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1. Introduction. Morse, Hedlund, f and others have developed the theory

of dynamics from the symbolic point of view. This theory is concerned in the

main with the periodicity, recurrency, and transitivity properties of symbolic

trajectories and rays. Morse has made use of exponents on symbols. Unless a

trajectory P is of a very special type, it can be shown that the exponents

on the symbols in a symbolic trajectory P form a symbolic trajectory Te

termed the "exponent trajectory" of P. The trajectory Te is uniquely deter-

mined by P. Similar considerations hold for rays. In the present paper we

are concerned with relations between a trajectory or ray and the associated

exponent trajectory or ray. In particular we prove that a periodic or recurrent

trajectory P has a periodic or recurrent exponent trajectory P«, respectively,

while a transitive ray P has an exponent ray P«, which is in a sense also transi-

tive. Further, if a trajectory P is periodic, P is distinct from its exponent

trajectory. There exist, however, trajectories identical with their exponent

trajectories, and in the case of trajectories generated by the symbols 1, 2 only,

there is one and only one such trajectory. The term "identical" is used here in

the usual sense, and will be defined explicitly in the next section. In the paper

referred to above, Morse and Hedlund have given some methods of construct-

ing recurrent trajectories from a given recurrent trajectory. The introduction

of exponent trajectories yields another method of constructing such trajec-

tories. Whether or not there exist recurrent trajectories identical with their

exponent trajectories is still an open question.

2. Definitions and conventions. We shall use the term "symbolic trajec-

tory" in a slightly more general sense than that employed by Morse and

Hedlund in that we shall allow an infinite set of generating symbols. Let Si

denote a sequence abc -of symbols a, b, c, ■ • • which may or may not be

taken from a finite set of distinct symbols, and let S2 denote a second such

sequence aßy ■ ■ ■ . Let Sr1 denote the sequence • • • yßa of symbols obtained

from S2 by reversing the order of the symbols in S2. The sequence S^Si, given

by • ■ • yßaabc • • • , is termed a symbolic trajectory, or simply a trajectory.

The sequence Si (also Si*1) is termed a ray. The symbol a in Si is termed the

initial symbol of the ray Si. We shall have occasion to use the notation

* Presented to the Society, October 28, 1939; received by the editors July 24, 1939.

t Marston Morse and Gustav A. Hedlund, Symbolic dynamics, American Journal of Mathemat-

ics, vol. 60 (1938), pp. 815-866.
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Si = abc ■ ■ ■ meaning that Si is the sequence aôc • • • . A finite sequence

ab ■ ■ ■ ft of symbols is termed a block. If there are » symbols in the set

a, b, ■ ■ ■ , k, the block ab ■ ■ ■ ft is said to be of length », and will be called

an n-block. If B is a block, the length of B will be denoted by Z(P). We

shall write B = ab ■ ■ ■ ft to indicate that B is the block ab ■ ■ • ft. If

Bi = ai ■ ■ ■ am, B2 = bi ■ ■ ■ bn, then BiB2 is the block ai • • • am6i • • • 6n. The

blocks Pi and B2 are the same \im = n and the symbol a < is identical with the sym-

bol bi for each ¿ in the range 1,2, ■ ■ -, ». In a block C = a_„ ■ ■ • a_ia0ai ■ ■ ■ an

of odd length, we term a0 the central symbol of C. A trajectory P can be writ-

ten as

• • ■ a_2a_iöoaia2 ■ ■ • .

The symbols a¿ and a¡ are said to be in different positions in T if i ?¿j. If i =j

these elements are in the same position in P. Let a0 denote a symbol in a fixed

position in a trajectory Pi. The trajectory Pi is said to be identical with a

trajectory T2 if T2 contains the symbol a0 in a fixed position so that for each «

the block A „ in Pi of length 2w+1 containing o0 as central symbol is identical

with the (2w+l)-block Bn of P2 containing a0 as central symbol.

Sequences of consecutive symbols of a trajectory P (or ray P or block B)

which form a block or ray we term a subblock or subray of T (or P or B), and

they are said to be contained in P (or Ror B). As remarked above the symbols

in a trajectory P (or ray P or block P) are taken from a finite or infinite set S

of distinct symbols, which will be termed the generating symbols of P (or R

or B). A block a ■ • ■ a formed by repeating the symbol a » times is written

as a". The symbol » in a" is termed the exponent of a in a", and a is termed the

base in a". We term a" a power. We write a block B as a sequence of powers

such that the bases in consecutive powers are distinct. The exponents then

form the exponent block Be of B. Unless a trajectory T contains a subray

formed by only one generating symbol, T can be written as a sequence

(1) • • • a^bqcr ■ ■ ■ ,

where no two consecutive bases are identical. The exponents in (1) form a

trajectory ■ • ■ pqr ■ ■ ■ , which we term the exponent trajectory T, of P. Simi-

larly, if a ray P does not contain a subray formed by one generating symbol,

the ray P can be written as avb"C ■ ■ ■ , where consecutive bases are distinct.

The exponents then form the exponent ray Re of P. A trajectory P (or ray R)

will be termed admissible if it has an exponent trajectory (or ray) ; that is,

T (or R) does not contain a subray of the form aaa • ■ • or ■ • • aaa.

A trajectory P is periodic if it can be written as a sequence

(2) ••• BBB ■ ■ ■
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of blocks identical with a block B. If B is a block of shortest length such

that T can be written as (2), the block B is said to be a period block of P, and

its length is termed the period of P. A trajectory T is termed recurrent if for

each n there exists an m such that each block of length n in P is contained in

each m-block of P. If P is recurrent, for each n there exists a least m such

that each w-block of T contains each «-block of P. We write R(n) =m, and

term R(n) the recurrency function of P. A ray P is said to be transitive if every

possible block that can be formed from the generating symbols of P is a sub-

block of P.

3. Periodicity, recurrence, and transitivity of exponent trajectories. We

shall now prove the following theorem.

Theorem 1. If a trajectory T in two or more generating symbols is periodic,

T is admissible and the exponent trajectory Te is periodic.

Let B represent a period block of T so that T is given by (2). Suppose

that B begins with the symbol a and is preceded by a in P. Then B is of the

form a'b" • ■ ■ c lau, where no two consecutive symbols in the set a,b, ■ ■ ■ ,c,a

are identical. The block C = awb" ■ ■ ■ c', where w = u+r, is then also a period

block of P. The block C, = ws ■ ■ ■ t thus occurs in T„, and T„ is of the form

• • • CeCeCe • • • , whence the theorem is proved.

Theorem 2. The exponent trajectory T, of an admissible periodic trajectory

T is distinct from T.

As noted above T contains a period block C = amb' ■ • ■ c ', where a j¿ c, and

the exponent block Ce = ws ■ ■ ■ t of C is a subblock of P8. Evidently C. or a

subblock of C. is a period block of Te. The period of P is co = w+s ■ • ■ +/.

The period of Te is no greater than the length P of C. If at least one of the

symbols in Ce is greater than 1, we have w >L. If all of the symbols in Ce equal

1, the period of P8 is 1 and certainly less than w.

Morse and Hedlund* have exhibited a nonperiodic recurrent trajectory P

in four symbols with the property that consecutive symbols in T are distinct.

If follows that in this case P«, is of the form

(3) ■•• 111 ••• .

Since (3) is periodic, there exist nonperiodic trajectories whose exponent tra-

jectories are periodic. That this is not true of trajectories with two generating

symbols is stated in the theorem which follows.

Theorem 3. An admissible trajectory T with two generating symbols is

periodic if and only if its exponent trajectory Te is periodic.

* See the reference to Morse and Hedlund above, p. 844.
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Let the generating symbols be denoted by 1, 2. Let the period of P„ be

denoted by £, and a period block of Te by Be = ai • ■ ■ a$. Let B be a block of P

with exponent block Be. If £ is even, the first and last symbols of B are dis-

tinct, for P=lai2a2l°3 ■ • • 2°f or 2aila22"3 ■ • • Ia*. Hence Pis given by (2), and

T is periodic. If £ is odd, the first and last symbols of B are identical. It fol-

lows that P is given by

(4) • • • BiB2BiB2Bi ■■ ■ ,

wherePi = lOI202l<13 • • • 1°*, P2 = 2all<I22<,3 • ■ • 2a«. Hence Pis periodic.

Theorem 4. If the exponent trajectory Te of a periodic trajectory T in two

generating symbols has the period block axa2 ■ ■ ■ a¡, the trajectory T has the period

w, where

l
(5) CO =  X a¡,

i-l

(6) " = 2^a,Y

according as £ is even or odd.

From the proof of Theorem 3 it follows in the case where £ is even that

the trajectory Pis given by (2), where B = lai2a*lai ■ ■ ■ 2°*or 2aila22°3 ■ • • l°f.

Hence «|(«i+ • • ■ +<*{)• It is no restriction to suppose that B

= l<*i2°2l°3 • • ■ 2"(. If B is not a period block, a subblock l°i2a2la3 • • • 2%

/<£, of B is a period block of P. Then Te is given by • ■ ■ B¿B¿B¿ ■ ■ ■ ,

where B¡ =aia2 ■ ■ ■ a,-. The trajectory Te thus has a period less than £, which

is impossible. It follows that (5) is valid.

It follows from the proof of Theorem 3 that if £ is odd the period of P is not

greater than 2(oi + a2+ • • • +aj), and that T is given by (4). By the argu-

ment of the preceding paragraph the period of T cannot be less than

(ai+a2+ • • • +a{). Hence P has the period block lai2a2 ■ ■ ■ l0^01!"2 • • • 2°>

or the equivalent block with the symbols 1 and 2 interchanged. Thus Pe is

given by ■ ■ • B" B" B" ■■ ■ , where Pe" =aia2 • • • a^a^ -a,-. Since £ di-

vides the length of Be, we have/ = £, whence (6) is valid.

From Theorem 4 it is evident that the number of periodic trajectories of

period w with two generating symbols is the number of solutions of

2n /    2n+l        \

Za¿ = u.     2(  X) ai) = «i
Í-1 \   ,=l     /

where the a's and » are integers, and the blocks aia2 • ■ ■ a{ (£ = 2w, 2» + l)

are not of the form DD    ■ ■ D, that is, formed by the repetition of a block.
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Lemma 1. A recurrent trajectory T with two or more generating symbols is

admissible.

Since P contains a block ab, where a and b are distinct, and this block

cannot be contained in a subray with one generating symbol, it follows that

each exponent is finite, and the exponent trajectory Te exists.

Lemma 2. If an admissible trajectory T is recurrent, its exponent trajectory

contains a finite number of generating symbols.

Consider again a subblock ab of T where a^b. If there exists in T a se-

quence of blocks ai"1, a?"», ■ • • , where the sequence nu n2, ■ ■ ■ is unbounded,

then there exists an arbitrarily long block which does not contain ab. Hence

T is not recurrent. Thus Lemma 2 is proved.

Theorem 5. If an admissible trajectory T is recurrent, the exponent trajec-

tory Te of T is recurrent.

Consider a block Be = ps ■ ■ ■ q of Te. There is a corresponding block

B = a^b" ■ ■ ■ c of P bordered on the left and right by symbols g and h re-

spectively, where g ¿¿a and h^c. Since P is recurrent, the block gBh occurs

in each block of P of length R(n), where n is the length of gBh, and R(n) is

the recurrency function of P. Thus in each subblock B' of T of length R(n)

there occurs a block gaBhP, where a^l, and ß^ 1. Each block B' is contained

in a block B", where B" is preceded in P by a symbol distinct from the first

symbol of B", and followed by a symbol distinct from the last symbol of B",

and the exponent block of B" has the same length as the exponent block of

B'. Evidently, Be is contained in the block of exponents of each block B".

Let t be the maximum length of the exponent blocks of the blocks of type B".

We denote the exponent block of a block B" by Bi'. Each exponent block Ce

in Te of length t corresponds to a block C of P which contains a block B"

as subblock. It follows that each block of Te of length t contains Be. Let r de-

note the length of Be. There are a finite number of blocks Bei, Be2, • • • , Bep

in Te of length r. There exist numbers h, h, • • • , h such that for each i

(i=l, 2, ■ ■ ■ , p) Bei is contained in each /.-block of Pe. Let Re(r) denote the

maximum of the numbers h, h, • • • , h- Then each r-block of Te is contained

in each Pe(r)-block. Thus Pe is recurrent.

Corollary 1. If T is a recurrent nonperiodic trajectory in two generating

symbols, the exponent trajectory Te of T is a recurrent nonperiodic trajectory.

It is obvious that a non-recurrent trajectory P may have a recurrent expo-

nent trajectory Te. It is necessary even in the case of two generating symbols

to impose an additional restriction on Te to insure the recurrence of P. We

shall give the additional restriction for the case of two generating symbols.
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We say that a trajectory P in two generating symbols is strongly recurrent if

for each « and »-block B in T there exists an integer P(») such that if Pi, B2

are any nonoverlapping blocks of length P(«), the block Pi contains a block B

whose first symbol is separated from the first symbol of a block B in B2 by an

odd number of symbols. An immediate result is the following theorem.

Theorem 6. An admissible trajectory T in two generating symbols is recur-

rent if and only if its exponent trajectory is strongly recurrent.

Certain inequality relations exist between the recurrency function of a

recurrent trajectory P and the recurrency function of the exponent trajectory

T, of P. For the sake of brevity these relations will be omitted.

That the following theorem is true appears from the definition of transitiv-

ity.

Theorem 7. A transitive ray in two or more generating symbols is admissi-

ble.

Theorem 8. The exponent ray R, of a transitive ray R in two or more gen-

erating symbols is transitive.

It is evident that Re has the infinite set 1, 2, 3, • • • of generating symbols.

We denote this set by 5. Let /, m, n, ■ ■ ■ , p be an arbitrary subset of S con-

taining p symbols not necessarily distinct, and let q, r, s, ■ ■ ■ , t be a second

subset of p symbols in 5 not necessarily distinct. By assumption R contains at

least two distinct generating symbols a, b. Since P is transitive, P contains

the block aBy, where

11 l   m m       n n

B = aia2 ■ ■ ■ a9as+i • • • aq+raq+r+i - - - Qq+r+s

V V

■ ■ • aQ_j_r+s+.. .+u+i ■ • ■ as+r+J+.. .+u+i,

a^ai, y?¿aq+T+s+.. •+„+(, the exponent block of B is Be=l"mrn' ■ ■ ■ pl, and

the a's are alternately equal to a and ô so that ax = a, a2 = b,a3 = a, ■ ■ ■ . Thus

Re contains each block Be that can be formed from the symbols in S, whence

Re is transitive.

Theorem 8 can be extended to "transitive trajectories" with no subray

generated by one symbol only.

4. A trajectory identical with its exponent trajectory. In Theorem 2 we

noted that a periodic trajectory is distinct from its exponent trajectory. That

this is not true for trajectories in general is a consequence of the theorem

which follows.

Theorem 9. There exists a trajectory identical with its exponent trajectory.

We let Bo denote the block 212, and let Pi = 2. We form the trajectory
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(7) • • • BflBtlSrlBtBiBiBt

where P¿ is the exponent block of Pl+l for each i > 0, the last symbol of P<

is distinct from the first symbol of Bi+i for each i > 0, and Br1 denotes the

block obtained from P,- by reversing the symbols in P,. We illustrate by giv-

ing some of the blocks P< explicitly:

B2 = 11, Bi = 21, Bi = 221, P6 = 22112, P6 = 11221211.

We note that for i>0 the block Br1 is the exponent block of B¿¿v Thus (7)

is the sequence

(8) • • • , 21122, 122, 12, 11, 2, 212, 2, 11, 21, 221, 22112,

where we have separated the blocks P< and Br1 by commas. The exponent

block of BrxBoBi is P0. From this statement and the definition of (7), it ap-

pears that the exponent block of Bp1 ■ ■ • B^B^BoB^ ■ • BT is the block

Pv_'i • • • Pi^PoPi • • ■ Pr-i- Thus (7) has an exponent trajectory and is iden-

tical with it.

Employing the same technique as that used in constructing (7) and using

more than two symbols, one can construct an unlimited number of trajec-

tories identical with their exponent trajectories. We shall prove later the

uniqueness of (7) for the class of trajectories in two generating symbols 1, 2.

5. Proper exponent blocks and join-blocks in trajectories with generating

symbols 1,2. Consider an arbitrary subblock B of a trajectory T in generat-

ing symbols 1, 2 where the exponent trajectory Te of T contains the same

generating symbols. The block B has an exponent block Be which does not

necessarily occur as a subblock of the exponent trajectory Te of T since B

may be preceded by or followed by a symbol identical with the first or last

symbol of B respectively. For this reason we associate with B a new type of

exponent block. Consider the block Be of exponents of B which occur in Tt

and can be determined without reference to T from B alone and the fact that

the exponents equal 1 or 2. We term Be the proper exponent block of B. We

similarly speak of a proper exponent ray. We let G, G be consecutive sub-

blocks of the trajectory P so that GG is a subblock of P. We denote the

proper exponent blocks of G and G by Pi and D2 respectively. The proper

exponent block of GG is a block DiJD2. We shall say that J is the exponent

block due to the join of G and C2. Obviously, J is either vacuous, or is one of

the blocks 1, 2, or 11.

Theorem 10. Let Te be the exponent trajectory of a trajectory T, and suppose

that T and Te have the same generating symbols 1,2. The length of the proper

exponent block Be of a block B in T satisfies the formula
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(9) L(Be) = LiB) - 2

if Bt¿(x, a2 (<x=l, 2). If B has an intermediate block 12 or 22, then

(10) L(Be) ^ L(B) - 3.

In any case L(Be)^L(B) — l. We write P = aia£a3 ■ ■ ■ an-ian, » = 2,

where the a's are distinct and alternate between 1 and 2. Obviously,

L(Bi)=n — 2, and L(B)^n. If B = a\a\a\ • ■ ■ dn-ian, then L(Be)=n — 1,

L(B)^n+l. If finally P = a1a2"a3 • • • an-ian, then L(Be)=n, L(B)^n+2.

Thus (9) is valid. The validity of (10) is obvious.

Theorems 11-13 to follow will be needed in a later section.

Theorem 11. Let Te» and Te be the exponent trajectories of trajectories T,

and T respectively, and suppose that T, Te, and Tee have the generating symbols

1,2. Let JED be a subblock of T, and suppose that the blocks J, E, and D are so

related that E is the proper exponent block of D, while J is the exponent block

due to the to the join of E and D. If L(D) ^ 4, then

(11) L(JE)<LiD).

We write D = GH, where G is a block of length 4. We let J, denote the

exponent block due to the join of G and H, and let Ge, He denote the proper

exponent blocks of G and H respectively. We have the following relations :

(12) LiJE) =LiJ)+LiE),

(13) L(E) = LiGi) + L(Je) + L(He).

We consider first the case where G begins with the block a2. By the as-

sumption P(G)=4 we have G ¿¿a, a2, whence by Theorem 10 the relation

P(P) ^L(D) — 2 follows. Since D begins with a2, the block / contains no ex-

ponent arising from D. Hence J is vacuous or 1, whence L(J) ¿¡1. It follows

by (12) that (11) is valid.

Next, we suppose that G begins with aß (a^ß). HG = aßaa, then G„=12.

If H is vacuous, P= 12 and ED = I2aßaa. If a= 1, the proper exponent block

of I2aßaa contains a subblock l3, which is impossible in view of the fact that

Tee contains only the symbols 1, 2. Hence a = 2, and J — 2. Thus L(JE) = 3,

and (11) holds. If H is not vacuous, the block GH begins with aßaaß since

Te contains only the generating symbols 1,2. By Theorem 10,P(P) ^L(D) —3.

Since L(J) ^2, formula (11) is valid. We now let G=aßßa. Since we have an

intermediate block ß2, by Theorem 10 we have P(P) ^L(D) —3, whence (11)

holds. If finally G = aßaß, G is preceded in T by a since we cannot have a

block l3 in Te. Then P = 2, and P(/) = l. By Theorem 10 we have P(£)

^L(D) — 2, whence (11) holds. Thus in any case (11) is valid.
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Theorem 12. Let Te be the exponent trajectory of a trajectory T, and let T

and Te be trajectories in the generating symbols 1,2. Let JED be a subblock of T,

where J, E, and D are related as in Theorem 11. If L(D) ^4, then L(JE) Sí 2.

If the leading 4-block of D is of the form aaßß, aaßa, aßaa, or aßaß

(a^ß), the proper exponent block of this block is of length 2, whence

L(JE) =t 2. If the leading 4-block of D is of the form aßßa, this block has the

proper exponent block 2, whence P(P) èl. The leading symbol a of D will

yield an exponent in P Thus in any case L(JE) Sï 2.

Theorem 13. Let T, Te, J, E, and D be defined as in Theorem 12. If J is

non-vacuous, then E is non-vacuous.

6. Subrays of a trajectory identical with its exponent trajectory. The the-

orem which follows is valid for trajectories based on an arbitrarily given set

of generating symbols, and is not restricted to the 1, 2 case.

Theorem 14. If a trajectory T is identical with its exponent trajectory Te,

the trajectory T does not contain two identical subrays Pi, R2 with initial ele-

ments in different positions in T.

Suppose that the rays Pi, P2 are directed to the right in the sense that

Ri = R2 = abc ■ ■ ■ . The rays Pi and R2 overlap, whence it is no restriction to

suppose that Pi overlaps R2. Let the subblock of Pi which precedes P2 in Rx

be denoted by P. Since Ri = R2, the ray P2 contains a subray P3 identical

with P2 and preceded in R2 by the block P. Thus P contains the subray

N = BBB • • ■ . Since T=Te, the trajectory Te contains a subray A\ identical

with the ray N. Let Ne denote the proper exponent ray of N. The rays Ni

and Ne overlap in Te. Therefore the ray Ne contains a subray Ni identical with

N. Clearly, N¡ is the exponent ray of a subray N3 = P1P1P1 • ■ • of N where

B is the exponent block of Px. Since the ray N3 is a subray of the ray N, and

l(Bi)^l(B), we can write Pi as BnB'Bu, where BnBu = B, and r^O. If

r = 0 it is understood that the block Pr is vacuous. Thus the trajectory

Ti= ■ ■ ■ B1B1B1 ■ ■ ■ obtained by continuing N3 to the left is identical with

the trajectory P2= • • ■ BBB ■ ■ ■ . But T2 is the exponent trajectory of Pi,

whence by Theorem 2 we have arrived at a contradiction.

7. The uniqueness of a trajectory identical with its exponent trajectory in

the case of generating symbols 1,2. We shall prove in this section that the

trajectory (7) is the only one of its kind for trajectories in generating sym-

bols 1,2. We let T~l denote the trajectory obtained from a trajectory P by

reversing the order of the symbols in P.

Lemma 3. If a trajectory T is identical with its exponent trajectory T0, and T
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contains the generating symbols 1, 2 only, the trajectory T or T~l contains a sub-

ray

(14) R = BlBiBl

where Bl is the exponent block of P/+i, and the last symbol of Bl is different from

the first symbol of B{+ifor each i.

Let a denote a symbol of P in a fixed position in P. The corresponding

symbol a of the exponent trajectory Te is the exponent of a symbol o in P

so that the block b" occurs in P. It is no restriction to assume that the block b"

is not to the left of the symbol a in P. We suppose first that the block 6° of P

does not contain the symbol a, so that b" is to the right of a in T.

We let Bl denote the block of symbols in P starting with a and ending

with the symbol preceding the block ba in P. Since T=Te, the symbol a in P,

is the initial symbol of a block B{ in P.. The block of P starting with 6" and

having Pi' as exponent block is unique since consecutive exponents in P are

exponents on distinct bases alternating between the symbols 1,2. We empha-

size that T is of the form

.   .   .    xa-22a-lxaQ2alla2  ■   ■   •    .

We denote the block of P starting with b" and having exponent block Bl

by B2 . Thus P contains the block Bl B2 . We assume now that P contains

the block BIB{ ■ ■ ■ Bl where Bl Bl ■ ■ ■ P/-i is the exponent block of

BIBl -Bl. Since T = Te, the block BIBl ■ ■ ■ P/_i in P. is followed by Bl,
whence B{ B{ - ■ • Bl in P is followed by a block Pr'+i whose exponent block

is Bl, and the first symbol of Bl+i is distinct from the last symbol in Bl.

Thus P contains the subray P.

Finally, we suppose that the block b" of T contains the symbol a of P.

If a=l, then o" is the block l1. Since the bases alternate between 1 and 2,

the block ba is preceded and followed in P by the base 2. Thus T contains

the block P0 = 2a2 = 212, where P0 is the block P0 occurring in (7). Since

T = Te, the symbol a in P„ is preceded and followed by 2 in Te, whence a is

the central symbol in a block P0 of F„. It follows that P0 is the exponent

block of a block BrlBaBi in P with central symbol a and Pi = 2. Making use

of the equality T = T, and developing P to the right and left of BrlBJS\ as

in §4 we obtain (7). The subray

(15) BiB2B3 ■ ■ ■

of (7) is clearly a subray of the type (14). If now a = 2, the symbol a in T is

either the leading or final symbol in the block ba, so that o° is either a2 or 2a.

If 6° = a2, then since a = 2, the block b" is preceded in P by the symbol 1,
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and thus this block is preceded in Te by the symbol 1. Thus the block l1 pre-

cedes ba in T, and since both base and exponent in l1 are followed by a in T

and Te respectively, the base and exponent in the power 1x are corresponding

symbols. The argument thus reduces to the preceding case where a = l. If

now a = 2, while ba = 2a, the block ba is followed in T, by the symbol 1, so that

the block ba in P is followed by the power l1. Clearly the base and exponent

in this power are corresponding symbols, whence we have again reduced the

argument to the case where a = l. Thus P contains the subray (14), and

Lemma 3 is proved, for if ba is to the left of a in P, then ba is to the right of a

in P-1.

We remark that the exponent ray P«. of B2B%Bl ■ ■ ■ in (14) is the ray P.

We consider now a trajectory T with T=T„, whence by the lemma just

proved T contains the subray P of (14). We let P0 be a block such that the ray

(16) EoBÍBÍ • ■ ■

is the proper exponent ray of P in (14). The block £0 may be vacuous. Since

T=Te, the trajectory T contains (16) as a subray. We let J.0 denote the ex-

ponent block due to the join of E0 and B{ in P0P/. It is clear that T contains

the subray JaEoB{B2 ■ ■ ■ . For i>0, we let Et denote the proper exponent

block of a block P,_i£,_i, and P< the exponent block due to the join of P¿

and P,_i£j_i. In the following lemma we use G< to denote the block

JiEi ■ ■ • JiEiJoEo, and P as in (14). Here G+i = G if Pi+i£,+i is vacuous.

Lemma 4. // a trajectory T is equal to its exponent trajectory Te, and T

contains the subray

(17) GiR,

the trajectory T contains the subray

(18) Gi+iR,

where P<+1Ei+1 in G+i may be vacuous.

We assume that P contains the subray (17). The proper exponent ray of

(17) is the ray

(19) EUiGiR.

Since T = Te, the trajectory P contains the subray (19). Evidently the proper

exponent ray of (19) contains the subray (18).

Theorems 11 and 12 yield at once the following lemma.

Lemma 5. If the subray (17) in a trajectory T with T=Te is continued to

the left, one arrives at a block J„E„ of length 2 or 3, provided the trajectory T con-

tains a subblock J,Ej of length at least 2.
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Lemma 6. If a trajectory T in generating symbols 1, 2 is identical with its

exponent trajectory Te, the trajectory T or P_1 contains a subray identical with

the subray (15) of (7).

By Lemma 3, the trajectory P or T~x contains a subray (14). Suppose

that P contains (14). We continue the subray (14) of P to the left to obtain

a subray (17) of T where Pi+i is vacuous. We suppose first that the subray

(17), which is explicitly the ray

J iEi • • • JiEiJoEoBi B2B3  • ■ ■

contains a block J,Ej of length at least 2, whence by Lemma 5 the ray (17)

contains a subblock /„P„ of length 2 or 3.

We assume that P(/„P„) = 2. If J,E„ = 22, then P<,-n = 2, and Ea+iJaE,

contains the subblock 23. Hence J¡,E„ j¿ 22. Suppose that P„P„ =12. We cannot

have P, = 12, since by Theorem 13 the block E„ is then not vacuous. Also,

we cannot have P„=12 since the symbol 2 in P„ yields an exponent in J,

due to the join of E, with the block following P„ in T, whence Jc is not vacu-

ous. Thus /„ = 1, and E,=2. Then JaE„ is followed by a block 122 in P. Now

J,EA22 has the proper exponent block 112 = IJ„E,. Since T=Te, the trajec-

tory P contains the subray Ra— H2G,-iR, where if a = 0, we understand that

G„_i = G_i is vacuous. The leading block 11 in Ra has exponent 2, whence P

contains the subray P& = KG„R, where P = 21. The proper exponent ray of Rb

is Rbitself. We write Pi for the symbol 2 in K, and B2 for the block 11 in KJa.

The exponent of B2 in Rb is the initial symbol of the proper exponent ray of

Rb. If we define B3, P4, • • • as in §4, it is clear that Rb is identical with the

ray (15). If P„P„=11, then P„+i = 2. Writing Pi = P„+i, B2 = J„E„, defining P,-

(i>2) as in §4, and using the fact that (19) is the proper exponent ray of (17),

we find that in this case (17) with i = a + l is identical with the subray (15)

of (7). Finally, we write J,E„ = 21. If P„ = 21, the symbol 1 in P„ yields an

exponent so that J, is not vacuous. Hence Jc = 2, Ea = 1. Now P„P„ is followed

in P by the block 121. Writing Pi for /„, and P2 for the block 11 which fol-

lows Jc in /„P.,121, and defining P,- (i>2) as in §4, we find that in this case

(17) with i = <r is identical with (15).

If JcE„ = 22l, then P„+i = 2 and P„+iP,P„ = 23l which is impossible. If

J„E, = 211, then P„+i = 2, J„+i = 2, which in the paragraph above was proved

impossible. If P„P„ = 212, then Ec+i = Jr+i = I, which case was treated above.

If J„EC = 121, then Pff+i = l, /„+i = 2, which was also treated above. If

J„E„= 112, then P„+i = 2, and P„+i is vacuous. Writing Pi = Pff+i, and B2 for

the leading block 11 of JCEC, and defining P¿ (i>2) as in §4, it is clear that

(17) with ¿ = a+l is in this case identical with (15). If J„E,= 122, then
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/„+i£„+i = 12, which case was treated above. This completes the cases where

L(J„Ea) = 3, since the blocks 111 and 222 cannot occur in P.

Suppose now that P contains no block J.„E, with L(JaE„)^2. Assume

that T contains a subblock P„P„ with P(P„£„) = 1. We cannot have JCE„ = 1,

whence £„ = 1, since E, is the proper exponent block of 121 or 212, and the

block P„121 or P„212 yields a non-vacuous block J„ due to the join of E,

with 121 or 212. If JaE„ = 2, then P„ = 2, and E, is followed by 11 in P. Writ-

ing Pi = P„P„, P2 = ll, and defining P¿ (i>2) as in §4, we find that T con-

tains the subray (15).

We suppose, finally, that P contains no subray (17) with a block /,£„

for which L(J„EC) 2:1. Thus the subray (14) of P cannot be continued to the

left. The block B{ cannot be of length greater than or equal to 3 since then

Bi would yield a non-vacuous block E0. In the same way Pi' ?=11, 22. If

Bi =12, then Bi =122, and P0=l, whereas if B{ =21, then Bi =221, and

Po= 1. Thus L(B{ ) = 1. If Bi = 1, then Bi = 2, Bi = 11. In this case dropping
the first block in (14), we obtain the subray (15) of (7) as a subray by writing

P,- = P/+i, ¿èl. If Pi' =2, writing Bi=Bl we obtain (15) from (14).

Thus in any case the trajectory T or P"1 contains the subray (15) of (7).

Theorem 15. There is one and only one trajectory T in generating symbols

1, 2 identical with its exponent trajectory.

By Theorem 14 and Lemma 6 the trajectory T or P_1 contains the subray

(15) of the trajectory (7) exactly once. Suppose that (15) is a subray of P. If

(15) is preceded by the symbol 2 in P, the subray pi = 2BiB2 ■ ■ ■ of P must

be preceded by the symbol 1, since no block 23 can occur in P. Thus P con-

tains the subray p2 = 12PiP2 • • • . The proper exponent ray of pi is pi itself. In

particular since the proper exponent ray pi of p2 is preceded by the symbol 1,

the ray p2 is preceded in P by the symbol 2, so that 212BiB2 ■ • • occurs in P.

We write P0 = 212, whence the ray p3 = P0PiP2 ■ • ■ occurs in P. Since />¿ oc-

curs in Te, the ray p4 = 2212PiP2 • • • occurs in P, whence Br1B0BiB2 ■ ■ ■

occurs in P. By induction, since

Br-i • • ■ Bi BoBiB2 • • •

occurs in T, the same ray occurs in Te, and is the exponent ray of the ray

Br-1 ■ ■ ■ Br'BoBiBi

Thus P is identical with (7).

If, on the other hand, the subray (15) is preceded by 1 in P, the trajectory

T contains either the subray Pi = 21PiP2 ■or the subray P2 = llPiP2 • ■ •.

The proper exponent rays of Px and R2 are respectively P2 and Pi. Since



466 RUFUS OLDENBURGER

T = Te, the trajectory P then contains both Pi and R2. Since Ri?¿R2, the sub-

ray (15) in Pi and R2 occurs twice in P, contradicting Theorem 14.

If P is the trajectory (7), then T = T~X. Thus Theorem 15 is proved.

Theorem 16. The trajectory (7) is the exponent trajectory of two distinct

trajectories in generating symbols 1,2.

Theorem 16 states that (7) is not symmetric in the symbols 1,2. Suppose,

on the contrary, that (7) is unchanged when we interchange the symbols 1

and 2. Let C, be the block obtained from P¿ by interchanging 1 and 2 in Bf.

Then we have the trajectory

(20) • • • Cr^i-'CdCiCi

We remark that the block Ci, *è2, has the exponent block P,_i, whence Cr1

has the exponent block P(-_V The block Ci_1CoCi has the exponent block P0.

We note that the symbol 2 in Cr1C0Ci= 11211 yields the exponent 1 in P0.

Now the ray Cr1CoCiC2 • • • has the proper exponent ray a = BoBiB2 ■ ■ ■ .

If the trajectory (20) is identical with the trajectory (7), the trajectory (20)

contains a subray a' = Br1a with proper exponent ray a, where the symbol 1

in the subblock P0 of the exponent ray a is the exponent of the symbol 1 in

the subblock P0 of the ray a'. Thus the exponent trajectory (7) of (20) con-

tains the subray a twice with initial symbols of each a in different positions

in (7). By Theorem 14 we have arrived at a contradiction.

Although (7) is the exponent trajectory of two distinct trajectories Pi and

T2 in generating symbols 1, 2, the trajectories Pi and T2 are equivalent in the

sense that these trajectories differ only in the notation used for the generating

symbols.

Armour Institute of Technology,

Chicago, III.


