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Some time after our paper was written it came to our attention that the

partial derivatives of a measurable function/(x, y) need not be measurable, in

contradiction to a Lemma of Burkill and Haslam-Jones.f Trivial examples

suffice to show this; indeed such an example, due to Hahn, has been given

by Neubauer. J The proof of Theorem 18 of our paper, which made use of

this lemma, is therefore unsound. Whether or not this theorem and its

Corollary 2 are true we have been unable to determine. Corollary 1, how-

ever, to the effect that a function f(x, y) in class T ■ M has an approximate

total differential almost everywhere, whose proof was our main objective,

can readily be established as follows. Since/ is in M, by a theorem of Saks§

the approximate partial Dini derivatives (or derivative numbers) are measur-

able functions; since /is in P, the approximate partial derivatives are then

measurable functions and are finite almost everywhere. The approximate

total differentiability of f may then be inferred from a theorem of Stepanoff.||

* Received by the editors October 21,1939. Cf. these Transactions, vol. 36 (1934), pp. 711-730.

f Notes on the differentiability of functions of two variables, Journal of the London Mathematical

Society, vol. 7 (1932), pp. 297-305, Lemma 2.
% Über die partiellen Derivierten unstetiger Funktionen, Monatshefte für Mathematik und Physik,

vol. 38 (1931), pp. 139-146, §1.
§ Saks, Théorie de l'Intégrale, Warsaw, 1933, p. 226, Theorem 2.

II See, for example, Saks, loe. cit., p. 228, Theorem 3.
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