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Introduction

1. Kasner has studied the three-parameter families of trajectories of a

particle moving in a plane under forces which are functions of position only,

and has shown that all such families of curves, each particular family corre-

sponding to a particular field of force, possess certain common geometrical

properties which distinguish them from three-parameter families of curves

defined in other ways.f He and his students have also studied a variety of

other problems concerning families of trajectories of particles, but in all of

this work it has been assumed that the particles obey the laws of Newtonian

dynamics. So far there do not seem to have been any parallel investigations

concerning the trajectories of particles obeying the laws of special relativistic

dynamics.

For the sake of brevity, we shall call a particle obeying the laws of New-

tonian dynamics a classical particle, and we shall call a particle obeying the

laws of special relativistic dynamics a relativistic particle.

This article deals primarily with the problem of determining a set of geo-

metrical properties which is characteristic of the families of trajectories of a

relativistic particle moving in a plane under forces which are functions of

position only. Whereas Kasner found that in the classical case the families of

trajectories are characterized by a certain set of five properties, we find that

in the relativistic case there are six characteristic properties.î Four of these

correspond to four of the properties given by Kasner for the classical case,

and resemble the latter in various degrees, while the remaining two properties

have no classical analogues.

In the concluding sections of the article we deal with some other problems

concerning trajectories of relativistic particles, most of the considerations be-

ing confined to the case of motion in a plane. In particular, we study the de-

termination of the field of force by the properties of the family of trajectories,

* Presented to the Society, October 29, 1938; received by the editors January 11, 1939.

f These Transactions, vol. 7 (1906), pp. 401-424; also Differential-Geometric Aspects of Dynamics,

American Mathematical Society Colloquium Publications, vol. 32, New York, 1913, pp. 9-17.

t When this paper was presented to the Society, on October 29, 1938 (Bulletin of the American

Mathematical Society, abstract 44-9-397), it was announced that the families of trajectories can be

characterized bya set of seven properties. It has since been found that one of those properties is a

consequence of the others.
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we investigate point transformations which transform families of trajectories

into families of trajectories, and we consider the properties of certain special

families of trajectories which are called natural families. (A natural family of

trajectories is the family of possible trajectories of a particle moving in a con-

servative field of force with a prescribed value of the total energy.)

In many places the detailed proofs of the results will be omitted ; for these

proofs depend, for the most part, upon entirely elementary and straightfor-

ward, but tedious, calculations.

The differential equation defining the family of trajectories

2. We consider a relativistic particle, having rest-mass m0, moving in a

plane under a force which is a function of position only. If x and y are the

rectangular coordinates of the particle with respect to a fixed set of axes, and

if X(x, y) and F(x, y) are, respectively, the x-component and the y-compo-

nent of the force, the differential equations of motion of the particle can be

written in the form

(1)

dV   /        x2 + fV1/2~l       1
—   x(l-—-J = — X(x, y) m p(x, y)
at L   \ c       /      J      m0

i
= — Y(x, y) = Pix, y).

m0

Here, of course, c denotes the speed of light, and the dots indicate total differ-

entiation with respect to the time t. If both p and p are identically zero, the

family of trajectories is merely the two-parameter family of straight lines in

the plane. We explicitly exclude this degenerate case from all of our considera-

tions. We shall assume that the functions p and p are of class C2, if not

throughout the entire plane, at least throughout a certain open region to

which our considerations are restricted.*

We first obtain the differential equation defining the family of possible

trajectories, by eliminating the time from equations (1) in the usual way. The

result is the equation

(2) y'" = - F + Gy" + Hy"2 + F(l + A'/'2)1'2,

where

1 3</>
F = -—il+ y'2)iP-Py')(p +Py'), # = - ---,

2c4 p — py
(3) V      Vy

_    *. + (*„ - Pi)y' - «M'2 v 4c4

P - Py' (l + y'2)2iP - Py'Y

* Many of our results are valid under conditions which are slightly broader than these. The mini-

mum conditions under which the conclusions hold cannot be stated in any simple form.
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The primes indicate total differentiation with respect to x; and (px=d(p/dx,

and so on. The positive value of the square root in the last term of (2) is the

significant one ; and wherever square roots appear in the following work it is

to be understood, unless the contrary is explicitly indicated, that the positive

values are intended. We note the identity

2/
(4) FK + 2H/3 =-

l + y'2

As may be seen by letting c tend to infinity, the equation which corre-

sponds to (2) in the classical case is y'"=Gy" +Hy"2, G and H being given

by the above formulas. We see that, for a given field of force, the family of

trajectories is independent of the rest-mass of the particle in the classical

case, but not in the relativistic case.

Equation (2) is not an arbitrary differential equation of the third order.*

On the contrary, the equation is entirely special in respect to the way in which

the derivatives are involved, and it is somewhat special in respect to the way

in which x and y are involved. Hence, regardless of the forms of the functions

(p and yp, the family of curves defined by (2) must possess certain special

geometrical properties, corresponding to the special features of the form of

the equation. Our immediate problem is to discover these characteristic prop-

erties.

THE CHARACTERISTIC PROPERTIES OF THE FAMILY OF TRAJECTORIES

3. Following Kasner's procedure, we begin by considering the trajectories

which pass through a fixed point 0: (x, y) in the direction determined by a

fixed value of y', the lineal element (x, y, y') being such that, for it, F, G,

and H are all finite, and F and H are not zero.f These curves form a one-

parameter family, the different curves having different curvatures at the

point 0. Considering each of the curves of this family, we construct the pa-

rabola which osculates the curve at the point 0. Finally, we consider the

locus Ti of the foci of these parabolas.

For convenience in discussing the curve r\ and certain other curves, we

introduce two auxiliary systems of rectangular coordinates with their origins

at the point 0. The one, (£, 77), system is such that the ¿-axis and jj-axis are

* By an arbitrary differential equation of the third order we mean an equation of the form

y"'=f(x, y, y', y"), where the right-hand member is an arbitrary function of the four arguments in-

dicated.

f In order to satisfy the condition ZÍV0, it may be necessary to make an adjustment of the co-

ordinate system. We may as well assume that the adjustment of the coordinate system is such that \p

also does not vanish at the point 0.
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parallel to the x-axis and y-axis, respectively. The other, (w, v), system is such

that the w-axis is the common tangent, at 0, of the co1 trajectories we are

considering. The orientations of both of these sets of axes are the same as

that of the (x, y) set. The relation between the auxiliary coordinate systems

is represented by the equations

Í + /* - (1 + y'2Yl2u,        - y'í + v - (1 + y'2y2v.

The focus of the parabola determined by the differential element of the

third order (x, y, y', y", y'") has the coordinates

_  3_  „ (1 + y'2)y'" - oy'y"2

2       (1 + y'2)y'"2 - 6y'y"2y'" + 9y"4

3_  „   (1 + y'2)y'y"' + 3(1 - y'2)y"2
V "   2 y   (1 + y'2)y'"2 - 6y'y"2y"' + 9y"4 '

The equation of the curve Ti is obtained by eliminating y" and y"' from

these equations and equation (2). We find that the resulting equation, written

in terms of the coordinates (u, v), is

(u2 + v2)2[Giu2 + v2) - 2u0u - 4vov/3]

(5) 1 r
-(1 + y'2y2v[Giu2 + v2) - 2u0u - 2v0v]2 = 0,

4F
where

(6) Mo = (3/4)(l + y'2)"2,        vo = (1/4)(1 + y'2yi2[3y' - (1 + y'2)H].

The curve Ti is a quintic or a sextic according as G is, or is not, zero.

Let a be an arbitrarily chosen positive constant. The inverse of the curve

Ti with respect to the circle w2+i;2 = a2 is the cubic T{ represented by the

equation

a4[Ga2 - 2m0m - 4v0v/3]-(1 + y'2)3i2v[Ga2 - 2u0u - 2vQv}2 = 0.
4F

This cubic can be obtained from the particular cubic r0 represented by the

equation

(7) o2(« + 2v/3) + v(u + v)2 = 0

by means of the affine transformation

(8)
A (        Ga2\ Avo
— I*- — )' »—*-v>
a \        2«o/ a«o
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where

3"V(1 + y'2)1'2

(9) A = - ^ •
2(<p + M

We observe that the cubic YÍ passes through the point O when, and only

when, G is zero. This is the case in which I\ reduces to a quintic. If, and only

if, the field of force is given by the equations

<b = a% + a2x,        \p = a3 + a2y,

where the a's are constants, the cubic 17 always passes through the corre-

sponding point O. Various physically important fields of force satisfy this

condition.

The cubic 17 has the three asymptotes represented by the equations

vo Ga2 a2
v = 0,        u-\-v = - + 3"1'2 — ■

«o 2w0 A

The curve has three real branches, one, and only one, of which is asymptotic

to both of the parallel asymptotes and is not asymptotic to the third asymp-

tote, v = 0. Let us call this particular branch the transverse branch of 17 .

Because the square root in the last term of equation (2) is positive, and

because the significant values of y" are all of one sign, as y" varies the focus

of the osculating parabola does not describe the entire curve represented by

equation (5), but only a certain arc of the curve. When y" approaches zero,

the coordinates of the inverse of the focus of the osculating parabola approach

the values
Ga2

u = ->        v = 0.
2«o

It follows from this fact and some simple continuity considerations that the

foci of the osculating parabolas lie on an arc of 17 which is the inverse of a

part of the transverse branch of Tí.

Hence we can state the first property of the family of trajectories in the

following form :

Property I. (1) If, for each of the oo1 trajectories passing through a given

point in a given direction, we construct the parabola which osculates the trajec-

tory at the given point, the locus 17 of the foci of these parabolas is the inverse of

a cubic 17 with respect to the circle u2+v2 = a?, where a is an arbitrary positive

constant. The cubic 17 can be obtained from the particular cubic 17 represented

by equation (7), by means of an affine transformation of the form (8), where u0

is given by the first of equations (6), and where A, G, and vo are functions ofx, y,
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and y', and are independent of a. (2) More particularly, the foci of the osculating

parabolas lie on an arc of Ti which is the inverse of a part of the transverse branch

of Tí.

The calculations which establish Property I can be reversed unambigu-

ously, and in this way we get a converse of the property. We find that if a

three-parameter family of plane curves possesses Property I, the defining

differential equation is of the form (2), where now F, G, and H are some func-

tions of x, y, and y', K is defined by equation (4), and the square root in the

final term has its positive value. If a family of curves has the first part of

Property I, but not necessarily the second part, the defining differential equa-

tion is as just described, except that the sign of the square root is not deter-

mined.

We see that Property I is characteristic of families of curves defined by

differential equations which have the structure of equation (2) as regards y"

and y'", the functions (of x, y, and y') F, H, and K being subject to the re-

striction (4).

It is of interest to consider the relations between these results and the

corresponding results for the classical case given by Kasner.* The curve which

corresponds in the classical case to our curve Ti is a circle, or a straight line,

according as G is not, or is, zero. The inverse of this.curve with respect to the

circle u2-\-v2 = a2 is the straight line represented by the equation

2u0u + 2î>oî> = Ga2.

This line is parallel to the parallel asymptotes of Tí, and is midway between

them.

It will be observed that if we let c tend to infinity, the curve Ti degener-

ates, not into the classical circle, but into that circle taken twice, together

with the line v = 0. We can see without difficulty that the second circle and

the line v = 0 constitute the degenerate form of the nonsignificant part of Ti

(the part of Ti formed by the inverses of the points of Ti' which do not lie

on the transverse branch).

4. The tangent at the point O to the line of force passing through that

point is represented by the equation

P - py'
v =-u.

P + Py'

As we have seen, the slope of the parallel asymptotes of Tí is —uo/vo in the

* It is understood, of course, that here and elsewhere we are comparing the properties of the

family of relativistic trajectories with the properties of the family of classical trajectories in the same

field of force.



334 L. A. MacCOLL [November

«^-coordinate system. It readily follows from equations (3) and (6) that

uo $ — <i>y'

vo <t> + i>y'

Hence we have a second property of the family of trajectories, which can be

stated as follows:

Property II. The cubic Tí which corresponds, according to Property I, to a

lineal element (x, y, y') is such that the lineal element bisects the angle between

the direction of the parallel asymptotes of Tí and a certain direction which is

fixed for the given point O (the direction of the force acting at 0).

Conversely, it is easily shown that if a family of curves possessing Prop-

erty I also possesses Property II, the function H(x, y, y') in the defining

differential equation must be of the form

3
(10) H =-,

y' - to(x, y)

where u(x, y) is the slope of the direction, associated with the point (x, y),

which is referred to in the statement of the property.

Property II is very closely related to the second property in Kasner's set.

The remarks previously made concerning the relation between Property I and

Kasner's corresponding property will suffice to make this connection clear.

5. The point P on the «-axis midway between the parallel asymptotes of

the curve Tí has the coordinates u = Ga2/2u0, v = 0. If, at the point O, we

have the relations ipx = \l/v—<bx=<py = 0, the point P coincides with O for all

values of y'; otherwise, as y' varies the point P describes a certain curve T2.

We readily find that T2 is represented by the equation

(e + rñ(K - H) = (2a2/3) [*.? + (*, - *„)& - <t>vV2].

The inverse of T2 with respect to the circle £2+r;2 = a2, a being the constant

used in defining Tí, is represented by the equation

n -<t>v = (2/3)[pxe + (*, - <bx)tv - **■].

Thus we have

Property III. (1) Either the point P on the u-axis midway between the

parallel asymptotes of Tí coincides with O for all values, of y', or, as y' varies, P

describes a curve T2, which is the inverse, with respect to the circle £2+7?2 = a2,

of a conic T2 passing through the point O. (2) If the conic T2 exists* its tangent

at O has the direction, fixed for 0, referred to in the statement of Property II.

* We consider that the conic does not exist if P coincides with O for all values of y '.
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Conversely, if a family of curves possessing Property I also possesses the

first part of Property III, the function G(x, y, y') in the denning differential

equation has the form

(11) G - Ml + M2/ + ^ ,

o»i — y

where hi, p,2, u3, and «i are functions of x and y. If a family of curves possessing

Properties I and II also possesses both parts of Property III, we have the

relation «i=w, where u is the function introduced in connection with the

converse of Property II.

If we have the relations p = $x,p = #„, where i» is some function of x and y,

we say that the field of force is conservative. We note that if, and only if, the

field of force is conservative, the conic T2, when it exists, is always either a

rectangular hyperbola or a pair of perpendicular straight lines. The only con-

servative fields of force for which the conic never exists are those derived from

functions <ï> of the form

4> = ai + a2x + a3y + a4(x2 + y2),

where the a's are constants.

If p and p are, respectively, the real and the imaginary parts of an analytic

function of x+iy, we have what Lecornu has called an analytic field of force.

We see that if, and only if, the field of force is analytic, the conic r2' when it

exists is always a circle. The only analytic fields of force for which the conic

never exists are those for which the expressions p +ip are linear functions of

x+iy.

Our remarks concerning the relations between Property III and the corre-

sponding classical property will be postponed until after we have given IV.

6. If the conic r2' corresponding to the point 0 exists, its curvature at the

point O is

£      PzP2   +    (Py    -    PX)PP    -    PyP2

3       p*[i + ip2/p2)r'2

The curvature at O of the line of force through that point is

Pxp2 +  iPv —  Px)PP  —  PyP2

*»[1  +   iP2/P2)}*'2
Hence we can state

Property IV. 2/ the conic T2 corresponding to O exists, the ratio of its

curvature at O to the curvature (ai O) of the line of force through that point is

—4/3. If the conic does not exist, the curvature of the line of force at O is zero.
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In connection with the converse of this property, we observe that the lines

of force are defined geometrically by the property that the tangent at any

point has the direction, associated with that point, referred to in the state-

ment of Property II.

The converse of Property IV can be expressed as follows. If a family of

curves possessing Properties I to III inclusive also possesses Property IV, the

functions w, pi, p2, and p3, which have appeared above, must satisfy the rela-

tion

(12) pi + p2oi + p3co2 — cox — uwy = 0.

The relation of Properties III and IV to the classical theory is very much

he same as that of Property II. The properties could be taken over, with

slight changes of wording, into the classical theory as alternatives to the third

and fourth properties in Kasner's set. The properties are not very directly

connected with the two given by Kasner, although their converses have the

same effect as the converses of his properties in restricting the form of the

function G(x, y, y').

7. The parallel asymptotes of the curve Tí intersect the «-axis in points

Pi and P2 having the abscissae

Go2 a2 Ga2 a2
u =-3-1'2—, u =-1-3-1/2— ,

2m0 A 2«o A

respectively. From the point 0, as initial point, we draw a vector OQ equal

to the vector PiP2. Then we study the curve T3 described by the terminus Q

of this vector as y' varies. The result can be stated as follows:

Property V. The curve T3 is a circle which passes through the point 0; and

the tangent to the circle at O is perpendicular to the direction, fixed for 0, referred

to in the statement of Property II.

For the sake of future use, we note that the equation of the circle r3 is

4a2
(13) H2 + v2 = —(<*>£ +w.

3c2

Now let us consider the converse of Property V.

If a family of curves possesses Properties I and II, the curve r3 described

by the point Q is represented by the equation

25/2   r        i + fo/i)w      i1'2
(14) e + r,2 = + -a2t\F --^—-,

3       L   (1 + (n/m(<*- 0?/í))J
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where the symbol F is to be interpreted as F(x, y, rj/^). If the family of curves

has also Property V, equation (14) must be of the form

25/2

(15) ¥ + v2 = — a2\i£ + C07,),

where X is some function of x and y; and hence we must have

(16) F(x, y, y') = - X2(l + y'*)(l + uy')(y' - W).

Property V has no analogue in the Newtonian case. This is natural; for

we see that the property is connected essentially with the occurrence of the

terms — F and F(l +Ky"2)112 in the right-hand member of equation (2), and

no such terms exist in the corresponding classical equation.

8. The five properties which we have obtained may be looked upon as

the geometrical meaning of the special way in which the derivatives enter into

equation (2). They even go somewhat beyond this, in that their converses

restrict to some extent the way in which the variables x and y occur in the

defining differential equation of a family of curves possessing the properties.

However, the most general differential equation defining a family of curves

possessing the five properties contains four arbitrary functions of x and y,

namely, X, w, ph and ¡x3, whereas equation (2) depends on only two such

functions, namely, p and p. We must, therefore, proceed to find one or more

additional properties to complete the characterization of the families of dy-

namical trajectories.

9. Referring to equation (13), we see that the ¿-axis intersects the circle T3

in the point M having the coordinates %=(4a2/3c2)p, r¡ = 0. The line through

the point O and the center of the circle intersects the circle again in the point

M' having the coordinates £ = (ia2/3c2)p, 77 = (4a2/3c2)^. The distance from

the point O to the point M is OM = (ia2/3c2)p, and the distance from the

point M to the point M' is MM' = (4a2/3c2)p.

If the conic r2' corresponding to O exists, the ¿-axis intersects it in the

point A having the coordinates % = (3/2)p/px, 77 = 0, and the 77-axis intersects

it in the point B having the coordinates ¿ = 0, t) = (3/2)p/py. We let O A and

OB, respectively, denote the distances from the point O to the points A

and B. Then OA = (3/2)p/px, OB = (3/2)p/pv.
We have immediately

Property VI. When the initial point O is changed, the associated circle T3

changes in the manner described by the following equations:

d 3   MM'
— MM' =-or    0
dx 2     O A
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according as the conic T2 corresponding to O exists or does not exist;

d 3    OM
— OM =-or   0
dy 2     OB

according as the conic exists or does not exist.

Conversely, if we take the equation of r3 in the form (15), and the equa-

tion of r2' in the form

<>>£ — v = (2/3)(p¿2 + p2%n + P3-n2),

and proceed to define distances OA, OB, OM, and MM' as above, we get the

results

3    co 3 28/2 26'2
OA =-, OB!-■> OM =-a2X,        MM' =-a2Xco.

2   pi 2p3 3 3

Hence, if a family of curves possessing Properties I, II, III, and V, also pos-

sesses Property VI, we have the relations

(17) (Xw)x = \pi,       X„ = — \p3.

Since Property VI relates to the circle r3, it, like Property V, has no

analogue in the Newtonian case. On the other hand, having Property VI, we

have no need of an analogue of the complicated fifth property in Kasner's set.

10. Now we proceed to show that the six properties which we have ob-

tained are in fact characteristic of the family of relativistic trajectories.

Suppose that a certain three-parameter family of plane curves possesses

all six of the properties. Then, as we have seen, the family is defined by a

differential equation of the form (2), where the square root has its positive

value, and where F, G, H, and K, are given by the formulas (16), (11), (10),

and (4), respectively, X and u being some functions of x and y, and pi, p2, p3,

and wi being defined by the equations (12), (17), and coi = w.

Let us define two new functions <p(x, y) and \f/(x, y) as follows:

X = 2-!'2c-2c6, co = t/<p.

Then, by (12) and (17), we have the relations

Mi = ^x/<b, p2 = ($v — <t>x)/<t>, P3 =  — <t>y/<t>.

When, in the formulas for F, G, and H, we replace X, co, pi, p2, and p3 by these

expressions in terms of <p and \f/, we obtain the formulas (3).

Thus, not only does every family of curves defined by a system of equa-

tions such as (2) and (3), with the square root positive, possess the six prop-

erties given, but also if a three-parameter family of plane curves possesses
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the six properties, it is defined by such a system of equations, with suitably

chosen functions p(x, y) and ^(x, y). Moreover, if a family of curves is defined

by such a system of equations, it is the family of trajectories of a particle

moving according to the differential equations of motion (1). Hence, if a fam-

ily of curves possesses the six properties, it is the family of trajectories of a

relativistic particle moving in a suitably chosen positional field of force.

Therefore, the set of six properties is characteristic of the families of trajec-

tories of a relativistic particle moving in a plane under forces which are func-

tions (not identically zero) of position only.

It will be observed that the six properties are ordinally independent, that

is, no one of them can be derived from those which precede it.

The determination of the field of force by the geometrical

properties of the family of trajectories

11. It is of interest to discuss the way in which a field of force is deter-

mined by the geometrical properties of the family of trajectories of a particle

moving in the field. In the Newtonian case the geometry of the family of tra-

jectories is incapable of determining more than the direction of the force act-

ing at any point and the ratio of the magnitudes of the forces acting at any

two points. On the other hand, in the relativistic case, if the rest-mass of the

particle is given,* the geometry of the family of trajectories determines the

field of force completely. This is because the right-hand member of equation

(2) is not homogeneous and of degree zero in p, p, and their partial deriva-

tives, as is the right-hand member of the.corresponding classical equation.

When the complete three-parameter family of relativistic trajectories of

a particle in a positional field of force is given, we can determine the circle Ts

corresponding to any point (x, y), and, by equation (13), this determines the

values of the functions p and p at (x, y). The components of the force acting

at the point are mop(x, y) and m0p(x, y). Thus, when the complete three-

parameter family of trajectories is given, the field of force is fully determined.

However, we are mainly interested in showing that we can determine the

force acting at a particular point, or the field of force, without making use

of the complete family of trajectories.

12. We shall first show that the force acting at a particular point is de-

termined when three trajectories, passing through that point in the same di-

rection, are given.f

* Throughout this section we suppose that mo is given.

t The proof given is based on the assumption that the trajectories are such that two constants,

vî and »r1, are sufficiently small in absolute value. The extent to which this restriction can be removed

by the use of continuity considerations has not been investigated.
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If the cubic Tí corresponding to a lineal element (x, y, y') is known, the

circle T3 corresponding to the point (x, y) can be constructed immediately;*

and then, as has been said above, the force acting at (x, y) is determined.

Hence, it will suffice to show that Tí is determined when three trajectories,

passing through (x, y) in the direction determined by y', are given.

Let Ti, T2, and T3 be three such trajectories. We construct the correspond-

ing three osculating parabolas, determine their foci, and then obtain the in-

verses of these points with respect to the circle u2+v2 = a2. The coordinates

(in the Mü-coordinate system) of the last three points will be denoted by

(«i, üi), (u2, v2), (u3, v3). We have the equations

(1 + y'iyi*
(18)    Ga2 — 2u0u„ — 4v0v„/3-v„[Ga2 — 2u0un — 2v0v„]2 = 0,

4a4/?
n = 1, 2, 3,

which we have to solve for F, G, and v0, in order to determine Tí .

From equations (18) we obtain the equations

Vi\Ga2 — 2u0Ui — 2î)0î)il2fGo2 — 2u0un — 4vovn/3]
(19)

— vn[Ga2 — 2u0Ui — 4uofli/3] [Ga2 — 2uoU„ — 2i>oi>n]2 = 0,    n = 2,3,

which we have to solve for G and v0. To each solution (G, v0) of equations (19)

there corresponds a unique value of F which is given by any one of equations

(18). Now equations (19) have a finite set of solutions. Our problem is to show

that only one of these solutions is significant, and to show how the significant

solution can be distinguished.

For the time being, let us regard Ui and vx as constants, u2, v2, u3, and v3

as variables, and the solutions of equations (19) as pairs of functions of these

variables.

It follows from the second part of Property I and the elementary proper-

ties of the curve 17 that the significant solutions of equations (19) are such

that as v2 approaches zero 2u0u2 approaches Ga2, and as vr1 approaches zero u0r

approaches —v0, where r = u3/v3. Now, for v2 = vfl = 0, equations (19) reduce

to

Vi[Ga2 — 2u0Ui — 2î>ofti]2 [Ga2 — 2u0u2] = 0,

[Ga2 — luoiii — 4voVi/3][2u0r + 2a0]2 = 0.

Hence, two of the solutions of (19) satisfy the above elementary criteria for

* The construction is an easy consequence of Properties II and V and the definition of IV There

is an ambiguity in the construction, arising from the two possible ways of drawing a vector from

one of the intersections of asymptotes of 1V to the other. However, this ambiguity is removed when

we take account of the fact that a trajectory lies on that side of its tangent toward which the force is

directed.
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significance, and we must seek an additional criterion to distinguish between

them.

A little consideration of the properties of the curve 17 suffices to show that

if the absolute value of v3 is large, we have a relation of the form

va= - uor + (Go2 + C)/i2v3) + Oivr2),

where C is a constant which has the same sign as the product v0v3. On the

other hand, if we regard the second of equations (19) as a relation between

an independent variable v3 and a dependent variable v0, we readily find that

the two roots which reduce to — u0r for vr1 = 0 are given, for small values of

vr1, by the expansions

Go2        1
vo = — uor -\-+ -iGa2 — 2u0Ui + 2u0Vir)

2v3       2v3

t— 2uoVir/3

Ga2 — 2u0Ui + 4mo!>i7-/3

Hence, only that solution of equations (19) is significant which, for small

values of Vf1, gives the third term in the right-hand member of (20) the

same sign as — u0r. (It is easily shown that the square root in (20) is real

when v3~l is small.)

To summarize: When the three trajectories Ti, T2, and T3, are given,

equations (18) determine a finite set of solutions (F, G, v0). Only one of these

solutions is significant, namely, the one which behaves as described above

when v2 and Vf1, regarded momentarily as variables, approach zero. When the

significant solution has been obtained, the curve Ti corresponding to the

lineal element (x, y, y') is determined, and the force acting at (x, y) can be

calculated.

13. We shall show that, subject to certain restrictions of an analytical

character, a positional field of force is determined throughout a neighborhood

of a point when the force acting at the point and four one-parameter families

of trajectories, each of which covers the neighborhood simply,* are given.

Let us suppose that in a neighborhood of a point P we have four one-

parameter families of curves, of the type just described, which are known to

be trajectories of a particle of rest-mass m0 in an unknown positional field of

force. We also suppose that the force acting at the point P is known.

The equations of the curves of the four given families will be written

(21) fn(x, y) = an, n =1,2, 3, 4,

* That is, so that through each point of the neighborhood there passes just one curve of each

family.

+ 0(vf
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where the a's are the parameters of the families. We assume that the left-

hand members of these equations are analytic functions of their arguments,

and that none of the partial derivatives df„/dy vanish in the neighborhood

of P.

The functions yn=yn(x, an) defined by equations (21) satisfy the relations

(* - <pyn')yi" - - —■ (1 + y?M - 4>y¿)2(<i> + tyi)

(22)

+ bPx + (*» - 4>x)yn

1
+

2c*

<t>vyn'b" - 3<w

(l + y*'2)(*-cftyi)2(<*>+ *?«')

1 +
4c4

(i + y„'W - 4>y£Y

]l/2

where mocp(x, y) and m0yp(x, y) are the (unknown) components of the force

acting at (x, y), and where yn', y„", and y„'" are to be interpreted, in an obvi-

ous way, as definite analytic functions of x, y determined by equations (21).

We assume that the determinant

yi

yi'

yi'

yi'

yí yi

yíyí'

yiyï

yiyí'

yí'y'í

yí'yí'

y?yí'

yí'yí'

yí"

yí"

yí"

yi"

does not vanish at the point P. (This determinant cannot vanish at every

point of a neighborhood of P, for all choices of the one-parameter families of

trajectories, unless the force vanishes throughout the neighborhood. Other-

wise, the family of all trajectories in a nonzero field of force would consist

merely of a finite set of two-parameter families.) Consequently, we can solve

equations (22) algebraically for \px, (^y—<Px), <t>v, and the <p which appears in

the third terms of the right-hand members, obtaining a set of relations which

we shall write schematically as follows :

(23)
4>x = f(x, y,<i>,4>),

4>v = h(x, y, <t>, \p),

iv - <Pz = g(x, y, <i>,4>),

<t> = k(x, y, 4>, yp).

It is to be emphasized that, in virtue of the given equations (21), the right-

hand members of equations (23) are entirely definite analytic functions of the

arguments indicated.

It follows from equations (23) that we have the system of partial differ-

ential equations
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Px    =     (kX   +    hf)/(l    -     ki), Py    =     k,

tx=f, Py =   g +   (ft. +   ft*/)/(l   -   *♦) •

By our assumption that the given curves (21) are known to be trajectories

in an unknown positional field of force, and that the force acting at P is

given, the system of equations (24) is satisfied by a pair of functions p(x, y),

p(x, y), which have given values at the point P.

If the two equations forming the conditions for integrability of the system

(24) are satisfied identically, the system is completely integrable. In this case

the field of force is determined throughout a neighborhood of P by the differ-

ential equations (24) and the given value of the force acting at P, at least if

the coordinates of P and the values of p and p at P form a system of values in

the neighborhood of which the right-hand members of the equations are

holomorphic. If the conditions for integrability are not satisfied identically,

and are two independent equations, these equations determine implicitly a

certain finite number of distinct pairs of functions p(x, y) and p(x, y). Then,

if the point P is one at which the distinct pairs of functions have distinct

pairs of values, the field of force is determined throughout a neighborhood of

P by the conditions for integrability and the given values of p and p at P.

There is a third conceivable case, namely, that" in which just one of the two

conditions for integrability is not satisfied identically, or in which, while

neither condition is satisfied identically, the two conditions are equivalent to

a single equation. In this case we have in effect to deal with a completely

integrable system of partial differential equations in one of the unknown

functions (say p) and an equation which determines the other unknown func-

tion (say p) implicitly in terms of x, y, and p. Again we see that if the point P

is such that certain conditions of analyticity are satisfied, and certain distinct

pairs of functions have distinct pairs of values, the field of force is determined

throughout a neighborhood of P by the equations (24), the conditions for in-

tegrability, and the given value of the force acting at P.

THE POINT TRANSFORMATIONS WHICH CONVERT EVERY FAMILY OF  DYNAMICAL

TRAJECTORIES INTO A FAMILY OF DYNAMICAL TRAJECTORIES

14. Kasner has shown that, in the Newtonian case, collineations are the

only point transformations of the plane which convert every three-parameter

family of trajectories (belonging to a positional field of force) into such a

family of curves.* We proceed now to obtain the corresponding result for the

relativistic case.

* In general, the fields of force corresponding to the original family and the transformed family,

respectively, are different.
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Suppose that we have a family of dynamical trajectories, defined by a

system of equations such as (2), (3). We apply a point transformation

(25) x = x(x, y), y = y(x, y),

where the functions x(x, y), y(x, y) are of class C3, and the Jacobian x¿ys—xfy¡

does not vanish in the region under consideration; and we require that the

transformation be specialized so that the transformed family of curves shall

be defined by a system of equations of the form

y>" = -F + Gy" + Hy"2 + 7(1 + Ky"2)1'2,

1 _____ 30
F = —■ (1 + y'2)(* - y'<p)(<p + yV),      * - --— >

2C* $   —   Qy'

_      tpx + $s — 4>x)y' — fay'2
G =-z—-' K = 4c<(l + y'2)-2(yp - <t>y')-2.

\p — <py'

Here (p and yp denote functions of x and y, and the primes denote differentia-

tion with respect to x.

On transforming equations (2), (3) by means of (25) and its extensions,

we obtain an equation of the form

f,"2
y'" = Ri+R2y"+R3y

(26) r 1ci(a+ßy'+yy'2+by'i+ty"y
+ i?4     1 +

-|l/2

ñF_  '[(xx+yyy')2+(yx+yyy')2]2[A(xx+Xyy')-B(yx+yyy'

where A and B are functions of x and y, the i?'s are functions of x, y, and y',

which are rational in y', and where

a = xtysx — Xxtyx,        ß = 2(xxyxy — xxyyt) + (xy-ytx — xays),

(27) 7   =   2(Xyyxy  —   Xxyyy)   +   (xiyyy  ~   XyyVi) , S   =   Xyyyy  —   Xyyyy    ,

€  =   XfVj  —   Xy-ys.

In order that equation (26) shall reduce to the required form, for all

choices of the functions <b(x, y), \f/(x, y) in the original equations, it is obvi-

ously necessary that we have the relations

(28) a = ß = 7 = 5 = 0, x*2 + yê = Xy2 + yy2, XiXy + ytyy = 0.

It readily follows from equations (27) and (28) that xx, xs, yx, and ys must be

constants, and that we must have the relations

yx = ± Xy,        yy = + Xx.

Hence it is necessary, in order that a point transformation shall convert

every three-parameter family of relativistic trajectories into a family of rela-
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tivistic trajectories, that the transformation be a rigid motion, a magnifica-

tion, a reflection with respect to a straight line, or a combination of such

transformations. Also, we easily see that this condition is sufficient to insure

that the transformation has the required property.

Natural families of relativistic trajectories

15. So far we have been considering the family of all possible trajectories

of a particle in a positional field of force. Now we wish to study certain im-

portant subfamilies of trajectories, which we call natural families. Since, in

the study of natural families, we can easily deal with the case of a particle

moving in three-dimensional space, we shall do so. The results for the case in

which the particle moves in a fixed plane can be obtained by a simple special-

ization.

Let us consider a relativistic particle, of rest-mass »»0, moving in three-

dimensional space under a force which is derived from a potential energy

function V(x, y, z). Here x, y, and z are the rectangular coordinates of the

particle with respect to a fixed set of axes. The differential equations of motion

are the following :

where p = V/m0.

Equations (29) possess the integral

/        x2 + y2 + z2\-112
(30) c2(l--j-2-j       =h-p,

where ft is a constant of integration. Hence, the five-parameter family of tra-

jectories defined by equations (29) consists of oo1 four-parameter families,

each particular one of which corresponds to a particular value of h. Each of

these four-parameter families will be called a natural family of trajectories.*

For the sake of convenience, we shall write h—p = $>.

It is easily shown that the defining differential equations of the natural

family of trajectories corresponding to h can be written in the form

* Natural families of trajectories of classical particles are defined in an analogous way. See

Kasner, Differential-Geometric Aspects of Dynamics, p. 34.
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1/2-d r   /    $2 - c4   Y'n     a

_ r  /   *2 - c4   v'h    a

where y' = dy/dx, z' = dz/dx.

Now in Newtonian dynamics the equations corresponding to (29) are

x = —cpx,y= —<py, z= —cpz; the equation corresponding to (30) is (x2+y2+z2)/2

= h—<p; and hence the differential equations defining the natural family of

trajectories corresponding to h are

d r    / 2* \I/21       a

(, + ,, + »■■)---[/(, + y„ + z„)    ] = - (2*)-,

d y   /       2$       yn      3
(1 + y, + ^)-"-^(1+ )   ] - - (2*)-.

On comparing the systems of equations (31) and (32), we get the

Theorem. If the constants Ei, E2, A, and m0, and the functions Vi(x, y, z)

and V2(x, y, z) are such that we have identically

A [Ei - Vi(x, y,z)]= [E2 - V2(x, y, z)]2 - m02c*,

the natural family of trajectories of a classical particle moving with (classical)

total energy Ei in the field of force derived from the potential energy function

Vi(x, y, z) is identical with the natural family of trajectories of a relativislic par-

ticle, of rest-mass m0, moving with (relativislic) total energy E2 in the field of

force derived from the potential energy function V2(x, y, z).

Undoubtedly, the content of this theorem is more or less familiar, since

it is an immediate consequence of the well known fact that, whereas the classi-

cal trajectories are defined by the principle of least action

ôf (Ei- vxyi2ds = o,

the relativistic trajectories are defined by the principle

8 f [(E2 - V2)2 - m02c*yi2ds = 0.

However, the theorem does not seem to be stated explicitly in any of the

readily accessible literature.

We have seen in the preceding sections that the sets of properties which
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characterize the families of all trajectories of a particle in an arbitrary field

of force are very different in the classical and relativistic cases, respectively.

The present theorem shows that if we consider not the families of all trajec-

tories but only natural families of trajectories, the characteristic properties

are the same in the two cases. The characteristic properties of a natural

family of trajectories have been given by Kasner.*

* Differential-Geometric Aspects of Dynamics, pp. 37-42. See also J. Lipka, these Transactions

vol. 13 (1912), pp. 77-95.
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