A CORRECTION TO "THE BOUNDARY PROBLEM OF AN ORDINARY LINEAR DIFFERENTIAL SYSTEM IN THE COMPLEX DOMAIN"*

By

RUDOLPH E. LANGER

In formula (6.1) replace $x_{*}^{(n, r)}$ by $x_{*}^{(n, \nu)}$, and $\Omega(\lambda)$ by $\Omega_{\nu}(\lambda)$, and add $\nu=1,2, \cdots, n$. To derive (6.3) (with the accidentally omitted sign of integration from $x_{*}^{(n, i)}$ to x over the respective members of the sum), multiply (6.1) by $\mathfrak{S}(x)$ on the left, by $\mathfrak{C}(\lambda) \mathfrak{S}_{v, \nu} \mathscr{S}^{-1}(x)$ on the right, and sum as to ν. In this formula and everywhere subsequently replace $\Omega(\lambda) \mathscr{C}(\lambda)$ by $\sum_{n=1}^{n} \Omega_{v}(\lambda) \mathscr{C}(\lambda) \mathcal{S}_{v, v}$. The argument given shows that each $\Omega_{v}(\lambda)$ is nonsingular. In and just before (6.9) replace $\Omega^{-1}(\lambda)$ by $\sum_{n=1}^{n} \Omega_{r}^{-1}(\lambda) \Im_{v, r}$. The stated result follows. (Throughout the discussion the hitherto undefined points $x_{*}^{(n ; i)}$ with $h=l$, and the paths from them may be chosen arbitrarily in X.)

[^0]
[^0]: * Received by the editors October 5, 1939. Cf. these Transactions, vol. 46 (1939), pp. 151-190.

 University of Wisconsin, Madison, Wis.

