A CORRECTION TO "THE BOUNDARY PROBLEM OF AN ORDINARY LINEAR DIFFERENTIAL SYSTEM IN THE COMPLEX DOMAIN"*

BY

RUDOLPH E. LANGER

In formula (6.1) replace $x_*^{(h,1)}$ by $x_*^{(h,\nu)}$, and $\Re(\lambda)$ by $\Re_{\nu}(\lambda)$, and add $\nu = 1, 2, \cdots, n$. To derive (6.3) (with the accidentally omitted sign of integration from $x_*^{(h,1)}$ to x over the respective members of the sum), multiply (6.1) by $\mathfrak{S}(x)$ on the left, by $\mathfrak{C}(\lambda)\mathfrak{P}_{\nu,\nu}\mathfrak{S}^{-1}(x)$ on the right, and sum as to ν . In this formula and everywhere subsequently replace $\Re(\lambda)\mathfrak{C}(\lambda)$ by $\sum_{\nu=1}^{n} \Re_{\nu}(\lambda)\mathfrak{C}(\lambda)\mathfrak{P}_{\nu,\nu}$. The argument given shows that each $\Re_{\nu}(\lambda)$ is nonsingular. In and just before (6.9) replace $\Re^{-1}(\lambda)$ by $\sum_{\nu=1}^{n} \Re_{\nu}^{-1}(\lambda)\mathfrak{P}_{\nu,\nu}$. The stated result follows. (Throughout the discussion the hitherto undefined points $x_*^{(h,1)}$ with h = l, and the paths from them may be chosen arbitrarily in X.)

* Received by the editors October 5, 1939. Cf. these Transactions, vol. 46 (1939), pp. 151-190.

UNIVERSITY OF WISCONSIN, MADISON, WIS.