Ç\ K1^----^-'(x, y))
(Sm-l)

(3) ^—^Li'(£|ü:^.---.4».-Kx, y))

--> ■ • • i.' (£ I í"0 -—.i.' (£ I iP(x, y)) ;
(«O

(4) £*' (£ I /,(x))-> Zx' (£ | /(x)), if /,(x) —>/(x) in the weak sense;
(")

(5) j  Lx'(è\K^-----^(x,y))<t>(y)dy^LjU I j* X»i.---.»-i(x, y)*(y)¿y)

(whenever #(y) c Z,2).

If we designate by (2.20')-(2.24') the conditions (2.20)-(2.24), with K, L

and w replaced by Ki, L', and m, the truth of (l)-(5) is inferred as follows.

Conditions (2), (4), (5) are precisely the conditions (2.21'), (2.23'), (2.24').

The relations (3) are identical with those of (2.22'), the last limiting relation

in (2.22') being omitted. As to (1), it is observed that, in view of (2) and (3),

\Lj(i\KKx,y))\ ^7(£|y)cL2 (iny),

which, together with other considerations, establishes (1).

By (3.19) and (3.19a) the equation (5.2) has a solution * <j>is"^(x), such that

\|2   nb

J2

In consequence of Theorem 1.3, applicable in view of (5.3), wè have for suita-

ble So.r (>0; r = l, 2, ■ • • ; limr 50,r = 0)

(5.4) lim 01s«.'(x) = <pi(x),

| d>is".r(x) \Hx ^ —-        | f(x) |2dx = M (if A = ß ^ 0).
/32     J a

convergence being in the weak sense; moreover,

(5.4a) f   14>i(x) |2dx ̂  M (M from (5.3)).

It remains to demonstrate that <j>i(x) is a solution of (5.1). Substitute the

function <f>is"-r(x) (referred to in (5.3)) in (5.2) and let r—•>«>. We shall have

(5.5) limi.'fê | </>iMx)) = £,'({ | *,(*))

: This solution is obtained as a repeated limit, according to (3.19).
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by (5.4) and (2.23'). On the other hand,

(5.5a)   lim   f  LJ(£| Kx^(x, y))4>is°-(y)dy = f  L/({| K¿x, y))*,(y)dy.
t       J a Ja

This is a consequence of (5.3), (5.4), of the last limiting relation (2.22'), and

of the inequality

\Lx'(t\Kis°.'(x, y))\ STft| y)<zL2 (iny);*

in fact, these conditions enable application of Theorem 1.5. In virtue of (5.5)

and (5.5a) it can be asserted that the function <t>i(x), defined in (5.4) constitutes

a solution of (5.1) (for ß^O). In view of the definition of ^"(x) and in con-

sequence of (5.4) it is observed that 4>i(x) is a repeated limit. The statement in

connection with (3.19), (3.19a) can thus be made for the class Hm.

The important formula (3.20) will be extended to our equation (5.1) with

the aid of the following relation

rx     1 rb        d .
lim --dA    f(y) — Qxt*<x,y\»)dy

r    J_K m - X    Ja dy
(5.6)

/••    i       f»      a
=  I      --dA    f(y) — Qi(x,y\n)dy,

J -„ (i — \     J a dy

which we shall now proceed to prove. Let us write (with l> | real part of X| )

/"     1                        r '     1-d„pT(x, n) =  I- drfr(x, n) + Ri,r(x, X),
-x fi — X                       J -i ß — X

(5.7)
r"     d i

/>r(«, m) =      /(y) — ßi4o''(x, y | M)¿y,
»/a oy

a°°     r-'\     1 rb        d+ J     )-—~4.J   /(y)— Bi(*,yU)áy.

By (3.11a), with

ß=ß14«.',    h(y)=f(y),    g= 1 (on (a, x)),    g = 0 (on (*, b)),

we have

p    /. 6 -11/2

(5.7a) Var. ¿r(x, /a) g      I    /2(x)dx      (x-a)1'2^^.

' This is the relation obtained immediately preceding (S.3).
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On the other hand, because of (3.9a) (with ß = ßi)

/» d .f(y) — üi(x, y I p)dy = p(x, ß) .
dy

In view of (5.7a)

(5.7c) Var. p(x, ß) ^ A.

In consequence of (5.7a) and (5.7b), application of Theorem 1.1 will yield the

result

rl     1 f     1
(5.8) lim   I      -dupr(x, ß) =  I      -dltp(x,ß).

T    J -i ß — X J -i ß — X

It is also noted that, by (5.7), (5.7a) and (5.7c),

I Ri,r(x, X) I     and     I Rt(x, X) I < ( -.-r + -¡-r]A.
\|l + X|       \l - x|/

Thus, for e (>0) however small,

(5.8a) | Ri.Ax, X) | < é/3, | Ri,(x, X) | < e/3,

provided I, is taken sufficiently great. We have, for x and X fixed (ßy^O),

(5.9)
/•      1                           ("°      1 I

- dßp(x, ß) -  I- d„pr(x, ß)   =
-» M — X                         J -x ß — X

«!,(*, X) -Ä^.,(*,X)

+      í- dup(x, ß) -   I- d„pr(x, ß)
LJ-i ß — \ J-i ß — X J

< e,

provided / = /, is such that (5.8a) holds and provided r = r,(x, X) is taken

sufficiently great (cf. (5.8)). This establishes (5.6).

We come now to the consideration of (3.20). In consequence of (3.20),

applied to ßi5o'r, it is concluded that a solution of (5.2) may be given in the

form

(5.10)     <t>is°-'(x) = /(*) + X — f    -djrf  f(y) — i2iM*, y\ß)dy
dxJ-xß — \     Ja dy

(for 0*0),
with

(5.10a) j    I 4>i5°.'(z)2dx < M.

In virtue of (5.10a) and with the aid of a reasoning of the type previously

employed in connection with (5.3)-(5.5a) it is concluded that
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(5.11) lim $iM*) = <t>i(x), f   | 4>i(x) \2dx ̂ M
r Ja

(suitable S0,r (V*=l> 2, • • • ); convergence in the weak sense), where 4>\(x) is

a solution of (5.1). Now (5.11) implies that (cf. (5.10))

/>•                          f*1                       /"•      1 fb d
<t>15o-r(x)dx =  I    f(x)dx + X j      -¿„       /(y)—fiiio''(x, y | /¿)dy

a                           J a                       J_M ju — \     J a dy

—» //(*) [as r —» oo ; .ff(x) absolutely continuous],

where

(5.11a) —H(x) = 4>i(x) [<t>i(x) from (5.11); almost everywhere].
dx

Clearly, because of (5.6),

(5.11b)    H(x) =  f   f(x)dx + X f    --</„ f  f(y)— ßt(*, yU)dy.
J a J _„ ai — X    J a dy

From (5.11a) and (5.11b) it is deduced that <t>i(x) is represented by the formula

(3.20) (with ß = ßi). On taking account of (5.11) it is finally concluded that

the italicized statement made in connection with (3.20) holds for the class Hm.

In accordance with (3.21) we write

^i(x, 11 So, ■ ■ • , 5m_0

(5.12) / r*     r-\ 1       rb i
= (J     +J      J — ̂j    dl^----s^(x,y\ß)k(y)dy

[A(y)cL2; Ö!8»'--'5»-! = spectrum of JLV«'•••••"«-»(*>y)].

By (3.21a), applied to \pi of (5.12), one may assert only the following:

pi(x, 11 S0, • • • , 8«_t,r) —* ̂i(x, 11 So, • • • , Sm_2),

(5.12a) \(/i(x, 11 So, • • • , 5m_2,r) —► ti(x, I | 50, • • • , Sm_3), • • ■ ,

^i(x, 11 So, 5i,r) —> pi(x, l\ôo),

the 5F,r (v = m — 1, • • • , 1; f = 1, 2, • • • ) being suitably chosen and conver-

gence being in the weak sense in x (as r—><»); moreover, in consequence of

(3.21b) and (3.21c)

(5.12b) f  4>}(x, l\h)dx ^ — f   h\x)dx,
Ja I2   J a

(5.12c) lim LJ ft | Pi(x, 11 So.O) =0.

In virtue of (5.12b) with the aid of Theorem 1.3 it is deduced that
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lim ^i(x, /1 o0,r) = Tpi(x, I)
(o . loj r

[convergence in the weak sense; suitable o0,r (>0)—>0],

(5.13a) f   íi2(x,l)dx^— f   h\x)dx.
J a I    J a

From (5.13a) it is inferred that

/x p    nx -11/2 I
4>i(x,l)dx    S (b - a)1'2     I    ^!2(x, Odx       ^— ^,

so that

lim   j     ^i(x, l)dx = 0.

Thus, vM*, I) converges weakly (in x) to zero, as /—>oo. Hence, in view of

property (2.23')

(5.13b) lim Z/ft I *i(«, 0) = £'(£ I 0) = 0.

The relations (5.13), (5.13a), (5.13b) imply that the statements made in con-

nection with (3.21)-(3.21c) hold true for the class Hm.

By (3.22), applied to the kernel KiSa''(x, y),

f   LJ(i\K1»«.r(x,y))h(y)dy
J a

(5.14) rl    rb      , rd rb     d ,    1
= J     d,j    LJ (S\ W-'tx, s))\— J     h(t) — ßxMs, ¿ I y)dt \ds

+ LI ft | i>i(x, 11 So.r)) (i>i(x, 11 Ôo) from (5.12a)).

In the limit, as r—>» (the 50,r being suitably chosen) we get

f   Ll(k\Ki(x,y))h(y)dy
J a

(5.i4a) r'    rb      , r^f6      a        .     i
= J     dMJ    £,'(£| JCi(*,i))   — J    A(0 — fli(j, 11 M)A   ds

+ Li ft | ^x(x, 0) (^(*, 0 from (5.13)).

In fact, the first member of (5.14a) is obtained as a consequence of (3), (1),

(2) and of Theorem 1.2, where we put gr(y) =h(y) and

fr(y) = Li ft | iiM», y)),      7(y) = yft I y) •

The integral displayed in the 2d member of (5.14a) is obtained from the corre-



1939] SINGULAR INTEGRAL EQUATIONS 235

sponding integral in (5.14) with the aid of the following considerations. Since

d   rb        d
PT(S, ß)  = —I      k(t) — ß!4».'^, 11 ß)dt

dsJ a dt

d    rb d
-*7" I    Kt)—^i(s,t\ß)dt = p(s,ß),

dsJa dt

convergence being in the weak sense in s, and since

£«(£ | *iM*. *)) -►L*' ft I *i(*.s)) (as r -» oo),

| I»' ft | iiM*, »)) I á 7ft | s)cl! (in s),

by Theorem 1.5 it is inferred that

qriß) =  f  Li ft | Ki^-'ix, s))pT{s, ß)ds
J «

(5.15)

■ f   Z,,' ft | JTxi», s))pis, rfds = Ç0») (as r -> co ).
J a

Moreover, by (3.11a) with

gis) = Li ft | Ki*:'(x, *)),        ß = ßi4«.',

and in view of (3), (2), it is concluded that

Var. ?r0t) ^      I    h2(x)dx \    \H ft)#i4o''(x, s) |2ds

p /• *        "ii/2r rö ~i1/2
^|J     A2(x)dxJ        J     78ft|5)¿í|     -i« ft),

where j4(|) is independent of r and ju. In consequence of (5.15) and (5.15a)

application of Theorem 1.1 is possible, yielding the result

I    dqr(fi) -* I    dq(ß),

which accounts for the integral in the second member of (5.14a). With

\f/i(x, l\ So,r) converging weakly (in x, as r—>co ) to 4*ÁX> 0, we have

lim Li ft | ¿i(x, 11 «„.,)) = Li ft | *»(*, 0)
T

in view of the condition (4). Accordingly, one may consider (5.14a) estab-

lished.

On letting I in (5.14a) approach infinity, in consequence of (5.13b) it is

inferred that (cf. (5.15))
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f   L¿(t\Ki(x,y))h(y)dy=  f   d^(jx).
J a J -oo

Accordingly, we observe that (3.22) holds for the class Hm.

In accordance with (3.23) write

,_ ̂  r» (x, I) = — f   dxf  f(y) - Q,M*, y | \)dy,
(5.16) dxJ-i     Ja dy

W¡ (X, 1)   =f(x)~ T¡ (X, I) (f(x) C L2) .

By (3.23a)-(3.23c)

/b /* b
rr'2(x,l)dx Ú q=  \    f(x)dx,

(5.16a) J Ja

wr' (x, I,) —» w,' (x)    (as lv —* oo), Wr* (x)dx ^ 4ç,

convergence being in the weak sense; moreover, in view of (3.23d)

(5.16b) f   L.'ttl JCtMx, y))w¿(y)dy = 0.

Let r'(x, I) be r/(a;, /), with 50,r in the integrand of (5.16) deleted, and let

w'(x, I) =f(x) —t'(x, T). Then because of (3.13),applied with a(X) = 1 to ßi, one

has

(5.16c) |    r'2(x,l)dx S q*
J a

in consequence of which

/w'2(x, l)dx 5= 4q.
a

By Theorem 1.3 the latter inequality implies that there exists a subsequence

(0</i' <l2 ; lim, // = oo) such that

(5.16d) w'(x,l,')->w'(x)    (asi-->oo), J     w'2(x)dx ^ 4q,
J a

convergence being in the weak sense (in x). The function w'(x) can also be

obtained by a limiting process with the aid of (5.16) and of the last inequality

(5.16a); we obtain (cf. Theorem 1.3)

* (5.16c) can also be obtained by a limiting process applied on the basis of (5.16a), with the aid of

Theorem 1.3.
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(5.16e)       vi (x) —* w'(x)       [as r —* <x> ; weak convergence in x; suitable ôo,r] •

In view of (5.16e) and since (by (2.22') and (2.21'))

,e « _ Li ft | z,m*, y)) - £- ft I * i(*. y)),
(5.16f) , i

\Li(t\Ki».r(x, y))| ^7ft|x)c£2,

application of Theorem 1.5 to the first member of (5.16b) is possible; thus,

(5.17) f   LJi£\Kiix,y))w'iy)dy = 0.

Hence it is observed that the statements previously made in connection with

(3.23)-(3.23d) will hold for the class Hm.
If the only solution (included in L2) of the equation (3.24) [with L = L'

a.ndK = Ki] is</>(y)=0 (almost everywhere), then in consequence of (5.17),

w'(y) =0. Now, according to the statement subsequent to (5.16b)

w'(x, /,') = f(x) — t'(x, /,');

thus, by (5.16d),

t'(x, /,') —»/(*)   (as v —> c° ; in the weak sense).

That is, in view of (5.16) (with ô0,r deleted)

/r'l      rb        d . rx
t'(x, ll)dx =1      dx |    fiy) — ßi(x, y\ \)dy —> I    /(x)dx (as v —* co).

a J-l'„ Ja dy Ja

Hence

//•b d rx
dx      fiy) — ßi(«, y I \)dy =      /(x)dx. '

-co        J a dy Ja

This formula implies the representation (3.24a), as slated, for the class Hm.

With A designating the operation indicated preceding (3.25) it is observed

that, by (3.9a) (for ß = ßi), we have in the sense of weak convergence (in x)

d       rb d d       rh d
- A I      h(y) — üiso-'ix, y \ \)dy —» — A I      h(y) — ßi(x, y | \)dy;
x    J v=a        dy dx    J y=a        dyd

(3.9) will hold for fix4»". From (4) it is deduced that

(5.18)

/   I   d        Cb d \
lim LA |  — A       A(y) — ß14».'(x, y | \)dy )

r \   \ dx    J a dy /

/   1  d        rb d \
= LAI] — A        h(y) — Qiix, y|X)dy)

\   \ dx     J a dy /

* The integral of the first member is convergent.
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It is noted that

d   fx"       rb 3
(5.19) qr(s) = — ßdA     h(y) — Qt'».'(í, y | M)dy <= U (in î) ,

dsJ\> Ja dy

and that (with 50,r suitably chosen)

d   rx"       rh d

dy

d   fx"        rb d
(5.19a)       lim qr(s) = — I      /z¿„ I     A(y) — Ûi(s, y | ß)dy = g(j)

7- dsJ\> J a dy

(weak convergence). In fact, (5.19) follows from (3.13) (with a(ß)=ß and

ß=ßi8°"-), while (5.19a) is a consequence of (3.13), (3.12) [with a(ß) =ß and

g = 1 on (a, x), g = 0 on (#, 6)] and of Theorem 1.3; we have (cf. (3.13))

q2(s)ds g M2 I    A2(s)¿s.
a Ja

In virtue of (5.19), (5.19a), and (5.16f) from Theorem 1.5 it is inferred that

(5.20)     lim   f  L¿ft | Ki**-'(x, s))qf(s)ds - f  L»'ft| tft(*, s))?(s)ás.
r      J a J a

With (5.18) and (5.20) in view, write (3.25) for ß = &«•■-, L = L', and iT = K^

and pass to the limit, thus obtaining the formula

/ \ d      rb        d .        \
LlU  — A       A(y)—«t(*,y   X)áy)

\   | do;    Ja dy /
(5.20a)

-   I    L/ftl^Oc, í))?(i)dí = 0;
J a

accordingly, it is observed that (3.25) holds for the class Hm, the same being true

for (3.25a) (which is obtained from (3.25) by specializing A).

The proof of the important formula (3.26) (for the class Hm) can be ef-

fected as follows. In view of (3.22) (with L = L', K = KU ß = ßO, (3.26) will

hold, for L=L', K = KX, ß = ßi, provided

/rb      , rd cb     d        i     i
dA    Li(t\Kx(x,s))  —       h(y) — Qi(s,y\ß)dy\ds

-a,        J a LdsJ a dy J

f    1 /   |   d   rb d \
= —d,JLjU\—l    h(y)— Qi(x,y\n)dy) = N(i).

J -«,   ß \   I dxJ a dy /

On writing

rl 1 /Id/*6 d \
(5.21a)       Nt(0=\    — d„Ljh  — |    h(y) —^(x, y\ ß)dy),

J -i ß \   \ dxJ a dx /
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and

— / ■» Xo < Xi < • • •  < Xmi = I (A, corresponding to (X,_i, X,)),

we have

(5.21b) iV,ft) = limiV^ft),
«ii

where

Si,   Í /   \   d rb d . \
(5.21c) Ni.m¿Í) = E—Li(s\ — AA    hiy)-Qiix,y\ß)dy)

,-i ß,        \   \ dx      J a dy /

(u, in (X,_i, X,)). By (3.25) (for V, Ku ßx) and (5.21c)

»l      \     /• b

(,5.21a; ,_i /i,^a

— I      ¿idM I    Ä(y) — ßi(s, y | /*)¿y   ds.
[ âsJx,_!       J a dy J

Applying to the integral displayed in (5.2Id) the first identity (3.14), with

g(s) =Li(t\Ki{x,s)),        a(ß)=ß,        ß=ß1;

it is concluded that (5.2Id) may be written in the form

"•1     \     t* x„

N
«   1   f».

ift) = E -I    *
,=i   H'J\^_i

•d*{f   Li(t\Ki(x,s))[jJ  h(y)—Qi(s, y|M)dy]dsj

Thus

Ä   1mi       1 /»ji

(5.21Í)       tfi.-.ft) = £ — A,7(m), 7(m) = M<U • ■ •  },
,-i  M, J-l

and, in view of (5.21b),

(5.22) iV/ft) =  f   — d„7(M).
J -i ß

' 1

-i P

By definition of y(u) (cf. (5.21f)), with { • • • } from (5.2le), we have

1 1

AT

(5.22a)

ft)- f -M,{ ••• }]j -i ß

= j d^fLitilKi^s^^jJ  *(y)^-fli(s,y|/*)áyjdí|.
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By (5.22a), (5.21a)

lim Ni(ë) = Wft) = first member of (5.21).
t

Whence it is observed that (5.21) and consequently (3.26) (for L', K\, ßO have

been established.

We shall now proceed to prove the statement in connection with (3.27)

for the class Hm. The identity to be proved is

L» U\t f   tfM** y I v) )

(5.23) - X J    LI ft | £t(«, i)) |— f     ßd„Qi(s, y \ ß) 1 ¿5

= £.' (í  — f     (m - X)dMat(*, y | m)Y

In view of (3.25a) (for L', Kh Qt), (5.23a) wiU hold if

L' Urf    /"«*, y I m)) - XL,' ({ I — Aöt(*, y | X))
\   I da;Jx' / \   I dx /

= L* ( *  T- f     Cd - X)dMßi(*, y | m) );
\   I dxJX' /

that is, if

(5.23a)       LJ U  — AOt(*,y|X) ) = £,'($  — f     a„ßt(*,yU)\
\ |3* / \ |öatJx' /

Now, (5.23a) holds since

¿^Ot(*, y | it).
X'

Thus, the result previously stated with respect to (3.27) holds for the class

Hm.

The developments of this section may be summed in the theorem:

Theorem 5.1. Suppose classes Hn are specified by Definition 2.2. For every

finite m (>0) the following will hold. If K(x, y) cHm and if "associated" with

K(x, y) there is an operator L (cf. Definition 2.3), then the statements made in §3

will hold true with respect to this kernel and this operator.

6. Kernels of class Hi. For kernels of class Hi with which operators L

(Definition 2.3) can be "associated," as remarked by Carleman many results
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of (C, chap. 2) can be extended. In view of the purpose to examine the possi-

bility of such extension to our classes Hn it will be essential to investigate in

some detail the situation with respect to ffx.

Thus, suppose K(x, y) cHi, an operator L being "associated" with K(x, y).

We write down the equations

(6.1) 4>Htx) - X f   K*°(x, y)<j>*°(y)dy = /(*),
J a

(6. la)     LJX | 4>°°(x)) - X f  Ljfc \ K'°(x, y)W(y)dy = L.ft | /(*)),
J a

(6.2) £.ft|*(*))-xj   £,ft|*(*,y))*(y)áy = £,ft|/(*)),

(6.2a) L.ft | <p(x)) - X f   L.ft| K(x, y))<t>(y)dy = 0.
J a

As indicated in (C),if <t>H-r(x) is a solution of (6.1) (for S = 50,r suitably

chosen; r = \, 2, • • • ; lim 5o,r = 0), then <j>s"-'(x)—*l>(x) (weakly in x) and

(3.19a) will hold; moreover, <f>(x) will be a solution of (6.2). On writing, con-

forming with (C),

(6.3) <pHx) = —- [f(x) + f(x) ],        4>(x)=^—[f(x)+Hx)],
¿p ¿p

where X' is the conjugate of X, we conclude that

/b /» b
| ^"■'(x) \2dx =  I    \f(x)\2dx

and, in the limit,

(6.3b) f   \t(x)\2dxè  f   \f(x)\2dx.
Ja Ja

It is observed that (6.3a) can be established with the aid of the relation,

found in (C),

- ß    n° 1      nb

(6.3c)

;   f     | <j>*°(x) \2dx = —   [     f(x)<t>i*>(x)dx
■ J a 2l\J a

- TT, f  KxW(x)dx.
2t\' J a

Here and in the sequel, <j>i denotes the conjugate of <j>.

We shall prove the following fact. In order that (6.3b) should hold (yohen
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A = /3?¿0) with the equality sign it is necessary and sufficient that

/> b /» 6
| tf,4».'(x) |2dx =  I    \<j>(x)\*dx.

a J a

In fact, it is noted that

/ib /% b
f(x)<f>iSl>'r(x)dx =  I    f(x)<p(x)dx,

a J a

inasmuch as f(x) cL2 and other conditions of Theorem 1.4 hold. Thus, by

(6.3c)

-ß

(6.4a)

lim   f   | <t>s°-'(x) |2dx =- f  f(x)<t>i(x)dx
J a 2i\ J a

1    rb-

_~2~vJ   ^x^x^dx = y>

and, if (6.4) holds, there will be on hand an equality like (6.3c) with </>4o(*;)

replaced by <f>(x) ; from this relation with the aid of the second one of (6.3)

we obtain (6.3b) with the equality sign. Thus (6.4) is a sufficient condition.

If, on the other hand, (6.4) does not hold, it is observed that, inasmuch as

the limit in (6.4a) exists,

/. b TI xl2 7 rh
| tf">-*(x) |2dx =     '    '   =   —  | X |2 >  I    | <p(x) \Hx;

a —  ß ß Ja

this inequality follows by a theorem of F. Riesz according to which

/ib r* b
|/,(x)|2dx ^   I    |/(x)|2dx,

a J a

whenever f„(x) cL2 and /,(#)—>/(x) (in the weak sense). Now, in consequence

of (6.4b)

(6.4c) ~-^       | <t>(x) \2dx < | 71 (7 from (6.4a));
I  X |2 J a

substitution of <j>(x) from (6.3) and (6.4c) will result in (6.3b), with the in-

equality sign. Hence the statement in connection with (6.4) is seen to be

true.*

Of special interest appear to be operators L, which in addition to the condi-

* The corresponding result in (C) depends on the possibility of interchange of order of integra-

tion in a certain double integral.
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tions of Definition 2.3 satisfy the following. L is defined for £ in a set V dense

in itself; moreover, for £i, £2, in T,

(6 5) f   | Lx(íi I K»(x, y)) - L.ft, | K*°(x, y)) \2dy Í Gfti, £2),
J a

where G(£i, £2) is independent of S0 and

(6.5a) Gfti, £2)^0 (as ft - i,-» 0; ¿1, £2inr).

In consequence of (2.22) the limit of the integrand (for ô0—>0) in (6.5) exists;

by (2.21) the integrand is less than

L7(£i|y)+7(£2|y)]2cL1 (in y)

for £1, £2 on T. Hence by passage to the limit, from (6.5) it is inferred that

(6.5b) f   \ Ldh I K(x, y)) - £,(£, | K(x, y)) \*dy g Gfti, £2).
J a

Let <t>(x) be a solution of (6.2) obtained by a limiting process as indicated

subsequent to (6.2a). Then, by (6.2) and by the inequality of Schwartz,

I £*(£i I *(*) - fix)) - £x(£21 4>{x) - fix)) |2 •

= I X |21 f   [Lxfti I Kix, y)) - £.ft, I Kix, y))]<l>(y)dy '
I J a

^ I Xl2 J"   \<t>(y)\*dyf   \Lxiii\Kix,y))-Lxit2\Kix,y))\2dy.

If (6.5) and (6.5a) hold, then in consequence of (6.5b) and of (3.19a)

I Lx(h I <*>(*) - /(*)) - Lxih I 4>ix) - /(*)) |2
(6.6) I XI4  /* 6 ,

= ̂ f       \fi*)\*dxGiii,b)
P        J a

(for £1, £2 on T); thus, under (6.5) and (6.5a), for every solution <j>(x), included

in L2, of (6.2) the function

(6.6a) L,ft U(x) - /(*))

w7/ ¿>e continuous in %for £ 0« T (3^0).

When 04o(x) satisfies (6.1), in consequence of (6.1a) one has

|Lxft|04°(*))| á|x[fj   |Lxft|íT4«.<x, y))|2dyl        J   | *'•(*) |2dxl

+ \Lxit\f(x))\,
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whence, by (3.19a) for (</>8°(*)) and (2.21) (for n = i),

{66h)   \Lx(t\*Hx))\ ^[f^\M\^]\i^\y^Y

+1 ¿.ft |/(*))[.
Similarly

' X|4

J*(6.6c)       \Lx(t\<t>>°(x)-f(x))\2^^f(b\f(x)\2dx f\2(t\y)dy.
ß       J a Ja

On the other hand, by (6.1a) (for £i and £2) we obtain the inequality subse-

quent to (6.5b), with <f>(x) and K(x, y) replaced by (¡>6<>(x) and KSl>(x, y), re-

spectively; an application of (3.19a) (for </>8o(x)) will yield

I £*fti | <Ps"(x) - f(x)) - L,fe | *••(*) - f(x)) |2
(6.7) |X|4 rb.

á-4r    \f(x)\2dxG(ti,h),
ß       Ja

(for £i, £2 on T) if L is such that (6.5) holds.

If (6.5) and (6.5a) are assumed, in view of (6.6b) and of (6.7) application

of Vitali's theorem (on limits of analytic functions) is possible in a manner

analogous to that in (C, p. 55). The following result is obtained.

Let K(x, y) cHi and L be an "associated" operator (Definition 2.3), satis-

fying (6.5), (6.5a) and let T\=ß^0. For a suitable choice of S0,r not only will

<j>Sl>"(x) converge (weakly) to a solution 4>(x) satisfying (6.2) but the function

Lx(i\<i>(x) —fix)) will be continuous in £ (for £ in T) and will be regular in \for

all non-real X (when £ is in T).

The analogue of (C, Theorems Iir2, IV2), for kernels K(x, y) cHi and

having "associated" with them an operator L, is obtained by passage to the

limit. The result reads as follows. Given a value X=X0 (\o=cto+ißo) ßo^O),

there exists an operator T0 (depending on X0, but independent off) so that

(6.8) *(*) = To(f(x))

will constitute a solution of (6.2) ; moreover,

/< b /» &
TQ(f2(x))-fi(x)dx=  I     T0(fi(x))-f2(x)dx,

a Ja

whenever fi(x), f2(x) cL2. In particular, if for X=Xo the equation (6.2) has only

one solution <¡>ix) cL2, (6.8), (6.8a) will hold.

The analogue to (C, Theorem II2) will be as follows.
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If the operator L is such that Z,x(£| q(x)) is real for q(x) real and the

(6.9) conjugate ofLx($ \ q(x)) = L.ft | q(x)),

and if for a particular Xo (Ao = ßo?i0) the homogeneous equation (6.2a) has no

solutions included in L2, except <p(x) =0 (almost everywhere), then for all non-real

values of\ (6.2a) will have no solutions included in L2, except zero (almost every-

where) .

The proof of this theorem is closely analogous to that of (C, Theorem II2).

However, in view of the extension, to be given in the sequel, of this result to

classes Hn it is desirable to outline briefly a sketch of the proof.

If the theorem is not true, then

(6.10) L.ft | <p(x)) - Xo f  i,ft | Kix, y))d>iy)dy = Zxft | (1 - X„AW*)).
J a

where <¡>(x)cL2, <¡>(x)¿¿0, and <j>(x) is a solution of (6.2a) for a value X

(IX=/M0). Using (6.9) one obtains

(6.10a)   £.ft|*i(*))-X„ f  L,ft|.ff(*,y))*i(y)dy = £«ft|(l-XoA')*i(*)).
J a

In consequence of the statement in connection with (6.8) and (6.8a),

(6.11) M-*-) f   | <t>(x) |2dx = (l-"-) f   | d>(x) \2dx,

and, inasmuch as /| </> 12dx ̂ 0, necessarily ß = 0 which is contrary to hypothe-

sis.

Similarly, following the lines indicated in (C) one may prove the following

analogue to the important result of (C, Theorem V2).

If the operator L (associated with K(x, y) cHi) satisfies the condition (6.9),

then the number of linearly independent solutions [included in L2] of the homo-

geneous equation (6.2a) is the same for all X (T\=ßp£0).

With respect to linear independence of solutions of (6.2a) the following

will hold.

Let <¡>i(x), ■ ■ ■ , 4>n(x) be solutions included in L2 of the homogeneous equa-

tion (6.2a), corresponding to the distinct values of\,

Xi, • • • , X„ (X, 5¿ 0; v = 1, • • • , n);

the <j>j(x) will be linearly independent if L ("associated" with K(x, y)) is such

that

(6.12) £,ft|?(*)) = 0 (q(x)cL2)

implies that q(x) =0 (almost everywhere).



246 W. J. TRJITZINSKY [September

In fact, if this theorem is not true, then for some c,

ci<l>i(y) + • • • + cn<f>n(y) = 0 (not all c, = 0).

Multiplying by Lx(%\ K(x, y))dy, integrating and making use of

(6.13) £,ft | *,(*)) = X, f   L.ft | Kix, y))<t>r(y)dy,
J a

we obtain

(6.13a) ¿ ^Lx(t\<p,(x)) -i.U   ¿ —4>Áx)) = 0.
V=-1      X» \        |      y=l      X» /

In view of the property in connection with (6.12),

£ —*,(*) = 0.
»=i x»

Repeating this process a number of times and at each step making use of

(6.13) and of the property referred to above, a set of equations is obtained

which cannot be satisfied, unless all the c, are zero.

Let us examine now the question of the range of values which, for x and

X=Xi (ßir^O) fixed, could be assumed by the solutions of (6.2).*

According to the italicized statement subsequent to (6.11) the number of

linearly independent solutions of (6.2a) (where K(x, y) c Hi and L is an asso-

ciated operator) is the same for all non-real X. It can be arranged to have

these solutions forming an orthogonal and normal set (for a fixed X). Let

$i(x), ^2(x), • ■ ■ constitute a full set of such description for Xi. Let <j>ix) be

any solution of (6.2) for Xt, the corresponding ipix) being defined (cf. (6.3))

by

tki
(6.14) <pix) =-if(x) + *(x)) (XÍ = conjugate of Xt).

2|3i

Then the result of the same form as given in (C, pp. 71, 72) will hold for equations

(6.2):

(6.15) | <*>(*) - Crix, Xt) | á rix, Xt)    [c(x, Xt) = (i\{/2ßi)(f(x) + »(*))],

(6.15a)       r2(x, Xt) = —^ f"[\ f(t) \2 - | wit) \2]dt £ | *,(*) |2,
4pi      J a v

where wix) is from the Fourier-expansion iin terms of the Q,ix)) of-ipix),

(6.15b) fix) = wix) + 2 c,$,(x)

* A problem of this type is treated in (C) for kernels not of class Hi and without the aid of opera-

tors L.
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(cf. (6.14)), and is independent of <j>(x).* To establish this one needs only to

take note of the inequality (6.3b) and to follow the procedure indicated in (C).

Corresponding to the function w(x) (of (6.15b)) there is a particular solu-

tion (for Xi;/M0) of (6.2),

(6.16) *„(*) =^(/(x) + wix)).
¿Pi

In view of the statement in connection with (6.4), from (6.15) and (6.15a)

it is inferred that, if there exists a sequence {4>H'rix)} f which converges in the

weak sense to <f>oix), while

/ib /» b
| <¿>4».'(x) |2dx =   I    | </>0(x) \2dx

a J a

(cf. (6.16)), then 4><j(x) is the only solution (for Xi) included in L2 of (6.2).

Consider a value X =Xi (with ßi ^0). If not every solution of the homogeneous

equation (6.2a), for X=Xi is zero (almost everywhere), then the number r(x, Xi),

involved in (6.15a), will be distinct from zero at least for somef(x) cL2, provided

the operator L satisfies the condition (6.9). In fact, with the aid of the latter

condition the procedure given in (C) (for the demonstration of an analogous

result) is applicable, leading to the stated assertion.

7. Extension of the results of §6 to the classes Hn. With a view to proof

by induction let us assume that the following holds for kernels K(x, y) of classes

Hn (n = \, 2, ■ ■ ■ , m — 1), it being understood that "associated" with every

kernel K(x, y), under consideration, there is an operator L (Definition 2.3).

For convenience we collect the requisite"equations:

(7.1) <t>s°- ■ ■ ■ •"»-•(x) - x J   K6"- • • • '»«-»(«i y)4>{°' ' ' ' •4»-1(y)áy = /(*),
J a

,„ ,  ,     ¿.(^»■•■•■^(x)) -X f   Lxft|ü:4»---4»-i(x, y))4»4».---.4»-i(y)dy
(7.1a) Ja i

•¿.ft | /(*)),

(7.2) ¿xft | *(*)) - X f  L,ft | Kix, y))4>iy)dy = L,ft | /(*)),
J a

(7.2a) £-(«!♦(*)) - X f  L.it\Kix, y))<t>iy)dy = 0.
J a

If a solution <f>(x) (for a value X, with ß?^0) of (7.2) is the repeated limit

in the weak sense of solutions of (7.1) (cf. (3.19)), then

* w(x) is the analogue of i^oW of (C, p. 71); that is, w(x) minimizes f{\f)Hx (for <j>(x) satisfying

(6.2)). Thus, w(x) is a particular function 4/{x). Obviously fw$ydx = 0.

t <bs"'r(x) a solution of (6.1) (for S„ = So.,).
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(7.3) f   \ fix) \2dx Í  f"\ fix) \2dx [fix) = (tV/2ß)(f(x) + fix))].
Ja Ja

The necessary and sufficient condition under which (7.3) holds with the

equality sign is that

Jib /• b
\çh<,.rM,„---,tn-L'ix)\2dx  =     I        \fix)\2dX

a J a

(the j,., from (3.19)).

If the operator L ("associated" with R~ix, y)) is defined for £ in a set T,

dense in itself, and if

(7.5) j   | £.ftt | K*-•••.*-»(*, y)) -£,ft,| X8»----.8"-^, y)) \2dy è Gfti, fc)

[Gfti, £2) -» 0 as £x - £2 -> 0; £1, £2 in r],

then (7.5) will hold also for Kix, y).

Every solution fix) cL2 of (7.2) is such that

(7.5a) Lx(k\f(x)-f(x))

is continuous in £ for £ in Y, provided (7.5) holds.

Let a solution f(x) of (7.2) be defined by the repeated limiting process of

(3.19). If (7.5) holds, then with a suitable choice of the S,,P,

(7.5b) L,ii\ fix)-fix))

will be continuous in £, for £ in T, and will be regular in X for all non-real X

ftinr).
(1) The statement in connection with (6.8), (6.8a) holds with respect to the

nonhomogeneous equation (7.2) for kernels of classes Hv iv<m).

Also the following holds.

(2) If ZI(£|ç(x)) is real for qix) real and (6.9) holds and if the equation

(7.2a) has no solutions included in L2, except zero, then the same will be true for

all non-real values of\; the number of linearly independent solutions, included

in L2, of (7.2a) is the same for all non-real X.

(3) Regarding linear independence we have the result, previously stated in

connection with (6.12), holding for classes Hi, ■ ■ ■ , Hm-i.

(4) The result slated in connection with (6.14)-(6.15b) holds for Hn in <m).

If foix) is a solution for Xi (ft^O) of (7.2), which is a repeated limit (in

the weak sense) as indicated in (3.19) and which is such that

(7.6) wix) = (2/ViXi') ifoix) - f(x))
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renders

(7.6a) f   \fix)\2dx
J a

[fix) = ii\i'/2ßi)(f(x)+f(x)) solutions for Xi of (7.2)] minimum, then f0(x)

is the only solution included in L2 of (7.2), provided (7.4) holds (with

fix)=foix)).

(5) The italicized statement at the end of §6 holds with respect to the homo-

geneous equation (7.2a) for classes Hu • ■ • , fi»,_i.

All of the above properties have been verified in §6 for kernels of class Hi

(with "associated" operators L). We shall now establish these properties for Hm.

Let K^(x, y) c Hm and let L1 be an "associated" operator. Then Ku,>(x, y) c Hm_\ ;

moreover, as indicated at the beginning of §5, L1 will be also associated with

Kls°ixi).

By (7.3), applied to Ku"(x, y),

(7.7) f   I fs"(x) \2dx ̂  f   |/(*)|2<fx.
J a Ja

With fl(x) =lim fs"'rix) (in the weak sense) we shall have fx(x) =lim f6"-rix)

(in the weak sense), where

f°°ix) = i\'/2ßifix) + f°°ix)),       fix) = tK'/lßifix) + fKx)).

In view of the theorem of Riesz, stated subsequent to (6.4b),

/» b p b
| ft'.'ix) \2dx ̂   I    | f\x) \2dx.

a Ja

By (7.7) and (7.7a)

(7.7b) f   \f\x)\2dx^  f   \fix)\2dx,
Ja Ja

which is (7.3) for the class Hm.

Since K5"' • ' • •8»*-1(a;, y) c L2 (in x, y) the identity (6.3c) (for </>5»' ■ • • ■{m-1(x))

will hold :

- ß rb, , i   rb
-—r        {^«■■■■■i"n-i(x)\2dx =- I    f(x)4>is°'----s<"-i(x)dx
I X |2 J a 2i\J a

1 f6-
~~2i\'J    f(-x^S'',"',Sm'l(-x^dx-

Suppose (7.4) holds for f1; thus

(7
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/• 6 /» 6|   ,j,»».r.---,tn.-l,T(X)\Zdx   =     J |   <P\X)  \2dx.
a J a

Now (cf. (3.19) for 01)

lim 04".""-'4"'-1.'-(x) = <j>s"'"'"-Sm-1-rix),

¿m—l,f

lim ^4».'.---.s»'-2.'-(x) = 4>l"',''---<!"»-3.'ix), ■ ■ ■ , Km <¿>4°'r(x) = <¡>l(x)

[in the sense of weak convergence], with the functions involved included

in L2; hence repeated application of Theorem 1.4 to the second member of

(7.8) is possible yielding the result (when S, = 5,,r)

lim   •••   lim    -— I    /(x)</>i4»'---'4»-1(x)dx-r       f(x)d>^--- ••6'»-i(x)dx
ío.r Sm-i,rL2Í\J a 2ÏK J a J

í    rb 1     rb -
=- I    f(x)<p\x)dx-I    f(x)d)\x)dx.

2Í\J a 2ÍX'   J a

This, together with (7.9) implies

(7.9a)      -.—rf   \<pl(x)\2dx =- f   f(x)4>i1(x)dx-f  f(x)<j>l(x)dx.
\  X \2J a 2Í\J a 2ÍX'   J a

Substituting in (7.9a) <t>l(x) in terms of ^(a;) we obtain the equality

(7.9b) f   \^(x)\2dx=  f   |/(x)|2dx,
J a J a

which is observed to be a consequence of (7.9). Suppose now that (7.9) does

not hold. Since the repeated limit displayed preceding (7.9a) exists even if

(7.9) does not hold, in consequence of (7.8) it can be asserted that

f *i i
lim   ■••   lim    I     | (^«.'■••••'s<'.'»-i(x) |2dx = y
ôo,r öm-l,r   J a

(7.10) .    .
r i   rb l    rb - ix2

- bsJ. ,{*mi)d* - ml. 'w*'<*H^r
By the theorem of Riesz (text subsequent to (6.4b)), (7.10) will imply

7 > r i &ix) \2dx.
J a

This, in view of our previous assumption that (7.9) does not hold, yields the

inequality

(7.10a) 7 >  f   I 4>Kx) \2dx.
J a
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Substituting in (7.10a) the expression for y from the last member of (7.10)

and replacing fix) in terms of fl(x), we infer that failure of (7.9) to hold

implies

(7.10b) f   | fix) \2dx < J   | fix) \2dx.

Accordingly, the statement with respect to (7.4) holds for the class Hm.

The property stated with reference to (7.5) will hold for K}{%, y) and L1

in consequence of (2.22), of (2.21) (applied to the kernel in question) and

of Lebesgue's theorem on passage to the limit under the integral sign (we

keep/3^0).

Under (7.5) (for P'.-'1--' and L1) the function I..1 (il*1^)-/(*)),

where flix) is any solution included in Z,2 of (7.2) [that is, of (7.2) with L1

and K1], will be continuous in £ ft in V). In fact, by the same method as used

before we obtain the inequality (6.6) for L1 and f1, which justifies the above

assertion.

If fix) is a repeated limit in accordance with (3.19), then

(7.11) f*.*ix)-+f\x)

where

lim 08o,
6m—1, T

>-(*)

(weakly),

(weakly),f**."(x) = lim
»i.»

and fs"'rix) satisfies

(7.iia)  l.*(|| ♦•»••<*)) - x f «ft| **.<*, y))<t>H--iy)dy = «ft I/(*)),
J a

with Ks"-r formed corresponding to K*ix, y). Proceeding with respect to

(7.11a) as before one obtains the inequalities (6.6b), (6.6c), (6.7) (for L1);

the latter inequality will hold under (7.5) (for Ll,Ku<>- ' ' •*--»). With the aid of

Vitali's theorem these inequalities enable us to assert that the statements

made with respect to (7.5c) hold for L1 and f1, as well.

We shall now extend the property (1) to L1 and K1 (cf. (6.8), (6.8a)).

Now in (7.11a) Ks""ix, y)cfl'm_1; thus, by hypothesis, given any

X = X0 = ao+¿/3o (ßo^O), there exists an operator ZV0-'' (depending on X0, in-

dependent of/) so th.a.tfi°<rix) = ToH<rifix)) cL2will be a solution of (7.11a)

for all fix) c L2 and so that

(7.12)        j   Tos°.'if2ix))fiix)dx = j   Tos^'(fi(x))f2(x)dx     (forfuf,cLt).

The So,, can be so chosen that

(7.12a) To8». '(/(*)) fix) (in the weak sense),
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where ^(x) cL2 constitutes a solution of (7.2) (for K1, L1, X0), and so that

the relationship (7.12a) holds for all/(x) cL2. The function tfix) of (7.12a)

will then be related to an operation 77,

(7.12b) To1 ifix)) = tfix) (77 independent of /),

defined for all/(#) cZ,2. By Theorem 1.4 and since T0ll>-rifix)) cL2 and(7.12a),

(7.12b) hold, from (7.12) by passing to the limit it is inferred that

(7.12c) J*   77(/2(x))/1(x)dx = j   77(/i(x))/2(x)dx,

whenever ft, ft el. The extension of (1) to the class Hm is immediate.

To establish the first part of (2) we assume (6.9) (for Z,1) and, using(7.12c),

repeat the steps (6.10)-(6.11) with reference to L1 and K1. It remains to

demonstrate that the number of linearly independent solutions, included in

Li, of (7.2a) (for L1, K1) is the same for all non-real X (under (6.9) for 77).

This is inferred with the aid of the operator To1 of (7.12b), using arguments of

the type given in (C, proof of Theorem V6).

The property (3) (for 77, K1) is established as in the text in connection

with (6.12)-(6.13a).

The statement (4) is extended to the class Hm on the basis of the inequal-

ity of (7.3), which has been already demonstrated for kernels included in Hm.

A consequence of this extension is that we are now able to assert that the

result stated with regard to (7.6), (7.6a) holds for the class Hm, as well.

Similarly, it is seen that (5) will hold for K1 and 77.

Theorem 7.1. The statements made, from (7.1) to (7.6a) and (5) (inclusive),

will hold true, with respect to the equations (7.2), (7.2a), for all classes 77„

(finite n).

8. Some further results for classes 77„. The following formulas (cf. (8.1)-

(8.4)), which were established in (C) for the class Hi, will hold for all classes

H„, provided that we envisage only kernels with which one may "associate"

(Definition 2.3) operators L and provided that (7.2a) (A^O) has <j>(y) =0 (al-

most everywhere) as the only solution included in L2.

One has

(8.1)

— I    ßdßü(x, y | m)      — A2ß(x, z I ß) \dx

= J      — J    ßdßü(x, z\ß)      — Aiß(x, y|M)   dx.*

* If the difference operator A corresponds to the interval (X', X"), integration extended over A

will be understood to be between the limits X', X".
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When the intervals corresponding to Ai, A2 are nonoverlapping,

(8.2) f     — A10(«, y|x)l   — A2fi(x, z | X)   áx = 0;

moreover,

¿a

(8.3)

(t   ^AO(x, z\\))
\   I dx /

/ i d cb &        .    a        .     \
= L*(i h-!    — «(*, y   X) —0(y,«|X)dy).

\   I dx J „  dy dy /

When the only solution of ¿(£¡0(x)) =0 if ix) c¿¡¡) is zero,

i Cb 9 |       d .
(8.4) Afi(x, z|X)=|    — 0(x, y | X) — Q(y, z| X)dy.

Ja dy dy

To demonstrate (8.1) one may proceed as follows. By (3.27) the equations

¿.ft | fix)) - X J    ¿xft | Kix, s))fiis)ds

= ¿x(£   — I      (m - X)á„o(*, y| m)),
(8.5) b V|ÖxJai '

¿xft I fix)) - X f   ¿,ft | tf(x, s))cß2is)ds

= ¿xÍ£   — i   (m - X)¿„0(*, « I m) )
\   |dxJA2 /

possess solutions

d   /• d   r .
(8.5a)       0i(x) =— I    ßd^üix, y \ ß),        fix) =— I    ßduü(x,z\ß),

dxJ Al dx^A2

respectively. Now, by Theorem 7.1 the result stated in connection with (6.8)

and (6.8a) holds for all classes Hn; thus, on writing

h(x)
9 C i d C i

= — I    (m _ X)<Z„Q(x, y I m) ,       h(x) = — I    (m - X)¿Mn(x, z I m) ,
dx«/ Ai dx./ Aa

it is inferred that

&

(8.5b)

/— I   (m - x)¿„n(x, y | m)   I — I   /^U,z I m) U^
0   Ldx J Ai J Ldx J A2 J

=   1       — I     0» ~ X)¿„í2(x, s | m)      — I    ßd,&(x, y\ ß) \dx.
J a    LdX J A2 J   LdX JAl J
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Finally, (8.1) is obtained if one takes X = 1 +iß (3^0) and equates the imagi-

nary parts of the two members in (8.5b).

In demonstrating the property (8.2) for any class 77n one may follow a

method analogous to that indicated in (C) for the class 77j.. We shall not give

the details.

The identity (8.3) may be established by induction by consecutive pas-

sages to the limit.

The property (8.4) is a consequence of (8.3).

The results (8.1)-(8.4), which have been verified for all classes Hn

(n = l, 2, • ■ ■ ) are of interest in themselves as well as with a view to further

developments for the case when operators L, of a more specialized character than

required by Definition 2.3, are available.

9. Regarding reducible sets. In the sequel, throughout, we let ß denote

a number of class I or IL* Let E be a nondense closed set on (a, b) with a de-

numerable derivative 77. Then E will be denumerable and we may write

(9.1) E= (h,I2, ■■■),

(9.1a)                                       E*=iI},Iè, •■■);

moreover, E will be reducible and the derivative of order ß will be zero,

(9.1b) £0 = 0,

for some ß of class I or II (we take ß as the least number so that (9.1b) holds).

In §§2-8 the case corresponding to ß of class I has been already considered.

This is the reason why our attention will now be confined to the case of ß

(in (9.1b)) of class II. Necessarily ß will be not a limit number.f

We shall need the following result.

Let Gi, G2, ■ ■ ■ be a simply infinite% sequence of closed sets, each containing

the next and each having some points not in the next. Let

(9.2) G=GiG2- ■ ■ cO,

where O is an open set. Then either Gi c O or there exists a number j so that

(9.2a) G,cO iv = j+l,j + 2, ■■■),

while

(9.2b) G,<1:0.§

* It is to be recalled that the numbers of class I are the ordinals 1, 2, • • • . The numbers not of

the first class, but obtainable by the use of the two Cantor generation principles, are of class II.

As usual u will denote the first number of class II.

f That is, there will be a number (3—1.

Î An infinite sequence q¡, q2, ■ ■ ■ , q„, ■ • ■  is simply infinite if n<a.

§ <t in (9.2b) signifies that G¡ has points not in 0.
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Suppose the above is not true. Then every set G, (v = l, 2, ■ ■ ■ ) has a

point by exterior to O. The point bi will be in each of the sets Gi, G2, ■ ■ ■ , G„,

and will be not in Gni+i; in fact, if this were not the case bi would be in G

and, by (9.5), it would be in 0. The point b„l+i (exterior to 0), being in G„I+i,

will be distinct from hi; bni+i will belong to the sets

Gni+i,Gm+2, • • • , G„2 [Z»„1+i cG„2+iJ,

since otherwise one would have

bni+icG„1+iG„1+2 ■ • • = GcO,

which presents a contradiction. Thus, step by step we obtain an infinite se-

quence of points {£>ni+i} (0 = «o<«i< ■ ■ • ), which are all distinct and are all

exterior to O, with the point b„i+i belonging to the finite number of sets

(9.3) G„i+i, G„i+2, • ■ • ,G„i+1,

and not belonging to G„i+1+i (such a point is obtained for i = 0, 1, ■ • • ). Let

(9.3a) {ck\ (¿=1,2, •••)

be a subsequence of {bni+i} such that

(9.3b) lim ck = c [ck = bH{>+i] i' = ik; ii < h < • ■ •}

exists.

Now, the points Ci, c2, ■ ■ • are all in Gni-+1 (i' = ii); the latter set being

closed, c will be in it. In general, the points ck, e*+i, • ■ ■ will be all in G„,.-+i

ii' = ik) and hence, this set being closed,

(9.3c) ccGn,+i ii'=ik).

The relation (9.3c) is asserted for i' = ii<i2 < ■ ■ . Clearly c belongs to every

set G, iv = 1, 2, • • • ) and thus is a point of G; hence included in 0. The latter

set being open there exists a closed interval A, containing c in the interior and

contained in 0. In A there will be some points ck; that is, some points b„; this

is contrary to the italicized statement preceding (9.3). Whence we deduce the

truth of the statement in connection with (9.2)-(9.2b).

Conforming with the notation introduced in §2, a set E satisfying (9.1b)

(as stated) will be said to belong to 7?0_i (Definition 2.1). By definition of ß the

set E?-1 will have some points; in view of (9.1b) the number of these points

will be finite. Thus

(9.4) £*-» = ilf\ Ii-1, ■ ■ ■ , h"-1) = (ii, f2, ■ ■ ■ ,sk)    iß - 1 of class II).

We may also write
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(9.5) E"=*ilf,lf, •••) («<|8-1).

The sets Ea (a</3 —1) will be all denumerably infinite.

We form a set A^Si) of closed intervals

(9.6) A;(«i) - is, -h, Sr + h) ("= 1, • • • , A; Si > 0;cf. (9.4))

in such a way that they have no points in common and that no end point of

them is a point of E. Given e (>0), however small, such a construction can

always be effected with

(9.6a) 0 < ôi < e.

This is established using the fact that E is nondense. In fact, without loss of

generality one may assume (for the purposes of demonstration) that the s, are

interior to (a, b) and take e sufficiently small so that the intervals*

(9.6b) (i, - e, s, + e) iv = 1, • • • , A)

are without common points and are interior to (a, b). In the interval (si, Si+e)

we find a subinterval (si+aí, Si + bi) void of points of E; in the interval

isi — W, Si — a} ) we then find a subinterval (si — b\, si — ai) free of points of E.

We now consider the interval is2-\-ai, s2 + bi) [ c (s2, s2 + e)]; in it is found an-

other interval without any points of E, say is2 + a¿, Í2 + W). Turning our at-

tention to (s2 — ¡V, s2 — a} ) we find a subinterval (s2 — b2, s2 — a2) free of points

of E. Clearly, the intervals

is, — b2, s, — as),        isv + a2, s, + b2) iv = 1, 2)

will be void of points of E. Continuing in this manner one finally obtains num-

bers ak, bk so that

is, — bk, s„ — ak) c is, — e, S,), (sy + ak, s, + bk) c (sy, s, + e) (v = 1, 2, • • • , k),

and so that the intervals here displayed in the first members are free of points

of E. Accordingly, if one takes

ak < Si < bk,

all of the conditions stated in connection with (9.6), (9.6a) will be satisfied.

A choice of the 5,, according to the above scheme, will be implied throughout

in the sequel.

Inasmuch as ß is not a limit number, there exists a limit number 7^/3—1

so that there exists no limit number t for which y <t <ß. The sets correspond-

ing to ß-1, ß-2, ■ ■ ■ ,7 + 1,

(9.7) EP-1, EP-*, ■ ■ ■ , Ey+\ £>

* Unless stated otherwise, all the intervals will be supposed to be closed.
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can be covered in succession by the ß—y sets

(9.7a) Al(«i), A2(52), • ■ • , A^»(*-t-i), A^*(«^),

each set (9.7a) to consist of a finite number of closed intervals, the totality of

all intervals, involved in (9.7a), being without common points, no end point of

any of these intervals being coincident with any point of E. The consecutive sets

(9.7a) are constructed following the procedure described in §2. Thus, A2(52)

will consist of the intervals

A,2 (St) = ist2 - 02, s/-2 + o2)      iv = 1, • • • , m(Si)),

where the s/~2 (1 ^v^miSi)) are the points of Eß~2 exterior to the set Ax(ôi).

The set A3(53) will consist of the intervals

A,3 (SV) = ist3 - «., st3 + S»)

[v = l, ■ ■ ■ ,miSi, 52); the s/-3 are points of Eß~3 exterior to the set A'(5i)

+A2(52) ]. The set A^-^5/?-?-!) wih consist of the intervals

Af-T-KV-T-l)   =   (*F™   -   Sfi-l-l, ^7+1 +  Sß-y-l)
(9.7b)

[v = 1, • • • , w(oi, ¿a, • • ■ , 8/j_t_î)J;

where the s,t+1 are points of T^exteriortothesetA^oi)-]-hA0-T-2(53_7_2).

Since Ey+1 is the derivative of 7£t it is observed that the limiting points of Ey

are all interior to

(9.7c) A^oi) + A2(52) + • • • + Afi-y-ii&^r-i);

only a finite number of the points of Ey, say

(9.7d) si, ■ ■ ■ , smi       (ml = m(8i, 52, ■ ■ ■ , o^-i)),

will be in the open set (a, b) minus the set of (9.7c). Hence the points (9.7d)

can be covered by the set Aß—*(8ß-y), consisting of intervals

(9.7e)       AfiSß-y) = is]   - 5ß_y, »J + 5^_T)    [v = 1, • ■ • , m1 (cf. (9.7d))].

On taking account of the italics subsequent to (9.7a) it is clear that the points

belonging to the sets (9.7) are all in the open set

(9.7f) r(o1)02, •■ -,Sß_y),

obtained by taking the sum of all the intervals involved in (9.7a) and discarding

the end points of these intervals.

Suppose now that the limit number y, obtained above, is

(9.8) 7 = 1-co.

In view of the results (9.2)-(9.2b), on noting that EwcOw, where Ou is the
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open set (9.7f), it is inferred that either all the sets of the simply infinite se-

quence*

(9.8a) £,£!,•••,£«,•••

are in 0„ or there exists a number/ [ =/(5i, S2, ■ • • , 5^_T) <«] so that

(9.8b) E'+'cO. (y- 1,2, •••),

while

(9.8c) E'<tOu.

The derivative E'+1 of E> being contained in 0„, only a finite number of

points of E', say

(9.8d) St, • • • , s*i [m1 = w(5i, 52, • • • , 5^_7)],

will be exterior to Oa, no point (9.8d) being coincident with any end point of

the intervals constituting Ou. The points (9.8d) can be covered by the set

Ai_T+1(5^_7+0, consisting of the intervals

AZ-T+KS^+O  =  ÍS¿ - h-y+U SJ + ¿/3-Y+l)
(9.8e)

[v = 1,   • • ■ , m>; wifrom (9.8d)]

in such a way that the intervals in (9.7a), (9.8e) have no points in common,

while no point of E is an end point of these intervals. Following the pro-

cedure of §2 we find that the remaining sets

E'-\ E'-2, ■ ■ ■ , E\ E° = E

are covered by the sets

(9.9) a^+hs^+o, a^+hs^+s), • • • , ùP-y+'ib-y+t), A^+'+KS^+í+O•

Each set (9.8e), (9.9) will consist of a finite number of intervals

Af-T+K&ß-j+t) = W**-1 - h-y+i, sJ+1-{ + b-y+i)

[v - 1, • • ■ , mx; m1 = w(5i, S2, • • • , S,9_7+<_0; i = 1, 2, ■ ■ ■ , j + l\,

where s,r is in Er; moreover, the construction is so effected that the closed in-

tervals (which are finite in number), involved in the sequence of sets

(9.10) AKh), A2(52), • ■ ■ , A<w+i(V7+i+0,

are all without common points and that no point of E is an end point of these

intervals. It is to be noted that the choice of S„ (>0) (Kv^ß—y+j+l) de-

pends on that of Si, 52, ■ ■ • , 5,-i; however, the choice of 8i, 52, • ■ • , 5„_i once

* By definition E" = ElE2 ■ ■ ■ E" ■ ■ • («<w).
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made, one may take S, arbitrarily small and thus one may let 5, approach zero

through suitable values.

We thus obtained a type of a covering theorem for the set E in the case

when the limit number y involved in (9.7f) is of the form 1 w.

Suppose now that a covering theorem of the above description holds for

all sets E for which

(9.11) y = v<», 1 ^ 7? < a,

where a is a number of 1st or 2d class. We wish to establish such a theorem

for i]= a.

Case 1. ais not a limit number. In this case we make use of the fact that

the theorem holds for a —1.

Case 2. a is a limit number. In considering Case 1 it is noted that, by

hypothesis, there exists a finite number of sets

(9.12) AK«i),A*(«,), ••■ ,AH(SH),

each consisting of finite number of closed intervals; the totality of these in-

tervals will be without common points; every point of E will be an interior

point of one of these intervals; it may occur that some of the subscripts in

(9.12) (1 o <fr) depend on Si, S2, ■ ■ ■ , 5,_i. The number ß (cf. (9.1b)) will

be, of course, of the form

(9.12a) ß = (a - l)co + q (0<q<o>);

moreover, according to the hypothesis, a covering theorem of the stated type

will hold for every ß (a fixed) with q■ = 1, 2, • ■ • , where q <w. It is desired now

to obtain such a result when ß has a value

(9.12b) ß* = aw + p (0<p<u).

With Eß' = 0, EP'-1 will consist of a finite number of intervals which can be

covered by a set A*1(ô*) of intervals; in succession we construct sets

(9.13) A*1^!*), A*2(52*), ■ ■ • , A*»(5P*),

analogous to the sets (9.7a), and with similar properties. In particular, the

last set in (9.13) will consist of the intervals

(9.13a) A*"(8*) = is,*° - 5*, sf + Ô*)        [v = 1, • • ■ , ««],

where m1 = w(oi*, 52*, • • • , 5/_i). The s,au in (9.13a) will be points of Ea";

all the other points of E<"° (an infinity of them) will be interior to the set

A*i(§*)+ . . . +A,*"-1(53f_1).

By definition
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(9.14) Eaa  =   £(«-l)»+l£(«-D"+2  .   .   .   £(a-D»+n ... (»<»).

Also, in view of the preceding it is observed that

(9.14a) E°»cO,

where 0 is the open set obtained by discarding in

A*W) + • • • + A,*»(8p*)

the end points of the intervals involved. On taking note of the result (9.2)-

(9.2b), as applied with G,=E(-a-1)w+", it is accordingly concluded that for

some finite q (>0)
£(o_i>„+,c0 iv = q,q+\,- ■ ■),

while

(9.14b) £(a-i)u+«-i<to|

unless E(-a-1)"+1 c 0. It is arranged so that no points of £(«-i)»+ï-i is a bound-

ary point of 0. Only a finite number of points of £(»-i)»+«-i; say

(9.14c) Sv<,a-i)*+a-i [v= 1,2, ■■■ ,m1;m1 = »(fif, ■••,«/)],

will be exterior to (9.14b).f If we consider the closed set

(9.15) G = E-[(a, b)-0],

the consecutive derivatives of G will be

(9.15a) G" = E'-[ia,b)-0] (, = 1, 2, • • • , (« - 1)« + q),

where Gc<,""1)0,+3_1 consists of the points (9.14c) and, consequently,

(9.15b) G" = 0 iß= ia- l)w + q).

In view of the hypothesis made in conjunction with (9.12), applying the state-

ment, just referred to, to the set G, we obtain a finite number of sets (9.12)

covering G, as stated subsequently to (9.12)4

Every point of G is interior to (a, b) —0; G being closed, the sets (9.12)

(covering G) can be replaced by subsets

(9.16) A¿ (it), A? (Ä,),- • • , Ai^iÔH),

respectively, obtained by replacing the intervals involved in (9.12), whenever

necessary, by suitable subintervals in such a manner that not only the proper-

ties (with respect to (9.16)) of (9.12) are maintained but also every closed in-

terval involved in (9.16) is interior to (a, b) —0. The finite sequence of sets

(cf. (9.13))

t That is, will be interior points of (a, b)—0.

% In the aforesaid statement replace £ by G of (9.15).
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A*W), A*2(á2*), • • • , A*"i8*), A¿iSi), Aí(as), • • • , A?i6H)

will have all the required covering properties with respect to the set E, for

which 7^=0 (cf. (9.12b)). In other words, if Case 1 (introduced subsequent

to (9.11)) is on hand and if the theorem holds for a — 1, then it will also hold

fora (a from (9.11)).

We now consider Case 2, when a in (9.11) is a limit number. Thus, it is

assumed that every set E with Eß = 0, where

(9.17) ß = Vw + q (1 ^ Jj < a; 1 ^ q < w), t

can be "covered" by a finite number of sets

(9.17a) A\8i), A2(52), ■ ■ ■ , A*(ôff),

each consisting of a finite number of intervals. Let £ be a set, with ~Eß* = 0,

where

(9.17b) ß* = au + p (0<p<w).

It is observed that Eaw could be considered as the set common to all the sets

(9.17c) I'" (1 ^ i, < a).

We again form a finite number of sets (cf. (9.13)-(9.14a))

(9.17d) A*K8i*),--- ,A*vi8*),

each consisting of a finite number of intervals; the last set displayed will be

of the form (9.13a), where the s,a" (finite in number) are points of E°"", the

other points of Ë<"° being interior points of A*1 (5i*)+ • ■ • +A*',-1(5P*_1). The

sets (9.17d) "cover" the sets Eß*~l, Eß*~2, ■ ■ ■ , Ë°><*. We again have

(9.18) £»"cO,

where O is the open set, obtained by taking the sum of the sets (9.17d) and

discarding the end points of the intervals involved.

The sequence of sets

(9.19) E1", Ë2», • • • , Ei», • • • iv<a),

even though denumerable, may be not a simply infinite sequence. It is not

difficult to see that the set Ea", which is the product of the sets (9.19), could

also be considered as the product of the sets of the following simply infinite

sequence:

f It is understood that EP'1 has some points. In (9.17a) the last set contains just a finite number

of points of E, all the other points of E being in the other sets of (9.17a).
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(9.19a) £*", £*", ■ • • (ijt < n, < ■ ■ ■ ; 17, < a),

provided the r\, are suitably chosen.f

With (9.18) and the above in view, the theorem (9.2)-(9.2b) can be ap-

plied with G = Êa" and G, = £'»". Thus there exists a finite number/ so that

(9.20) I""cO (*=/+ l,/+2, ••• ),

while

(9.20a) Ev<tO,

unless £i" c 0. No points of E*i" will be coincident with any of the boundary

points of 0. Form the set Ei = Ev[(a, b)—0] and write

(9.21) E = E[ia, b) - 0];

then

(9.21a) Ey = E~y[ia,b)-0] (T = 1, 2, • • • ),

(9.21b) ¿v = ¿1.

Now, by (9.20)

(9.21c) ¿W = 0.

Thus, for some /S^ij/W+Tát/z+j« we have

(9.21d) E* = &* = <).

Since 7?,+i<a one has ß<au; hence in (9.21d) /3 is of the form (9.17). Let

(9.17a) constitute the set "covering" E. By taking suitable subintervals of

the intervals constituting the sets (9.17a) we correspondingly obtain other

"covering" sets:

(9.22) A11(51),A12(52),-- • ,A?(6H),t

having the same properties as (9.17a) but which at the same time are interior

to (a, b) — O. The reasoning in this connection is the same as that previously

made in connection with (9.16). Adjoining the sequences (9.22), (9.17d),

and

(9.23) A*1^*), A*2(S2*), • • • , A*»(SP*), At» (it), ■ • • , A^(8H),

we obtain a finite number of sets, each consisting of a finite number of closed

intervals, the totality of these intervals possessing no common points, every

point of Ë being an interior point of one of the intervals involved; the se-

t Thus, for instance, if a=a3, one may take i¡, = vu2. With a a limit number, r\, (<<*) must be

chosen so that, given any y<a, one may find a value v (j/<w) for which 7<?!,,<a.

% Here the 5, may be different from the original ones.
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quence (9.23) will "cover" the set Ë in the sense previously attributed to the

word "cover."

This completes the transfinite induction.

Theorem 9.1. Let E be a reducible set as stated at the beginning of this sec-

tion icf. (9.1)-(9.1b)). The sets

E, E\ E2, ■ ■ ■ , E»-1 iß of ist or 2d class)j

can always be "covered," in the sense indicated above by a finite number of sets

(9.24) AKii), A2(Ô2), • • • , A"i8q) (0l > 0, • ■ • , 8a > 0),

the set A"(ô,) consisting of a finite number of intervals of length 25„ no point

of E being an end point of any of the intervals involved.

Note. It is observed that in (9.24) the choice of a particular 5, iv>\) de-

pends on that of 5i, • • • , ô,_x; moreover, having chosen Sh ■ ■ ■ , 5,_i, we may

take the number 5, arbitrarily small. It is also to be noted that the number q

in (9.24) may depend on the choice of Si, S2, ■ ■ • .

10. Kernels of transfinite rank. Such kernels will be introduced by means

of the following definition.

Definition 10.1. Let E be a closed reducible set on (a, ¿>), as described in

the beginning of §9, with Eß = 0 iß a non-limit number of class II) and Ti"-1 con-

sisting of some points inecessarily finite in number). Let A"(o,) [v = l,2, ■ ■ ■ ,q

(<«)] be the corresponding covering sets, referred to in Theorem 9.1. ^4 kernel

Kix, y) will be said to belong to the class Hß if, for all "admissible" values S,

(>0;y«l, • ■ ■ ,q),

(10.1) JT»»'»"'••••»*(*, y)c7,2 iin x, y;for a ^ x, y ^ b).

Here

(10.2) IT4»-»*'••••««(*, y) = 0 [x w£!=1A"(o,);a ^ y ^ b ior a ^ y < x)];

(10.2a) £*»•**• "••*«(*, y) = 0 [y in ^-iA"(á,); a ^ x ^ b ior a ^ x < y)];

(10.2b) Kh>**'••••'i(*, y) = Kix, y) [at all other points of a g¡ x, y ^ b].

We get in succession

lim u:4i'---'4<x, y) = .rv4''---'4«-i(x, y),
a,

(10.3) lim £*»•••••«-»(*, y) = ^■■■■■s*-*ix, y), • • • ,
S5_l

lim Ks^ix, y) = K^ix, y),        lim K'^x, y) = Kix, y).
Ô2 S¡

Thus Kix, y) is a <?-fold repeated limit of the function of the first member in

t As noted before, necessarily ß is not a limit number.
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(10.1).f Here and in the sequel it will be implied that the 5„ have "admissible"

values! and that, whenever we let S„—>0, 5, approaches zero through such val-

ues.

Unless stated otherwise the number ß, referred to in Definition 10.1, will

be taken of the special form

(10.4) ß = u + p    (0 < p < to; co the first number of class II);

this is in order to gain simplicity of exposition. Most of the facts established

for the case of (10.4) could be extended without difficulty to kernels for which

ß is any transfinite number of class II. In this connection the method of trans-

finite induction, along lines already employed in §9, would suffice for demon-

stration of the majority of the results.

Example of a kernel included in Ha+i. We shall construct a set E with

£">+! = 0 and E" containing at least one point. Following a device indicated

by H. Lebesgue§ we define E as follows. Let Ft be the operation such that, if

it" is a set of points on (0, 1), FiiH) is the set of points obtained by a homo-

thetic transformation of H upon the interval (l/(¿ + l), 1/«).|| Let O represent

the point zero. Form in succession the sets

Ai = O + Fi(0) + F2(0) + ■ ■ ■ ,

A2 = 0 + Fi(Ai)+F2(Ai) +

(10.5) .•.,

An = O + FiiAn-.i) + F2Un-0 + • • • ,

With the aid of the sets (10.5) one may form the set

(10.5a) E = A„ = O + FM!) + F2iA2) + ■ ■ ■ + FmiAm) + ■ • • ;

E will be reducible and

(10.5b) E"=0,        E"+1 = 0.

Let us find the consecutive derivatives of E. It is observed that

E1 = O + FiHAi) + FiiA,) + ■■ ■ =0 + FiiO) + F2(AX) + F3iA2) + ■ • • .

Continuing thus, it is found that

t The values on the lines x (or y) =s/ (the s/ being points of Er) are of no importance for our

purposes.

X That is, values for which the conditions specified in §9 hold.

§ H. Lebesgue, Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Paris, 1928, p. 315.

|| That is, if h represents a point of H, the corresponding point of F¡(H) will be represented by

l/(*+l)+(l/»-l/(»+l))A.
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(10.6) E» = O + FniO) + Fn+iiAi) + Fn+2iA2) + ■■ ■

for m = 1, 2, • • • (re<w). It is noted that En is in the closed interval

(0, 1/(m+1)), the point l/(w+l) being an isolated point of En.

To cover E, as defined by (10.5a), by a finite number of sets of intervals,

following the scheme which we established previously, we proceed as follows.

The set Ax(5i) will consist of the single interval

(10.6a) AiHSi) = (0, 50 (0 < 0l < 1/2),

where 5i is not coincident with any of the points of E. The set (10.6a) "cov-

ers" E". Corresponding to ôi there exists a number j=jiSi) [/(ii)—»« with

1/Si], such that every point of each of the sets

(10.6b) E*\ Ei+2, ■ ■ ■

is interior to* (0, 5i), while the set E' has points not in Ai^ôi) ; that is, there

are points of E1' in the interval (5i<#<1). In view of the statement subse-

quent to (10.6) one clearly has

1 1
<   5l   <

7+2 7+1
that is,

(10.6c) 2<7< —-l.t
01 01

The points of E> exterior to A"-(5i) will be 77,(0), that is l/fj + l), and those

points of Fj+iiAi) which are to the right of Si. The points of Ax being

0, 1/2, 1/3, • • • , those of £)+i(^i) will be

(10.6d) —— + lmv  Hi+i = l/ij + 1) - 1/(7 + 2)),
7 + 2

where p = 0, 1/2, 1/3, • • • . Accordingly it is concluded that the points of E>,

exterior to A1iSi), will consist either of the single point 1/0°+1), or of the m1

(>1) points

(10.6e)

i        1 ,• 1 1
Si — - (    S2 —-1-lj+1,

j+1 7+2       2

,_      1 1 1 1
s* —  . ;   „ + T" *f+u ' " ' i   s»«i —  . H     ; lj+i,

j + 2       ó 7 + 2      m1

where m1 = w(5i) and

* According to previously made conventions, "interior to" here means "in the interval a g x < Si"

t Given an "admissible" 5i this defines the integer.;" uniquely.
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(10.6f) -"-Kml<
5i - (J + 2)"1 Si - ij + 2)-i

In succession "covering" sets Ar(5r) (r = 2, 3, • • • , j+2) are obtained, with

Ar(5r) consisting of intervals

~ -* i  O_r y i  o_r

(10.7) A,(«r) = (s,        -«,,«;        +5r)

[v = 1, 2, • • • ,m1;m1 = w(5i, 52, ■ • • , 8,_i)],

so that £' is interior to A1(S0+A2(52) (a finite number of points of E' in

A2(52)), E'-1 is interior to A1(S1)+ • • • +A3(53) (a finite number of points of

E'-1 in A3(53)) and so on, with E = E° interior to the set

(10.7a) AH50+ ■ • • +A'+2(5i+2),

only a finite number of points of E lying in A,+2(Si+2).*

Let

(10.8) Kix, y) = g(x) (forO g y < x),

(10.8a) Kix, y) = giy) (for 0 g x < y),

where g(#) is defined as follows. The set E of (10.5a) being closed nondense,

the complementary set (0,1) — E will consist of a denumerable infinity of open

(except at 1), nonoverlapping intervals

(10.8b) (<*, bi)   (0 á <K < h S 1; i = 1, 2, • • • ),

some of them being adjacent. We let g(x) =0 for 3/4 ^ a; ̂  1 and in the other

intervals (10.8b) we take

gix) = 0 (for ai < x < (a< + ¿0/2),

(10.8c) c<
s2W - r^-; (for ^ + &')/2 £*<**;«<> o). t

¿V — x2

In accordance with Definition 10.1 related to ÜT(x, y) will be the kernel

(10.9) K'^"->'i**ix, y) = g«t. ••■.*>■+•(*) (0^y<x),

(10.9a)               Ç»i. ••-.«#+*(», y) = f«i.---.»m(y) (0 ^ x < y),

where

•*>«(*) -0 [for*inS^A'(«,)],

■8>«(*) = «(*) [for x in (0, 1) - E:'Í2iA"(S0 ].
(10.9b)

* The numbers ml involved in (10.7) can be specified by inequalities in terms of b\, ■ • ■ , 5r-i

in succession, making use of the fact that the S, are chosen so as to secure "covering" in our sense,

t The definition for x equal to a number corresponding to a point of E is immaterial.
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Now the G¿ in (10.8c) are points in E and they are interior to the finite num-

ber of nonadjacent nonoverlapping intervals constituting (10.7a). The set

,'+2

(10.9c) (0,1)-I¿'(í.)
i

will consist of a finite number of open intervals T. Any particular interval T

will be, together with its end points, interior to some interval (a¿, b¡). In view

of (10.8c) and (10.9b)
I I I  Ci I

g»i,---,tf+tfx) 2 < -¡-r ix in interval T).
'   '     | if - x2 |

With bi exterior to the given interval V, |g4i-'"-{í+*(a;)| will be uniformly

bounded in this interval. Hence this function will be uniformly bounded in the

total set of intervals constituting T, inasmuch as the number of these inter-

vals is finite. On taking account of the first relation (10.9b) it is finally con-

cluded that

(10.9d) | g»»-•••■»,«(» | á ß(8h • • • , 8i+2) (0 = x ^ 1),

where the second member is independent of x and is finite whenever

8i, • • • , ôj+2 have positive "admissible" values. In consequence of (10.9),

(10.9a), and (10.9d) ^■■••■4í«(x, y)cZ2 (in *, y; for 0^x, y^l). Thus,

(10.8), (10.8a) furnishes an example of a kernel Kix, y) c 77„+i. Now, we recall

that convergence of

(10.10) I    K2ix, y)dy (almost all x on (0, 1))
J 0

would imply that 7f (x, y) is essentially of one of the classes of kernels con-

sidered by Carleman. This, however, is not the case. In fact, the integral

(10.10), if convergent, could be written as

(10.10a) xg2ix) + j    g2iy)dy.

For every 0^x<3/4 the interval (x, 1) would contain at least one point bt

(cf. (10.8c)). The presence of such an infinite discontinuity implies that there

exists no integral (10.10a).

On determining in succession the limits

lim ÜT4l'---'4''+2(x, y) = KSí'---'s'+1ix, y),
Sj+2

(10.11) lim 7C4i'---'4'+i(x, y) = Ks^---^ix, y), ■ • ■ ,
8/+1

lim Tí41'82 = .rr4l(x, y), lim £«»(*, y) = Kix, y),

Si h
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it is observed that

£'».-.«>«(*, y)<zHi,        **.-.•*(*, y)cff2,
(10.11a)

Ks^>ix, y)        ctf„ K^ix, y) cFi+1.

The latter relationship above implies that isT(x, y) is a limit of a simply infinite

sequence of kernels each of which belongs to a class H, iv <co). It is of interest

to assure that

(10. lib) |    | K^ix, y) \2dy (all "admissible" Sx > 0)
J 0

diverges, since in the contrary case K6lix, y) would be essentially of Carle-

man's type and K~ix, y), itself, would be of rank two. Now

(0    (0 ^
KHx, y) = <

lo   (0 g

0    (0 ^ x ^ 5i;0 ^ y < x),

y á«i;0 á *< y),

and X8l(x, y)=Ä"(o;, y) at the other points of 0g#, yS»l.* The integral

(10.11b), if it exists, is of the form (10.10a), where gix) is replaced by gSlix),

ro     (o¿*áii)i

[gix)    iSi<x^l).

a
g°i(x) = <j

Thus, the integral (10.11a) will exist if and only if

(10.11c) J   \gSi(y)\2dy

exists. The expression last displayed is identical with

f   g2(y)dy (forO ^ x ^ &i),
J h

which diverges for 5i<3/4 (cf. the statement subsequent to (10.10a)). When

5i<a:<l

f   | gH(y) \2dy=  f   g2(y)dy;
J x J i

this diverges for reasons previously given with reference to (10.10a). Hence

it is inferred that (10.11b) diverges, as stated. It remains to make certain

that K(x, y) does not belong to a class H„, where «<co. In fact, suppose

K(x, y) cHn. Then by Definition 2.2f there exists a set E = En, with

* In accordance with certain previous remarks, the values of K(x, y) on lines s=number corre-

sponding to a point of E are immaterial.

t To conform with the present notation, &„ A", in Definition 2.2, are replaced by S,+i, A"+1, re-

spectively.



1939] SINGULAR INTEGRAL EQUATIONS 269

£n-l  =   (5lj  ...   >Sh),

and sets Ai' (ô,) (v — l, •••,») of intervals such that the points of Ë"-' are

interior to Aix(o°i)+ • ■ ■ +Ai*(5<) (i = l, ■ ■ ■ , n), the only points of E"~* in

Ai* (¡5.) being the centers

s" [v = I, ■ ■ ■ , m1; ml = m($u 82, ■ ■ ■ , ô,-_i)]

of the constituent intervals of Ai* (¡5¿). Moreover,

(10.12) ^■••••"s"(x, y)ci2 (in x, y);

here the first member equals 7i"(x,y), except for x in G =Ai1(f5i)-|- ■ • •+Ain((5„)

(0i£y<x) and also for y in G (0^x<y), where the first member of (10.12)

is zero. The complement of G could not contain an interval (0, h) (ä>0), in

fact, if it did one would have

/> h      /i h /ti     ä h

I     I K>i.---,'*»(x, y) \2dxdy =   I       I     K2ix, y)dxdy.
o    J o J 0    ** 0

The integrand last displayed has an infinity of infinite discontinuities within

the field of integration, each of which, alone, would suffice to secure diver-

gence of the integral in question. Thus (10.12) does not hold for all "admissi-

ble" sufficiently small Sy, unless G contains an interval (0, h) (A > 0) for every

"admissible" choice of d\, • • ■ , Sn* Hence the point 0 must be the center

(that is, end point, in this case) of an interval of G. Suppose this point is the

center of an interval 1\ of the set Air(o.r). We recall that having made an

"admissible" choice of Si, 82, • ■ ■ , 5,—!, the choice of ï„ • ■ • , Sn depends on

that of Si, ■ ■ ■ , 5r_i; however, Sr may be taken arbitrarily small. Thus, with

ôr suitably small, there will exist an interval T2, adjacent to and nonoverlap-

ping with Ti, which will be in the complement of G and in which 7£(x, y)will

have infinite discontinuities (cf. (10.8)-(10.8c)); on the other hand,

K^'-'-'Hx, y) = Kix, y)

for x in T2 and 0 ^ y ;£ 1 and also for y in T2 and 0 ^ x ^ 1. The presence of the

above discontinuities implies that (10.12) does not hold, as stated. Thus, our

kernel Kix, y), as given by (10.8)-(10.8c), is of the transfinite class Hu+i and

does not belong to any class of index less than co + 1.

Following the procedure indicated from (10.8) to the italicized statement

above, obvious generalizations can be made regarding existence and construc-

tion of kernels of various transfinite classes.

11. Results for classes 77^. Let Kix, y)cHß where ß=u+p (0</><w).

* A may depend on &,•••, in.
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For the corresponding set E we shall have

(11.1) #*»"»-(».) iv= !,■■■ ,k).

Sets A"(50 each consisting of a finite number of intervals are constructed so

that

E-+P-1 c AK«0,        ¿"+p-2cA1(5i) + A2(52), • • • ,

(11'la) E^cà^Si) + ■■■ + A^i5p-i),     E"cA\5i) + ■■■ + A»(íp) = F,

where G cH signifies that every point of G is an interior point of H. In

(11.1a) the only points £"+?-< which are in A¿(50 are the centers

(11.1b) s"+P~x [v= 1, ■ ■ ■ ,ml;mx = «(it, • • • ,S,_,)]*

of the constituent intervals of A*(S0; this assertion is made for i = 1, • ■ • , p.

Furthermore, for some/=/(5i, • • • , ôp)

E'+'cT [v = 1,2, ■ ■ ■ ; cf. (11.1a)],

while

(11.1c) E'tT,

the points of E', not in T, being finite in number,

St, • • • , s'mi im1 = miSi, • • • , dD)).

Further sets A"(50 iv = p+l,p+2, ■ ■ ■ ,p+j+l) of intervals are constructed

so that

e> c r + a^+KVO ,      ¿'-1 c r + a "+'(5^0 + A"+2(sp+2),

(11.2) E1cT + A'+liSp+i)+ ■ ■ ■ +A»+'(S^0,

£» = Ecr + A^iôp+i) + • • ■ + AP+'+XSp+í+O,

the symbol c having the same meaning as in (11.1a), the only points of E'~r

in Ap+r+1iôp+r+i) being the centers

(11.2a) s[   , s2T, ■ ■ ■ , sj [m1 = m(8i, • • ■ , 5^0 ]

of the intervals constituting Ap+r+1(5p+r+0 (r = 0, 1, • ■ • ,/).

According to Definition (10.1), associated with Kix, y) will be the function

(11.3) £«!•»«• ••••««(*, y) (? = #+/+!),

satisfying the conditions of that Definition. In succession we define the limits

* For ¿=1, nP^k.
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lim  KSl-'--'s'*'+1ix, y) = K^'-'-'^'ix, y),
°p+j+i

(11.3a) lim ^■•••■4»+>-(x, y) = i^i.---.«^,-,^ y), ■ ■ ■ ,

lim Ks^-"-s^ix, y) = 7i4l'----4"(x, y),

p+i

where, in particular,

K'i-'--->'ix, y) = 0 [for x in T; 0 ^ y = l],
(11.3b) r -

= 0 [for yin T;0 = x á l;cf. (11.1a)],

and TsT41' ■ ■ ■ ̂"(x, y) =7f (x, y) at the other points oíO^X, y — í. It is essential

to note that the kernels involved in (11.3a) are all of finite ranks. The next

limiting process

(n.3c) Hm £*»'••••**>(*, y) = i*1«"••*-»(*, y)
Sp

is essentially distinct from those of (11.3a); it yields a kernel which may be

actually of transfinite rank.* Further limiting processes will yield

lim KSl----'s^ix, y) = 7C4i'---'4^2(x, y), • • ■ ,

(11.3d)
lim Ks^(x, y) = K^x, y), lim 2sT4i(x, y) = Y°(x, y) = X(x, y).

í2 í,

Clearly

(11.4) \K*-'~-l'»ix,y)\£\K'*-~-Mx,y)\        iv - 0,1, • • • , p +j).

Corresponding to the last member of (11.3a) we form the equations

(11.5) 4,4i.---.4p(x) - X J    ^^•••••4"(x, y)^4l'---'4"(y)dy = /(x)      (f(x)cL2),
J a

(11.6) </>4''---'4Kx) - X f   7ís''---'4Kx, y)<i.4i'----4"(y)dy = 0.

Inasmuch as 7i4l'--'4î'(x,y) (5i>0, • • • , ôp>0) is of some class 77n (w<w)

the results of Theorem 4.1 will be applicable to the equations (11.5), (11.6).

Thus, corresponding to 7i4l'-'4p(x,y) there exists a function ß41'' ' ■ ■**(*, y)

such that

(11.7) Var. ß«i-"••»«>(», y|X) Û [(* - <*)(y - a)]l/2,   ß*»'••••'*•(*, y | 0) = 0,

I ß»i. • • • .*p(xi, yi I X) - ß4'' • ■ • '4"(x, y I X) I
(11.7a) . i,i i , s

^ (Ô - a)"2( | y1 - y I1'2 +  | x1 - x I1'2);

* That is, in some cases K*1, ' ' ''Sp-1(x, y) will belong to Hu+¡ and will be not of class Hr (v<w).
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this function may be discontinuous in X for a denumerable infinity of real

values X. In view of (11.7), (11.7a), application of the "Compactness Theo-

rem" (§1), with respect to 5,,, leads to the conclusion that the limit

(11.8) lim 08^---^p(x, y | X) = ^■■■■■s^ix, y | X)   [suitable 5„,,; lim S„,, = O]
5p,r

exists and satisfies

Var. ^■•■■■'^ix, y\\) g [ix - a)iy - a)]ll*,Qpt''~'*>r+(x,y\ 0) =0,
(11.8a) | , |     ,

| Q>i,---.>tr-i(xi}yi\ x) — i28l'---'8^1(^,y|X) | ^ secondmemberof (11.7a);

moreover, Q*»-••••*»->(*, y|X) will have the same descriptive properties as

8»i, • • • .«p(x, y | X). Continuing in this manner along the lines of §4 we conclude

that the results of Theorem 4.1 all hold for the kernel (which is generally of

transfinite rank) KSl-'"-t'-1ix, y). Continuing the reasoning of the type em-

ployed before, passing to the limit, it is established that results of such type

hold for Kix, y), itself. Finally, by transfinite induction the following Theo-

rem is established.

Theorem 11.1. Let Kix, y) be a kernel of class Hß, where ß is any number

of the first or second class (Definition 10.1). With respect to this kernel all the

results istated in appropriate form) of Theorem 4.1 will hold.

Many more significant results for kernels Hß iß >w) can be obtained when-

ever with the kernel in question one may associate an operator L satisfying

the following definition.

Definition 11.1. A linear operator ¿«ft| A(x)) (£ a parameter) will be said

to be associated with Kix, y) c Hß iß>u>) (c/. Definition 10.1) if

(11.9) ¿.ftl^x, y))cL2 iiny);

(11.10) | ¿.(i| **.-■«€(», y)) | <7ft|y),

with 7(£|y) c¿2 iin y), the function 7(£| y) being independent of Si, • • • , ôs;

¿,ft| K^----*<ix, y))^Lxit\K^---'s*-iix¡ y))

(11.11) iq     .
—*¿.ft| tf«i.•■••».-.(*, y))->£*ft| Kix, y));
Oq-l ¡1

(11.12) limix(£ |/v(x))=¿x(£ |/(x)) [when/„(x),included inL2,—+ fix) weakly];

(11.13) f "lxíí\ &>■■■■->*ix, y))fy)dy = Lx(t\f K^----Hx,y)fy)dy\

for all fix) c ¿2. Here Si, ■    -, S, are the numbers referred to in Definition 10.1.

Before proceeding further it is essential to give an example of a kernel of
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transfinite rank, which is at the same time not of any finite rank and with

which one can "associate" in the sense of Definition 11.1, an operator L.

For this purpose consider the kernel K(x, y) defined by (10.8)-(10.8c) (cf.

text from (10.5) to (10.8c)); 7C(x, y) c77„+i and 7f(x, y) does not belong to

any 77, with v <w. The associated operator will be taken of the form

(11.14) L,it\ *(*)) =  f  G(f | x)hix)dx,
J o

where

(11.14a) G(£Jx) = 0 (3/4 á * á 1),

(11.14b) G(£| x) = crll2ib? - x*)llsWiiZ\ x) (yt = (a, + h)/2 ú x < b{),

(11.14c) G(£ | x) = - G<(€ | ai + b( - x), (a< < x =g yt),

the a{ and b( being the numbers from (10.8b),

(11.14d) 0 g Wi(£ | *) á H,    ®<(€ | x) c Z-! (in x; 7< = x < &,-),

the function «>,■(£ | x) being monotone non-increasing in x on (7,-, £>,).

By (11.14b) and (11.14d)

I G(î I x) |2 ̂  — (6/ - yc) (Ti ̂  x < h) ,
Ci

and, in view of the symmetry relation (11.14c),

(11.15) |G(£|x)|2^— (bf -yf) iai<x<bi).
Ci

Thus

ft\Git\x)\*dx=  £ f6'|G(£|x)|2dx
(11.15a)      Ja *' "^

= h2 E — (ft.-2 - >/)(&< - «0 = »2S-
i      Ci

Herewith we choose the d so that the series S of the last member in (11.15a) con-

verges* Accordingly,

(11.16) G(£|x)c7,2 (i»i;0áiál).

In consequence of (11.14), (10.8), and (10.8a),

L,(k\Kix,y)) =j8(f|y) + a(í|y),

(11.17)      , c r1
ßik\y) = giy)\   Git\x)dx,       a(£|y)=|   Git\ x)g(x)dx,

J   0 J M

* This, obviously, it is always possible to do.
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gix) being defined by (10.8c). By (10.8c)

(11.17a) j8ft | y) = 0       (* < y < yt; 3/4 ^ y g 1).

On the other hand, for y,■ ̂ y < 6,-,

f "g(£ I x)dx =  f "g(£ I x)dx + E1 f ' Gft | x)dx,
Jo J at Ja;

where the summation symbol is over the subscripts /, corresponding to the

totality of all those numbers b,- for which b,<bi. Now y,- is the mid-point of

the interval (a,-, b¡) ; thus, on taking account of the symmetry relation (11.14c)

(for/) we conclude that

(11.17b) f 'cft| x)dx = 0.
J a

Hence

f "cftl x)dx = fGftl x)dx iyi^y < b,),
Jo J ai

so that, by (11.14c), (11.14b), and in view of the monotone character of

avftl*),

(11.17c)

/< v n iyi—y n ¡>¿
G(£ | x)dx =  I Gft | u)du = -  I    Gft | u)du

0 Ja; J V

(11.17d)    f^Gftl x)dx
J a

- cr112 f \b? - u2y'2Wiií\ u)du (T< ̂  y < bi);
J V

Ú crll2ibi2 - y2)1/2w,-ft| y)ibi - y)   (7í ^ y < í<).

Thus, in consequence of (11.17), (10.8c), and (ll.l7d), it is inferred that

I /3ft | y) | ^ «><({ | y)ih - r<) (7< ̂ y < &<),

whence by ( 11.14d)

| 0ft | y) | Û Hih -yt)<B iyiúy < h),

which, together with (11.17a), implies that

(11.18) |0ft|y)|<* (Oáyál).

For the function a(£|y), involved in (11.17), one has

I «ft I y) I ̂  «ft) =   f   | Gft | at) | gix)dx = E f ''I Gft I *) I Six)dx,
Jo i    J at
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and, in consequence of (10.8c), (11.14b), (11.14d),

Ir»l*l*«»-r/s,'l«ttl'»l«rzï5»*
(11.18a)

/» bi w<(£ | x)dx < H

1i

for O^ygl. Consideration of (11.17), (11.18), (11.18a) leads to the conclu-

sion that condition (11.9) of Definition 11.1 holds for the case under considera-

tion.

Consider the related kernel K^- ■ ■••*■»(*, y) (cf. (10.9)-(10.9b)). One has

(11.19)     Lxit\ ^•••'>*n*ix, y)) = 0«*.---.*i+i(£| y) + a»i. ••-.»;+>(£ | y),

0*1. •••.*/+»(£ |  y)  = g«l.-".*/+*(y)   j      G({|  X)dx,

(11.19a)

ah.••-.»;+»(£| y) =  j    G(|| x)g4i----.4'«(x)dx.
./„

We have, as can be seen from (10.9b),

0 = | g4l----'4'+2(x) | ^ g(x),      lim  lim   • • • lim ^•••■•íj+2(x) = g(x).
äl d2 ä,+ 2

Thus, by (11.17) and (11.18),

(11.19b)
ß»W".«/+.({| y)\   ¿g(X) \fVGit\x)ds

I J 0
-1 ß(Z \ y) I < «

(OS y á 1).
Also, in view of (11.18a),

| ß»i, • • ■ .»«*(| | y) | ¿  j    | G(£ | x) | g4»' • • • •*«*($ | x)dx

(11.19c)

^  f   | G(£ | x) | g(x)dx = «(Ö <h.
»* 0

By virtue of (11.19), (11.19b), (11.19c) it can be asserted that condition

(11.10) of Definition 11.1 àoWj, wn%7(£|y) =2*.*

To demonstrate the first relation (11.11) it will suffice to

establish
lim0»l."-.*i+t(f|   y)   =  0»1, •••,»/+!(£ I   y),
Ô j"_|_ 2

(11.20)
lim a*i.••-.*/+»(£ I y) = a4i.---.4/+i(y))

: Or, more precisely, with •y(í|y)= |/3(i|y)| +«(£).
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0«i.•••.»#«($| y) = gti.---.tmiy) f Gft| x)dx,

(11.20a) °

a»l."-.»í+l(|| y) =    j     Gftl x)g8l'--''5'+1(x)¿X

where

,„   „,,      i"'-',w(*) = 0 [x in Ai(5i) + • ■ ■ + A'+KSj+i)],
(11.20b)

gh.-,t^x) = g(x)      [x in (o, l) - (Ai(it) + • ■ • + A>+i(áí+i))].

Now, the first relation (11.20) follows from (11.19a), since

(11.21) Hm g*l.---,*t+*(y) = gäi. ■■■.«;■+!(},).

The remaining part of (11.20) will hold if

(11.22) lim   f  Gftl x)g8'.---'8'«(x)¿x =  f  Gft| x)g**-•■■•t^(x)dx.
8j+2    v  y v y

In view of the inequality subsequent to (11.9a)

| G(| | »fc*.-••••*«(*) | ^|Gft|x)|g(x).

The last number, here, is contained in ¿i (in *), as can be inferred from the

existence of the function a(£), introduced subsequent to (11.18). On the other

hand, in consequence of (11.21) the limit (as 5,+2—>0) of the integrand in the

first member of (11.22) converges to the integrand of the second member.

Thus the passage to the limit under the integral sign, indicated in (11.22), is

justifiable. The first condition (11.11) accordingly holds. A11 the other conditions

(11.11) can be demonstrated in succession following the indicated procedure.

In view of (11.14) justification of (11.12) amounts to that of

(11.23) lim   I    Gft | x)f,ix)dx =  f  Gft|x)/(x)dx     (/,(*) -* fix) weakly).
,     J 0 •'0

This relationship, however, holds in consequence of (11.16) and of Theorem

1.4.
Finally, demonstration of the condition (11.13) for the case under consid-

eration is effected by noting that, in view of (10.9d), the change of order of

integration, involved in the relationship

f     \\     Gft | x)KBl----'s'+Kx, y)dx\fiy)dy
(11.24) J-oLJ*=; i J

=   f   Gft|x)[f    K^----^ix,y)fy)dy~\dx ify)cL2),
J  X-0 L J y-0 J

is justifiable.
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Thus, Kix, y), as defined by (10.8)-(10.8c), belongs to 77„+i and does not

belong to any 77„ with v<u; moreover, "associated" (fn the sense of Definition

11.1) with Kix, y) there is an operator L of the form (11.14)—(11.14c).

Let K(x, y) be any kernel of a transfinite class 77/? (any ß of 2d class) such

that with Kix, y) there is "associated" an operator L. Then it is of interest to

study the equation

(11.25) £,(S|*(*))-X fbLxit\Kix, y))*(y)dy = L,({|/(*)).
J a

For this purpose it is advantageous to consider the auxiliary equation

Lx(£|0{l--'s<*)) -X ("/,,(£| *•'■■••■««(*, y))d>^---'s<y)dy
(11.25a) J a .

= £.«!/(*));

here the ô, (v = l, • • • , q) are the numbers involved in Definition 10.1. Of

importance is also the homogeneous equation

(11.26) £,({|*(*))-X fbLxit\Kix,y))4>iy)dy = 0.
J a

Using the results of Theorems 4.1, 5.1, 7.1, 11.1, partly by direct methods

and partly by transfinite induction and following the lines which were em-

ployed previously, we arrive at the following theorem.

Theorem 11.2. For kernels Kix, y) cHß (any ß of 2d class) [classes Hß

are specified in Definition 10.1 ], for which there exist "associated" operators L

(Definition 11.1), all the results of Theorems 5.1, 7.1 will hold, if appropriately

stated with respect to the equations (11.25), (11.26).

In conclusion we shall point out that if K (x, y) c Hß (ß possibly transfinite;

Definition 10.1) and if

(11.27) f V(x, y) - Kix1, y))2dy = g(x, x1)
J a

exists for x and x1 in (a, ô) — E (E the set of §9), gix, x1) being continuous in x

and x1 in (a, b) — E, then the following will hold :

d d .
lim — 04l'"-'43.--(x, y | X) = — ß5'.----4<r-i(x, y\ X), • • •  ,
{„ r dx dx

(11.27a)
d 5

lim — ß4'."-(x, y | X) = — ß(x, y | X);
4i,r dx dx
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(11.27b)       lim — Q»».---.»*.r(X) y | \) = — Q8i.---.8*-i(x, y| X), • • • ;
ä„,r dy 3y

ó>2 d2 ,
lim-tis>----'>°.*(x, y | X) = -QJi.---.8«-1(x, y| X), ■ ■ • ,
s,,r dxdy dxdy

& à2 . . .      ,

lim—-08'.'(x, y|x) = —-Q(x, y|X) [= 0(x, y|X)],
«i,r dxdy dxdy

provided the ô„,r are suitably chosen. Convergence in the above relations will

be uniform in any closed subset of 0 ^ x, y ^ b, which has no points in common

with the lines x = ¿, y = I, (v = l, 2, • • ■ ).*

To prove this fact we need only to replace in (C, pp. 145, 146) 0S and K¡

by 0*i. ■ ■ • .{î and KSl- ■ ■ ■ .8«, respectively. This will yield

| 08l'---.8«(x, y | X) |

b^V-+¡re?/." [/.'[iC<*s) - «"•S)H"'J"]
[(a1, b1) a closed subinterval of (a, b)—E],

| ö8i.-'-.8«(x, y| X) - 0«i.---.««(a;i, y | X) |

r   /•! ni/2

g|x|    J    | K(x, s) - Kix\s)\2ds\

■\j-h- *ttf'U! lKi>- * - *«■ !H'"4
Using these inequalities, the stated result will follow with the aid of consecu-

tive applications of the "Compactness Theorem" (§1).

12. Non-symmetric kernels. Let Kix, y) be a kernel not necessarily sym-

metric. We let

(12.1) Et, £2

denote reducible sets on (a, b), each of the description given in the beginning

of §9, with

(12.1a) £"i = 0,        E** = 0,

where ßi, ß2 are non-limit numbers of the 1st or 2d class and the sets

(12.1b) E01-1,        E^-1

each have some points. In accordance with Theorem 9.1 the set Ei will be

* E consists of the points represented by the numbers I,.
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"covered" by sets of intervals

(12.2) A1.^!,,) iv= 1,2, ••• ,qi<a)

and the set 7£2 will be "covered" by sets of intervals

(12.2a) A2.'(52,,) (r- 1,2, ••-,«<«).

Definition 12.1. A non-symmetric kernel Kix, y) will be said to belong to

the class H(ßi, ß2) if, with the text from (12.1) to (12.2a) in view, the following

is true for all "admissible" positive values Si,,, ô2,,:

(12.3) G(x, y) = 7í42'1'42'2'"-'42'«.(x, y)cL2      (¿« x, y; for a ^ x, y ^ b).
il,1.5l,2.• • *,5l,g1

Here

(12.3a) G(x, y) = 0 [x in £?A»''(Si.O, a á y £ »1;

(12.3b) G(x, y) = 0 [y *» £Í2A2''(52,,), o á * û b];

(12.3c) G(x, y) = 7C(x, y) [a¿ all other points of a ^ x, y ^ ¿>].

Using the well known method of Schmidt one may associate with a non-

symmetric kernel a pair of integral equations, whose kernels are symmetric.

However, we shall find it more convenient to employ the device of Pérès*

and, thus, associate with our kernel T(x, y) a single symmetric kernel r(x,y)

defined as follows

7"(x, y) = 0 (a < x, y < b),

(12 4)            T(*,y) = 0 ib<x,y<2b-a),

T(x, y) = Kix, y + a - b) (a < x < b, b < y < 26 - a),

Tix, y) = 7f(y, x + a - b) (i> < x < 2b - a, a < y < b).

Inasmuch as Kix, y) c77(3i, ß2) (Definition 12.1), one clearly has (Defini-

tion 10.1)

(12.5) Tix,y)cHß,

where ß is the greater one of the numbers ßi, ß2. The set E, which according

to Definition 10.1 is used in the description of a kernel of class Hß, consists

(in the case on hand) of the points of 7£i on (a, b) and of the points b+I2,,

[v = l, 2, • • • ; the 72l, represent points of 752].

We apply to Tix, y) the results of the previous sections; this will lead to

conclusions with respect to the given non-symmetric kernel 7C(x, y).

* Volterra and Pérès, loe. cit., p. 306.
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