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Introduction. In this paper a point correspondence is introduced which is

proving to be very helpful in the study of a general non-ruled analytic sur-

face in ordinary space. If on a surface S tangents to the curves of an asymp-

totic family are constructed at the points of two curves of 5 which are not

members of the family and which intersect in a point y of S, two ruled surfaces

are thereby formed which have at y a common generator. The plane which is

tangent to one of these ruled surfaces at a selected point of the common

generator is tangent to the other at a distinct point whose location depends

on the selection of the first point and on the choice of the two curves which

determine the ruled surfaces. The use of this correspondence serves the fol-

lowing fourfold purpose: (1) to unify many of the apparently isolated topics

which have been studied heretofore, (2) to interpret geometrically, by meth-

ods which are simpler than those formerly used, quantities which are intrinsi-

cally and projectively related to a surface, (3) to introduce and characterize

new configurations which are covariantly related to a surface, and (4) to solve

both recognized unsolved problems and new problems which present them-

selves in the theory.

1. Analytic basis. If the homogeneous projective coordinates y(1), • • • , y(4)

of a general point y on a non-ruled surface S in ordinary space are analytic

functions of two independent variables u, v, and if the parametric net on S

is the asymptotic net, the functions y(i) are solutions of a system of differ-

ential equations, which by a suitable transformation can be reduced to

Wilczynski's canonical form

(1.1) yuu + 2byv + fy = 0, yvv + 2a'yu + gy = 0.

The coefficients of these equations are functions of m, v, which are connected

by three conditions of integrability.

In the notation employed by Green [l, p. 86], points p and a on the u- and

z>-tangents to 5 at y, respectively, are given by

(1.2) P=yu-ßy,        o-=yv-ay,

* Presented to the Society, September 6, 1938, under the title Integral invariants of projective

differential geometry; §11 was presented April 9, 1937, under the title Geometric characterizations

in projective differential geometry of curved surfaces; received by the editors May 19, 1939.
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where a, ß are functions of u, v. The line / joining the points p, a generates a

congruence T as y varies over .S1.

A line /' through a general point y of S, but not lying in the tangent plane

to S at y, joins the point y to the point z given by

(1.3) z = yuv — ayu — ßyv,

wherein a, ß are functions of u, v. As y varies over S the line V generates a

congruence T'. In accordance with the classification which Wilczynski intro-

duced with his directrices of the first and second kinds [l, p. 95], we shall say

that the line I and congruence T are of the first kind, and that the line /'

and the congruence T' are of the second kind.* If the functions a, ß are the

same in equations (1.2), (1.3), the fines /, /' are called reciprocal lines because

they are reciprocal polar lines with respect to the quadric of Lie at the

point y. The congruences T, T', generated by reciprocal lines, are called re-

ciprocal congruences.

Throughout this paper, when no statement is made regarding the tetra-

hedron of reference for local coordinates of points or planes, the tetrahedron

will be that whose vertices are y, y„, yv, yuv. In this coordinate system, the

equations for the line / are

(1.4) xi + ßx2 + ax3 = 0,        x4 = 0,

and the equations for T are

(1.5) Xi + aXi = 0,        x8 + /3x4 = 0.

An arbitrary one-parameter family of curves on 5 is defined by the curvi-

linear equation

(1.6) dv — \du = 0,

where X is an arbitrary function of u, v. We shall throughout this paper de-

note by Px the family defined by (1.6), and by C\ the curve of the family

which passes through the point y. The conjugate net Ax of which F\ is a

family is defined by the curvilinear differential equation

(1.7) dv2 - \Hu2 = 0.

We denote by C\ and C_x the two curves óf Ax which pass through the point y.

2. The Px-associate of a line /.  As a point y of S moves along the curve

Cx, the «-tangent at y describes a ruled surface Px(u) and the a-tangent at y

* Green [I, p. 114] used this means of classifying his canonical edges of the first and second kinds.

Fubini and Cech [l, pp. 96-102] have used the same means of classification but have reversed the

names.
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describes the ruled surface R\(v). The well known asymptotic ruled surfaces

P(u) and R<-v) are the special surfaces R„w and R0(v) in which the curves C„

and Co are the asymptotic v- and w-curves, respectively.

Since the ruled surfaces Px(u) and Riu) have at y the «-tangent to S as

common generator, the plane which is tangent to Px(u) at a given point p of

this generator is tangent to P(u) at another point px of the generator. Like-

wise, since the ruled surfaces R\M and RM have at y the z/-tangent to 5 as

common generator, the plane which is tangent to R\w at a given point a of

this generator is tangent to Riv) at another point o\ of the generator. The

points px and <t\ will be called the R\-transforms of the points p and a respec-

tively. The line l\ joining the points px, ox and the congruence Tx generated

by h as y varies over S will be called the R\-associates of the line / and con-

gruence T, respectively. The reciprocals of l\ and Tx will be called the Px'-

associates of the reciprocals of / and Y, respectively.

Let the point px be given by px=y«—jSxy, where ß\ is to be determined by

the condition that the point (p\)v shall lie in the plane determined by the points

y, p, and pu+^Pv This condition is satisfied if, and only if, the line n joining

the points pu+^Pv, (px)„ cuts the corresponding w-tangent of 5. By making

use of equations (1.1) it may be shown that the line rx intersects the tangent

plane to 5 at y in the point whose general coordinates are given by

Pu + Xp„ - X(px). = X(/3x - ß - 2b/\)yv + fxyu + f2y,

where/i and/2 are nonzero functions of u, v. This point lies on the «-tangent

if, and only if,

(2.1) ßx = ß + 2b/\.

In a similar manner the expression for the coordinates of <t\ is found to be

(2.2) (rx = y, — axy,

where ax = a+2a'X.

3. The determination of the reference tetrahedra of Green. The general

development of Green for the equation of a surface was referred to the tetra-

hedron whose vertices are points y, p, a and r, where r is given by

(3.1) t = yuv — ayu — ßyv + aßy

in which a, ß are the same functions as those in (1.2) associated with the

points p, o-. The point r lies on the line I' which is the reciprocal of the line ¿

joining p, a. If the functions a, ß are chosen suitably, the points p, <j and r

become covariant points, the coefficients in the development become absolute

invariants, and the development is said to be a canonical development. Since
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geometric determinations for the covariant points p, a which are associated

with the various canonical developments are well known, the completion of

the problem of the determination of the covariant tetrahedra of Green is ac-

complished by the geometric characterization of the associated points r.

Green [l, p. 98] has shown that the tangents at the points p, a to the

curved asymptotics of P(u), R(v), respectively, intersect in the point co given by

(3.2) os = t — 2a'by,

where t corresponds to p, a. The point wx which is similarly defined with refer-

ence to the points px, ax is given by u\=r\ — 2a'by. By expressing the right

member of this equation in terms of y, p, a, and r we have

(3.3) w\ = t + 2a'by — 2a'Xp — 2bcr/\.

If the point y is kept fixed, while the function X is varied, the line joining y

and cox describes a quadric cone whose equation when referred to y, p, a, r

is found to be

(3.4) XiX3 - ia'bXi2 = 0.

Moreover, since for every value of X the expression wx is a linear combination

of T + 2a'ôy, p and a, the points wx all lie in the plane ira determined by these

three points. The locus of the points wx as A is varied is therefore a conic.

The point r+2a'6y is the intersection of the plane ira with the line I'. Finally,

the point r is the harmonic conjugate of y with respect to the points r + 2a'by and

T-2a'by.

We find also that the cone (3.4) intersects the tangent plane in the asymptotic

tangents to S at y. The planes which are tangent to the cone along the u- and v-tan-

gents to S at y intersect in the line I' which is the reciprocal of the line joining p, a.

4. The family of Px-derived curves and the curves of Darboux and of

Segre. Let Qx denote the point of intersection of a line / with its Px-associate

h. The point Q\ is given by

(4.1) Qx = a'A2p - be.

The direction of the tangent to S at y joining the points y, Q\ is given by

(4.2) dv/du = - b/a'\2

where the right member is evaluated at the point y. The tangent line in this

direction will be called the R\-correspondent of the tangent to the curve C\ at

y. The one-parameter family of curves defined by the curvilinear differential

equation

(4.3) a'X2¿i> + ¿>¿w = 0
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will be called the family of R\-derived curves. This family is completely char-

acterized by the property that at a general point y of 5 the tangent to the

Px-derived curve through y is the Px-correspondent of the tangent to the

curve Cx which passes through the point. We observe that the family of

Px-derived curves is independent of the choice of the congruence Y used in

the definition and is the same as the family of P_x-derived curves. Hence,

we may associate the Px-derived curves with a conjugate net.

Since the curvilinear differential equation for the curves of Darboux is

(4.4) a'dv3 + bdu3 = 0,

and that for the curves of Segre is

(4.5) a'dv3 - bdu3 = 0,

the following theorems are immediate consequences.

Theorem 4.1. A curve Cx is a curve of Darboux if, and only if, at each of

its points the R\-corres pondent of the tangent to Cx coincides with this tangent.

Theorem 4.2. A curve C\ is a curve of Segre if, and only if, at each of its

points the tangent to C\ and its R\-cor res pondent are conjugate tangents of S.

5. Pencils of conjugate nets ; the Segre-Darboux pencil. The class of °ox

conjugate nets on S, every one of which has the property that at every point

of the surface its two tangents form with the tangents of a fundamental con-

jugate net the same cross ratio, is called a pencil of conjugate nets (Wilczyn-

ski [2, p. 216]). The differential equation of a general net iVAXl of the pencil p\1

of conjugate nets determined by the fundamental net N\„ defined by

dv2 — \?du2 = 0, is of the form

(5.1) dv2 - h2\?du2 = 0, (h = const.).

Definition 5.1. The conjugate net N\u where Xi= —b/a'\2 will be called

the Rx-derived conjugate net associated with the family F\ defined by (1.6). The

associated pencil p\t will be called the R\-derived pencil of conjugate nets.

The curves of Darboux and the curves of Segre belong to a pencil of con-

jugate nets called the Segre-Darboux pencil. The curvilinear differential equa-

tion for this pencil is (5.1), where Xi= (b/a')113. As an immediate consequence

of the form of this equation we have

Theorem 5.1. If a conjugate net N\ is contained in the associated R\-derived

pencil of conjugate nets, the pencil is the Segre-Darboux pencil.

The following theorem presents an additional characteristic property of

this pencil.
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Theorem 5.2. A conjugate net N\ belongs to the Segre-Darboux pencil of

conjugate nets if, and only if, at a general point y of S, its axis lies in the osculat-

ing plane of the R\-derived curve at this point.

Let Cx denote the Px-derived curve which passes through the point y. The

direction of C\ at y is given by dv—\du = 0, where X = — b/a'\2. The equation

of the osculating plane of Cl at y is

(5.2) 2X2x2 - 2Xx3 + (X' - 26 + 2a'X3)x4 = 0.

The axis at y of the conjugate net Ax is the line joining the point y and the

point z given by (1.3), wherein

a = (log X)./2 - 6/X2,        ß = - (log X)./2 - a'X2.

The axis of Ax at y lies in the plane (5.2) if the local coordinates (0, —a, —ß, 1)

of the point z satisfy equation (5.2). It is convenient to express this condition

in terms of X. Making use of the following relations,

(log X),/2 - b/\2 = (log ft&/a'X)„/4 + a'X,

- (log X)„/2 - a'X2 = - (log ftö/a'X)„/4 + b/\, (ft = const.),

we obtain this condition in the form

2X' = X([log kb/a'\]u + [log kb/a'\]v\),

which may be reduced to the simpler form

(5.3) 2[logX]'= [log fto/a'X]',

in which accents indicate differentiation with respect to the independent vari-

able u, and dv/du = \. On integrating (5.3) we obtain

log X2 = log (ftô/a'X), (ft = arb. const.).

Hence, we have

(5.4) X = tikb/a')"3, (í3=1).

Solving for X, making use of the relation X2= — b/a'\2, we obtain

(5.5) X = ± itil/kyi°ib/a')"3, (i = (- l)1'2).

Since ft is an arbitrary constant, the net Ax, where X is given by (5.5), belongs

to the Segre-Darboux pencil. This establishes the sufficiency of the condition.

The condition can be shown to be necessary by interchanging the hypothesis

and conclusion of the sufficiency proof, and reversing the argument.
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The conjugate nets of simplest description, which have the property de-

scribed in this theorem, are the Segre-Darboux nets. Without the foregoing

argument it is clear that the Segre-Darboux nets have the property, since

from the theorems of §5 we have that the R\t-derived family of a Segre-

Darboux net iVx,-, (i = 1, 2, 3), is the family of Darboux curves of the net.

6. Projective characterizations for the r-curves of a congruence Y. Green

defined the T-curves of the congruence Y to be the curves of 5 which corre-

spond to the developables of the congruence Y. New projective characteriza-

tions for these curves will be presented in this section.

As y varies over the surface S, the points p and a of a line of the first kind

generate transversal surfaces S„ and S„ of a congruence Y. Since correspond-

ing points y, p and a have the same curvilinear coordinates (u, v), correspond-

ing directions at these points are defined by the same ratio dv/du = X and the

correspondences between pencils of tangents at y, at p, and at <r, are projec-

tivities. Let us denote by irv, ir„ and ir, the planes which are tangent to S, S„,

and S„ at y, p, and <r, respectively. For an unspecialized surface S the tangent

planes trp and it, intersect in a line h, and the two projective pencils of tangents

at p and a determine a projectivity on h which has two distinct double points

Pi and P2. The two directions Xi, X2 which correspond to these double points

are therefore (for an unspecialized surface) the only ones for which the points

P, Pu+Xp„, a^+\av are coplanar. The condition that these points be coplanar

is necessary and sufficient that for this direction the line / joining p, <r de-

scribes a developable surface of Y. Hence, Xi and X2 are the directions of the

T-curves of 5 at y. Moreover, if we consider the definition of the Px-associate,

it is clear that the reciprocals l\t, h2 of the lines joining y and Pi, and y and P2,

respectively, are the Pxt- and Px2-associates of /. Hence, the lines joining y

and Pi, and y and P2, are the Px/- and Px/-associates, respectively, of the

line /' which is the reciprocal of I. We have, therefore, the following theorem:

Theorem 6.1. //, and only if, at each point y of a curve C\ of S, the line of

the R\ -associate of the reciprocal congruence Y' passes through the line h of inter-

section of the tangent planes to S,, at p and S„ at a, the curve is a Y-curve of the

congruence Y.

By considering polar reciprocals with respect to a quadric of Darboux, we

obtain

Theorem 6.2. A curve C\ of S is a Y-curve of a congruence Y if, and only if,

at each point y of the curve the pole of the plane irh, determined by the point y

and the line of intersection of the tangent planes to Sp at p and S„ at a, with re-

spect to a quadric of Darboux lies on the R\-associate of the line of the congruence

Y which corresponds to the point y.
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The curvilinear differential equation for the net of T-curves of 5 may be

put in the form

(6.1) 2b(ot - aM)du2 + QS, - au)dvdu - 2a'iß - ßM)dv2 = 0,

wherein a(0)= — (f+ßu+ß2)/2b, ßw = — (g+av+a2)/2a'. The equations for

the planes 7rp and ira may be shown to be

(6.2) xi + ßXi + a(a)X3 + (ßaM + ßv)xA = 0,

(6.3) xi + ßwXi + ax3 + (aßia) + au)xi = 0,

respectively. By making use of these equations in connection with equation

(6.1) for the T-curves, the following theorems may be easily proved.

Theorem 6.3. The planes irp and ir, intersect the line T which is the recipro-

cal of the line joining p, a in one and the same point if, and only if, ßv=au.

Theorem 6.4. If the planes -rrp and ir, intersect in a line ft which contains a

point of I', the T-curves form a conjugate net when ft passes through neither

asymptotic tangent of S at y, but they coincide with the family of asymptotic

v-curves (or u-curves) of S when ft passes through the asymptotic u-tangent (or

v-tangent) to S at y.

Theorem 6.5. If, and only if, the plane -kp coincides with the plane ir„, the T-

curves are indeterminate.

Theorem 6.6. If ß^a«, the planes irp and ira intersect in a line ft which is

not coplanar with V. If the line ft contains the point p (or a), one family of the

net of T-curves is the family of asymptotic v-curves (or u-curves). If ft coincides

with the line I, the net of T-curves coincides with the asymptotic net on S.

Definition 6.1. A congruence which satisfies the hypothesis of Theorem 6.3

will be called central to S.

Definition 6.2. Let a(a) denote the intersection of the plane irp with the tan-

gent to the asymptotic v-curve of S at y, and let pw denote the intersection of the

plane ir„ with the tangent to the asymptotic u-curve of S at y. The line lw joining

P(o), ff(o) and the congruence r(0) generated by l(a) as y varies over S will be called

the asymptotic associates of the line I and congruence T respectively.

The points p(0), a(a)* are given by

(6.4) P(a)   =   yu  -  ßMy, ff (a)   =   yv  -  OC(a)y,

where ßw, a(0) are the functions which appear in (6.1).

* The points p(aj, &(a) may also be characterized as follows. The point p(0> is the intersection of the

D-tangent of S„ at <r with the !<-tangent of 5 at y, and the point <r(a) is the intersection of the «-tangent

of Sp at p with the »-tangent of S at y.
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The T'-curves are the curves of S which correspond to the developables

of the congruence I"; they are in fact the intersections of the surface S with

the developables of the congruence Y'.

Definition 6.3. // one of the two families of curves which form a conjugate

net consists of Y'-curves, we shall call the other a family of reflected Y'-curves.

Green [l, p. 93] defined reflected T-curves in a similar manner.

The curvilinear differential equations for the net of T'-curves of S may

be put in the form

(6.5) (2bv - 2b[a + aM])du2 + (ßv - au)dudv + (2a'[ß + ßw] - 2a¿)dv2 = 0.

The equation for the net of reflected T'-curves is

(6.6) [2b(a + <*(o)) - 2bv]du2 + (p\, - au)dudv + [2a¿ - 2a'(ß + ßM)]dv2 = 0.

The T-curves coincide with the reflected T'-curves if, and only if

aw = bv/2b,        /3(0) = aú /2a'.

For this selection the line lw is the directrix of the first kind of Wilczynski.

Hence we have

Theorem 6.7. The Y-curves of a congruence Y coincide with the reflected Y'-

curves of the reciprocal congruence Y' if, and only if, the asymptotic associate of

the congruence Y is the congruence generated by the directrix of the first kind of

Wilczynski.

The following theorem may be proved similarly. Let Pw denote the point

of intersection of the line / with its asymptotic associate /(0). Let tw denote

the tangent to S at y which passes through P(0), and let t{a) denote the tan-

gent to S at y which is conjugate to tw at y.

Theorem 6.8. The Y'-curves of a congruence Y' are indeterminate if, and

only if, the following conditions are satisfied: (1) the congruence Y is central to S,

(2) the pencil of lines whose center is the point P(0> contains the directrix of the

first kind of Wilczynski, and (3) the tangent line tw and the directrix of the first

kind, separate harmonically the lines I and /(a).

The second and third conditions in the theorem may be replaced by the

following ones: (2') the pencil of lines determined by the lines I' and l[a) con-

tains the directrix of the second kind of Wilczynski, as well as the tangent tM

which is conjugate to ¿(0), (3') the tangent line t[a) and the directrix of the second

kind separate harmonically the lines V and l[a).

7. Theorems on conjugate nets. According to Theorems 6.4 and 6.5 the

congruences central to S consist of (1) congruences harmonic to S, (2) congruences
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whose T-curves coincide with an asymptotic family of S, and (3) congruences

whose T-curves are indeterminate.

Definition 7.1. A family Px defined by (1.6) belongs to class S if the

R\-associate of a congruence central to S is likewise central to S.

The analytic condition that Px belong to class 6 is that X satisfy the par-

tial differential equation

(7.1) (6/X), - (a'X)u = 0.

If a direction dv/du = \ satisfies equation (7.1), its conjugate direction

dv/du= —X likewise satisfies it. Hence, we have that if a family belongs to

class S, the conjugate net Ax, of which F\ is a family, belongs to class S.

Theorem 7.1. If a family F\ of curves of S belongs to class Ë, the R\-derived

conjugate net consists of a one-parameter family of projective geodesies and the

family of R\-derived curves.

The function X satisfies equation (7.1) which may be put in the form

(7.2) X(log X). + (log X)u = - (log a')„ + X(log b),,

wherein X = 6/a'X2. We obtain from the equation X2 = ô/a'X by logarithmic

differentiation, the relations

(log X)„ = [(log b/a'). - (logX).]/2,

(log X)„ = [(log b/a')u - (log X).]/2.

Using these forms, we may express equation (7.2) entirely in terms of X. On

simplifyng the resulting equation we obtain

(7.4) X« + XX„ = (log a'ô)uX - (log a'o)„X2.

Putting X = dv/du and X„ +XX„ = d2v/du2, we have the usual form of the differ-

ential equation for the projective geodesies

(7.5) dh/du2 = (log a'b)udv/du - (log a'b)v(dv/du)2.

Hence the curves defined by dv — \du = 0, where X = 6/a'X2, are projective

geodesies under the hypothesis of the theorem. Since, moreover, the family

of Px-derived curves is defined by dv—\idu = 0, where Xi = — 6/a'X2, the fami-

lies Px" and Px, form the Px-derived conjugate net.

Theorem 7.2. If a one-parameter family of projective geodesies and the

family of R\-derived curves associated with a family F\ form a conjugate net,

the family F\ belongs to class 6.
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A one-parameter family of projective geodesies is defined by dv—\du=0,

where X is a solution of the equation (7.5). According to hypothesis, X = b/a'\2.

Hence, we have

(7.6) X„ + XX, = (b/a'\2)u + (b/a'\2)(b/a'X2)v.

Equating the right members of (7.4) and (7.6) and simplifying, we obtain

(7.7) (log a'\)u = (b/a'\2) (log b/X),,

which is equivalent to equation (7.1).

The functions a, ß for the axis congruence and the associate axis con-

gruence of the net N\ are given by

(7.8) a = (log X)„/2 - b/\2,        ß = - (log X)./2 - a'X2,

(7.9) a = (log X),/2 + b/\2,        ß = - (log X),/2 + a'X2,

respectively. Hence, we have

Theorem 7.3. If F' denotes the family of R\-derived curves associated with

a conjugate net N\, the axis congruence of the net is the R\'-associate of the asso-

ciate axis congruence of the net.

Since, moreover, the ray congruence of a conjugate net is the reciprocal

of the associate axis congruence of the net, and the associate ray congruence

is the reciprocal of the axis congruence, we have

Theorem 7.4. // F\ denotes the family of R\-derived curves associated with

a conjugate net N\, the associate ray congruence of the net is the R\-associate of

the ray congruence of the net.

8. The Px,,,¿-associates of a line / and congruence Y ; the transformations

of Cech. The concept of the Px-associate of a line / may be generalized as

follows. Let px,,- denote the point on the asymptotic «-tangent to S at y which

is determined by the cross ratio equation

(8.1) (y, p, px, px.í) = j, (j = const.).

Let <i\,k denote the point determined on the ^-tangent to 5 at y by the cross

ratio equation

(8.2) (y, a, crx, <r\,k) = k, (k = const.).

The points px,, and a\tk will be called the R\,j- and R\,k-transforms of p and a,

respectively. The line h,¡,k joining the points px,,- and o\,k and the congruence

Fx,,,t generated by 4,,,* as y moves over 6" will be called the R\,j,k-associates

of / and T respectively. The reciprocals l{,jtk and Tx,,,* of h,i}k and Tx,,-,* will

be called the R{,j,k-associates of /' and Y', respectively.
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The points px,,- and ax>* are given by

(8.3) px,,- = p — 2jby/\, ff\,k = a — 2ka'\y.

The general transformation 2,-,* o/ Cecft* [l, p. 192] is defined analyti-

cally by the equations

,„  ,. £i = 0,        r£2 = X2X32,        r£3 = x22x3,

(8.4)
r£4 = — X1X2X3 — 2bjx23 — 2a'kxi , (j = const., ft = const.),

where r is a proportionality factor. It is a transformation between points with

local coordinates x in the tangent plane of a surface at a point and planes with

local coordinates £ through the point.

We present a new geometric characterization of the general transforma-

tion of Cech. Let t\ and ¿_x denote the conjugate tangents to 5 at y whose

directions are dv/du = \, and dv/du= —X, respectively. Let P_x denote the

point of intersection of /_x with an arbitrary line / of the first kind.

Theorem 8.1. The plane iv\,j,k which corresponds to a point P_x in the trans-

formation S/,* of Cech is the plane which is determined by the tangent t\ and the

reciprocal of the R\,jik-associate of I.

The equations for t_\ are x3+Xx2 = 0, x4 = 0. Equations (1.4) are for an

arbitrary line /. Hence the local coordinates of P_x may be found to be

(8.5) Xi = — ß + a\,        x2 = 1, x¡ = — X, x4 = 0.

There is a point Q\ of t\ whose local coordinates are given by (0, 1, X, 0),

and there is a point 2a,,-,* of l{,j,k whose local coordinates are (0, —a — 2ka'\,

—ß — 2jb/\, 1). Since the plane determined by t\ and 11,¡,k contains the points

y, Q\, and Z\,j,k, its equation may be found to be

(8.6) Xx2 - X3 + (a\ + 2fta'X2 - ß - 2jb/\)xt = 0.

By substituting the values for x1} x2, x3, x4 given by (8.5) in (8.4), we find

that the coordinates of the plane ir\,j,k are the same as those of the plane (8.6),

except for a proportionality factor. Hence the theorem is proved.

The correspondence of C. Segre is the transformation 2i,i- It was defined

to be the correspondence between the osculating planes at a point y of 5 of

all of the curves of S passing through y and the corresponding ray-points of

these curves at y. The geometrical characterization which we have given for

2,-,k reduces to a very simple form for Si.i, namely, the plane tt\ which is in

the correspondence of Segre with the point P_x is determined by the tangent t\ and

the line l{ which is the reciprocal of the R\-associate of I.

* Lane [l, p. 209] has characterized geometrically the transformations 2,,*, where j=k.
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To locate the ray-point of the curve Cx at y, select in the osculating plane

7Tx, of the curve Cx at y, an arbitrary line /' of the second kind. The R-\-asso-

ciate of the reciprocal of I' intersects the tangent line 2_x in the point P_x which is

the ray-point of Cx at y.

The equations in plane coordinates £ of the pencil of planes whose axis

is an arbitrary line /' of the second kind are £i = 0, £4—a£2—ß£3 = 0, wherein

a, ß are arbitrary functions of w, v. It is well known that the points which

correspond to these planes in the transformation S/,t determine a plane cubic

in the tangent plane to S at y whose equations are

(8.7) XiX2x3 + ax2x3 + ßx2x3 + 2jbx23 + 2ka'x3  =0,       xt = 0.

Let Px,,-,*: denote the point of intersection of the tangent 4 with the Px,,-,*-

associate of /.

Theorem 8.2. The locus of the point Px,,-,* as the direction X is varied at y

is the cubic (8.7).

The equations for t\ and for l\,j,k are x3 = \x2 and Xi+(ß+2jb/\)x2

+ (a+2ka'\)x3 = 0, respectively. The point Px,,,* of intersection of these two

lines has, therefore, coordinates that are proportional to

(8.8) xi = - (ß + 2jb/\ + a\ + 2ka'\2),        x2 = 1,        x3 = X.

Homogeneous elimination of X among equations (8.8) gives the equation (8.7)

for the cubic.

Among the important cubics (8.7) which have been studied is the one in-

troduced by B. Segre in which all of the »4 non-composite cubic surfaces

having fourth order contact with the surface at the point y cut the tangent

plane of the surface at y. This cubic is characterized geometrically by Theo-

rem 8.2, wherein/= ¿ = 1/3 and / is the canonical edge of the first kind. Its

equations in the notation of this paper are equations (8.7), wherein/ = k = 1/3

and a = av' /4a', ß = bu/4b.

9. Differential invariants. The differential form

(9.1) d<f>j,k = — 2(jbdu3 + ka'dv3)/dudv, (j, k = consts.),

is an absolute invariant under the most general transformation of independ-

ent and dependent variables maintaining the asymptotic net as parametric.

To provide a geometric interpretation for d<pj,k let Q denote a point on

the tangent to a curve Cx at y and let K and Px,,-,* denote the points in which

this tangent intersects a line / and its R\tj,k-associate line, respectively. We

define the (j, k) non-euclidean distance from y to Q to be

(9.2) Z>"¿*' = (y,K,Q,KKj,k).
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Let F denote a point near to y on the curve C\, and let the curvilinear

coordinates of y and F be (u, v) and (u+ôu, v+Sv) respectively, where

(Su2+ôv2)ll2^e. Since F = y(u + ôu, z»+ôh) and the limit of ôv/ôu as 5u tends

to zero as X(w, a), the general coordinates of F may be given by the expansion

Y = y + iyu + \yi)8u + terms of order (8u)2

wherein y = yiu, v). Hence the coordinates of F differ only by terms of order

(ôw)2from the point Fi on the tangent toCx atygivenbyFi = y+(y„+Xy„)5«.

Therefore the principal parts of the infinitesimal cross ratios

iy,K,Y,Kx.i,k),        (y,K,Yi,Kxr,,k)

are identical. It may be easily shown that this principal part is the absolute

differential invariant dp,,k which we wished to characterize.

It may be observed that dpifi is the projective linear element and ¿0o,i and

¿#i,o are the elementary forms of Bompiani.

The integral of the form dpjik extended over a finite arc C\ is intrinsically

and projectively related to this arc. To interpret this integral geometrically

let A and B denote the end points of the arc, and let (w0, v0) and (u, v)

denote the curvilinear coordinates of A and B, respectively. Let e be a posi-

tive number, and divide the arc C\ by means of the intermediate points F,-,

(i = 1, 2, • • ■ , »— 1), into « smaller arcs. Let the curvilinear coordinates of Yp

be (up,vp), where w„ = u and v„ = v, and where [(up—up-i)2+(vp—vp-i)2]1/2^t,

(p=l, 2, ■ ■ ■ , » — 1), with e tending to zero as » increases without limit.

Then if we put up—Mp_i= ôup and vp—vp-i = ôvp, we have

Ij.k =   I    dp,,k = lim  J2Dy^-1yv.
J cx *-*■   p=l

We have therefore

Theorem 9.1. The integral I,,k is the limit of the sum of infinitesimal non-

euclidean distances, each of which is defined at a separate point Fp_i of C\ as

the principal part of the corresponding cross ratio (Fp_i, K, Yp, K\,,,k) which

is geometrically determined at Yp-\.

This geometric characterization adds to the significance of the extremals

of the special integrals which have been studied heretofore. Among these are

the pangeodesics which are the extremals of the integral 2\,i, and the two

families of hypergeodesics which are the extremals of the integrals P,o and 2"0,i,

respectively.

The element of projective arc length

(9.3) ds = 2(a'bdudv)1'2
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may be characterized geometrically in a somewhat similar manner. The line

4 which is the Px-associate of /, envelops a conic C as the direction dv/du=X

is varied while («, v) are held constant. The conic passes through the points p

and er in which I intersects the u and v tangents to S at y and is in fact tangent

to these asymptotic tangents at these points. The equation of the conic C

when referred to the triangle of reference, whose vertices are the points y, p,

and o- may easily be found to be

(9.4) x? = 16a'bx2xs.

Let Qi, Q2 denote the points of intersection of the tangent Kne to Cx at y with

the conic (9.4). If we replace, throughout the theory for the characterization

of d<pjtk and I,-,k, the points K and Px,,-,* by the points Qi and Q2, we obtain

geometric determinations for the form ds = 2(a'bv')1/2du and the correspond-

ing integral I=fc>2(ba'v')ll2du known as the projective arc-length.

Another interesting invariant, which has been characterized by Bompiani,

is — b/a'\3= —d(f>i,o/d<po,i. We find that this invariant may be characterized

geometrically by the cross ratio

(0, oo, — bdu2/a'dv2, dv/du)

which the tangent Kne lx makes with the u and v asymptotic tangents and

the Px-correspondent of 4 at the point y of S.

10. Pangeodesics and union curves.* The equation of a general quadric

which has contact of the second order with a surface S at a point y is

(10.1) x2x3 + Xi(— xi + k2x2 + k3x3 + kiXt) = 0,

where the coefficients k2, k3, kt are arbitrary constants for the fixed point y

and functions of u, v when y is varied over S. This quadric cuts the surface S

in a curve with a triple point at y, whose tangents are in the directions satisfy-

ing the equation

(10.2) 2bdu3 - 3k2du2dv - 3k3dudv2 + 2a'dv3 = 0.

If two of these triple-point tangents coincide in the direction dv/du=\,

the third tangent must be in the direction dv/du = —b/a'\2. Hence we have

the following

Theorem 10.1. If a quadric having second order contact with S at y inter-

sects S in a curve having two coincident triple-point tangents 4 at y, in the direc-

tion dv/du=\, where X is an arbitrary function of u, v, the remaining triple-

point tangent is the Rx-corr es pondent oftx.

* Union curves were introduced by Miss P. Sperry [l, p. 214].
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For each selection of X there is a pencil of quadrics characterized by the

hypothesis of the above theorem. The equation for a general one of these

quadrics is given by (9.1) where

(10.3) ft2 = (4Ô/X - 2a'X2)/3, ft3 = (4a'X - 2b/\2)/3,    (ft4 arbitrary).

Since the quadric of Moutard at y and in the direction dv/du =X is one of the

quadrics of this pencil, we shall call this pencil the Moutard pencil of quadrics

corresponding to the tangent t\ at y. The following theorem, the proof of

which will be left to the reader, characterizes a new line of the first kind in

association with an arbitrary line of the second kind.

Theorem 10.2. The polar reciprocal of an arbitrary line V of the second

kind with respect to a quadric of the Moutard pencil corresponding to a tangent t\

at y is a line lm,\ of the first kind which is dependent on the choice of V and X but

is independent of the choice of the quadric of the pencil.

The equations of the line lm,\ are easily found to be

(10.4) xi+ (ß+ [2a'X2 - 4o/X]/3)x2 + (a + [2Ô/X2 - 4a'X]/3)*3 = 0, x4 =0

where a and ß are the functions associated with the point z on /' given by

(1.3).
We shall call the line lm,\ the Mw-associate of the line /', and the con-

gruence Tm,x, generated by lm,\ as y moves over S, the M^-associate of the

congruence T'.

Definition 10.1 A family Px, defined by (1.6) belongs to class Sm if the

M(X)-associate of the reciprocal of a congruence central to S is itself central to S.

The analytic condition that Px belong to class 6m is, therefore, that X

satisfy the partial differential equation

(10.5) (a'X2 - 2b/X)v = ib/\2 - 2a'X)„.

This is, moreover, the equation for the pangeodesics. Hence we have

Theorem 10.3. A curve is a pangeodesic if, and only if, it belongs to class

Let us now obtain the second order differential equation for the curves Cx

which are characterized by the property that the M (X,-associate of an arbi-

trarily chosen congruence T' of the second kind is the ray congruence of the

associated conjugate net Ax. Since the functions a and ß associated with the

ray-congruence of a conjugate net Ax are given by

(10.6) a = ([log \]v + 2b/\2)/2,        ß = (- [log X]„ + 2a'X2)/2,
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the conditions of the problem require that X(m, v) satisfy the equations

jS + (2a'\3 - 4&)/3X = (- [log X]„ + 2«'X2)/2,

a+(2b- 4a'\3)/3\2 = ([log X]„ + 2b/\2)/2.

If we multiply the first of these equations by — 2X and the second by 2X2,

and add corresponding sides of the resulting equations, we obtain

(10.8) X„ + XX„ = 2b - 2/3X + 2aX2 - 2a'X3.

If we replace X by dv/du and X„+XX„ by d2v/du2, we obtain

(10.9) d2v/du2 - 2b - 2ßdv/du + 2a(dv/du)2 - 2a'(dv/du)3,

which is the well known differential equation for the union curves of the

congruence Y'. Hence, we have

Theorem 10.4. The curves defined by (1.6), which possess the property that

the M{X)-associate of a congruence T' of the second kind is the ray congruence

of the associated conjugate net N\, are union curves of the congruences Y'.

11. The projective normal. The purpose of this section is to present a

new geometric characterization of the projective normal. Consider the points

t and os, given by (3.1) and (3.2), respectively, which are the points distinct

from y in which an arbitrary line /' of the second kind intersects the quadrics

of Wilczynski and Lie at y. As the point y moves along a curve Cx, the points

t and co describe corresponding curves. The tangent lines at t and co to these

curves intersect the tangent plane to 5 at y in points which we denote by Px

and Wx, respectively. The expression for the general coordinates of Px is given

by a linear combination of r and tu+\tv which does not contain yuv. A similar

combination of co and cou+Xco„ gives the expression for the general coordinates

of Wx- The term of tu+\tv which involves yuv is — (ß+ah)yuv. The same term

appears in cou+Xco„. Hence, the expressions for Tx and Wx are

Tx = tu + Xt, + (ß + oX)t, Wx = cou + Xco, + (/S + a\)co.

Making use of the expressions for t and co and the equations (1.1), we obtain

(11.1) Wx - Tx = - 2a'b[yu - ßy + X(y, - ay)],

where ß= — ß— (log a'b)u, ä= —a —(log a'b)v. Let 4 denote the tangent to Cx

at y, let r denote the line joining Wx and Tx, and let vx denote the point of

intersection of 4 and r. Since the right member of (11.1) is a linear combina-

tion of the expressions for the coordinates of Wx and Tx, it is the expression

for the coordinates of vx. We shall call the point vx the v-point of 4, associated

with the line V.
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Since the right member of (11.1) is a linear combination of yu—ßy and

y„ — äy, the point v\, for any value of X, lies on a straight line which joins p

and ä given by p =yu—ßy, â=y„ — ay, where ß and a are defined above.

We shall call the line I the v-associate of the line /', corresponding to the

point y of S. We state now

Theorem 11.1. As the direction X is varied at y, the v-point of t\, associated

with the line I', describes a straight line which we call the v-associate of the line I'.

The point p of intersection of the reciprocal I of /' with the line / has gen-

eral coordinates of the form

(11.2) p = (a - a)iya + [log a'b]uy/2) -iß- ß)iyv + [log a'b]vy/2).

Since the intersections of the reciprocal ln of the projective normal with the

m and v tangents to S at y are given by

(11.3) p = yu + [log a'o]u;y/2,        a = yv + [log a'b]vy/2,

and since p is a linear combination of these expressions, we have

Theorem 11.2. The point p, which is the intersection of the reciprocal of

an arbitrarily chosen line I' of the second kind with the v-associate of I', lies on

the reciprocal of the projective normal.

If we consider a pair of lines If, l2 of the second kind, we may determine

the reciprocal /„ of the projective normal as the line joining the points pi and

p2 which correspond to l( and U, respectively, at the point y.

Let the tangent line to S at y, which contains the point p in correspond-

ence with /' at y, be denoted by /. The equations for t are

(11.4) (a - a)x3 + iß - ß)x2 = 0, Xi = 0.

The equations for the lines / and I are (1.4) and

(11.5) xi- iß + [log a'b]u)x2- ia+ [log a'b]v)x3 = 0,    x4 = 0,

respectively. The harmonic conjugate of / with respect to I and I is the line /„

whose equations are

(11.6) 2xi — (log a'6)uX2 — (log a'b)vx3 = 0, x4 = 0.

Hence we have

Theorem 11.3. The harmonic conjugate of t with respect to the lines I and I

is the line ln which is the reciprocal of the projective normal.

Let t' denote the tangent to 5 at y which is the conjugate of t. Now since /'

and the lines /', V, and /„' which are reciprocals of /, /, and /„, respectively, are
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also reciprocal polar lines of t, I, I and /„ with respect to any quadric of Dar-

boux, we have

Theorem 11.4. The lines t', I', V and l„' are coplanar, and the harmonic

conjugate of t' with respect to the lines V and I' is the projective normal.

12. Hypergeodesics associated with the projective normal. The tangent

line t which we have defined in association with an arbitrary line /' of the

second kind can be used effectively to obtain new geometric characterizations

for several important families of hypergeodesics associated with a surface S,

namely, the projective geodesies, the union curves of the projective normal,

and the dual union curves of the projective normal. These characterizations

are completely described in the following theorems.

Theorem 12.1. The tangent t associated with the line T which is the cusp-

axis at y of a pencil px, of conjugate nets, and the tangent to the curve Cx of the

fundamental net Nx at y are conjugate tangents if, and only if, the curve is a

projective geodesic.

According to the hypothesis we must have

X = (20 + [log a'b]u)/(2a + [log a'b]v),

where ß = — (log X)„/2 and a = (log X)„/2. Hence, on clearing of fractions we

obtain

(12.1) Xu + XX„ = - (log a'b)v\2 + (log a'b)u\,

which is the equation for the projective geodesies. The substitutions are re-

versible and therefore the condition is necessary and sufficient.

Theorem 12.2. The tangent t associated with the line I' which is the axis

of y with respect to a conjugate net Nx, and the tangent to the curve Cx at y, are

conjugate tangents if, and only if, the curve is a union curve of the projective

normal.

The hypothesis here requires that

X =  [2/3 + (log a'b)u]/[2a + (log a'b)v],

where

ß = [- (log X), - 2a'X2]/2,        a =  [(log X), - 26/X2]/2.

On clearing of fractions we obtain the equation for the union curves of the

projective normal

(12.2) X„ + XX„ = 2b + (log a'b)uX - (log a'b)v\2 - 2a'\3.

The argument is again reversible.
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The remaining theorem can be stated by replacing "the axis of y" by l'the

associate axis of y," and "union curve" by "dual union curve." The method of

proof is similar to that of the above theorems and will, consequently, be left

to the care of the reader.

13. A system of hypergeodesics associated with an arbitrary congruence

of the first kind. Consider the transversal surfaces SPX and S„x of the P\-asso-

ciate of an arbitrary congruence T of the first kind. The planes irv and irPX

which are tangent at y, px and ax to the surfaces S, SPX, and S„x, respectively,

have in general the unique point in common which we denote by PCX).

Theorem 13.1. If the tangent at a general point y to a curve C\ of S contains

the point P(X) associated with an arbitrary congruence T at the point y, the curve

is a hypergeodesic of a system which we shall call the T-geodesics.

The curvilinear differential equation for the T-geodesics may easily be

found to be

(13.1) d2v/du2 = (bu/b + ß + ßM)dv/du - (a„'/a' + a + a(a))idv/du)2,

where ß, a are the functions identified with the congruence T, and ß(ll), a(0) are

those identified with the asymptotic associate of the congruence T.

To obtain equation (13.1) we express the condition that the tangent yP^

shall have the direction dv/du=\. Since the point P(X) is the intersection of

the line joining the points px, (ax)(a> with the line joining the points ax, (px)ca),

where (px) (a> and (ax) (0) determine the asymptotic associate of the line l\ join-

ing px and ax, the general coordinates for P(X) may be found to be given by

(13.2) [ax - (ax)ca)bu + [ft - (ft)<«>]y.,

in which

ax = a + 2a'X, ft = ß + 2b/\,

(«0(a) = - (f+ßu + [26/X], + ß2 + 4bß/\ + 4b2/\2)/2b,

(ft)(a) - - (g + av+ [2a'\]v + a2 + 4a'a\ + 4a'2\2)/2a'.

The direction of the tangent yP^ is therefore given by

(13.3) dv/du =  [ft - (ft)«,)]/[ax - (ax)(„)].

On setting the right member of this equation equal to X, simplifying and put-

ting \ = dv/du, X„+XX„ = ¿2d/¿m2, we obtain equation (13.1).

The cusp-axis of the T-geodesics at the point y joins y to a point z given

by (1.3) in which

a = - a¡ßa'-(a + aM)/2,        ß = - bu/2b - (ß + fto))/2.
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We state now two interesting theorems ; the first characterizes the directrix

of the first kind, of Wilczynski, and the second characterizes the edge of the

first kind, of Green. The duals of these theorems characterize the correspond-

ing lines of the second kind. The proofs of the theorems and the statements

of their duals will be left to the care of the reader.

Theorem 13.2. The reciprocal of the cusp-axis at y of the Y-geodesics is

the directrix of the first kind, of Wilczynski, if, and only if, the reciprocal of the

projective normal separates harmonically the tangent t(a) with respect to the lines I

and l{a) of the congruences Y and Yw, respectively.

Theorem 13.3. The reciprocal of the cusp-axis of the Y-geodesics at y, the

harmonic conjugate of tw with respect to the lines I and /(a), and the first edge of

Green, intersect in the same point, which we denote by E.

By choosing two congruences Ti and Y2 of the first kind, having associated

with them distinct points Pi and P2, we determine the first edge of Green as

the line joining Pi and E2.

References
E. Cech

1. L'inlorno d'un punto d'una superficie considéralo dpi punto di vista proiettivo, Annali, di

Matemática (3), vol. 31 (1922), pp. 191-206.
G. FuBiNi and E. Cech

1. Introduction à la Géométrie Projective Différentielle des Surfaces, Paris, Gauthier-Villars, 1931.

G. M. Green

1. Memoir on the general theory of surfaces and rectilinear congruences, these Transactions, vol. 20

(1919), pp. 79-153.
E. P. Lane

1. The correspondence between the tangent plane of a surface and its point of contact, American

Journal of Mathematics, vol. 48 (1926), pp. 204-214.

P. Sperry

1. Properties of a certain projectively defined two parameter family of curves on a general surface,

American Journal of Mathematics, vol. 40 (1918), pp. 213-224.

E. J. Wilczynski

1. Projective differential geometry of curved surfaces (second memoir), these Transactions, vol. 9

(1908), pp. 79-120.
2. Geometrical significance of isothermal conjugacy of a net of curves, American Journal of Mathe-

matics, vol. 42 (1920), pp. 211-221.

University of Kansas,

Lawrence, Kan.


