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1. The continuous transformation T(M)=M', where If is a compact

metric space, is said to be O-regularf provided that for each sequence of

points \x'} converging to %' in M', the sets r_1(x/) converge O-regularlyf

to r_1(V). This is equivalent to a continuous transformation sending open

sets into open sets, while the inverse sets as a collection are uniformly locally

connected (that is, for each «>0 a 5>0 exists such that every two points

x and y of any inverse set X whose distance apart is less than 5 lie in a con-

nected subset of X of diameter less than e). This characterization suggests

the projection of a convex euclidean set onto a plane. For example, the

orthogonal projection of a solid circle onto a diameter is a 0-regular trans-

formation. It is not 0-regular on the circumference, however, because of the

folding about the diameter's end points. That there exist other types of

0-regular transformations is illustrated by the identification of diametrically

opposite points of a 2-sphere to obtain a projective plane. A suggestive prop-

erty of a 0-regular transformation is that the inverse sets must all contain

the same number of components.f

In this paper a study is made of 0-regular transformations defined on

2-dimensional pseudo-manifolds. It is shown that if M is a 2-dimensional

pseudo-manifold and T(M)=M' is a monotone 0-regular transformation,

then either T is topological, or M' is an arc or a simple closed curve. More-

over, it is shown that T must be topological or M' must be degenerate except

in the following cases: (i) The sphere, 2-cell, and circular ring may be mapped

onto an arc. (ii) The torus, Klein bottle, circular ring, Möbius band, pinched

sphere, and 2-cell with two boundary points identified may be mapped onto a

simple closed curve. In each of these cases the possible transformations are

characterized. For example, it is shown that the only non-topological mono-

tone 0-regular transformation of a sphere onto a nondegenerate image space

is equivalent to an orthogonal projection onto a diameter.

* Presented to the Society, April 8, 1939, under the title The images of 2-dimensional surfaces

under 0-regular transformations; received by the editors August 29, 1939.

f See A. D. Wallace, On 0-regular transformations, to appear in the American Journal of Mathe-

matics.

X A convergent sequence of closed sets {X„ ) is said to converge O-regularly to X provided that

for each e>0 there exist positive numbers S and N such that if n>N, any pair of points x, y of Xn

with p(x, y)<5 lie together in a continuum in Xn of diameter less than e. See G. T. Whyburn, Funda-

menta Mathematicae, vol. 25 (1935), pp. 408-426.
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In §6 the above results are stated in terms of possible monotone 0-regular

retracting transformations on pseudo-manifolds, while in §7 R. L. Moore's*

self-compact equicontinuous collections of curves are used in stating the

results. In the concluding section the possible images of pseudo-manifolds

under general 0-regular transformations are considered.

2. Throughout this section the following notation will be used: Let M

denote a 2-dimensional pseudo-manifold, that is, a 2-dimensional manifold

or surface (with or without boundary) among q points of which identifications

have been performed so as to produce r local separating pointsf of M. Let B

be the boundary (that is, a finite number of simple closed curves) of M, and

denote the finite set of local separating points of M by S. Finally, let

T(M)=M' be a monotone 0-regular transformation and assume M' is non-

degenerate.

2.1. If x is a point of S, then r_1r(x) =x.%

Proof. Since M is a locally connected continuum and a; is a local separating

point of M, there exists a connected neighborhood U(x) of x such that

U(x) —x = Li+L2+ • • • +L\ (X^2), where the £< are mutually separated

open sets each having x as a limit point. Assume the assertion is false; then

there exists an Lk such that T_1T(x) ■ Lk contains x. Let } be a sequence

of points in L„ —r_1r(x) (n not k) converging to x. Now {T^Tixt)} con-

verges to 7"_17"(x). Hence for each sufficiently large i there exists a point y,-

of Lk such that r(y<) = T(xt) and {y, } converges to x, since T-xT(x) -Lk

contains x. But any connected set in T~xT(xi) containing Xi and y,- must

extend outside U(x). Hence {T~1T(xl)) does not converge O-regularly to

T~*-T(x) contrary to the hypothesis that T is a 0-regular transformation.

2.11. If x is a point of S, then T(x) is a local separating point, but not a cut

point of M'.

Proof. Since 7"-1r(x) =x, T~lT(x) locally separates M. Hence by a known

theorem§ on monotone transformations T(x) locally separates M'. However,

T(x) cannot be a cut point of M' since M — x is connected.

* Foundations of Point Set Theory, American Mathematical Society Colloquium Publications,

vol. 13, New York, 1932, pp. 396-397. The essential definitions are given in §7 for completeness.

f The point * of a continuum M is called a local separating point of M provided there exists a

neighborhood U(x) of x in M such that x separates U{x) between some pair of points of the com-

ponent of (Ux) containing x. See G. T. Whyburn, Local separating points of continua, Monatshefte

für Mathematik und Physik, vol. 36 (1929), pp. 305-314.
t The theorem and proof given here are valid if M is any locally connected continuum and x

is a local separating point of M.

§ See G. T. Whyburn, Semi-closed sets and collections, Duke Mathematical Journal, vol. 2

(1936), p. 686, (3.1).
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2.2. If x' is any point of M', then T~l(x') is either an arc or a simple closed

curve.

Proof. Since T is interior,* T^ix') can contain no open set. Hence either

T~l(x') is a single point (that is, a degenerate arc or simple closed curve)

or r_1(x') is a 1-dimensional continuum. Moreover, T~l(x') is locally con-

nected.! Therefore, in order to establish the assertion it must be shown that

every point x of X = T~l(x') has an order not greater than 2 in X. Suppose x

has an order greater than 2 in X; then there exist nondegenerate arcs

«i, a2, a3 in X which are disjoint except for cti a2 ■ a3 = x, an end point of

each «i. Since, after 2.1, x cannot be a point of S, there exists a neighborhood

U(x) of x in M such that U(x) is a 2-cell. It may be assumed each a,- is dis-

jointj with F(U(x)) except for the other end point. Now U{x)— ^a, must

contain at least two components L%, L2 such that Lt contains x. (Observe

that one cannot say three components here because x may be a point of B.)

Moreover, it may be assumed a^ - Li = x, since U(x) is a 2-cell. There exists a

sequence of points {y<} of L\ ■ (M — X) converging to x, since X contains no

open subset of M. Now if { Ft-} = {T_1 T(yi)} converges to X, there must

exist for all sufficiently large i points z,- of Yt not contained in Li, since

ai-Li=x. It may be assumed {zj} converges to x. Therefore {F,} does not

converge 0-regularly to X, since any connected subset of Y{ containing y;

and z, must extend outside U(x). Thus the assumption that the order of

x is greater than 2 has led to the contradiction that T is not 0-regular.

2.3. If x' is a point of M' such that r_1(x') is nondegenerate and not con-

tained in B, then x' is a local separating point of M'.

Proof. Since X = T~1(x') is nondegenerate and not contained in B, it

follows from 2.2 and 2.1 that there exists a subarc a of X which is disjoint

with B+S. Let x be an interior point of a and let at, a2 be arcs such that

a=ai+a2 while ai -a2 = x. There exists a neighborhood U(x) of x which is an

open 2-cell and does not contain either of the a,-. Let X\xx2=ß be the subarc

of a containing x such that ß■ F(U(x)) =xi+x2; then U(x) — ß = Li+L2 is a

separation such that LV L2=ß. Now let { Ui(x)) be a sequence of connected

neighborhoods contained in U(x) and closing down on x. Then for each

i, Ui{x)—X=Lii-\-Li2, where = L, ■ (U\(x) —X), is a separation, since X

contains no open subset of M. Suppose x' is not a local separating point of M';

* That is, open sets go into open sets. That a 0-regular transformation is interior follows from

the Eilenberg characterization of an interior transformation. See Fundamenta Mathematicae, vol. 24

(1935), p. 174.
t See A. D. Wallace, loc. cit.

X For any open set U, F{U) denotes the set-theoretic boundary of U, that is, the set U—U.
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then for each i, T(Ui(x)—X) = T(Ui(x))—x' = 0' must be a connected set.*

Hence there must exist a point y{ of 0' for each i such that T~l(y-)-Lij

contains a point y« for 7 = 1, 2. Now {y/ ) converges to x' and p(y,i, ya)

converges to zero, since the Ui(x) close down on x. But from the definition

of the Lij it follows that any connected set in T,_1(y,') containing y,i and y,2

must go outside U(x). Therefore \T~l{yl)\ does not converge 0-regularly

to X, contrary to the hypothesis that T is a 0-regular transformation.

2.31. Under the conditions of 2.3, x' locally separates M' into exactly two

components.

Proof. Suppose x' locally separates M' into more than two components;

then there exists a connected neighborhood V(x') such that V(x')—x'

= L{ -\-Ll -\-Ll +•■••, where the L, are mutually separated connected open

sets with x' a point of F(L') for eachj. For each./, T~l{L') is a connected

set, since connectedness is invariant under the inverse of a monotone trans-

formation. Thus, since T is interior, T~l(x') is on the boundary of at least

three mutually separated connected open sets in M. This is impossible since

r_1CV) is a nondegenerate arc or simple closed curve.

2.32. If x' is an end point of r_1(V) for some point x' of M', then x belongs

to B.

2.33. If x' is not a local separating point of M', then T~l(x') is a single

point or is contained in B.

2.4. If x' is a point of M' such that B r_1(V) contains a nondegenerate

continuum K, then 7"_1(x') is contained in B and x' is an end point of M'.

Proof. If F_1(x') is not contained in B, it follows from 2.31 that x'

locally separates M' into exactly two components. Thus there exists a con-

nected neighborhood V(x') of x' such that V(x') — x'=L( +L4, where L{

and LI are mutually separated connected open sets with x' a point of

T{ Li. Hence and T~l{L{) are disjoint connected open sets in M

whose boundaries have r_1(x') in common, consequently have K in common.

This is impossible since r_1(a;') is locally connected and K is contained in B.

Let x' be a point of M' such that r_1(x') is nondegenerate and con-

tained in B. Now can contain no point of S. Hence for any point

x of r-1(x') which is not an end point there exists a neighborhood U{x) such

that U(x) is a 2-cell. Moreover, U(x) may be taken so small that x is an

interior point of an arc lying in r_1(V) with its end points not in U(x).

* See G. T. Whyburn, Concerning points of a continuous curve defined by certain im kleinen

properties, Mathematische Annalen, vol. 102 (1929), pp. 313-336, Theorem 1.
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Thus there exists a neighborhood V{x') such that for each point y{ of

V(x')—x' the set T~1(yl) contains an arc Ft-, with its end points only in

F(U(x)), which separates U(x) into exactly two components, since T is

monotone 0-regular. In case \y[ } is any sequence of points converging to x',

the corresponding F< may be so selected that if Lt denotes the component

of U(x) — Yi containing x, then x is a point of L =lTL; which is contained in

T^1(x'). Finally, every sufficiently small neighborhood W(x) must have the

property that T~1(x') ■ W(x) is contained in L and for every point yi of

T(W(x))— x' the product Li ■ W(x) ■ T~1(y') is empty. Suppose x' is not an

end point of M'. Then it is an interior point of an arc z{x'z{. Now T~1(z'x')

(z = l, 2) is locally connected.* Hence there exist arcs y&i in W(x) such that

T(yiXi) = ylx' is contained in z/x', where it is assumed y, is the last point of

yiXi in T~1(yl) and xt- is the first point in T~1(x'). From the choice of W(x)

it follows that y; is contained in F< and xt in L. Since U(x) is a 2-cell it may

be assumed F2 separates Fi and L in U(x) and consequently in W(x). Thus

yiXi contains a point of F2 which contradicts the fact that T(yiXi) is contained

in z{x'.

2.5. I] for a point x' of M' the set T^1(x') is not contained in B, then

B r_1(x') can contain only end points of T~1{x').

Proof. Suppose the assertion is not true. Then there exists a point x of

B T~1(x') which is not an end point of T~1(x'). Now x is not a point of S,

since T~l(x') must be nondegenerate. Thus there exists a neighborhood U(x)

such that U(x) is a 2-cell. It may be assumed there exist points of T~1(x')

which are not in U(x). Let Xi, x2 be points of T~1(x') different from x such

that the arc Xixx2 is contained in U(x) ■ T~1(x'), and furthermore, let y, z be

points of B different from x such that the arc yxz is contained in B-U(x).

Then (xixx2) • (yxz) =x; for suppose the product set contained another point

x3. Then Xixx2+yxz contains a simple closed curve /, since no subcontinuum

of F_1(x') can be contained in B because of 2.4. Thus / separates U(x)

into exactly two components and there is one component C such that

C- [M — U(x)]=0, since / is contained in U(x). Let \wi) be a sequence of

points in C converging to a point x0 of / ■ T~1(x'); then 7"_1 T(wi) is contained

in C = C+J for each i. Hence {r_1r(w,)} cannot converge to r_1r(x0)

= r_1(x'), since the latter set contains points outside U(x). Thus the four

arcs X\X, x2x, yx, zx are contained in the 2-cell U(x) and have by pairs only x

in common. Hence there exists a neighborhood IF(x) in U(x) which is

separated into three components by Xixx2 such that x is on the boundary of

* See W. T. Puckett, Concerning local connectedness . . . , American Journal of Mathematics,

vol. 61 (1939), p. 752, (3.1).
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each, and only one can have both x\X and x2x on its boundary. Let Li be the

component such that L< contains xiX but not x,-x, and let {wn} be a sequence

of points in Li converging to x. Then { T~1T(wn)} cannot converge 0-regularly

to T-1T{x) = T~1(x'), since they must go outside W(x) to converge to the

arc x2x.

2.6. If the sequence {xi } of local separating points of M' converges to a

point x' of M' — T(S) and T~1{x') is degenerate, then x' is an end point of M'.

Proof. There exists a neighborhood U(x) of x = T~1(x') such that U(x)

is a 2-cell, since x is not a point of S. Moreover, it may be assumed that each

r_1(x»') is contained in U(x), since {T~l(xn)) converges to x. Since #„' is a

local separating point of Af', T~1(xJ) locally separates* M and, consequently,

separates U{x) because it is a 2-cell. But since T~1{xi) is contained in U(x)

it follows that T~l{xn) separates M; that is, M — T^ixü) =Ln + Nn is a

separation and it is assumed x is a point of Ln. Now F(Ln) is contained in

T~1{xi), whence F[T{Ln) ] contains at most the single point xJ. Thus T(Ln)

is an open set containing x' whose boundary consists of at most a single point.

Thus in order to complete the proof it remains to be shown that T(Ln) is a

sequence of sets closing down on x'. It may be assumed that for each n>k,

T_1{xn) is contained in Lk. Moreover, because the transformation is interior,

F(Ln) =F(Nn) = T~1{xn). Hence a; is a point of Ln+i which is contained in Ln,

and consequently x is a point of L =Y[Ln. But N =2-^» is open and F(N) = x,

since for n < k, Nn is contained in Nk, F(Nn) = T~1{xf.), and {r_1(x„')} con-

verges to x. Thus if Ln does not close down on x, that is, x is not L, then

M — x = (L — x)+N is a separation. But this is impossible, since If is a

2-dimensional pseudo-manifold. Therefore x = L, and the proof is complete.

3. We next prove the following theorem.

Theorem. If M is a 2-dimensional pseudo-manifold and T(M)=M' is a

monotone 0-regular transformation, then T is topological, or M' is either an arc

or a simple closed curve.

Proof. In case M' is degenerate there is nothing to prove. Thus assume M'

is nondegenerate and let K be the set of all points of M on which T is one-to-

one. Then K is closed, since T is interior. Let G = M—K; then by 2.3 and 2.4,

T{G) consists of local separating points and end points of M'. Suppose G is

not empty, and let x be a point of F(G). If x is not a point of S, then it

follows from 2.6 that T(x) is an end point of M'. If x is a point of S, then it

follows from 2.11 that T(x) is a local separating point of M'. Hence T(G)

consists of local separating points and end points of M'. Suppose M — G is not

* See G. T. Whyburn, Semi-closed sets and collections, loc. cit.
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empty; then there exist points y of (M — S) ■ (M —G) and z of (M-S)-G,

since M—G and G are both open and S is finite. Now M—S is a region in

the locally connected continuum M. Hence there exists an arc yz in M — S

which must intersect F(G). Let x be the first such point from y to z. Now

the arc yx is contained in K, and consequently T{yx) is topological. Therefore

no point x{ of T(yx) can be a local separating point of M', since no point of

M — S locally separates M. But T(x) is an end point of M', which is a con-

tradiction. Thus either G is empty or M — G is empty. In the first case T is

topological, while in the second M' consists of end points and local separating

points and consequently is a 1-dimensional continuum. But T is interior and

for each point x' of M', T~1{x') is locally connected. Hence it follows from a

known theorem* that M' is either an arc or a simple closed curve.

4. It is proposed in this section to show that a monotone 0-regular trans-

formation on a 2-dimensional pseudo-manifold must be topological except in

a few specific cases. The notation is that used in §2.

4.1. In order that T be topological it is sufficient that either (a) S contains a

point which locally separates M into at least three components, or (b) 5 contains

more than one point.

Proof. Suppose T is not topological; then M' is either an arc or a simple

closed curve. Now after 2.11 the image of a point x of 5 cannot be an end

point of M'. Hence x' = T(x) must locally separate M' into exactly two com-

ponents; that is, there exists a connected neighborhood V(x') in M' such

that V{x')—x' = L'+N', where V, N' are open arcs with x' = L' N'.

Suppose x locally separates M into more than two components; then there

exists a connected neighborhood U(x) such that T(U(x)) is contained in

V(x') and U(x)—x = Mi+M2 + ■ ■ ■ +Mk (&^3), where, for each integer

i<k, Mi is a component and x is a point of Mi. Thus, since T~1(x') =x, it

may be assumed L' ■ T(M 1) • T(M2) contains a sequence of points {xJ } con-

verging to x'. But {T~1(xi)} does not converge 0-regularly to x, since for

each n, T~l{xf,) ■ M\ is not empty and T-1(xi) • M2 is not empty. Thus for (a)

T must be topological. Now under the assumption that T is not topological

it follows that if y, z are points of S, then T(y+z) separates M'. Hence y+z

separates M, which is impossible. Thus for (b), T is also topological.

The following statement follows immediately from 2.11:

4.11. In order that M' be an arc it is necessary that S be empty.

4.2. If T is not topological, then either T~1{x') is an arc for every point x'

* See G. T. Whyburn, Interior transformation on certain curves, Duke Mathematical Journal,

vol. 4 (1938), p. 612.
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of M' or every T~l{x') is a simple closed curve. In neither case can more than

two T~1{x') be degenerate.

Proof. LetL'be the set of all points x'oiM' such thatr_1(x') is degenerate.

Since T is not topological either x' must be an end point of M' or x = T~1{x')

must be a point of S. After 4.11 it follows that S is empty when M' has end

points. Thus, since M' is either an arc or simple closed curve and consequently

S consists of not more than one point, L' can contain at most two points and

M'—L' is connected. Let N{ be the set of all points x' of M' such that

T~1(x') is an arc, and AY the set of all points such that T~1{x') is

a simple closed curve. From 2.2 it follows that M'—V = N{ +AY. But

N{ • N2 = N{ • N2 = 0 since the 0-regular limit of a sequence of arcs (simple

closed curves) is an arc (simple closed curve) .* Hence either N{ = 0 or Ni = 0,

since M' — L' is connected.

4.21. For each point x' of M' let T~1{x') be a simple closed curve, at least

one of which is nondegenerate. If J is any simple closed curve of B, then some

Proof. From 2.5 it follows that if B T~1(x') is not empty then T~1(x') is

contained in B. Moreover, it follows from 4.2 that every T~1{x'), except

possibly two, is a nondegenerate simple closed curve. Thus there exists a

nondegenerate simple closed curve T~1(x') contained in B such that J ■ T~1{x')

is not empty. But J (B—J) is contained in 5 (of course, may be empty),

while S-T~1(x') = 0 by 2.1. It follows that T~1(x') is contained in / and is

therefore

The following assertion also comes out of the above proof:

4.22. Under the hypotheses of 4.21, S B = 0.

Let pvl (M) denote the first Betti number (mod m) of M, for w^O. Also,

if A is a closed subset of M, let pj (N, M) denote the first Betti number

(mod m) of N relative to M, that is, the number of independent cycles in N

relative to homologies (mod m) in M. In another paperf the writer has

shown that

(i) If x', y' are any two points of M', then

T~1(x')=J.

(1) Pnl[T-Kx'),M] = pl[T-l(y'),M].

(2)

(ii) If x' is any point of M', then

pl(M) = pKM') + pj \T~\x'), M]

* See G. T. Whyburn, On sequences and limiting sets, Fundamenta Mathematicae, vol. 25

(1935), pp. 409-426, particularly (3.1) and (3.2), p. 416.
f On regular transformations (offered for publication to Duke Mathematical Journal).
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which in the case considered here may be written

(2') 0 S PJ(M) - pml(M') = pJ [T-i(x'), M],

since all the numbers involved are finite.

The two relations above, along with 2.2, give the following assertions:

4.31. In any caseOtipJ(M)-pn}(M')t%l 0^0).

4.32. If, for any m^O, pJ (M) >2, then T is topological.

4.33. //, for some point x' of M', T~1(x') is degenerate or an arc, then

pm1(M)=pj(M') (m^O).

4.34. In order that M' be an arc it is necessary that pJ (M) ;£ 1 (m^O).

4.35. In order that M' be a simple closed curve it is necessary that

lSpnl(M)S2 (m^O).

The assertions 4.1 and 4.11 may be obtained from 4.33, 2.1, and 2.2 as

follows: Let M be a pseudo-manifold with S=yi+y2+ • • • +yx; then it may

be assumed M was obtained from a manifold L, which contains no identifi-

cations, by identifying ju,- points to obtain y<, Thus it follows from the Euler-

Poincare formula that

x

(3) pJ (M) = pJ (L) + E (Mi - 1) (m prime).
i=l

Therefore, if \ >1 or some m>2 it follows that pJ(M)^2. Thus it follows

from 2.1 and 4.33 that p2 (M) =pj (M')lz2, since 5 is not empty. Hence T

must be topological, since M' cannot be an arc of a simple closed curve.

By the same reasoning it follows that if S contains a single point then

pJ (M') =pj (M) ^ 1, and therefore M' cannot be an arc.

A 2-dimensional closed surface M (that is, S = 0, B = 0) can possess no

0- or 2-dimensional torsion,* and if M is orientable (that is, a sphere, or

torus, and so on) it can possess no 1-dimensional torsion. However, if M is

not orientable (that is, projective plane, Klein bottle, and so on) its 1-dimen-

sional torsion group is cyclic of order 2.t Hence it follows from a known

theorem| that if M is a 2-dimensional closed surface, then

(4a) pi (M) =p01 (M) when M is orientable, and

(4b) p21(M)=pa1(M) + l when M is non-orientable.

Therefore it followsf that

(5a) po1 (M) = pi (M) =0, if If is a sphere;

* See Alexandroff-Hopf, Topologie I, Berlin, 1935, Theorems I and II', p. 212.

f See Topologie I, paragraph 10, pp. 266-269.

t See Topologie I, Theorem VIII', p. 227.
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(5b) p} (AO =0, pi (Af) = 1, if Af is a projective plane;

(5c) pi (AO = 1, pi (Af) = 2, if Af is a Klein bottle;
(5d) po1 (Af) = pi (Af) =2, if Af is a torus; and

(5e) pi (Af) >2, if Af is any other 2-dimensional closed surface.

Now let Af be a 2-dimensional surface with boundary (that is, let 5 = 0,

73=/i+/24- • • ■ +Jß, where the /, are disjoint simple closed curves); then

Af may be thought of as a closed 2-dimensional surface L with ß open 2-cells

cut out. Thus if ß is not 0, then*

(6a) Af possesses no torsion;

(6b) pi (Af) = po1 (Af) = pi (L) +ß -1 when L is orientable; and

(6c) pi (Af) = pi (Af) =p£ (L) +ß when L is non-orientable.

The relations (3), (5), and (6) are enough to determine the first Betti

number (mod 0 or 2) of any 2-dimensional pseudo-manifold with which this

paper hereafter is concerned.

4.4. If Af' is a nondegenerate arc, then Af must be either a sphere, a 2-cell,

or a circular ring.

Proof. Since Af' is an arc, it follows from 4.11 that 5 = 0, and from 4.34

that pi (Af) S 1. Hence, besides those surfaces given in the theorem, Af may

be either a projective plane or a Möbius band, both of which have pi (Af) = 1.

Suppose Af to be either one of these and Af' to be an arc; then it follows from

4.33 that T~1(x') is a nondegenerate simple closed curve for each point x' of

Af'. But let y', z' be the end points of Af'; then it follows from 2.33 that

T^iy^ + T^iz') is contained in B. This is impossible, since in the first case

B = 0 while in the second B consists of a single simple closed curve.

4.5. If Af' is a nondegenerate simple closed curve, then Af is either a torus,

a Klein bottle, a circular ring, a Möbius band, a pinched sphere (that is, a

sphere with two points identified), or a 2-cell with two boundary points identified.

Proof. Since Af' is a simple closed curve it follows from 4.35 that

1 Spm (Af) S.2 for m = 0 or 2. Thus the torus and Klein bottle are the only

closed surfaces which can possibly transform into a simple closed curve. How-

ever, if 5 = 0 and Af has boundary, it is possible, besides the circular ring and

Möbius band, that Af may be either a 2-cell with two holes, a Möbius band

with a hole, a torus with a hole, or a Klein bottle with a hole. In each of

these cases pi(M)=2 and ß = l. Suppose Af is one of these; then from 4.33

it follows that T-l(x') is a nondegenerate simple closed curve for each point

x' of Af'. Hence after 4.21 it follows that there exists a T~1(x') contained in B.

Thus this x' is an end point of M' because of 2.4. This is impossible under

* See Topologie I, paragraph 11, pp. 269-270.
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the assumption that M' is a simple closed curve. If 5 is not empty, then it

follows from 2.1 and 4.33 that pJ(M)=pv}(M')=\, for m = 0 or 2. Hence

the only possibilities here are the pinched sphere and 2-cell with two points

identified. It remains to show that in the case of the 2-cell the two points

which are identified must be on the boundary. Let Xi, Xi be the two points of a

2-cell, at least one of which is not on the boundary, which are identified to

give the point x = S. Then there exists a neighborhood U(x) such that

U(x)—x has two components, one of which, say C, is such that C is a 2-cell.

Let {y, }, contained in C, converge to x. Then for sufficiently large i, T~1T(y/)

is contained in C and is disjoint with F(C). Now each of these r_1r(y<) must

locally separate M and consequently locally separate C. Thus each must be a

nondegenerate simple closed curve. Therefore, T^1(x') is a simple closed

curve for each x' of M' after 4.2, and consequently some T~1(x') which is non-

degenerate is contained in B. But this x' would be an end point of M' by 2.4,

which is impossible since by assumption M' is a simple closed curve.

5. In 4.4 and 4.5 it is shown that only a few of the 2-dimensional pseudo-

manifolds can possibly be transformed into a nondegenerate arc or simple

closed curve by a monotone 0-regular transformation. In this section it is

shown that each of these transformations is possible. Moreover, the trans-

formations are completely characterized.

A transformation T(M)=M' is said to be topologically equivalent? or

simply equivalent to a transformation W(N)=N' provided one can write

T(M) =hWH(M)=M', where H{M) = N, h(N')=M' are homeomorphisms.

5.1. If M is a 2-cell and M' is a nondegenerate arc, then T(M)=M' is

equivalent to one of the transformations W(N)=N', where N' is the interval

0 S £' S 1 and either (a) N is the square

0 S ZS 1 0 S v ^ 1

with £' = £, (b) N is the triangle

0 S v ^ £

with £' = £, (c) N is the triangle

OSZS 1/2,      0 S V ̂  0, i/2s as i, 0 S v ^ l - I

with ^ = £, or (d) N is the solid circle

0 S ? + r)2 S I

with f' = (£2+»?2)1'2.

* See G. T. Whyburn, Completely alternating transformations, Fundamenta Mathematicae, vol.

27 (1936), p. 140.
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Proof. Suppose, after 4.2, that the inverse of every point of M'' = %£%{

is an arc. Then there are three possibilities: (i) neither of the continua

Xi = T~1{xi) (i = 0 or 1) is degenerate, (ii) one, say X0=x0, is degenerate,

and (iii) both XQ = x0 and Xi = xi are degenerate. It will be shown that the

transformations arising from these possibilities are equivalent to (a), (b),

and (c) respectively.

Since in (i) X0 and X\ are nondegenerate arcs, it follows from 2.33 that

they lie in B. Hence B =a0+XQ+ai-\-Xi, where each as- is an arc disjoint

with X0 and Xi except for one end point in each. Now if x' is an interior

point of M', the arc X = T~1{x') must separate X0 and X\ in M. Moreover,

after 2.5, B can contain only end points of X. Hence cp=[X], where

X = T~1(x') for some x' of M', is an equicontinuous (since it isO-regular)

collection* of arcs satisfying a theorem of R. L. Moore.f Thus there exists a

self-compact* collection G= [g] of mutually disjoint arcs such that z2g = M

and for each J of 0 and g of G the product X-g is a single point. Let

h(N') =M' be a topological transformation, and for N of (a) in the theorem

let HQ(M) = N be a topological transformation such that H0(Xi) = W~1h~1{xl)

(i = 0, or 1). Now 4>0 = [Hq(X)] and G0 = [Ho(g)] are self-compact collections

of arcs filling up N. Let 0O' = [Xf ] and Go = [g,9 ] be countable subcollections

of (bo and Go respectively such that

zZv - » - KJi-
These subcollections may be used in order to set up a sequence H^N) =N

of topological transformations, each of which is the identity on £ = 0,

0^?7^1, whose limit is the homeomorphism HX(N)=N with the property

HxHo{X) = W~1h-1(xl) for every point x' of M'. Now define H=HKH0; then

T{M)=hWH{M).
In possibility (ii) X0 = x0 is a single point and Xi is a nondegenerate arc.

Just as above Xi must be contained in B. Moreover, x0 is contained in B,

for suppose it were not. Then there exists a neighborhood U(x0) disjoint

with B and a point x' interior to xö x{ such that T~1(x') is contained in U(x0)

and separates Xi and x0 in M. This is impossible, since in the case considered

T-l{x') is an arc. Now let {y/ } be a sequence of points converging to xö.

Then onM1 = T~1(xlyl), and generally on Jfi = r-1(y'_iy/) the transforma-

tion behaves as in (1). Hence just as for (1) there exists for each i a self-

compact collection Gl= [gl] of mutually disjoint arcs such thatXgi = ^< and

for each X = T-\x') of M{, g* ■ X is a single point. Now it may be assumed that

* Foundations of Point Set Theory, pp. 396-397.

t Foundations of Point Set Theory, Theorem 1, p. 397.
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for each i, y'i+i precedes y[ in xöx{. For any point yi of Z'_1(yi) let g1 be the

arc of G1 which has yi for an end point, and let g2 be the arc of G2 which has

yi for an end point. Then the other end point of g2 is a point y2 of r_1(y2).

Step by step for each * let g* be the arc of Gi having yt_i of r_1(y'_i) for one

end point and denote the other, which must be in T_1(y/), by y,-. Define

35 !

then g is an arc. Thus as yi ranges over T~1(y{) it generates a self-compact

collection G=[g] of arcs such that 2~lg = M and each g intersects any

X = T~1(x') of M in a single point. As for the previous case, this collection

along with <f> = [X] may be used in connection with an arbitrary homeo-

morphism h(N') = M', where N is given by (b), to obtain a topological trans-

formation 77(17) =N such that T(M) = hWH{M).

By the argument used above it follows that in possibility (iii) both the

points x0 = X0 and Xi = Xi lie in 73. Moreover, if x' is an interior point of

M' =xöx(, then T behaves on Mi = T~1(xlx') as in (ii). Hence if h(N')=M'

is an arbitrary homeomorphism, where N and W are given by (c), it follows

from (b) that there exist homeomorphisms Hi{Ml) = W~1h~l{xlx') such

that T(Mi)=hWHi(Mi). Moreover, the 77;(A7,) may be so defined that

HoT-^^HrT-^x'). Define H(x)=Hi(x) for x a point of M{; then

T{M)=hWH(M). Thus all three possibilities for T~1(x') an arc are char-

acterized.

If for each x' of M', T~1(x') is a simple closed curve, then it follows from

4.21 and 2.33 that the inverse of one end point of M' =xlx{, say T^ixl), is

the whole of B while the inverse of the other end point T~1(x0') =x0 is a

single point in the interior of M. Since no point separates M, it therefore

follows that the collection <j> = [r_1(x')] for all points x' of M' satisfies a

theorem of Kerekjärto.* Hence the collection <b is homeomorphic with a

collection of concentric circles filling a circle. Thus for N and W of (d) there

exists a topological transformation H(M)=N such that WHT~1(x') is a

point of N' for every point x' of M' and conversely. Thus for each point a'

of N' define h(a') =x', where WHT~l{x') =a'. Then h(N') =M' is topological

and such that T(M) =hWH{M).

5.2. If M is a sphere and M' is a nondegenerate arc, then T(M)=M' is

equivalent to W(N)=N', where N is the sphere ij2+??2+f2 = 1, N is the interval

— 1 Si'S1, and W is the transformation £' =£.

Proof. Since no arc separates the sphere, it follows from 4.2 and 2.33

* See Kerekjärtö, Topologie I, Berlin, 1933, p. 246. See also H. Whitney, Regular families of

curves, Annals of Mathematics, (2), vol. 34 (1933), example, p. 260.



108 W. T. PUCKETT [January

that the inverse of every point x' of M'=x0'x{ is a nondegenerate simple

closed curve except for the end points x', which must have degenerate in-

verses. Let y' be any interior point of M', Ml =xJy', Mi = T~1(Ml), Nl

the interval [0, (-1)4], and Ni = W~1(N{) for i = 0 and 1. Then it follows

from 5.1 (d) that there exist homeomorphisms hi(Nl) = Ml and HA\Mi) = /V<

such that T{Ml)=hiWHi{Ml). It may be assumed ä0(0)=Äi(0) and

H«T-l(yr)=iHiT-1(y'). Define H(x)=Ht(x) for x a point of Mi and

h(N')=M' accordingly. Then T(M)=hWH(M).

5.3. If M is a circular ring and M' is a nondegenerate arc, then T(M) =M'

is equivalent to W{N) =N' where N is the ring 1 ̂ £2+??2^2, N' is the interval

O^f'sgl, and W is the transformation £' = (£2+?72)1/2 — 1.

Proof. Since pi (M) and pi (M') are not equal, it follows from 4.33 that

the inverse of every point x' of M' is a nondegenerate simple closed curve.

Let B = Jq+J\, where is a simple closed curve. Then it follows from 4.21

and 2.33 that Ji = T-1{x-), where M' = xöx{. Let H0(M)=N be topological

and suppose N* to be the solid circle 0^£24-??25Sl. Let this be filled with the

family of concentric circles G = [g]. Then the families G and </> = [HoT^ix') ]

for all x' of M' satisfy Kerekjärto's condition! that there exists a homeo-

morphism H1(N+N*) = N+N* such that [Hi(g)] and [HiHoT-^x')] to-

gether form a family of concentric circles filling N + N*. Moreover, it may be

assumed that for the circle X0 (that is, for £2+??2 = l) H1(Xa)=Xa. Define

H = HiH0; then for each x' of M', WHT~1(xr) =a', a point of N', and con-

versely. Now for each point a' of N' define h{a') =x', where WHT~1{x') =a';

then h(N')=M' is topological and T(M) =hWH(M).

5.4. If M is a circular ring and M' is a nondegenerate simple closed curve,

then T(M)=M' is equivalent to the transformation £' = cos 6, »7 = sin 6 on the

circular ring N:

a = r cos 6,      7] = r sin 6 (0 s 6 $ 2ir, 1 g r s 2).

Proof. Since 5 = 0 and M' has no end points, r_1(a;') is nondegenerate for

each x' of M' and is not contained in B = J0+Ji. Thus, after 4.21, each

T^ix') is a nondegenerate arc, and B-T~1(x') consists of the end points of

r_1(x') because of 2.32 and 2.5. Moreover, the end points of r-1(#') must lie

one in J0 and one in Ji, for if both were contained in T~l(x') would

separate M and consequently x' would separate M'. Let y{ and yi be any two

points of M'\ then M' = a{ +ai, where a} is an arc and a{ mi =y{ +yi.

Define Mi = T-1{a'). Let W(N)=N' designate the transformation of the

theorem and let a{, al be any two points of A7'. Express N' as the sum of

t Topologie I, p. 246.
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two arcs, N' =ß{ +ßi where ß{ -ßi = a{+a{. Define Nl = W~x(ßl); then

after 5.1 (a) there exist homeomorphisms hi{ßl)=a[ and Hi(Mi)=Ni such

that T(Mi) =hiWHi(Mi). Moreover, the homeomorphisms may be so defined

that h{al)=hi{al) and HtT-1(y!)mHtT-1(yt). Let H(x) =HA\x) on Mi and

h(a') =hi(a') on ßf; then T(M)=hWH(M).

5.5. If M is a Möbius band and M' is a nondegenerate simple closed curve,

then T{M)=M' is equivalent to the transformation W: £' = cos 6, 77'= sin 0,

f' = 0, on the Möbius band N:

£ = (2 + r cos 0/2) cos 6,   jj = (2 + r cos 0/2) sin 0,   f = r sin 0/2

(0 3s 0 < It, - 1 5j r g 1).

Proof. Just as in 5.4 it follows that the inverse of each point x' of M'

must be a nondegenerate arc with its end points only in B. Again just as in

5.4, 5.1 (a) may be used to define the homeomorphisms h and 77 such that

T(M) = hWH(M), where W(N) =N' is the analytical transformation of the

theorem.

5.6. If M is a 2-cell with two boundary points identified and M' is a non-

degenerate simple closed curve, then T{M) =M' is equivalent to the transforma-

tion W(N) = 2V': £' = cos 0, t]' = sin 0, where N is defined by

£ = r cos 0,      i) = r sin 0,       0 g 0 £ 2tt, 1 S r S (l/2)(3 - cos 0).

Proof. Here S=yi is a single point. Thus it follows from an argument

similar to that used in 5.4 that except for r_1r(vi) the inverse of every

point x' of M' is a nondegenerate arc with its end points in B and separated

in B by yi. Express M' as the sum of two nondegenerate arcs, that is, as

M' =a{ +0L2, where a[ a{ =y{ -\-yj. Then 5.1 (b) may be applied here as

5.1 (a) was in 5.4 to give homeomorphisms such that T(M) =hWH(M).

5.7. If M is a pinched sphere and M' is a nondegenerate simple closed

curve, then T(M) =M' is equivalent to the transformation W(N) =N': |' = cos 0,

7}' =sin 0, f' = 0, where N is defined by

a = (2 + sin2 (0/2) cos 4>) cos 0, n = (2 + sin2 (0/2) cos d>) sin 0,

f = sin2 (0/2) sin <p (0 t% 9, 0 l% 2*).

Proof. Here again S = yi is a single point, Just as in 5.2 it follows that the

inverse of every point of M', except T(yi), is a nondegenerate simple closed

curve. Express M' as the sum of two nondegenerate arcs one common end

point of which is T(yi). Then 5.1 (d) may be used to define homeomorphisms

such that T(M) = hWH(M).
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5.8. If M is a torus and M' is a nondegenerate simple closed curve, then

T(M) = M' is equivalent to the transformation W(N) = N': £' = cos 8, rj' = sin 8,

f' = 0, where N is defined by

£=(2 4- cos <t>) cos 6,      ij = (2 4- cos </>) sin 6,      f = sin

(0^0,0 ^2tt).

Proof. Since pi (M) >pi (M') it follows from 4.32 and 4.2 that the inverse

of every point of M' is a nondegenerate simple closed curve. Let M' =a{ +a2,

where a{ and a2 are nondegenerate arcs with common end points (that is,

a{-al =y{ +y2). Now Mi = T~l{ai) is a 2-dimensional manifold with

B = T-1(yl) + T-1(yl). Moreover, T(M,)=al, an arc. Thus M{ must be a

circular ring, since this is the only 2-dimensional surface with B consisting

of two simple closed curves, which maps into an arc by a monotone 0-regular

transformation. Express N' =ß{ +ß2, where ß{ and ßl are nondegenerate

arcs with end points only in common. Define Ni = W~1{ß(). Then 5.3 gives

homeomorphisms ktißl) =a/, Hi(Ml) = Ni such that T{Ml)=hiWHi{Ml).

Moreover, the A,- may be so chosen that Ai(|8i -ßi) =h2(ß{ -ßi) and the Hi so

chosen that Hx{M\-M^)=Hi{My-Mi). As several times before define

H(x) =Hi(x) for x a point of M,- and h(a') =A,(a') for a' a point of 0/ ; then

T(M)=hWH(M).

Observation. Let Zi and Z2 be simple closed curves on M which, when

oriented, may be considered as generators of the Betti group Bi(M). For

each pair of positive integers ki, k2 there exists a monotone 0-regular trans-

formation of M into a nondegenerate simple closed curve such that for each

x' of M' the simple closed curve T~1{x') can be so oriented as to carry a

cycle which is homologous to &iZi+&2Z2. In case A, = 0, however, one must

choose k,■ = 1.

5.9. While the Klein bottle can be mapped onto a nondegenerate simple

closed curve by a monotone 0-regular transformation, T(M) =M', there is

not a convenient analytical description as in the previous cases. However,

the possible transformations can be characterized after a fashion. In the first

place r_1(x'), for every point x' of M', must be a nondegenerate simple

closed curve, since pi (M) >pi (M'). Let Zu Z2 be simple closed curves on M

which, when oriented, may be considered as generators of the Betti group

Bi (M). Since If is a Klein bottle, it may be assumed that 2AZ2~0 for all in-

tegers k. There exist integers &i and k2 such that

T^ix') ~ hZi 4- k2Z2,

after T~1(x') is oriented. However ki must be zero, for if it were not, then

Po^T-^x'), Af] = l. Consequently
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p$(M') = pi(M) - pi [T-\x'), M] = 0,

contrary to the fact that M' is a nondegenerate simple closed curve. Thus for

every x' of M', r_1(x')~&2Z2, when oriented. Moreover, k2 must be odd,

since pi [7_1(x'), M] cannot be zero.

In order to demonstrate such a mapping suppose M to arise from the

oriented square ABCD by identifying the oriented sides, AB with DC and

BC with DA* Let T(M)=M' be such that the collection [T^OO] in ABCD
is a collection of straight lines parallel to BC.

6. The continuous transformation T(M) = 7V, a subset of M, is said to be

retracting^ provided that for each point x of N, T(x) =x. The following state-

ments are immediate consequences of the results in the preceding sections:

6.1. In order that there exist a monotone 0-regular retracting transformation

of the 2-dimensional pseudo-manifold M onto a nondegenerate arc, it is necessary

and sufficient that M be a 2-cell, a circular ring, or a sphere.

6.2. In order that there exist a monotone 0-regular retracting transformation

of the 2-dimensional pseudo-manifold M onto a nondegenerate simple closed

curve, it is necessary and sufficient that M be a circular ring, a Möbius band,

a torus, a Klein bottle, a 2-cell with two boundary points identified, or a pinched

sphere.

6.3. There exist no monotone 0-regular retracting transformations of 2-dimen-

sional pseudo-manifolds onto nondegenerate sets except those given by 6.1 and 6.2.

7. A collection G of continua is said to be equicontinuous% with respect

to a given set M if for every collection 77 of open sets covering M there exists

a finite collection 77' of open sets covering M such that if X\ and x2 are two

points of M lying in some one set of 77' and belonging to a continuum X of G,

then there exists an arc xiXi lying both in X and in some set of the collection

77. The collection G is said to be self-compact% if every infinite sequence of

continua of the collection G contains an infinite subsequence which converges

to some set of the collection G.

Let M be any compact space and T(M)=M' be a monotone 0-regular

transformation. Then, obviously, the collection G= [7_1(x')] for all points

x' of M' is an equicontinuous self-compact collection of mutually disjoint

continua filling M. Moreover, it is easily seen that an equicontinuous self-

compact collection G= [X] of mutually disjoint continua filling M gives rise

* See Alexandroff-Hopf, p. 207.

f See Borsuk, Fundamenta Mathematicae, vol. 18 (1932), p. 204.

X Foundations of Point Set Theory, pp. 396-397.
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to a monotone 0-regular transformation. Thus the following assertions are

immediate consequences of the results of §§4 and 5:

7.1. Let M be a 2-dimensional pseudo-manifold and G= [X] be an equi-

continuous self-compact collection of mutually disjoint continua filling M. If G

contains more than one element, then each X is an arc or each X is a simple

closed curve.

7.2. In order that a 2-dimensional pseudo-manifold M may be decomposed

into an equicontinuous self-compact collection of mutually disjoint arcs, at least

one of which is nondegenerate, it is necessary and sufficient that M be a 2-cell,

a 2-cell with two boundary points identified, a circular ring, or a Möbius band.

7.3. In order that a 2-dimensional pseudo-manifold M may be decomposed

into an equicontinuous self-compact collection of mutually disjoint simple closed

curves, at least one of which is nondegenerate, it is necessary and sufficient that

M be a 2-cell, a circular ring, a sphere, a pinched sphere, a torus, or a Klein

bottle.

8. A. D. Wallace* has shown that if T{M) = T2T1{M) is the usual

monotone-light factoring of any 0-regular transformation, then 7\ is a mono-

tone 0-regular transformation and T2 is a local homeomorphism.f Moreover,

he has shown that when the image is nondegenerate any 0-regular transfor-

mation on an arc or on a simple closed curve is a homeomorphism or a local

homeomorphism respectively. Thus the following assertions are consequences

of the results of §§3, 4, and 5:

8.1. If M is a 2-dimensional pseudo-manifold and T(M) =M' is a 0-regular

transformation, then M' is a 2-dimensional pseudo-manifold, an arc, or a simple

closed curve.

8.2. Let M be a 2-dimensional pseudo-manifold and T(M) =M' a 0-regular

transformation. If M' is a nondegenerate arc, then T is monotone and, con-

sequently, is equivalent to one of the transformations in 5.1, 5.2, or 5.3.

Since a local homeomorphism on a simple closed curve is equivalent to the

transformation W: £' = cos kd, rj' = sin kd (k an integer) on the circle £ = cos 9,

11 = sin 8 (OS9 = 2tt),X the following assertion is immediate:

* On 0-regular transformations, loc. cit.

f The transformation T{M) — M' is said to be a local homeomorphism if for each point x of M

there exists a neighborhood U{x) on which T is topological. See S. Eilenberg, Fundamenta Mathe-

maticae, vol. 24 (1935), p. 35.

X See G. T. Whyburn, Interior transformations on compact sets, Duke Mathematical Journal,

vol. 3 (1937), p. 374, (3.2).
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8.3. Let M be a 2-dimensional pseudo-manifold and T(M) =M' a O-regular

transformation. If M' is a nondegenerate simple closed curve, then T is equiva-

lent to the transformation W'W, where W is given above and W is one of the

transformations in 5.4, 5.5, 5.6, 5.7, 5.8, or 5.9.

The following assertion results from 6.3, 8.2, and 8.3:

8.4. // M is a 2-dimensional pseudo-manifold and T(M) =N is a O-regular

retracting transformation, then T must be monotone.
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