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1. Introduction. We shall begin by considering certain simple operations

or transformations on the oriented lineal elements of the plane. A turn Ta

converts each element into one having the same point and making a fixed

angle a with the original direction. By a slide Sk, the line of the element re-

mains the same and the point moves along the line a fixed distance k. These

transformations together generate a continuous group of three parameters

which we call the whirl group W3. The group of whirls W3 is isomorphic to the

group of rigid motions M3. These two three-parameter groups are commuta-

tive and together form a new group of six parameters which we term the

whirl-motion group Go. In preceding papers (see the bibliography at the end

of this paper), Kasner and the author developed the geometry of this group

Go- In this paper, we wish to give the differential geometry of the series of

lineal elements in the plane with respect to the whirl-motion group G6.

A set of oo1 elements is called a series: this includes a union (curve or

point) as a special case. A collection of °°2 elements is termed afield, which of

course corresponds to a differential equation of first order, F(x, y, y')=0.

The totality of <x>3 elements of the plane is called the opulence.

A turbine is the series which is obtained by applying a turn Ta to each

element of an oriented circle (the outer circle). It is said to be nonlinear or

linear according as the base circle is not or is a straight line. A nonlinear flat

field consists of the <x 2 elements cocircular with a given element, called the

center or central element. A linear flat field is the set of »2 elements on the

oo ' oriented lines, which are parallel and possess the same orientation.

In this paper, we shall consider the tangent turbines and the osculating

flat fields of a series of lineal elements. We shall find the necessary and

sufficient conditions that co1 limaçon (circular) series be the osculating

limaçon (circular) series of a general (equiparallel) series (Theorems 11

and 16). We shall define the curvature and torsion of any series (formulas

(38), (39), and (47)). The curvature and torsion of a series 5 conjugate to

a given series S will be obtained in terms of the curvature and torsion of the

given series 5. Finally we shall find that any two general (equiparallel) series,

which have their curvatures and torsions the same functions of the angle u (arc

* Presented to the Society, March 26, 1937; received by the editors February 16, 1939.
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length s), are equivalent under the whirl-motion group Ge (Theorems 20 and 21).

This then gives us the intrinsic equations of a series of lineal elements in the

geometry of the whirl-motion group Ge.

For the analytic representation, it will be convenient to define an ele-

ment by the hessian coordinates (u, v, w) where v is the length of the perpen-

dicular from the origin, u is the angle between the perpendicular and the

initial line, and w is the distance between the foot of the perpendicular and

the point of the element.

2. The tangent turbines of a general series. Any series which consists of

co1 nonparallel elements is termed a general series, whereas an equiparallel

series consists of °ol parallel elements. Thus a general series is never contained

in a linear flat field, while an equiparallel series always lies in a linear flat

field.

Any general series is given by the equations

(1) v = v(u), w = w(u),

while any equiparallel series is given by the equations

(2) u = c, w — w(v),

where c is a constant.

The points of the elements of a series form a union which we call the point-

union of the series. The lines of the elements of a general series are the tangent

lines of a union which is called the line-union of the general series. For an

equiparallel series, there is no line-union since the lines of the element all

have a common direction. The point-union is called the base curve of the equi-

parallel series.

A nonlinear turbine is a general series. Its point-union is a circle, called the

outer circle, and its line-union is also a circle, called the inner circle. These two

circles are concentric, and their common center is called the center of the tur-

bine. Of course, the inner circle is in the interior of the outer circle.

From the preceding remarks, we may have the following construction for

a nonlinear turbine in addition to the one given in §1. A nonlinear turbine

is the series which is obtained by applying a slide 5S to each element of an

oriented circle (the inner circle). From this, we find that the equations of a

nonlinear turbine are

(3) v = a cos u + b sin u + r,        w = — a sin u + b cos u + s,

where (a, b) are the cartesian coordinates of the center, r is the radius of the

inner circle, and 5 is the constant distance of the slide S,. We call (a, b, r, s)

a set of nonlinear turbine coordinates.
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From (3) or by synthetic reasoning, it may be shown that (1) two ele-

ments which are not simultaneously parallel and of the same orientation de-

termine a unique nonlinear turbine, and (2) two nonlinear turbines possess

either one common element or no common elements.

If a one-parameter family of series has the property that consecutive series

have a common element, then the family is called a set of enveloping series.

The locus of intersection of consecutive series of the family is called the en-

velope of the family. Thus the one-parameter family of general series v = v(u,t),

w = w(u, t) is a set of enveloping series if and only if the equations vt = 0 and

Wi = 0 have a common solution in u. The envelope is then given by the two

éliminants with respect to t oí these four equations.

Let two series Si and Si possess a common element E0. These two series

are said to be tangent (or to have contact of first order) at E0 if and only if

they have two consecutive elements in common at Eo. Thus the two general

series Si'. v = Vi(u), w=Wi(u), and S2: v = v2(u), w=w2(u) are tangent at the

common element Eo(u0, v0, wo) if and only if

Vo = Vi(uo) = Vi(ua), wo = Wi(ua) = w2(u0),

(4)
»i («o) = v{ (uo), w{ (uo) = w2 (uo).

Let St: v—v(u, t), w = w(u, t) denote a one-parameter family of enveloping

series, and let 5 denote the envelope of this* family. From the equations of

the envelope S and by (4), it easily follows that awy series St of the one-parame-

ter family of enveloping series is tangent to the envelope S at any one of their

common elements.

If a one-parameter family of turbines is an enveloping set of turbines, then

we shall say that the turbines are the tangent turbines of the envelope.

Theorem 1. The °°1 nonlinear turbines

(5) v = a(t) cos u + b(t) sin u + r(t),     w = — a(t) sin u + b(t) cos u + s(t)

constitute a set of tangent turbines if and only if

(6) a'2 + b'2 = r'2 + s'2.

For, this is the condition that the equations

(7) a' cos u + b' sin u + r' = 0,        — a' sin « + b' cos u + s' = 0

be compatible in u.

The envelope of the °°l nonlinear turbines is given by the equations (5)

and (7). Solving (7) for cos u and sin u, we obtain the

Corollary. The series to which the nonlinear turbines of Theorem 1 are the



1939] SERIES OF LINEAL ELEMENTS 351

tangent turbines either consists of one element or is a general series. It is given

by the equations

- a'r' - b's' a's' - b'r'
cos u = -, sin u =-,

a'2 + b'2 a'2 + b'2

(8)
v = a cos u + b sin u + r, w = — a sin u + b cos u + s.

The envelope (8) of the tangent turbines is given by the equations (5),

where the value of t in terms of u is defined by the equations (7). If equations

(5), subject to the conditions (7), are differentiated totally with respect to u,

the resulting equations are

(9) v' = — a sin u + b cos u,        w' = — a cos u — b sin u,

where the accent denotes total differentiation with respect to u. But these

equations and (5) may be solved for a, b, r, s. Thus, we have established the

following result.

Theorem 2. The tangent turbines of the general series (1) are the nonlinear

turbines whose parameter values are

a = — v' sin u — w' cos u,        b = v' cos u — w' sin u,
(10)

r = v + w , s = — v' + w,

where the accent denotes differentiation with respect to u.

It is noted that, if a general series is a curve, then the tangent turbines are

the osculating circles of the curve.

A tangent turbine of a .general series S at an element E may be defined

as the unique limiting turbine of the set of nonlinear turbines such that any

nonlinear turbine of this set contains the element E and any other nearby

element of S.

3. The tangent turbines of an equiparallel series. A Knear turbine is

the series which is obtained by applying a turn P„ to each element of an ori-

ented straight line. Thus a linear turbine is an equiparallel series whose base

curve is a straight line. The equations of a linear turbine are

(11) m = U — w,        v cos w + w sin w = V,

where (U, V) are the hessian coordinates of the base line and w is the con-

stant angle of the turn P„.

By the same process of reasoning as that used in the preceding section,

we obtain the following results.

Theorem 3. The oo1 linear turbines

(12) u = U(t) - ù>(t),        v cos œ(f) + w sin co(t) = V(l)
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constitute a set of tangent turbines if and only if

(13) V = «' 5*0.

Corollary. The series to which the linear turbines of Theorem 3 are the

tangent turbines either consists of one element or is an equiparallel series. It is

given by the equations

W  . V
(14) u = U — co = const. , v = V cos co-sin co,    w = V sin co -\-cosco.

co' co'

Theorem 4. The tangent turbines of the equiparallel series (2) are the

linear turbines whose parameter values are

1 vw' — w 1
(15) U = c — arc tan-\- wir,  V = +-» w = — arc tan-\- nw,

w' (1 + w'2)1'2 w'

where the accent denotes differentiation with respect to v.

A tangent turbine of an equiparallel series S at an element E may be

defined as the unique limiting turbine of the set of linear turbines such that

any linear turbine of the set contains the element E and any other nearby

element of 5.

It may be now observed that two series at a common element E are tan-

gent at E if and only if they have the same tangent turbine at E.

4. Conjugate series of elements. Two turbines P and P are said to be

conjugate if they have the same circle as point locus and the elements of the

two turbines are symmetrically related to the elements of the circle.

Two series 5 and 5 are said to be conjugate if there exists a one-to-one

correspondence between their elements in such a way that the tangent tur-

bines of the two series at the corresponding elements are conjugate turbines.

By Theorem 1, we find

Theorem 5. For any general series S, there always exists one and only one

conjugate series S which either consists of one element or is a general series. This

series S is given by the equations

- a'r' + b's'                     .             - a's' - b'r'
cos ü = -; sin Ü = -,

(16) a'2 + b'2 a'2 + b'2

v = a cos û + b sin ü + r, w = — a sin ü + b cos ü — s,

ivhere (a, b, r, s) are the parameter values of the tangent turbines of S.

It is noted that the only self-conjugate series are the unions.

It may be observed that, if the conjugate series of a general series consists
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of only one element E, then S is contained in the nonlinear flat field whose

central element is E. In this case, we shall say that 5 is a co-flat series.

Obviously if an equiparallel series is not a turbine, then there is no series

which is conjugate to it.

5. The osculating flat fields of a series of elements. The flat field which

has three consecutive elements in common with a series 5 at an element E

of 5 is called the osculating flat field of the series 5 at the element E.

Theorem 6. The osculating flat fields of a general series S are the nonlinear

flat fields whose central elements are the elements of the series S conjugate to S.

If 5 is a co-flat series, then 5 has one and only one osculating flat field,

namely, the nonlinear flat field in which it is contained.

Theorem 7. ^4«y equiparallel series has one and only one osculating flat

field, namely, the linear flat field in which it is contained.

Of course, the tangent turbine of a series 5 at an element E of S is con-

tained in the osculating flat field of 5 at E.

6. The limaçon series. Let P be a nonlinear turbine (not a point-turbine),

let £ be a fixed element on the conjugate turbine P of P, and let y be a real

number. Let O be the point of E, and let P be the point of any element E of

the turbine P. On the line (OP), let us select the points P,, (i = l, 2), such that

d(P, Pi) = 2-y. Let 22, be the element whose point is P¿ and whose direction

is that of E. By this construction, to each element E of P, there are associated

two elements Pi and E2. The totality of elements Pi, E2 is called a limaçon

series with central turbine T and radius y.

Let P be a point-turbine (point, or star), let E be a fixed element of P,

and let y be a real number. Let L be the angle bisector of the angle whose

initial and terminal sides are the lines of E and of any element E of P respec-

tively. On L, let us select the points P,, (i=l, 2), such that d(0, Pi) =2y,

where O is the point of P. Let P¡ be the element whose point is Pi and whose

direction is that of E. By this construction, to each element E of P, there are

associated two elements Pi and £2. The totality of elements Pi, P2 is called a

limaçon series with central turbine T and radius y.

The equations of any limaçon series are

v = A cos u + B sin u + 2y sin (u — u)/2 + R,
(17) T

w = — A sin u + B cos u + 2y cos (m — û)/2 + S,

where iA, B, R, S) are the parameters of the central turbine T, ü is the normal

angle of the fixed element E, and y is the radius of the limaçon series.

Upon setting

(18) C = — 2y sin û/2, D = 2y cos ü/2,
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the equations (17) of the limaçon series take the form

v = A cos u + B sin u + C cos w/2 + D sin u/2 + R.
(19)

w = — A sin u + B cos u — C sin u/2 + D cos u/2 + S.

We call L(A, B, C, D, R, S) a set of limaçon series coordinates. Obviously,

L(A, B, C, D, R, S) = L(A, B, - C, - D, R, S).

The point-union of the limaçon series (19) is the limaçon

(20) X + iY = (A + iB) + (C + iD)e™i2 + (R + iS)eiu,

while the line-union is

(21) X + iY = (A + iB) + (l/4)(C-iD)eii"i2 + (3/4)(C + iD)ei"n + Re'".

From (10) and (19), we obtain

Theorem 8. A limaçon series is a co-flat series. The tangent turbines of a

limaçon series are such that their conjugate turbines contain the element Ê and

such that their centers are on the circle with center (A, B) and radius y.

From this theorem, we derive

Theorem 9. Three co-flat nonlinear turbines which do not all contain one

element determine a unique limaçon series. Three elements, no two of which are

parallel, and which do not all lie on one turbine, determine four limaçon series.

Three elements, two of which are parallel without all being parallel, determine two

limaçon series.

7. The circular series. The equiparallel series whose point-union is a cir-

cle with center (A, B) and radius y is called the circular series with center

(A, B) and radius y.

The equations of a circular series are

(22) u = c, (v - a)2 + (w - ß)2 = y2,

where (c, a, ß) are the hessian coordinates of the element whose point is

(A, B) and whose inclination is c+ir/2. Thus we must have the relations

(23) A = a cos c — ß sin c,        B = a sin c + ß cos c.

Theorem 10. Three parallel elements which are not all on one turbine de-

termine a unique circular series. Three linear turbines which all possess the same

common direction and no two of whose base lines are parallel determine four

circular series. Three linear turbines which all possess the same common direction

and only two of whose base lines are parallel determine two circular series.
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8. The osculating limaçon series of a general series. Let two series Si and

Si possess a common element E0. These two series are said to be osculating

(or to have contact of the second order) at E0 if and only if they have three

consecutive elements in common at Po. Thus the two general series Si:

v = vi(u), w=Wi(u), and Si: v = v2(u), w=w2(u) are said to be osculating at

the common element Po(«o, Po, w0) if and only if

Vo — Vl(Uo)  = I»2(«o) , Wo =  Wl(Uo)  =  w2(uo),

(24) »i («o) = v{ («o), w{ (uo) = w{ (uo),

vi'(tio) = vi'(uo),               wi'(«o) = Wi'(u0).

Let us consider the one-parameter family of enveloping series St:

v =v(u, t), w=w(u, i). Every series St of the family is tangent to the envelope

S. If every series St of the family is also an osculating series of the envelope S,

then the family is called a set of osculating series. Our given one-parameter

family of series is a set of osculating series if and only if the four equations

(25) »i = 0,        wt = 0,        vu, = 0,        w„, = 0

have a common solution in u. The series St of the family are then the osculat-

ing series of the envelope S.

Theorem 11. The co1 limaçon series

v = A(t) cos u + B(t) sin u + C(t) cos m/2 + D(t) sin m/2 + R(t),
(26)

w = - A(t) sin u + B(t) cos u - C(t) sin m/2 + D(t) cos u/2 + S(t)

constitute a set of osculating limaçon series if and only if

i(A'R' - B'S') = C'2 - D'2,        2(A'S' + B'R') = CD',
(27)

A'2 + B'2 = R'2 + S'2.

For, these are the conditions that the equations

A' cos m + B' sin u - R' = 0,        - A' sin u + B' cos u - S' = 0,
(28)

C cos u/2 + D' sin u/2 + 2R' = 0,   - C" sin m/2 + 2)' cos m/2 + 25' = 0,

which are equivalent to the equations (25) for the oo1 limaçon series (26), be

compatible in u.

i   The envelope of the «>x limaçon series is given by the equations (26) and

(28). Solving (28) for cos u and sin u, we obtain the

Corollary. The series to which the oo1 limaçon series of Theorem 11 are

the osculating limaçon series either consists of one element or is a general series.

It is given by the equations
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A'R' + B'S' - A'S' + B'R'
cos m =-, sin U = -;

A'2 + B'2 A'2 + B'2

(29)
v = A cos u + B sin u + C cos u/2 + D sin u/2 + R,

w = — A sin u + B cos u — C sin u/2 + D cos u/2 + S.

The series S of (29) to which the limaçon series are the osculating limaçon

series is given by the equations (26), where the value of / in terms of u is

defined by equations (28). If equations (26), subject to the conditions (28),

are differentiated totally with respect to u and if the results are again differ-

entiated' totally with respect to u, we find that these are equivalent to

C cos u/2 + D sin u/2 = — 4s', — C sin u/2 + D cos u/2 = 4r',
(30) .

A cos u + B sin u = — w' + 2s', — A sin u + B cos n = v' — 2r',

where r and 5 are the last two parameters of the tangent turbines to the series

S. Solving (26) and (30) for A, B, C, D, R, S, we obtain the

Theorem 12. The osculating limaçon series of the general series S of (1)

are those whose parameter values are

A = a + 2r' sin u + 2s' cos u, B = b — 2r' cos u + 2s' sin u,

(31) C = - 4/ sin u/2 - 4s' cos u/2,        D = 4/ cos u/2 - 4s' sin u/2,

R = r+2s', S = s-2r',

where (a, b, r, s) are the parameters of the tangent turbines of S and the accent

denotes total differentiation with respect to u.

From Theorem 11 and the Corollary to Theorem 11, we obtain

Theorem 13. The necessary and sufficient conditions that °o1 limaçon series

be a set of osculating limaçon series are that they be a set of enveloping limaçon

series and their central turbines be a set of tangent turbines in such a way that the

element E of the envelope of the limaçon series on any particular limaçon series

L is antiparallel (parallel but of opposite orientation) to the element E' of the

envelope of the central turbines which is on the central turbine of L.

Theorem 14. The tangent turbines and the central turbines of any general

series have in common the envelope of the central turbines.

The envelope of the central turbines is called the series of curvature of the

given series. It is given by the equations

(32) t/ = M + 7T, V = v+2w',        W=-2v'+w.

Theorem 15. There is one and only one general series which contains a

given element Eo and which possesses a given series as series of curvature.
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An osculating limaçon series of a general series 5 at an element E may

be defined as the unique limiting limaçon series of the set of limaçon series

such that any limaçon series of this set contains the element E and any other

two nearby elements of 5.

9. The osculating circular series of an equiparallel series. By a process

of reasoning similar to that used in the preceding section, we obtain the

following results.

Theorem 16. The oo1 circular series

(33) m = «KO, [v - a(t)]2 + [w - 0(f)]a = y it)2

constitute a set of osculating circular series if and only if

(34) c' = 0,        a'2 + ß'2 = y'2.

Corollary. The series to which the °ox circular series of Theorem 16 are

the osculating circular series either consists of one element or is an equiparallel

series. It is given by the equations

a'y ß'y
(35) u = c,        v = a-> w = ß-•

y y'

Theorem 17. The osculating circular series of the equiparallel series S of

(2) are those whose parameter values are

w'(l + w'2) 1 + w'2 (1 + w'2)*'2
(36) a = v-i       ß = w -\-,      7 = -i

w" w" w"

where the accent denotes differentiation with respect to v.

From Theorem 16 and the Corollary to Theorem 16, we obtain

Theorem 18. The necessary and sufficient conditions that °o ' circular series

be an osculating set of circular series are that they all have a common direction

and that the circles of the circular series be a set of osculating circles.

The equiparallel series which has the common direction of the given equi-

parallel series S and whose point-union is the curve of centers of the osculat-

ing circular series of S is called the series of curvature. It is given by the equa-

tions

w'(l + w'2) 1 + w'2
(37) U = c,        V = v--, W=w-\-

w" w"

An osculating circular series of an equiparallel series 5 at the element E

may be defined as the unique limiting circular series of the set of circular
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series such that any circular series of the set contains the element E and any

other two nearby elements of S.

At this point, we note that two series S\ and S2 are osculating at a common

element E, if and only if they have the same osculating Kmaçon (or circular)

series at E.

10. The curvature and torsion of a general series. The curvature k p.t an

element £ of a general series 5 is defined by the formula

(38) k = (r'2 + s'2)1'2,

where (a, b, r, s) are the parameters of the tangent turbine at E and the ac-

cent denotes differentiation with respect to u.

The quantity k is one-half of the radius of the osculating Kmaçon series L

of 5 at E; and also it is one-half of the distance between the centers of the

tangent and central turbines of S at E. When the direction is from the center

of the tangent turbine to the center of the central turbine, we regard k as

positive. Otherwise, we take it to be negative.

The torsion r at an element E of a general series S is defined by the formula

dû
(39) r = -,

du

where u and w are the normal angles of the element E of 5 and the element Ê,

which is the central element of the osculating flat field of S at E, respectively.

It is seen that the torsion t at an element E of a general series 5 is the

rate of change of the angle of the central element of the osculating flat field

per unit radian measure of the angle of the element E.

It is observed that a series is a whirl series if and only if its torsion is unity.

From (38) and (39), we find

Theorem 19. The curvature ~ of the conjugate series S of the general series S

is equal to the quotient of the curvature k and torsion r of the series S. The torsion

f of the conjugate series S of the general series S is the reciprocal of the torsion t

of the series S. That is,

k 1
(40) k = —, t =-

t r

Theorem 20. Two general series which have their curvatures and torsions

the same functions of u, the angle between the initial element and any element,

are equivalent under the whirl-motion group Ge.

Theorem 20 proves that the intrinsic equations of any general series in the

geometry of the whirl-motion group G6 are
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(41) K = k(m),        t = t(u) ,

where k is the curvature, t is the torsion, and u is the angle between the initial

element and any element.

It is seen that the necessary and sufficient condition that a general series

be co-flat is that its torsion be zero.

Before beginning the proof of Theorem 20, let us consider briefly the

feuillets of the plane. Any feuillet consists of a lineal element E, a turbine T

passing through E, and a flat field P containing both E and T. We recognize

three distinct types of feuillets: (1) a general feuillet is one where both the

turbine T and the flat field P are nonlinear, (2) an intermediate feuillet is one

where the turbine P is linear and the flat field P is nonlinear, and (3) an equi-

parallel feuillet is one where both the turbine T and the flat field P are linear.

The number of general (or intermediate, or equiparallel) feuillets in the plane

is oo6 (or oo4, or oo4).

Under the whirl-motion group Go, any two general ior intermediate, or equi-

parallel) feuillets are equivalent. In particular, under Go, any general feuillet

can be carried into the general feuillet such that the point and direction of its

element E0 are the origin and the positive direction of the y-axis respectively,

its nonlinear turbine P0 consists of all the lineal elements through the origin

(the point-union or the star at the origin), and its nonlinear flat field P0 is

the one whose central element is Eo. We shall call this the normal feuillet.

This result is very important in the proof of our fundamental Theorem 20.

Any feuillet of a general (equiparallel) series S is a general (equiparallel)

feuillet which consists of an element E of S, the tangent nonlinear (linear)

turbine P to S at E, and the osculating nonlinear (linear) flat field F to S

at E. Obviously a general (equiparallel) series S possesses oo * general (equi-

parallel) feuillets.

We shall now begin the proof of Theorem 20. First, we shall show that

there are only two general series Si and Si with the curvature and torsion given

functions of the angle u and with the normal feuillet as initial feuillet. (The

angle u is the angle between any element E of Si or Si and the element P0

of the normal feuillet.) By (39) and (41), we find

(42) m =  I    r¿M.
J o

By equations (6), (8), (16), (38), and (41), we obtain

(43) eiu = - r  ~ ts ,  ei» = _ ,  K = ir'2 + s'2)"2 = (a'2 + ft'2)1'2,

a' - ib' a' - ib'
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where the accent denotes differentiation with respect to u. Solving these equa-

tions for a'+ib' and r'+is', and integrating these results with respect to u,

we find

Kei^+U)i2du, r + is = ±   j    u¡i(Sr-*'il*du,

where the upper (or lower) signs are taken simultaneously and where ü is de-

fined by the equation (42). Since these are the parameters of the tangent tur-

bines of our required series, we find that our two general series Si and S2 are

given by

(45) v + iw = +    e~iu I    Kei(-U+U)'2du —  I    Kii("--u)'2dM   ,

where û is defined by the equation (42). This establishes our assertion.

Next we shall show that the two series Si and S2 as given by (45) are equiva-

lent under the whirl-motion group Go- For the transformation of Go

(46) U = u,        V = - v, W = - w,

which is the product of a rotation RT through w radians about the origin by

the turn PT through ir radians, converts either one of the two series Si and S2

into the other.

Let S' be any other general series with the curvature and torsion the same

functions of the angle u. (The angle u is the angle between any element E

and the initial element E' of S'.) Since any two general feuillets are equiva-

lent under the whirl-motion group Go, we can carry the initial general feuillet

of S' (determined by the initial element E') into the normal feuillet. Under

any such transformation of Go, the general series S' is converted into a general

series S". Since S" and either one of our original general series Si or S2

possess the same initial feuillet (the normal feuillet) and since their curva-

tures and torsions are the same functions of the angle u, it follows by what we

have proved above that S" must coincide with either Si or S2. Hence the

three series S', Si, and S2 are all equivalent to each other under the whirl-

motion group Ge. The proof of Theorem 20 is therefore complete.

11. The curvature of an equiparallel series. The curvature K=\/y at an

element E of an equiparallel series 5 is defined by the formula

1 w"
(47)

(1 + w'2)3'2

where the accent denotes differentiation with respect to v.
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The quantity y is the radius of the osculating circular series C of 5 at P.

When it is the distance from the point of P to the center of the osculating

circular series C, we regard K = l/y as positive. Otherwise, we take it to be

negative.

The torsion of an equiparallel series is taken to be zero.

Theorem 21. Two equiparallel series which have their curvatures the same

functions of s, the arc length of the point-union from the initial element to any

element, are equivalent under the whirl-motion group Go.

Theorem 21 shows that the intrinsic equations of any equiparallel series

in the geometry of the whirl-motion group Go are

(48) k = k(s),        r = 0,

where k is the curvature, r is the torsion, and j is the arc length of the point-

union between the initial element and any element.

Theorem 21 is a consequence of the fact that the whirl-motion group G6

induces the group of rigid motions between the linear flat fields of the plane.

Now we may observe that the curvature of a»y series is the rate of change

of the tangent turbine per unit measure of the elements of the series ; and the

torsion of any series is the rate of change of the osculating flat field per unit

measure of the elements of the series.
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