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1. Introduction. There are several types of integration for numerically-

valued functions, one of which is associated with the ideas and methods of

Cauchy, Riemann, and Lebesgue, another of which is connected with the

method of Perron, and so on. This paper will be concerned with the integra-

tion of functions with values in a Banach space by methods in the Cauchy-

Riemann-Lebesgue tradition.

Numerous other studies of integration in abstract spaces have been made

in recent times. Noteworthy among these are (a) papers by Graves [l],t

Bochner [l], Dunford [l], and Gowurin [l]; (b) a paper by Birkhoff [l];

(c) and other papers by Birkhoff [2], Dunford [2], and Pettis [l]. In spite

of the fact that the theories of integration in both (a) and (b) are develop-

ments of the ideas of Cauchy, Riemann, and Lebesgue, there is an underlying

unity of method in the four papers in (a) which groups them and distinguishes

them from the paper in (b). The Lebesgue integral for numerically-valued

functions can be developed by either of these two general methods, but for

functions with values in a Banach space they are not equivalent.

The purpose of the present paper is to study the two general methods used

in (a) and (b) for integrating functions with values in a Banach space, to de-

termine their interrelations and limitations, and to generalize and extend

them.

We proceed to describe the extensions and generalizations obtained.

(1) Generalized convex sels. One of the important contributions made by

Birkhoff [l ] was in showing the fundamental importance of convex sets in the

theory of integration. In §2 further properties of convex sets are established.

In §3 generalized convex sets are defined and their properties established.

These sets form an extensive class which includes convex sets; they have all

the properties of convex sets needed in integration.

(2) Generalized measure functions. By using the generalized convex sets

described in (1), it is shown in §§8-19 that the values of the measure function

in both Bochner's and Birkhoff's integral, which they assumed to be numbers,

may be bounded transformations with certain restrictions. The use of the gen-

* Presented to the Society, December 28, 1937; received by the editors October 13, 1938, and,

in revised form, July 31, 1939.

t Numbers in square brackets refer to the bibliography at the end.

1



2 G. B. PRICE [January

eralized convex sets thus enables us to obtain an integral more general than

that of Birkhoff.

(3) Measurable functions. A definition of measurable function is given in

§14, and the properties of this class of functions are established in §15. It is

shown in §19 that this class includes the measurable functions of Bochner as

a proper subclass, and necessary and sufficient conditions that a measurable

function be measurable in the sense of Bochner are established. In §16 a suffi-

cient condition that a measurable function be integrable by the method of

Birkhoff is established.

(4) The Darboux theory of the upper and lower integral. In Part V the prop-

erties of the Riemann-Stieltjes integral in abstract spaces are established. It

is shown in §21 that there is a closed convex set which replaces the upper and

lower integral for numerically-valued functions. In §25 it is shown that, at

least in certain cases, the extreme points of this convex set (see Price [l])

are the exact analogues of the upper and lower integrals themselves.

(5) A new class of Riemann-Stieltjes integrable functions. In §§22-24 a new

class of integrable functions and their integrals are studied. The values of

these functions are sets instead of a single element in a Banach space; their

integrals, of the Riemann-Stieltjes type, are closed convex sets. The integrals

of these functions are additive in an extended sense (see Theorem 23.11).

(6) A new class of measurable functions of the Bochner type. It is shown in

§26 that Bochner's method can be used to define measurable and summable

functions whose values are sets in a Banach space; the integrals of these

functions are closed convex sets and have the properties of the Lebesgue in-

tegral.

(7) A new class of measurable functions of the Bochner-Dunford type. It is

shown in §27 that the method used by Bochner and Dunford can be extended

still further to define measurable and summable functions whose values are

sets in a Banach space; the integrals of these functions are closed convex sets

and have the properties of the Lebesgue integral. This integral is the most

general one obtained with the properties of the Lebesgue integral.

For numerically-valued functions there is only one Lebesgue integral-—an

integral which includes all others of the Cauchy-Riemann-Lebesgue type.

There are many ways of developing the theory of this integral, but all meth-

ods lead to the same result. It is natural to ask whether the same is true for

functions with values in a Banach space. The answer is in the negative. Birk-

hoff [l, p. 377] showed that his integral includes those of Graves and

Bochner. But the integral of Bochner does not include that of Graves; an

example given by Graves [l, p. 166] proves this fact. The integrals of Bochner

and Dunford are known to be equivalent (see Dunford [3, p. 475]). The situa-
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tion is changed radically, however, by the extensions given above. Neither

the original Birkhoff integral nor the generalization of it described in (2) in-

cludes the generalized Bochner integral of the functions in (6); furthermore,

neither the Bochner integral nor its extensions (see (2) and (6) above) include

the generalized Bochner-Dunford integral of the functions described in (7).

The generalization of the Bochner integral in (2) is the Gowurin integral; the

generalized Birkhoff integral in (2) overlaps the Gowurin integral, but neither

includes all cases of the other. It appears therefore that the extensions of the

various methods associated with the Cauchy-Riemann-Lebesgue processes of

integration lead not to one theory in abstract spaces, but to several.

As for methods and technique, there is one new element in the present

case. The Hausdorff distance between sets in a Banach space is introduced

(see §2); with this metric these sets become the elements of a complete metric

space. In §4 the convergence of infinite series whose terms are elements of this

metric space is studied; the types of convergence are numerous. Birkhoff also

studied infinite series whose terms are sets in a Banach space, but without

the Hausdorff metric. In §5 the interrelations of the various types of conver-

gence introduced in §4 are examined, and in addition they are compared with

Birkhoff's unconditional summation of complexes (see Birkhoff [l, pp. 361-

364]). In §6 a theorem is proved which is fundamental in Birkhoff's method

of integration; it is an extension of one given by Birkhoff [l, p. 364], It is

this theorem which requires the introduction of convex and generalized con-

vex sets in Birkhoff's method of integration.

The use of the Hausdorff metric does not lead to a more general integral

of the Birkhoff type (see Theorem 12.2), but it does make possible the gen-

eralizations listed under (4), (5), (6), (7) above. Furthermore, its use seems to

simplify the details of some proofs, and to permit all of them to be stated in

more familiar form and language.

The paper closes with applications of some of the results on integration

to Fourier series and singular integrals. It is shown that the limit of the

Fejer integral under very general conditions represents the value of the func-

tion—even when the values of the function are sets and it is impossible to

establish the usual connection between the Fourier series and the Fejer inte-

gral. It is shown that the Fourier series of a function of bounded total variation

converges to the usual value. It is necessary to construct a new proof of this

theorem since the mean value theorems usually used are lacking.

Part I. Generalized convex sets

2. The algebra of complexes. We shall first explain the notation to be

used. Let 53 be a Banach space, that is, a space of type (73) (see Banach [l,
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p. 53]), with elements/, g, ■ ■ • whose norms are ||/||, ||g|j, • • . Let F denote

a set or complex of elements / and aF the complex of elements qf when a

is any real number. If R is any set of real numbers r, let RF denote the set

of elements rf,rtR,ft F. By the sum Fi+ ■ ■ ■ +Fn, or zZiFi, is meant the

complex of elements/■,+ ••■ +/„, /< e Fi. The closure of F is F. The convex

hull of F is C [F], and the closed convex hull is C [F]. The closure of F+G will

be represented also by F+*G. Further details will be found in Birkhoff [l,

pp. 358-365].
Throughout the paper a set F c 33 is understood to be bounded unless

there is a statement to the contrary.

(2.1) Definition. Let F1} F2 be two sets in 33. Let di be the upper bound of

distances from points of Fx to F2 and d2 the upper bound of distances from points

of F2 to Fi. The larger of the numbers dj, d2 is called the distance D(Fh F2) be-

tween Fi and F2.

This definition of distance between two sets in a metric space was intro-

duced by Hausdorff [l, pp. 145-146]; it has been used by Blaschke [l, pp.

59-66].
The diameter D(F-F, 0) of a set F is denoted by p(F).

The following relations are consequences of the above definitions:

(2.2) D(Fi,Fz) = D(F2,Fi);

(2.3) D(Fi,F2)^0;

(2.4) D(Fi,F2) = 0 equivalent toFi = F2;

(2.5) D(Fi, Ft) S D(Fi, F%) + D{F2, F3);

(2.6) D(aFi, aF2) = \ a \ D(Fi, F2) for every real number a;

(2.7) D(Fi,Ft) -WFuTt)]

(2.8) D(Fi + ■ ■ ■ + Fn,Gi + ■ ■ ■ + Gn) S D(FU G») 4- • • • 4- D(Fn, Gn);

(2.9) D(C[Fi],C[F2]) S D(Fi,F2);

(2.10) D(F + GhF+ G2) S D(Gi, G2);

(2.11) P(Fi) S P(Fi+F2) S p(Fi) + p(F2) (t = 1, 2);

(2.12) p(C[F]) = p(F), 7?(C[F], 0) = D(F, 0).

The first six of these relations follow at once from Definition 2.1; (2.11)

and (2.12) were given by Birkhoff [l, pp. 368, 360]. Furthermore, (2.10)

follows at once from (2.8) and (2.4). It can be shown by means of examples

that the inequality may hold in (2.10). We shall give proofs of (2.8) and (2.9).

Proof of (2.8). Let e>0 be given. Then it is possible to choose either a

point (fi+ ■ ■ ■ 4-/„) e (Fi+ ■ ■ ■ +Fn) so that
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d(fi+ ■ ■ ■ +fn,Gi + ■ ■ ■ +Gn) ^ D(Fi + ■ ■ ■ +Fn,G1 + ■ ■ ■ +Gn) - t

or a point (gi+ ■ ■ ■ +gn) t (&+ ■ ■ ■ +G„) so that

d(gi + ■ ■ ■ + gn,Fi + ■ ■ ■ + Fn) ^ D(Fi + • • • + Fn, Gi + ■ ■ ■ + Gn) - e,

where d(f, F) represents the distance from/to the set F. It follows from Defi-

nition 2.1 that this choice is possible. Without loss of generality we may as-

sume that the first case occurs. Then we can hold/i, •■•,/„ fixed and choose

points gi e Gi, ■ ■ ■ , gn e Gn so that

II/! - gl|| < D(Fi,Gi) + •/*, ■■■ ,\\fn- fell < D(Fn,Gn) + tin.

Then

|Cf. + ■ ■ • +/,) - (gi + • • • + gn)|| = II/, - gi\\ + ... + \\fn- gn\\
S D(FU &)+■■+ D(F„, G„) + e.

But since

D(Fi+ • • • +Fn,Gi+ • • • +G„) - e S d(fi+ ■ • • +/„,Gi + • • • +G»)

^   IK/.+ ■ ■ ■  +/„) -(**+     •• +gn)\\,
we see that

ZXF, + ■ • • + Fn, Gi + ■ ■ ■ + Gn) - e S D(Fi, Gi) + •   • + D(Fn, Gn) + e.

Since e is arbitrary, (2.8) follows and the proof is complete.

Proof of (2.9). The distance of a point of F2 from C[Fi] does not exceed

its distance from Fx since FiZ=C[Fi]. Then the parallel set to C[Fi] at the

distance D(Fh F2), that is, the set of all those points at distance from C[Fi]

equal to or less than D(Fh F2), is a convex set which contains F2. Then the dis-

tance from any point of C[F2] to C[Fi.] is equal to or less than D(Fi, F2).

In the same way we show that the distance from any point of C [Fi ] to C [F2 ]

is equal to or less than D(Fi, F2). Then (2.9) follows from Definition 2.1, and

the proof is complete.

It is possible to give an example in which D(C[Fi], C[F2]) <D(Fh F2).

With the distance introduced in Definition 2.1, the complexes F are the

elements of a complete metric space (see Price [3]). Two complexes F%, F2

are metrically identical when their closures coincide in the point-set sense.

(2.13) Theorem. If Fu ■ ■ ■ , Fn are convex sets and ai, ■ ■ ■ , a„ are any

real numbers, then zZiaiFi is a convex set, and

i

This theorem was given by Birkhoff [l, pp. 359-360].
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(2.14) Theorem. If Fi, ■ ■ ■ , Fn, F,c33, are sets which are compact in 33,

and if ai, ■ ■ ■ , a„ are any real numbers, then

zZ aiFi = zZ"a*Fi •
i

The proof is omitted.

(2.15) Theorem. Let Fi, • • • , Fn, Fic33, be convex sets. If g is any ex-

treme point of the convex set zZ1aiFi, then g =1zZJiaigi, and gi, • • • »gn are extreme

points of Fi, ■ ■ ■ , Fn respectively.

A point of a convex set is an extreme point if it is not an interior point

of any segment which belongs to the set (see Price [l, p. 57]). Since g is a

point of zZ"aiFi, there exist points gi, ■ ■ ■ , gn, g% e Pi, such that g=E?fligi.

Suppose that one of the points gi, • • • , gn, say gi, is not an extreme point.

Then there exist two points g{, g{' in Fi such that gi = 6g{ +(1 — 9)g",

0<6<1. Then g=6g'+(l-6)g", where g' = <hgl +a2g2+ • ■ • +angn, g"

= aig'i'-\-a2g2-\- ■ ■ ■ +angn, and g is not an extreme point. This contradiction

establishes the theorem.

(2.16) Theorem. If R is a closed interval of real numbers, and if F c 23 is

closed, then RF is closed. If in addition R does not contain the number zero in

its interior, and if F is convex, then RF is convex also.

(2.17) Corollary. If R, R' are arbitrary closed intervals of real numbers,

and if F is the set R'f, f a fixed element in 33, then RF is closed and convex.

The conditions of neither the theorem nor the corollary are necessary.

(2.18) Theorem. If R is any set of numbers such that zero is not an interior

point of its closed convex hull C[R], and if F is any set in 33, then C[RF]

= C[R]C[F}.

If r0 e 7?, then r0F I CjTtT*'] because of the convexity properties of C[RF].

Again, if n is a limit point of points of 7?, then riF = ri€[F] i C[RF] because

C[RF] is closed. Finally, let C[R] = (aSrSß). Then by the statements just

made, aC [F] £ C [RF], ßC [F] £ C [RF]; hence, because of the convexity once

more,_C[R]C[F]$C[RF]. Also RF | C[7?]C[F] and, by Theorem 2.16,

C[R]C[F] is closed and convex. But C[7?F] has no proper subset with these

properties, and therefore C[7tF] = C[72]C[7?]. The proof is complete.

(2.19) Corollary. Let Ri, 7?2 be two sets of numbers such that zero is not

an interior point of C [Ri], C [7?2], and let Fi, F2 be two arbitrary sets in 33. Then

(2.20) C[RiFi + 7v2F2] = C[Ri]C[Fi] + C[Rt]C[Ft].
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This corollary follows at once from the theorem and C[RXFX+R2F2]

= C[R1F1]+C[R2F2] (see Birkhoff [l, p. 360]).

(2.21) Theorem. Let Ri, R2 be two sets of numbers such that zero is not an

interior point of C [Ri], C [R2], and let F be any set in 93. Then

(2.22) Z[Ri]V[F] + C[7v2]C[7?] = C[Ri + R2]C[f];

(2.23) D(C[Rx]C[f],C[R2]C[F]) S D(C[Rx],C[R2])D(C[F], 0).

Proof of (2.23). Consider the distance from any point rxf t C[RX]C[F] to

C [R2 ] C [F ]. We can find a poin t r21C [R2 ] such that | rx - r21 S D (C [Rx ], C [Ri]).

Then the distance from rxf to CfT^C^] does not exceed

In the same way it can be shown that the distance from points of C [7?2]C [F]

to C^iJCl^] does not exceed the same number. The proof is then com-

plete.

3. Generalized convex sets. In this section we shall establish the funda-

mental properties of a linear operator whose domain and range are sets F c 93.

Let SC be the normed linear space of linear transformations T whose

domain is 93 and whose range is in 93. Thus if T e £ and a, b are real numbers,

we have Tf e 93, T(af+bg)=aTf+bTg, \\Tf\\ ̂ \\T\\-||/||. If Tu T2 e SC, then
TiT2 and Ti + T2 also belong to SC. The identical transformation I belongs

Let t denote a set of elements of SC: t = (Th ■ ■ ■ , Tr). Here Z\ e SC, and

r = r(t) is a positive integer.

(3.1) Definition. The product hk of hand t2, where tx = (Tu), i = 1, ■ ■ • ,fi,

and t2 = (Ti,),j = \, ■ ■ ■ , r2, is t = (TuT2,), *—1, • • • , n andj = \, ■ ■ ■ ,r2.

Let C* denote a set of elements t which satisfies the following hypotheses:

(3.2) Hypothesis. tt.C* implies Tx+ ■ ■ ■ +Tr = T.

(3.3) Hypothesis. tx, t21 C* implies txt2 e C*.

(3.4) Hypothesis. There exists a constant W, depending only on C*, such

that for every 11 C* and any set of points fx, ■ ■ ■ ,fr in 93

When Hypothesis 3.4 is satisfied, we shall assume that W represents the

lower bound of the constants for which (3.5) holds. The PF-property of a set

of transformations t was first studied by Gowurin [l ]. We shall say C* is of

bounded variation if there exists a constant V such that for every 11 C*,

\\rxf-r2f\\ S\rx-r2\-\\f\\ S D(C[RX], C[R2])D(C[F], 0).

to X.

(3.5)
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= V. Hypothesis 3.5 is weaker than bounded variation and is implied

by it. The convex operator C has V = 1 and W = 1.

It should be remarked that if fa, fa satisfy Hypothesis 3.2, then fafa auto-

matically satisfies the same hypothesis.

We shall use C* also to denote an operator as explained in the following

definition.

(3.6) Definition. The transform of a set F c 93 by C*, denoted by C* [F], is

the set of all pointszZlTifu where fi t F andt = (Th ■ ■ ■ ,Tr) t C*. If F is the null
set, C* [F] is the null set.

The fundamental properties of this operator are given in the following

theorems and corollaries.

(3.7) Theorem. C*[F+G] = C*[F]+C*[G].

(3.8) Corollary. Let Ti, T2 be any two numbers, or more generally, any

two elements of 5£ which commute with all the transformations Ti in t e C*; then

C* [T,F+T2G ] = TXC* [F ] + T2C* [G ].

(3.9) Theorem. FgG implies C*[F]SC*[G].

(3.10) Theorem. FIC*[F].

(3.11) Theorem. C*[U^C*[F,]] =Hir)C*[Fr].

(3.12) Corollary. C*[C*[F]]=C*[F].

(3.13) Theorem. t = (Tu ■ ■ ■ , TT) t C* implies C*[F] = TiC*[F]+ ■ ■ ■

+TTC*[F].

(3.14) Theorem. D(C*[Fi], C*[F2])SWD(FU F2).

(3.15) Theorem. D(F, 0)SD(C*[F], 0)SWD(F,0), and also D(F, 0)

SD(C*[F], 0)SD(F, 0) + Wp(F).

(3.16) Theorem. p(F) Sp(C* [F]) S Wp(F).

From (3.8), (3.9), and (3.15) it follows that C* is a homogeneous, addi-

tive, monotone, and bounded operator. It should be remarked that the proofs

of (3.7)—(3.13) do not depend on Hypothesis 3.4; only the proofs of (3.14)-

(3.16) depend on this third hypothesis. Theorems 3.14-3.16 are generaliza-

tions of properties of the convex operator C already given in (2.9) and (2.12);

the latter can be obtained from the former by setting W= 1.

Proof of (3.7). Since the transformations T, in t t C* are linear by hy-

pothesis, it is clear that C*[F+G] iC*[F]+C*[G]. Thus we have only to

show that C*[F]+C* [G] =C*[F+G].

Let^iTu/,-, zZ?T2jgi be any two points in C* [F], C* [G] respectively. The
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proof will be completed by showing that £?Xi</*+2?Ti£a an arbitrary

point of C*[F]+C*[Cr], is identical with

(3.17) EZW + ?i)-

which is a point of C* [F+G] by Hypothesis 3.3. The proof follows from the

fact that

£ Tujt [r*ifi + TtaA = £r„r £ r2,/f + £ r,*,l
i-l ,'~1 M        L J-1 j-1 J

= £r«[/, + £ riygyl
t-l L 1 J

ri r2

i-l

where (3.2) has been used in the transformations. The proof is complete.

The proofs of the remaining theorems and corollaries are left to the reader.

A trivial example of an operator C* is formed by the set of elements t

where / is a set of positive rational fractions with even denominators whose

sum is 1. A more interesting example is the following one in the space of

square matrices of order 2. The norm of a matrix is the square root of the

sum of the squares of its elements. Let / be the r matrices

I a< 0

I oft <.-i.---,'>.
where 0 Scti, ßi = 1, zZiai Si = 1. A transformation T is here matrix multi-

plication. The set of all such elements t forms an operator C* which satisfies

Hypotheses 3.2, 3.3, 3.4. This operator is of bounded variation with 7 = 2.

It therefore has the IF-property, and it can be shown that 21/2^T47^2. A

similar operator C* exists in the space of square matrices of order n; in this

case F=« and n1/2SW Sn.

It is necessary to observe also that there are methods for constructing

operators C*. Let {t} be a class of transformations with the following prop-

erties :

(3.18) Hypothesis, t e [t } implies r t SE; t e {t\ andr^O imply that r has

an inverse t-1 e n, • • • , rr » (t) and (n+ ■ ■ ■ 4-rr)^0 imply that

(ti4- • • ■ 4-tr) has an inverse    + ■ ■ ■ +rr)~11 X.

Letri, ■ • • ,rr be any r elements in {t} ;leU, /'be ■ ■ • 4-Tr)_1Ti, • • •,

(ti4- • • • +Tr)~1Tr], [ti(ti+ ■ ■ ■ +Tr)~1, • • • , Tr(n+ ■ • ■ +Tr)~1] respec-

tively and Co* the set of all such t and t'. Then C* satisfies Hypothesis 3.2.
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In the usual way we can form the smallest set C* which contains C0* and is

closed with respect to the multiplication defined in (3.1). Then C* satisfies

Hypotheses 3.2, 3.3 and is a homogeneous, additive, and monotone operator.

(3.19) Theorem. Let C* be the operator formed from {t} as described, and

let ti, • ■ • , tr be any elements in {r}. Then for any set F c 23

(ri + • ■ • + T,)C*[F] = TlC*[F] + • • • + TTC*[F].

From Theorem 3.13 we have

C*[F] = (t, + • • ■ + rr)-h£*[F] + ...'+ (n +••• + rr)-WrC*[F],

from which the theorem follows.

In the future C* will be used to denote an operator which satisfies Hy-

potheses 3.2, 3.3, 3.4 and is therefore additive, homogeneous, monotone, and

bounded.

(3.20) Definition. A set F c 93 such that F = C* [F ] will be called convex C*.

It follows from Corollary 3.12 that every set C'pF] is convex C*.

Part II. Infinite series

4. Convergence of infinite series. We shall now consider various types of

convergence of the infinite series

(4.1)
fc-1

00

(4.2) 2>4> F*c23.

As stated in §2 the space with elements F c 93 is a complete metric space.

(4.3) Definition. The series (4.1) converges unconditionally to f t 93 if and

only if every rearrangement a of all the terms of the series gives a series /.?f„tn

which converges to f.

(4.4) Definition. The series (4.2) converges strongly unconditionally to the

sum F c 93 if and only if every series s.Tfk. ft t Fk, converges unconditionally and

F is the locus of the sums of these series.

These two definitions have been given by Birkhoff [l, pp. 361-362].

(4.5) Definition. The series (4.2) converges normally if and only if the

series zZiD(Fk, 0) converges.

(4.6) Definition. The series (4.2) converges regularly if and only if for each

€>0 there exists an N = A7(e) such that D(zZt^Fk, 0)<e,p^0.
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It can be shown that this definition is equivalent to the following one.

(4.6') Definition. The series (4.2) converges regularly if and only if for

each e>0 there exists an M = M(t) such that D(£?mFk, 0) <e, n^m^M.

(4.7) Definition. The series z~liFk converges and has the sum F c 93 if and

only if for each e>0 there exists an N = N(e) such that D(^ff[Fk, F)<e, n^N.

It follows from (2.7) that the sum of a convergent series is not uniquely

determined. We agree, however, that the sum of a convergent series shall be

taken as a closed set; with this convention the sum is unique.

Since we have associated two sums with the series zZiFk, it will be con-

venient to introduce notation for them. If the series converges in the sense

of Definition 4.7, its sum will be denoted by zZiFk. If zZiFk converges

strongly unconditionally in the sense of Definition 4.4, we indicate its (strong)

sum by SzZiFk.

(4.8) Definition. The series zZ\Fk converges weakly unconditionally to

F c 93 if and only if every rearrangement a of all the terms of the series gives a

series zZiFam which converges to F.

(4.9) Theorem. A necessary and sufficient condition that zZifk be uncondi-

tionally convergent to f is that to every e >0 there correspond an integer N such that

the sum n of any finite set of terms of zZifn including fi, • • • , fx satisfies

h-A\<*- '
(4.10) Theorem. A necessary and sufficient condition thatYlifk be uncon-

ditionally convergent to f is that for each e>0 there exist an M such that

M<k(l)<k(2)< ■ ■ ■ <k(r) implies

||/fcÜ) + /*(*) + • • • + /fc(r)||  < e.

(4.11) Theorem. A necessary and sufficient condition thatzZ,xFk converge

strongly unconditionally is that to each e>0 there correspond an M such that

M<k(\)<k{2)< ■ ■ ■ <k{r) implies

D(Fkm+Fkm + ■ ■■ +Fk(r)> 0) < €.

These theorems have been given by Birkhoff [l, pp. 361-362].

(4.12) Theorem. A necessary and sufficient condition that zZ"Fk con-

verge (see Definition 4.7) is that for each e>0 there exist an N such that

77(EfÄ, XXiFk) <eforallp^\.

The proof follows easily from properties of the distance function given in

§2. The proof that the condition is sufficient depends on the fact that the

space with elements F c 93 is a complete metric space.
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(4.13) Theorem. A necessary and sufficient condition that (4.2) be weakly

unconditionally convergent to F is that to every e > 0 there correspond a number N

such that the sum <£ of any finite set of terms of (4.2) including F\, ■ • ■ , Fn

satisfies D($, F) < e.

This theorem is entirely similar to Theorem 4.9.

(4.14) Theorem. A sufficient condition that zZ\Fk be weakly uncondition-

ally convergent to F is that for each e>0 there exist an M such that M <k(\)

<k{2)< ■ ■ ■ <k(r) implies

DiFkm 4- FHi) + ■ ■ ■ 4- PHrh 0) < «■

We have

(m n \ /     n m It V / m \

zZFk,zZFk) = d( X>4 +   zZ Ft, zZFk) S d( zZ  fk, O) < e

provided only that m^n = M. From Theorem 4.12 it follows that^"//1* con-

verges and has a sum F; then D(zZ7Fk, F)&e, m^M. Now consider any re-

arrangement zZiFaik) of zZ\Fk. We have

d( zZ Faw, f) S d(zZ FaW, £ Fk) + d( zZ Fk, f) < t + *
\ k-l / \ k-l k-l        ' \ k-l /

for all v which are so large that£i7?a(i) contains Fx, ■ ■ ■ , FM- Thus the series

converges and has the sum F. The proof is complete.

If each set Fk in (4.2) consists of a single element fk, weak unconditional

convergence and strong unconditional convergence are identical and identical

with unconditional convergence of (4.1) as defined in (4.3).

(4.15) Theorem. IfzZTFk is strongly unconditionally convergent, and if Fk

is convex C* for all k, then the sum SzZ?Fk is convex C*.

(4.16) Theorem. IfzZ?Fk converges, and if Fk is convex C* for all k, then

the sum zZ\Fk is convex C*.

We have

d( ±Fk, C*[ !>*]) = d( tc*[Fk], C*[

- B^c*r £^»1, c*£ izFk

S WD^ zZFk, zZFk^j < We

)
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for all n^N. Since the sum is a closed set by agreement, we have

= C* El"**]• The Proof is complete.

5. Relations between various types of convergence. We shall now ex-

amine the relations between the various types of convergence defined in §4

and also the relations between the convergence of the two series

(5.1) X>*,
l

(5.2) EC*[F»).
i

(5.3) Theorem. The series (5.2) converges normally if and only if (5.1) con-

verges normally.

The proof follows from (3.15).

(5.4) Theorem. Normal convergence implies strong unconditional conver-

gence.

The proof follows from Theorem 4.11 and (2.8).

(5.5) Theorem. The series^TC* [**] and^T^* [**] converge strongly un-

conditionally if and only ifzZTFk converges strongly unconditionally.

The proof follows from Theorems 4.11, 3.15 and

D(C*[FkW] + ■■■ +C*[Fk(r)],0) = D(C*[Fkm] +■■■ + C*[Fk(r)], 0)

= D(C*[Fka}+ ■ ■ ■ + F»(,>],0).

This theorem was given by Birkhoff [l, p. 363].

(5.6) Theorem. Strong unconditional convergence implies weak uncondi-

tional convergence and regular convergence.

The proof follows from Theorems 4.11, 4.14 and Definition 4.6.

(5.7) Theorem. The series (5.2) converges regularly if and only if (5.1) con-

verges regularly.

(5.8) Theorem. If a series converges regularly or weakly unconditionally,

it converges.

If a series converges regularly, the sequence of partial sums is a Cauchy

sequence.

(5.9) Theorem. If £"F* converges, then zZ?C*[Fk] converges and

Z7C*[Fk] = C*[lZrFk].

The proof follows from
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(5.10)
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»(i:Ft,i:Ft).< WD

(5.11) Theorem. If Ei°°** converges weakly unconditionally, £fC* [Ft]

converges weakly unconditionally.

The proof follows from Theorem 4.13 and (5.10).

(5.12) Theorem. i/E"F* w strongly unconditionally convergent with the

sum S Er**) *s weakly unconditionally convergent and

E-F* = SEI **•
i

From Theorems 5.6 and 5.8 it follows that ET** converges; let its sum

be F. Take any point / e F. We shall show that

fesxr**.

From / £ F=Er** it follows that corresponding to a given e>0 there exists

an TYi such that

(5.13) :(/,p.) <e/2, » ^ iVi.

Here oJ(g, G) denotes the distance from g to G. Since ET** is strongly uncon-

ditionally convergent, it follows from Theorem 4.11 that there exists an in-

teger Ns such that N9<k(i)< • • • <k(r) implies D(FH1) + ■ ■ ■ +FHr), 0)

<t/2, and therefore

(5.14) E /« /.£F,-.

Let N be the larger of the numbers Nh N2. From (5.13) it follows that there

exists a sum Ef/*> /* E **> sucn that

(5.15) /- E/* < «/2.

The points/i, • • • ,/y are chosen once for all and then held fixed. Then choose

points/jy+i,/w+2, ■ ■ ■ arbitrarily from FN+i, FN+2, ■ ■ ■ and consider the series

Ei°°/*- Since Ei°°** is strongly unconditionally convergent, the series Ei°/*

converges and has a sum g e SEi°**> But
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by (5.15) and (5.14). Since/ tF,gt S£"jF» and £ is arbitrary, it follows that

We prove next that

Let g=zZifk,fk e F&, be an arbitrary point of SET-**- Corresponding to any

given e>0 we can find an M such that D(^J[Fk, F)<e for n^M. This fact

and the definition of distance imply a^Ei/*; F) <e, n = M; hence, d(fT,™fk, F)

= d(g, F) ge. Since e>0 was arbitrary, d(g, F) =0; since F is closed, g t F.

Then

SX>*IF, S£"F*SF.

This inequality completes the proof that

ZFk = F = SE^F*
i

and the proof of the theorem.

(5.16) Theorem. If the seriesEi°** converges strongly unconditionally, then

[00        ""1 00 oo r—     oo -n

sEF*JssEc*[Ft]ssEü*[F*]aC*^sSF*J,

sErc*[F,] = slZ7c*[Fk] = erf's |>i].

It foUows from Theorems 5.5 and 4.15 that E?C* [Fk] and Ei°°C* [Fk ] con-

verge strongly unconditionally to sets convex C*. It is obvious that

(5.17) C*[s E Fk~\ i SE C* [F„] gSE C*[Fk].
L   i    J     i i

By Theorem 5.6, E"** converges weakly unconditionally, and by Theorem

5.12 it converges to the sum

sEr^;
hence, by Theorems 5.11 and 5.9, Ei°°C* [Fk] converges weakly unconditionally

to the sum Ü*[SE,"*t]. Furthermore, zZ?C*[Fk] and £rc*[F*] converge
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weakly unconditionally to the same sum. ThusZi°°C* [Fk] andEi°°C* [Fk] con-

verge strongly unconditionally to SX"C*[F»] and SX"Ü*[F*], and weakly

unconditionally to C*[S£"Fjfc]. It follows from Theorem 5.12 that

sZTc*t>*] = sETc*^-] = c"*[sf>/].

Then SE^C* [Fk] £ C* [S£ ,"**]• The remainder of the proof follows at once

from this fact and (5.17).

This theorem was given by Birkhoff [l, p. 363].

6. An intersection theorem for series. The principal object of this section

is to establish Theorem 6.4 and two further theorems which give conditions

under which its hypothesis are satisfied. This theorem is called an intersection

theorem because of its application in the theory of integration. First, we shall

state another theorem, whose proof we leave to the reader.

(6.1) Theorem. If the series ET** and Gk = Fk, converge, then

1Z?C-k lEr**- UlZrFk converges regularly, then zZ?Gk, Gk IF*, converges reg-

ularly, and zZ?Gk iEr**-

Let {t} be a class of transformations t which satisfies Hypothesis 3.18

and has the additional property that the sum of any unconditionally conver-

gent series of transformations in { t } is a transformation in { t }. Let C* be

the operator formed from {t } as explained at the end of §3, and let it satisfy

(3.2), (3.3), (3.4).
Consider the infinite series

CO

(6.2) zZ^Fi,
1

CO

(6.3) En#F</,

where the Fi and F,,- are sets in 93 and the t, and t,-,- are elements in {r}.

(6.4) Theorem. Let the series (6.2), (6.3) satisfy the following hypotheses:

(6.5) Ei°°TtF, converges strongly unconditionally;

(6.6) ~Ys?-\Tn converges unconditionally, zZ7-iTn = Tifor a^ *)

(6.7) Fi and Fa are convex C* for all i, j;

(6.8) Fi, £ Fi for all i,j; not all FtJ- are vacuous; each F{ is bounded.

Then the following conclusions can be drawn:

(6.9) Z~17.i-irnFij converges strongly unconditionally;

(6.10) each row/.trnFu of (6.3) converges strongly unconditionally to a set

contained in t,F,;
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(6.11) the series ZJifaFu can be summed by rows;

(6.12) £<,t<fF,7 !£><*<•

Let M be chosen so that M <k(l) < ■ ■ ■ <k(r) implies D(TkmFHV) + • ■ •

+Tk(r)Fk(T), 0) <e/(2W), where IF is the constant in (3.5). Such an M exists

by the hypotheses of the theorem and Theorem 4.11. Let K denote the maxi-

mum of the M finite numbers 77(7?!, 0), • • • , D(FM) 0). Then choose N so that

(6.13) || £ r4 < e/(2MK) (i = 1, 2, • • • , M),

where the summation is with respect toj and over any finite number of terms

with/>A7. Such an N exists by Theorem 4.10 and (6.6).

Now consider any finite sum of terms in zZnTuFii with i^M+1 or

j^N+l. This sum can be broken into two parts, the first of which has

i = M,j = N+l, and the second of which has i^M+l. Consider the first one.

We have

TiiFu, o)^Iß(i: TijPu, o)^^(l Ufr, o)

SP(( ?'■<><■ °)
by (2.8), (6.8), (6.7), and Theorem 3.19. Then from (6.13) we have

\   i      i / »

We proceed to show that the second part of the sum is also less than e/2.

From (6.8) we have

ö(EE TifFti, o) S       £ £ 0«rrl)rA, o).

From (6.6), the hypotheses on {r} stated above, and the manner of construct-

ing the operator C*, it follows that E)(T«)Ti_1)T<*i sC*[fiFi (+) 0], where

(+) denotes a logical sum rather than a vector sum. Then

TijFn, QjSD^C* [r,F, (+) 0], o)

S 7?^Z(^(+)0)],o)

^ JF7?(x;(r,F,(+)0),o)

< e/2
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by Theorems 3.7 and 3.15 and the original choice of M. From (2.8) it then

follows that 77(EET «)*<)> 0) < €> where the sum is any finite sum with

i = M+l or j = N + l. By Theorem 4.11 the series YLnTuFii is strongly un-

conditionally convergent. The proof of (6.9) is thus complete.

We turn now to (6.10). From Theorem 4.11 and the result just estab-

lished, it follows that every rowE«'jrtj*ij converges strongly unconditionally.

Furthermore, zZj~iTaFa = zZUiTnFi = (E/-iTi;)*< as a result of hypotheses

(6.7), (6.8) and Theorem 3.19. Now by letting /—>=o, we see from (6.6) that

the second part of the statement in (6.10) follows.

We proceed to prove (6.11). Let F denote the weak sum of y^.yr.yft'.-,-. Since

this series converges unconditionally, we can find an mi and ni so large that

(6.14) fl(lIrAf) <e/2

for r^mi, Next, by Theorem 4.11 and the conclusion (6.9) that

zZifaFii converges strongly unconditionally, there exists an m2, «2 such that

(6.15) 7>(i:ZT,iF,>,0)< e/2,

where the summation is extended over any set of terms outside of the rec-

tangle 1 5S i S m2, 1 Sj S fh- Let M (N) be the larger of mi, m2 (tii, «2). Then

(moo \ /   m     00 mn

E E ^ r^«, £ E
i=l ;=1 / \ t=l  j=l t=l j=l

(m n \

i=l j'-l /

<ö(EE rt)F,y, 0) + e/2

< e/2 + 6/2 = 6

provided m^M, n^N by (2.5), (2.8), (2.4), (6.14), (6.15). This inequality

establishes (6.11).

The final conclusion (6.12) now follows from (6.10), (6.11) and the first

statement in Theorem 6.1. The proof of the entire theorem is thus complete.

This theorem is an extension of one first given by Birkhoff [l, p. 364].

(6.16) Theorem. If the series £rllT«H converges, and if the sets Fi are uni-

formly bounded, then the series El"7"*** converges strongly unconditionally, that

is, hypothesis (6.5) is satisfied.

The proof follows from Theorem 4.11.

(6.17) Theorem. 7/EiT.T7, is a finite sum, then hypothesis (6.5) is satisfied.
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7. Summation of infinite series. We shall now extend some well known

theorems on the summation of infinite series to series of the form £"/„.

Let S denote the sequence gi, g2, • • • of elements in 93. Let (A) denote the

following infinite array of numbers:

111, «12, • • • , #u, • • • ,

021, Ö22, - - ' , 0,2k, ' ' - ,

Oil, Oi2, ■ • ■ , Oik, • ■ ■

Set Ai(S) =Zr=iaifcg*- We say S is summable to the sum A(S) when each of

the series Ai(S) is convergent and Ai(S) —*A(S). The method A is called regu-

lar if every convergent sequence is summable by that method to its limit.

(7.1) Theorem. In order that the method A be regular, it is necessary and

sufficient that the following conditions be satisfied simultaneously:

oO

(7.2) zZ\aik\SM, ».-1,2, ••5
k~l

(7.3) lim aik = 0, h «- 1, 2, • • • ;
i—* oo

00

(7.4) lim X>« = i.
1-»» 4=1

The statement of the theorem is identical with the well known theorem

for sequences S whose elements are numbers (see Banach [l, pp. 90-91 ]). The

reader will prove without difficulty that the conditions stated are sufficient.

By considering sequences of the form bif, b2f, ■ • • , where / is a fixed element

in 93 and bi, b2, ■ ■ ■ is a sequence of numbers, and applying the known theo-

rem for sequences whose elements are numbers, we see that the conditions

stated are necessary in the present case also.

(7.5) Theorem. If the series £"/« is summable Ck, that is, by Cesdro means

of order k, and if fn = 0(\/n), then^Tf* *s convergent.

The proof of this theorem is the same as for a series of numbers (see Knopp

[1, pp. 486-487]).

Part III. A theory of integration

8. Abstract space §1. We shall now consider a space which will be the

domain of functions to be studied presently. We assume that 21 is an abstract

space with elements x and sets X. In addition we shall suppose that there is a
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completely additive class of sets X in 31 with the following properties: (1) the

empty class belongs to £; (2) if X belongs to X, the complement of X does

also; (3) the sum of a sequence {Xn} of sets selected from the class •£ belongs

also to the class £. We shall say that a set (3E) is measurable (£). Finally,

we shall suppose that there is a measure defined for the class of sets 36. A

function of a set t(X) will be called a measure (I) if it has the following prop-

erties:

(8.1) t(X) is defined for every set in X; r(X) t £; if r(X) 5*0, then r^fX)

exists and t~x(X) c %.

(8.2) r(Er^n) =zZ?T(X<>) Ior every sequence of sets (I) no two of which

have points in common; the series zZ?T(Xn) converges unconditionally.

Then t(X) is called, for every set X measurable (•£), the measure of X.

We shall not require that the measure of the entire space be finite. We

shall admit the case in which the measure t(X) of certain sets X in •£ is

"infinite" and not a proper transformation in X. In particular, let {Xn} be a

denumerable disjoint decomposition of §1 into sets X„ of I with measure

r(X„).If

lim II ( £ r(XaM)) )\ = 0
k-"° II \ n-1 / II

for every arrangement a of the sets in {Xn) and for every such decomposition

\Xn) of 21, we shall say that the measure of 21 is "infinite," and we shall

consider that (8.2) is satisfied.

We shall now describe the construction of the operator C* to be used in the

future. Let Xi, • • • , XT be any finite number of disjoint sets in I with meas-

ures t(Xi), • ■ ■ , r(XT) or tu ■ ■ ■ , rr for short. Let t, t' be [(n4- • ■ ■ +rr)-1Ti,

■ ■ ■ , (ri+ • • • +rr)-1rr], [t1(t1+ • • ■ +t,)-1, ■ ■ • , t,(ti+ • • • 4-r,)-1] and

C0* the set of all such /, t'. Then C* is formed from C* as indicated in §3. We

see that C* automatically satisfies Hypotheses 3.2 and 3.3, and we now make

the following further assumption, which is an additional hypothesis concern-

ing the measure function t(X):

(8.3) C* is a bounded operator, that is, C* satisfies Hypothesis 3.4.

We observe that if the measure function t(X) satisfies (8.1), (8.2), (8.3),

then the operator C*, formed as just described, has all the properties assumed

in any of the theorems given above. In particular, the assumption was made

in §6 that the sum of any unconditionally convergent series of transforma-

tions in I t I is a transformation in { t }; this property is a consequence of

(8.2). Hypothesis 3.18 follows from (8.1), (8.2).

Finally, if the measure r(X) of a set X in 3£ is a positive number m(X),

the ordinary convex operator C can be substituted in all later developments
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for the operator C*. In this special case it is clear that for any set F,

C*[F] =C[F], and that C has all the desired properties.

We shall associate a second measure function v(X) with the class of sets 36.

More precisely, let X be any set in 36 and { F„}, Fn e 36, any disjoint decom-

position of X. Then

CO

(8.4) v(X) = sup Zlk(F„)||.
(y„l n=l

If t(X) is a positive numerically-valued measure function m(X), then

v{X)=t(X) for every X in 36.

It can be shown that v(X) is a measure function with the properties speci-

fied above. In particular, v{X) has the following properties: (a) v{X) is defined

for every set X t 36 and v(X) ^ 0; (b) if {X„} is any denumerable set of disjoint

sets of 36, then v(zZ?Xn) =I>PQ-
The total variation ^(21) of t(X) over 21 may be finite. On the other hand

it may happen that y(2l) is infinite, but that there is a decomposition of 21

into a denumerable set {Xn} of disjoint sets of 36 such that v(Xn) is finite,

w = l, 2, • • • . These are the only two cases which we shall consider in the

future.

We shall say a certain property holds almost everywhere (36, t) [or (36, v) ]

and mean thereby that the property in question is satisfied in 21 except at the

points of a set X t 36 with t(X) =0 [or v(X) =0]. It is clear that almost every-

where (36, v) implies almost everywhere (36, t) but not conversely.

9. Functions. We shall now describe the class of functions whose integrals

we shall consider.

Let 21 be the space described in §8. For each x in 21 let F(x) be a bounded

set in 93. Then F(x) is a function whose integral we shall consider in §§10-13

and 20-27. In §§14-19 we shall consider a class of functions f(x) which will

be defined as measurable. Here for each x in 21, f{x) is a single element in 93.

For the present, however, it is not necessary to restrict ourselves either to

measurable functions or to single-valued functions.

10. Integral ranges. Let a function F(x) with domain 21 be given. Let A*

denote a decomposition of 21 into a denumerably infinite sequence {X? } of

disjoint sets Xf each of which is measurable (36) and has a measure r(Xf).

The product AiA2 of two decompositions Ai, A2 of 21 is the decomposition of 21

into the sets Xtx X/ which are nonvacuous.

Consider the series

(10.1) £r(A70C*[7W)],
t—1
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corresponding to the decomposition Ak, where F(Xf) is the point-set sum of

the sets F(x), x t Xf.

(10.2) Definition. If each set F(Xik) is bounded, and if the series (10.1)

is strongly unconditionally convergent, the sum (10.1) will be called the integral

range 7(F, SI, A*) of F(x) with respect to the decomposition Ak.

(10.3) Theorem. If the integral ranges I(F, 21, Aj), I(F, 21, A2) exist, then

I(F,%, A A) also exists.

The proof follows from Definition 10.2, Property 8.2, and (6.9) in Theo-

rem 6.4.

(10.4) Theorem. Any two integral ranges of F(x) overlap. More precisely,

if I(F, 2f, AO, I(F, 21, A2), I(F, 21, AiA2) are integral ranges of F(x) with respect

to Ax, A2, AiA2, then

I(F, 21, AiAg) £7(F, 21, A.)/(F, 21, A2).

Let the sets in A1( A2 be {X* }, {X,2 }. Then the sets in AXA2 are {X? X? \.

Let n and F< of Theorem 6.4 be identified with t{X?) and C*[F(X})\ and

rti and Fi, with t(XIX*) and C* [FLX}X?)\. We verify that all the hypothe-

ses of Theorem 6.4 are satisfied. Then from (6.12) we have at once that

7(F, 21, AxA2) £7(F, 21, Ai). The remainder of the proof follows by symmetry.

This section follows closely results given by Birkhoff [l, pp. 366-367].

11. Integrable functions and their integrals. We proceed now to the defi-

nition of integrable function and integral of an integrable function.

(11.1) Definition. A function F{x) will be called integrable if and only

if the inferior limit of the diameters of its integral ranges is zero.

(11.2) Theorem. If F(x) is integrable, then the intersection of the integral

ranges of F{x) is a single element {H)f^F{x)dT{x) of $8.

(11.3) Definition. The element (%)f%F(x)dT{x) of Theorem 11.2 is called

the integral of F(x) over 21.

(11.4) Theorem. F(x) is integrable if and only if to every e>0 there corre-

sponds a decomposition A under which the series "^{riX^C* [F(Xi) ] is strongly

unconditionally convergent and its sum has a diameter less than e.

These definitions and theorems are similar to ones given by Birkhoff [l,

p. 367].
12. Relation to an integral of Birkhoff. In the special case in which the

measure function t(X) is a positive numerically-valued function m(X), it is

possible to compare the integral (£)f%F(x)dT{x) which we have just defined

with an integral J{F) given by Birkhoff [l, p. 367 ]. In the case now under con-
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sideration, therefore, the operator C* reduces to, or may be replaced by, the

ordinary convex operator C.

Birkhoff has defined the integral range Ja(F) of Fix) relative to A to be

(12.1) JA(F) = C SE«(Ii)F(I,)].

His definition of the integral J(F) is identical with that given in Definition

11.3.

(12.2) Theorem. If the measure function t(X) is a numerically-valued

function m(X) and if C* is replaced by C, then I(F, §1, A)=JA(F) and

(X)f%F(x)dm(x)=J(F).

By Definition 10.2

(12.3) I(F, a, A) - £ m(Xi)C [F(Xt)}.
i

We observe first from Theorem 5.5 that£;c [m(Xi)F(Xi) ], which is the same

as (12.3), converges strongly unconditionally if and only if *%2im(Xi)F(Xi)

converges strongly unconditionally. Hence, the existence of either of the in-

tegral ranges implies that of the other.

Next, by Theorem 5.12 we have

(12.4) £ m(Xi)F(Xi) = S X>(X,-)TO).
i

Again, by Theorem 5.6, we see that the existence of I(F, 21, A), Ja(F) implies

that £,m(X,)c [F(Xi) ] and £,?w(Xi)F(Xi) are weakly unconditionally con-

vergent. Finally, from Theorem 5.9 we have

(12.5) £ m(X,)C [FiXi) ] = C [ £ W(X,)F(Xj)],

whence, substituting from (12.4) we obtain

£ m(Xi)C [F(Xi)} = c [s £im(x,-)F(xf) ]

(12.6)

= c^sE^xoto)].

Then (12.1), (12.3), (12.6) show that I(F, 21, A)=JA(F). From the identity

of the integral ranges there follows at once the identity of the integrals. The

proof is complete.

It follows from this theorem that the integral defined in §11 genuinely

includes that of Birkhoff and reduces to his in a special case.
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13. Properties of the integral. We shall now give the principal properties

of the integral defined in §11.

(13.1) Theorem. (First theorem on additivity.) If X is in 3£, and if

(%)fnF(x)dT(x) exists, then {V) fxF{x)dr{x) exists. If A is a decomposition of 21,

and if (X)f%F(x)dT(x) exists, thenzZiO^)fxiF{x)dT{x) converges unconditionally

and

(13.2) EOO f F(x)dr(x) = (36) f F(x)dT(x).
i      J Xi «> a

(13.3) Theorem. (Second theorem on additivity.) If {H)fXiF{x)dT{x) exists

for all sets X{ of a decomposition A of 21, and if'£»00 fxiF(x)dT(x) converges un-

conditionally, then {X)J%F{x)dr{x) exists, and the relation (13.2) holds.

(13.4) Theorem. (Theorem on distributivity.) If Fi(x), F2{x) are inte-

grable over 21 and 7\, Ti are transformations in X which commute with all elements

of X, then TiF1(x) + T2F2(x) is integrable, and

(13.5)        00 f [ £ W*)"U(*) - £ Ti (36) f F{(x)dT(x).

(13.6) Theorem. (Theorem on integration of sequences.) If the functions

Fn(x) are defined and integrable over 21, if the Fn{x) tend uniformly to a limit

function F{x), and if r{X) has bounded total variation y(2l) over 21, then F(x)

is integrable and

(13.7) lim (36) f Fn(x)dT(x) = (36) f F(x)dr(x).
n->«     J a t7 a

(13.8) Theorem. (Law of the mean.) If the measure t(21) of 21 is finite, then

(13.9) (X) f F(*)«fr(x) - r(fT)/, ' * C*[F(2I)].
./ a

(13.10) Corollary. If F(x) is bounded in 21 and t(21) is finite, then

(13.11) 1(1) f F(x)oY(*)
Ja

=S ||r(2l)||7J(C*[F(2I)],0).

The proofs of the first four of the above theorems can be supplied from

proofs of similar theorems given by Birkhoff [l, pp. 367-372]. The proof of

Theorem 13.8 follows from (10.1) and Theorem 3.19. Each integral range is

contained in r(2l)C* [F(2l)]. Then the intersection of all the integral ranges

is a point r(21)/in t(21)C* [F(21) ] and (13.9) follows. Corollary 13.10 follows

from (13.9).
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(13.12) Theorem. Let F(x) be defined in 31, bounded, and equal to the zero

element in 93 almost everywhere (3£, r). Then (T&)f%F(x)dT(x) exists and equals

the zero element.

Part IV. Measurable functions and their integrals

14. Measurable functions. We turn now to a consideration of a class of

functions to be known as measurable.

(14.1) Definition. Let f(x) be a single-valued function whose domain is 31

and range is in 93. We shall say that f(x) is measurable (36) if and only if for

every f01 93 and r >0 the set Ex[\\f(x) —/0|| Sr] is measurable (26).

We shall consider only functions which, although they may be un-

bounded, have only finite values.

The definition of measurability in (14.1) can be extended to functions

whose ranges are in metric spaces.

(14.2) Theorem. If f{x) is measurable, then for all f0 t 93 and r>0 the

following sets are measurable (36):

E*[\\f(x) - /o|| > r],      Ex[\\f(x) - /o|| = r],      Ex[\\f(x) - /0|| = r],

£x[||/(*) -/o|| <r], Ex[f(x)=fB).

(14.3) Theorem. If for all f0 t 93 and r>0 the set Ex[\\f(x) -/0|| <r] (or

E*[\\f(x) ~fo\\ or Ex[\\f(x) — /0|| >r]) is measurable (36), then f(x) is meas-

urable (36).

We shall have occasion to consider functions of another kind. Let T be a

bounded linear transformation with domain 93 and range in 93 and norm || r||.

The space St with elements T is a normed vector space. Let T(x) be a function

such that T(x) c St for x e 31. The definition of a function T(x) measurable (36)

can be obtained by replacing/(x) and/0 in Definition (14.1) by T(x) and T0.

Then / can be replaced by T in Theorems 14.2 and 14.3. A function whose

values are real numbers and which is measurable (36) is a special case both

of functions/(x) and T(x) which are measurable (36).

(14.4) Definition. Letf(x) be a function with domain 21 and range in 93.

We say f(x) is separable if and only if the set /(SI) is separable. The term

almost separable (36, t) [or (36, v) ] will have its usual meaning.

15. Elementary properties of measurable functions. In this section we

shall establish the fundamental properties of measurable functions.

(15.1) Theorem. If f(x) is measurable (36), then the real-valued function

\\f(x)\\ *^ measurable (36).
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Since/(x) is measurable, the set Ex[\\f(x) — 0|| Sr] or £x[||/(x)|| Sr] is

measurable.

(15.2) Theorem. Letf(x) be measurable (36). Let N be any positive number,

and let a function fN(x) be defined as follows: /jv(x) =f(x) when \\f(x)\\ SN and

/at(x) =0 when ||/(x)|| >N. ThenfN(x) is measurable (36).

Let X0 be the set on which/#(#) =0. It is measurable (36) by Theorem 14.2.

Then the proof follows from the identities

E.[\\M*)-M\ £ '] - E.[\\f(x) -/o|| S r]-Ex[\\f(x)\\ SN] + Xo,

or Ex[\\f(x) - f0\\ S r]-Ex[\\f(x)\\ S N].

The first statement holds in case the sphere ||/—/o|| Sr contains the zero ele-

ment, the second in case it does not.

(15.3) Theorem. If fx(x) and f2(x) are measurable (36), and if one of the

functions, say fi(x), is separable, thenfi(x)+f2(x) is measurable (36).

Let S denote the open sphere ||/—/0|| <r, where f0 e 93 and r>0 are arbi-

trary but fixed. To prove that /i(#)4-/2(x) is measurable, it is sufficient to

prove that Ex[fi(x)+f2(x) e S] is measurable (see Theorem 14.3).

From the hypothesis of the theorem it follows that there is a denumerable

set of points gi, g2, ■ ■ ■ which is dense in the range of fi(x). Let 5jfe) denote

the open sphere with center g, and radius where ft is a rational number

such that QStik<r. Let Si (r —£&) denote the open sphere with center fo—gi

and radius r — £t.

The proof of the theorem will be complete when we have established the

following identity

(15.4) Ex[fx(x) + Mx) tS] = E Z E,[fi(x) tSiih)]•£„[/,(*) «5/(r - {*)]•
i=l h

The proof of this identity will depend on the following lemma, whose proof we

leave to the reader.

(15.5) Lemma. The vector sum 5,-(f*) +S{ (r—£k) of the open spheres Si and

Si' with centers gi and fo—gi and radii %k and r—%k is the open sphere S with

center f0 and radius r.

From this lemma it is immediately obvious that the set on the left in

(15.4) contains the set on the right, and we have to establish only the opposite

inequality. Let x0 be any point of the set on the left in (15.4), that is, a point

such that/i(x0) 4-/2(^0) e S. We shall show that there is an i and a   such that

x0 cEx[Mx) tSifa)]-Ex[ft(x) tSUr -£*)]•
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Since 5 is open,

(15.6) ||/i(at0) + M«t) ~ /o|| = P<r.

Choose £jfc0 as a rational number such that

(15.7) 0 < fe0 < (r - P)/2.

Next, since the set gi, g2, • • • is dense in the range of fi(x), there exists a

point g,0 such that

(15.8) ||/i(*o) - fj < «*„.

Thus Sio(£k0) contains/i(x0). Then 5'<0(r—f*0) contains /2(#o), for the contrary-

assumption gives ||/2(x0) —(/o —gi„)|| s^r — £*, and

P - H/i(*.) +/»(*,) - /o|| ̂  I ||/.(*«) - (/o - g,„)|| - ||/i(*o) - g,„|| I

^ ||/2(x0) - (/o - g,0)|| - ||/i(*o) - fj

> (r - £*„) -     - r ~ 2£*0

> r - (r - p) = p.

We are able to drop the absolute value signs because ||/s(*o)— (/o—g>0)|| >r/2

and ||/i(x0) —gi„|| <r/2 by (15.7), (15.8). The assumption has led to a contra-

diction; hence,/2(x0) e S'io(r — ̂ k0) as well as fi(x0) £ &„(&„). Therefore

xa e Ex[fi(x) t-Sit(tk0)]-Ex[fi(x) tSi0{r — £*„)]>

and any point contained in the set on the left in (15.4) is also contained in

the set on the right. This statement completes the proof of the identity (15.4)

and the proof of the theorem.

(15.9) Theorem. Leifi(x),f2(x), ■ ■ ■ be a sequence of functions measurable

(36) defined on 31 such that lim/„(x) exists and equals fix) for x t 31. Thenf(x) is

measurable (36). Ifthe functions fi(x),f2(x), ■ ■ ■ are separable, thenf{x) is sepa-

rable.

To prove the theorem we must show that £»[||/(a;) — /ejj Sr], for arbitrary

fa e 93 and r >0, is a set (36). Let ei, e2, • • • be a monotone decreasing sequence

of positive numbers whose limit is zero. Set

Xn(t) = Ex[\\fn(x) - /o|| S r 4- e]-Ex[\\fn+1(x) - /9|} £ t + e] • • • ,

CO

1 n

It is clear that X is measurable, and that we have to prove only that

Ex[\\f(x)-f0\\sr]=x.
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Let x0 be any point of — /o|| &r]. Then to each e of ei, e2, • • ■

there corresponds an TV = TV (/0, r, x0, e) such that ||/„(x0)—/0|| Sr+eiorn = N.

Then xa e Xx(t) and therefore to each X(e) and finally to X. Conversely, sup-

pose x0 e X. Then x0 belongs to each X(e), and there exists an N = N(J0, r, x0,e)

so that x0 e XN(e). Thus \\fjfr) ~fo\\ Sr+e for «^7V. Then ||/(*0) -/0|| Sr+e,

and since this is true for each e, we have \\f(x0) —f0\\ Sr. Therefore

x0zEx[\\f(x)-f0\\Sr].

It is obvious that/(x) is separable under the conditions stated. The proof

is complete.

It was pointed out in §14 that the definition of measurable function which

we have given applies equally well to functions with values in a metric space.

It may be added now that Theorem 15.9 holds also for functions of this

kind.

At this point we shall establish the relation between functions which are

measurable (26) and almost separable and two other classes of measurable

functions. A function f(x) on 21 to 93 is called a step-function if and only if

f(x) is constant on each of a finite number of disjoint sets of 26. Then/fx) is

measurable (Bochner) if and only if it is almost everywhere the strong limit

of a sequence of step-functions (see Bochner [l]). A measurable function

which has only a countable number of distinct values will be said to be count-

ably-valued. A function f(x) is weakly measurable if and only if w(/(x)) is

measurable for every linear functional «(/) (an additive, continuous, real-

valued function) defined in 23 (see Pettis [l, p. 278]). A necessary and suffi-

cient condition that fix) be measurable (Bochner) is that it be weakly meas-

urable and almost separable (Pettis [l, p. 278]).

(15.10) Theorem. A function fix) is measurable and almost separable if

and only if it is the limit almost everywhere of a sequence of step-functions, that

is, if and only if it is measurable {Bochner).

First, a necessary and sufficient condition that an almost separable func-

tion fix) be measurable is that the set Ex[fix) t G] be measurable for every

open set G in 23. The condition is sufficient by Theorem 14.3, and we shall

prove that it is necessary. Without loss of generality, we may assume that

fix) is separable; then/(2l)G contains a denumerable dense set gi, g2, • • . By

considering the set of open spheres which are contained in C7, have rational

radii, and have centers at the points gi, we see that Ez[f(x) e G] is the sum of

a denumerable number of measurable sets and is therefore measurable. Sec-

ond, the class of measurable and almost separable functions contains the

class of functions which are measurable (Bochner) and is contained in the

class of weakly measurable functions. It is clear that a step-function is meas-
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urable and separable; then by Theorem 15.9 a function which is measurable

(Bochner) is measurable and almost separable. Next, the set E;[u(f) <u0],

where «(/) is a linear functional defined in 93, is an open set G in 93. Since

Ex[u(f(x)) <w0] =Ex[f(x) £ G], which is a measurable set by the first step in

the proof, it follows that an almost separable, measurable function f(x) is

weakly measurable. Third, it is known that for almost separable functions

the class of functions which are measurable (Bochner) is the same as the class

of functions which are weakly measurable (see Pettis [l, p. 278]). Then the

three classes of functions considered in the second step of the proof coincide.

The proof is complete.

(15.11) Corollary. An almost separable function is measurable if and only

if it is the uniform limit, except possibly on a set of measure zero, of measurable

countably-valued functions.

This corollary follows from the last theorem and a result of Pettis [l, p.

279, Corollary 1.12].

The following corollary is a generalization of the familiar theorem that

the product of two measurable functions whose values are numbers is a meas-

urable function.

(15.12) Corollary. If T{x) and fix) are defined on 21, T(x) z X,f(x) z 93,

are measurable (3£), and have separable ranges, then T(x)f(x) is measurable (3£)

and separable.

(15.13) Lemma. If 21 has finite measure t(21) and if \fn(x)} is a sequence

of finite measurable functions on 21, converging on this set to a finite measurable

function fix), there exists, for each pair of positive numbers e, n, an integer N and

a measurable subset X of 21 such that \\t(X)\\ <r] and \\fn(x) —f(x)\\ <e for every

n>N and x z 21-X

(15.14) Egoroff's theorem. If 21 has finite measure r(2l) and if {fn(x)}

is a sequence of finite measurable functions defined on 21 that converges almost

everywhere (36, r) on this set to a finite measurable function f(x), then there exists,

for each e>0, a subset Y of 21 such that [|t(H— F)|| <e, and such that the conver-

gence of \fn(x)} to fix) is uniform on Y.

The proofs of Lemma 15.13 and of Egoroff's theorem are similar to those

given for functions whose values are numbers (see Saks [l, pp. 17-18]).

16. Integrals of bounded, measurable, and almost separable functions;

an existence theorem. We shall now prove a theorem which states sufficient

conditions for the existence of the integral which was defined in §11. This

theorem is a generalization of the familiar one that a function which is

bounded and measurable on a set with finite measure is integrable.
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(16.1) Existence theorem. Let fix) be defined in 81, measurable (26), al-

most separable (26, t), and bounded:

(16.2) ||/(a;)|| < K, seSl.

Let the measure function r(X) satisfy (8.1), (8.2), (8.3), and let the measure

t(21) of 81 be finite. Finally, let t(X) have the following property: if Xx, ■ ■ ■ , XT

are any r disjoint sets of 26, and if fh ■ ■ ■ , fr are any r points in 53, there exists

a constant W such that

(16.3) ±S W max

Then the integral 00 f%fix)dr(x) exists.

Let X0 c 26 be the set such that t(X0) =0 and /(81 —X0) is separable; let

gl, gi, ■ ■ • be the denumerable dense set in/(8l —X0). Let Sf be the closed

sphere ||/—g<|| S\/h. For a fixed k let sets Xt* be defined as follows:

Xf = (81 - X,)E.[f(x) tSf],

X? - («- X.) •£„[/(*) e#] - £ x/,

for i==2, 3» • • • • Then for a fixed A the sets X0, X]*, X2*, • • ■ form a decom-

position Ak of 81, and Ak, k = 1, 2, • ■ • , is a sequence of decompositions of 81.

Corresponding to Ak we have the series

(16.4) £r»C*[tf],
imml

where t,* ,/,* have been written for the longer expressions t(X,*),/(X,*). Since

t(81) is finite by hypothesis, and since ZiliT* converges unconditionally by

(8.2), for any €>0, there exists an M such that M<i(l) < • • • <iir) implies

lkf(D+ ■ • • +t«T)\\<e/(WK). Let 5 denote the sphere ||f||^Jf. Then by
(16.2) and Theorems 3.9, 3.19 we have

nmC*[fim] + ■■■ + rf(r)C*[/-(r)] SrkimC*[S] + ■■■ + r-Cr,C*[S]

|(t?uj + • • • + r*(r))C*[5].

From this result and Theorem 3.15 we have

D(umC*[£m] + ■■■ + r*(r)C* [/?„], 0) S ||r*H) + • • • + r-(r)||l>(C*[S], 0)

< eWK/WK = €.

By Theorem 4.11 the series (16.4) therefore converges strongly uncondition-
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ally. Then by Definition 10.2 the sum of (16.4) is an integral range I(f, 21, A*).

To complete the proof, it is sufficient, by Theorem 11.4, to show that for

each €>0 there exists a decomposition A* of 21 corresponding to which the

diameter of the integral range I(f, 21, A*) is less than e.

Let Ik denote I(f, 21, A*). Then from the definition of the diameter of a

set and (2.5), we have

p(h) = d(ik - h, o) g d(u - ik, £ rfc*[ft ] - £ r*C*[f* ]
\ i—1 i=-l

+ d ( £ r*C* [ff } - £ rfC* \ff ], 0
\ i=l «-l

Next, by (2.8) and (2.6) we have

(16.5) p(Ik) S 2D^Ik, E T?C*[f> ]) + d^it rf {C*[f* ] - C*[/?]},o).

First choose k so that k>iWW'/e, and let it be held fixed thereafter. Then

since/,■* is contained in the sphere Sf with diameter 2/k, we see that the

second term in (16.5) does not exceed

(16.6) W'D(C*[f? - ft], 0) =: 21FPF'/^ < e/2.

But for a fixed k the first term in (16.5) can be made less than e/2 by taking n

sufficiently large. We observe that (16.6) is independent of «. We have thus

shown that it is possible to choose k so that p(Ik) <e. The proof is complete.

(16.7) Corollary. Let f(x) be defined in 21, measurable, almost separable

(I, t) and bounded. Let the measure function t(X) satisfy (8.1), (8.2), (8.3),

and let the measure t(2I) of 21 be finite. Finally, let t(X) have bounded total

variation v(£) over 21, Then the integral (l)f^f(x)dr(x) exists.

17. Properties of integrals of bounded, measurable functions. In §13 we

have given a number of properties of the integrals of integrable functions.

In this section we shall give certain additional properties possessed by the

integrals of bounded measurable functions but not by those of integrable

functions in general.

(17.1) Theorem. (Lebesgue's convergence theorem.) Let the measure t(21)

be finite. Letf\(x),f2(x), ■ ■ ■ be a bounded sequence of functions, defined in 21,

which are measurable (£) and integrable, and which approach almost everywhere

(£, t) an integrable limit function fix). Then

(17.2) lim (X) f f„(x)dr(x) = (J) f f(x)dr(x).
n-«     Ja j a
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The proof can be given in the usual way by means of Theorems 15.9,

13.4, and 13.1, Lemma 15.13, and Corollary 13.10.

(17.3) Corollary. Let t(21) be finite. Let fx(x), f2(x), ■ ■ ■ be a bounded

sequence of functions, defined in 21, which are measurable (X) and almost separa-

ble (X, t) and approach almost everywhere (X, t) a limit function f(x). Then fix)

is integrable and the relation (17.2) holds.

From Theorem 15.9 it follows that/(x) is measurable (X), and it can be

shown without difficulty that it is amost separable (X, r). The remainder of

the proof follows from Theorems 16.1 and 17.1.

(17.4) Theorem. If fix) is defined in 21, bounded, measurable (X), and inte-

grable, and if t (X) has bounded total variation v (X) over 21, then (X)/a| \f(x) \ \ dv (x)

exists and

(17.5) I (X) f fix)dr(x)   S(X) f\\f(x)\\dv(x).
II     Ja Ja

By Theorem 15.1 the function ||/(x)|| is measurable (X). The existence of

(X)/a||/(x)||^»'(x) then follows from Theorem 16.1. Next, consider the integral

range (16.4). We have

d( £ r(Xf)C*[f(Xt)], o) S E||rW)||7J(C*[/W)], 0)

S E v(Xt)[D(f(Xt), 0) + Wp(f(X*))]
i=l

00

S E v(X?) sup ||/(*)|| + 2Wv(K)/k.
i_i xtXi*

By taking the limit as    >oo , we obtain (17.5). The proof is complete.

(17.6) Corollary. If f(x) is defined in 21, bounded, measurable (X), and al-

most separable (£, t), and if (X)/g||/(*)||tfi»(a;) exists, then (17.5) holds.

There exists a denumerable decomposition {Xn} of 21 into sets of X such

that v(X„) is finite for all n (see §8). Then by the theorem, (17.5) holds for

each set Xn. The remainder of the proof follows from Theorem 13.1.

18. Summable functions and their integrals. In the preceding two sec-

tions we have treated the integrals of bounded, measurable (X), and almost

separable (X, t) functions. We shall now indicate briefly how these results

can be extended to unbounded functions.

(18.1) Definition. A function fix), defined in 21, is said to be summable if

and only if it is measurable (X) and almost separable (X, r) and (%)fn\\f(x)\\dv(x)

exists.
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Let u(x) be a real-valued and positive function defined on 31 which is

summable (i>). Let fi(x), /2(#), ■ • • be a sequence of functions defined on 31

each of which is bounded and measurable (3c), almost separable (3£, t) and

which approach /(x) almost everywhere (3c, v) and satisfy ||/n(x)|| Su(x),

x £ 31. Then (£)f%fn(x)dT(x) exists for every n by Theorem 16.1. Furthermore

\m\n^x{H)J%fn{x)dT(x) exists, for we have

There exists a set A, measurable (3c), such that 31 — ̂ 4 has finite measure (v),

and such that (£)fA2u(x)dv(x) <e/2. Also, by Egoroff's theorem and the

known properties of summable functions, (H)f<&-A\\fm{x) — fn(x)\\dv(x) <e/2

for 2\\m,n sufficiently large. Thus for all m, n sufficiently large 11 (3c) J%fm{x)dr(x)

— (%)f%fn(x)dT(x)\\ <£, and the limit exists as stated. Finally, an argument

used by Bochner [l, pp. 266-267] shows that this limit is unique. More pre-

cisely, let v(x) and gi(x), gz{x), ■ ■ ■ have the properties specified above for

u(x) and/i(x), f2{x), ■ ■ ■ . Then

'Let f{x) be a summable function, and let/^(x) be the truncated function of

f(x) as in Theorem 15.2. ThenfN(x), N = 1, 2, • • • , has all the properties of the

sequences just considered. It follows therefore that lim^«, (3c)/a/w(x)^t(a-)

exists and is unique.

(18.2) Definition. Let fix), x t 31, be summable, and let \fn(x)},

\\fn(x) || Suix), be any sequence of functions, each of which is defined in 31,

bounded and measurable (3c), almost separable (3c, t), and which approach

fix) almost everywhere (3c, v). Then the integral of fix) over 21, denoted by

(3c)/a/(x)dr(x), is defined by

The integral of a summable function is effectively defined since the se-

quence of truncated functions forms one sequence of the needed type.

We shall omit the proofs of the following two theorems.

(18.4) Theorem. If fix) and gix) are summable, then fix) +gix) is sum-

mable, and

(18.3)
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(*) f [fix) + gix)]drix) = (X) f fix)drix) + (X) f g(x)dr(x).
Ja Ja Ja

(18.5) Convergence theorem. ///i(x),/2(x), • • • jj a sequence of sum-

mable functions on 21 which approaches almost everywhere (X, p) a function fix),

and if there exists a summable function w(x) such that ||/n0*0|| Su(x) for

n = \, 2, ■ ■ ■ and x e 21, then fix) is summable and

(18.6) lim (X) f Mx)dr(x) = (X) f f(x)dr(x).
n->o=     Ja Ja

19. Comparison with the measurable and summable functions of Bochner

and Gowurin. Other measurable and summable functions have been treated

by Bochner [l ] and Gowurin [l ]. Bochner, however, considered only the case

in which the measure function is numerically-valued. In Theorem 15.10 we

have shown that a function is measurable and almost separable if and only if

it is measurable (Bochner). Furthermore, it follows from the results in §18

that the classes of functions which are summable and summable (Bochner)

are one, and that their integrals are the same in the two cases. Other results

on the relations of the various integrals are given by Pettis [l, p. 292].

There are functions which are measurable but not measurable (Bochner);

one simple example is the everywhere discontinuous, Riemann integrable

function given by Graves [l, p. 166] (see Price [2, §4]).

Gowurin's results are patterned after those of Bochner. In his treatment

of the Radon integral (see Gowurin [l, pp. 264-265]), which is the part of

his paper most closely related to §§14-18, his results are more general than

those obtained above in some respects, and less general in others. In particu-

lar, his treatment includes only totally measurable functions fix), where a

totally measurable function is bounded and the limit of a uniformly conver-

gent series of functions giix), g^ix), ■ • • . On the other hand, some of the re-

strictions placed on the measure function t(X) in §8 are not needed for

Gowurin's results. The limit theorems given above (Theorems 17.1, 18.5) are

better, disregarding the stronger hypotheses on t(X), than that obtained by

Gowurin [l, p. 265].

Part V. Riemann-S tleltjes integrals

20. Definitions and hypotheses. We proceed to develop the theory of the

Riemann-Stieltjes integral. Much of it can be obtained by specializing the

general results in Part III. For the sake of simplicity, the exposition will be

given for functions defined on a linear interval and a numerically-valued
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measure function; from the preceding part of the paper obvious extensions

will occur to the reader.

We collect our hypotheses here.

(20.1) Hypothesis. F(x) is defined on 21: a^xSb; F(x) c93.

(20.2) Hypothesis. D(C [F(x) ], 0) SK, x t 21.

The measure function m(I) is a numerically-valued, additive, non-de-

creasing function of intervals 7 c 21:

(20.3) Hypothesis. m(I)^0, Z i 21; 0<w(2l) <M, a constant.

(20.4) Hypothesis. m(Z+72) = m(Ii)-\-m(I2) for any two nonoverlapping

intervals I\, h on 21. ,

We denote by I both an interval and its length. Occasionally it will be

assumed that m(I) is continuous:

(20.5) Hypothesis. For every e>0 there exists an rj such that m(I) <e for

every I £ 21 for which Kv.

Since the measure function is numerically-valued, we shall replace the

operator C* by the ordinary convex operator C as explained in §8. Further-

more, Ak will now denote a decomposition of 21 into a finite number of non-

overlapping intervals (/»*}, • • • ,»*. The integral range of F(x) over 21

with respect to the decomposition Ak is

I(F, 21, At) = E*C[W )]«(#) = 5>C[W )]«(/.*),
i=i .=i

where£* denotes the closure of the sum (see Definition 10.2). Theorem 6.17

shows that Theorem 10.4 still holds. The definitions and theorems of §11

apply to the present integral faF(x)dm(x), which corresponds to one called

the generalized Riemann-Stieltjes integral by Hobson [l, vol. 1, p. 547]. We

shall now define a set in 93 which generalizes the upper and lower generalized

Riemann-Stieltjes integrals (see Hobson [l, vol. 1, p. 546]).

(20.6) Definition. A set RS[fbaF(x)dm(x)] such that

D^RS^f F(x)dm(x)~^, 7(F, 21, Afc)^ 0

as k—>co for every sequence of decompositions Ak, k = 1, 2, • • ■ , for which as

k—* oo max,- Z*—*0 will be called the Riemann-Stieltjes integral set of F(x) on 21.

In the remainder of the paper we propose to study some of the fundamen-

tal properties and applications of both f*F(x)dm(x) and KS[faF(x)dm(x)].
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21. Darboux's theorem and other results. We shall give first a theorem

which generalizes for RS [faF(x)dm(x) ] the well known theorems of Darboux

for upper and lower Riemann integrals (see Hobson [l, vol. 1, pp. 462-463]).

As a matter of notation, let A*': {//* } (* = !,• ••, nk), k = 1, 2, • ■ , de-

note a sequence of consecutive decompositions of 21, that is, a sequence in

which Afc'+i can be obtained from A* by subdividing one or more intervals. It

will be assumed for all sequences A*, A*' that max* /,*, max; //* —>0 as k—>oo.

(21.1) Theorem. Let F{x) and m(I) satisfy Hypotheses 20.1-20.5. If there

exists a set Gc 23 such that D(G,I(F,% A*' ))->0 as k^x, then D(G, I(F, 21, A*))

—>0 as k—>oo for every sequence of decompositions Ai, A2, • ■ • , awd G the

Riemann-Stieltjes integral set RS [fF{x)dm{x) ].

Although not difficult, the details of the proof are long and will be omitted.

(21.2) Theorem. Let Fix) and m(I) satisfy Hypotheses 20.1-20.5. 7/F(2l)

is compact in 93, then RS \JJF(x)dm{x) ] exists.

To prove the theorem we shall show that there exists a set G such that

D(G, I(F, 21, Aj/))-»0 as k-+«>. It will then follow from Theorem 21.1 that

RS [faF(x)dm(x) ] exists and is identical with G.

From Theorem 10.4 and the fact that the decompositions are consecutive,

(21.3) I(F, 21,A/)i/(F, 21, A2')?

Since F(2l) is compact in 93 by hypothesis, it follows that C [F(8) ] is compact

(see Mazur [l] or Price [l, §7]). From this fact it follows that each set in

(21.3) is compact. Under these conditions Cantor's theorem states that the

product G of the sets in (21.3) is not null (see Sierpifiski [l, p. 30] or Haus-

dorff [l, p. 129]). Finally, since each set of (21.3) is closed and convex, G is

closed and convex.

We shall show next that D(G, I(F, 21, A* ))—>0 as k^<x>. Suppose that this

limit is not zero. Since GBI(F, 21, A*), k = \, 2, ■ ■ ■ , the distance from any

point of G to I(F, 21, A*) is zero. Then for some e>0 there exist sets

Gk d(F, 21, A*), k = \, 2, ■ ■ , such that the distance from each point of Gh

to G is e or greater, for otherwise the limit would be zero. For each k the set

Gk is closed, compact, and non-null, and C7i 1 C72 = ■ ■ ■ . Then by Cantor's

theorem the product G' of the sets Gk is non-null. Finally, the distance from

any point of G' to G is at least e. But since G' = G, this is impossible, and

therefore D{G, I(F, 21, A*))—»0 as k^*>. The proof is complete.

(21.4) Corollary. The Riemann-Stieltjes integral set is closed and convex.

(21.5) Theorem. Let F(x) and mil) satisfy Hypotheses 20.1-20.4. A neces-

sary and sufficient condition that RS \JhF{x)dm{x) ] exist is that for every se-
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quence of subdivisions Ak, k = \,2, ■ ■ ■ , of 21 the sets I(F, 21, Ak) form a Cauchy

sequence.

A necessary condition that a sequence converge is that it be a Cauchy

sequence; the necessity of the condition stated in the theorem then follows

from Definition 20.6. Also the condition is sufficient. Consider the two se-

quences of subdivisions Ak, A*. Since the space whose elements are sets in 93

is complete in the Hausdorff metric (see §2), each of the Cauchy sequences

I(F, 21, Ak), I(F, 21, A *) has a limit. If these limits are not the same, the se-

quence of decompositions Ai, A *, A2, A2*, • • ■ leads to a sequence of integral

ranges which is not a Cauchy sequence. This fact contradicts the hypothesis.

The proof is complete.

22. Existence theorems. We shall now give two theorems which state

sufficient conditions of another type for the existence of faF(x)dm(x) and

RS[fF(x)dm(x)).
First, we shall give a definition of continuity. Let I be a closed interval

on 21. Then the fluctuation 4>(F, 7) of F(x) on I is the diameter p(F(I))

= p(C[F(I)]) of F(I). In terms of the fluctuation we can define the saltus

w(F, x0) at a point x0 e 21. Let Ik be a closed interval of length 2k whose mid-

point is x0, the proper modification being made in case x0 is an end point of 21.

The limit of $(F, Ik) as k^O exists and is unique, and is u(F, x0) by definition.

We shall say that F(x) is continuous at x0 if and only if u(F, x0) =0. Thus if

F(x) is continuous at x0, F(x0) denotes a single element in 93.

With this definition of continuity, we have the following theorem.

(22.1) Theorem. Let F{x) and m{I) satisfy Hypotheses 20.1-20.4. If the

variation of m(I) over the points of discontinuity of F(x) is zero, then the Rie-

mann-Stieltjes integral faF(x)dm(x) exists.

The proof of this theorem can be patterned very closely after a well known

existence theorem for the Riemann-Stieltjes integral of a numerically-valued

function (see Hobson [l, pp. 542-544]). In the present case the proof is some-

what simpler than that given by Hobson as a result of the general theorems

proved above (see §§10, 11). We show that p(I(F, 21, Ak))^0 as k—>°o for an

arbitrary sequence A*, k<=%, 2, ■ ■ • , It follows that faF{x)dm{x) exists, and

that I(F, 21, Ak)-±faF{x)dm(x) for an arbitrary sequence A*.

The corresponding theorem for the Riemann integral in abstract spaces

was first proved by Graves [l].

We shall now give a second definition of continuity and from it obtain

another existence theorem. The two definitions of continuity are distinct, and

they lead to different existence theorems.

The fluctuation $(F, 7) of F{x) on the closed interval I is defined by
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(22.2) *(F, 7) = sup d(C[F(Xl)],C[F(x2)}).

The saltus u(F, x0) of F(x) at #0 £ 21 is defined in terms of this fluctuation in

the usual way. Finally, F(x) is continuous at x0 e 21 if and only if co(F, xa) =0.

A point of continuity of F(x) according to this definition may be a point of

discontinuity according to the first definition.

(22.3) Theorem. Let F(x) and m(I) satisfy Hypotheses 20.1-20.4. If the

variation of mil) over the points of discontinuity {in the second sense) of F(x)

is zero, then the Riemann-Stieltjes integral set RS [faF{x)dm{x) ] exists.

As a result of Theorem 21.5, this theorem will be established if we show

that I(F, 21, At), k = l, 2, • • • , is a Cauchy sequence for every sequence of

decompositions A*. The analysis used in establishing this fact is similar to

that in the proof of Theorem 22.1 and is omitted.

The conditions stated in Theorems 22.1, 22.3 are sufficient but are not

necessary (see Graves [l]).

23. Properties of the Riemann-Stieltjes integral set. We shall first in-

vestigate the additive properties of RS[faF(x)dm(x)] with respect to inter-

vals and functions.

It will be convenient to use F+*G to denote the closure of F+G.

(23.1) Theorem. If RS [f°aF(x)dm(x) ] and RS[fF(x)dm(x)] exist, a<c

< b, then RS ]faF(x)dm(x) ] exists and RS [fj = RS [q + RS [fc ].

Let 2li, 212 denote the intervals a^x^c, c^x^b. By (2.7), (2.8) we have

D^RS^J F(*)<fo)*(*)] +*Rs|^ J /?(*)*»(*) J, I(F, Hi, A*')

+ *I(F, 8U,At")) ̂  d(rs[      J, I(F, A.'))

+'z>(rs[J j, /(F,at,Ai")),

from which the proof follows.

(23.2) Theorem. If integrals RS [faFi(x)dm(x)]t RS [faF2(x)dm{x) ], and

RS[/a {Fi(x) +F2(x)} dm(x) ] exist, then

Rs|^ J   {Ft(x) +F2(x)}dm(x)^

SRsj^J" Fi(*)*»(*)~| +*Rsf j Ft(x)dm(x)~\.
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Let G(x)=F1(x)+F2(x). Then G(7) |Fi(/)+J,i(J) for any interval /131.

The proof follows from this fact and the properties of the convex operator C.

(23.3) Theorem. Let u{x), v(x) be numerically-valued functions such

that u(x)^0, v(x)^0. For each x e 31 let F(x) be a convex set in 23. If

RS>\_fu{x)F(x)dm(x)\ and RS \Jbv{x)F{x)dm{x) ] exist, then RS[_/^{w(x)

+v(x) }F(x)dm(x) ] also exists, and

(23.4)

RS^ J   {u(x) + v(x) }F(x)dm(x) 1

= RS   J   {u{x)F{x) + v(x)F(x)} <7w(x) J.

(23.5) Theorem. Let u(x), v{x) be functions defined on 31 whose values

are numbers but otherwise arbitrary. For each x e 31 let F(x) be an element

in 23. If RS[fu(x)F(x)dm(x)], RS [fav(x)F(x)dm(x) ] exist, then RS\fJu(x)
+v(x) }F(x)dm(x) ] exists and (23.4) holds.

The proofs of these two theorems are omitted.

We shall now examine analogues of removing a constant from under the

sign of integration.

(23.6) Theorem. Let Tbea continuous linear transformation with domain and

range 23 which has an inverse T~x with the same properties. If RS [faF(x)dm(x) ]

exists, then RS [faTF(x)dm(x) ] exists and equals T {RS \JhJF{x)dm{x) ]}.

The corresponding theorem for the Lebesgue integral was proved byBirk-

hoff [1, pp. 370-371].

(23.7) Theorem. Let u(x)=0 be a bounded, numerically-valued function

defined on 31, and F an arbitrary bounded set in 23. Let m[T) satisfy Hypotheses

20.3, 20.4. 7/RS [fau(x)dm(x) ] exists, then RS [fu{x)Fdm{x) ] exists and equals

RS[fu(x)dm(x)](:[F].

From the definition of the integral range in §20 and Theorems 2.18, 2.21

we have

7(«(*)F, «, A») - jyC[u(I*)F]m(.It*) - £*Ü[«(/.*)]ü[*]«(/<*)
i i

= ü|£*ü [*(/,* )R/,*)|C[F]

= { Z*Ck70M7*)}c[F]

= /(«(*), 31, A»)C[F].
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Next, by Theorem 2.21 we have

D^RS^J* u(x)dm(x) C[F], I(u(x)F, 21, Ak)
j

^RS^ J u(x)dm(x)J, /(«(*), % Ai^j D(C[F], 0).
b

< D

Since I(u{x), 21, A^)—>RS [/V^dm^) ] as &—>■<» and F is bounded, the proof

follows.

(23.8) Theorem. Let u{x) be a bounded, numerically-valued function defined

on 21; let m{I) satisfy Hypotheses 20.3, 20.4; and let f be an arbitrary element

of 33. If RS [fau{x)dm{x) ] exists, then RS [fau(x)fdm{x) ] exists and equals

RS[fau(x)dm(x)]f.

The proof follows from Corollary 2.17.

We shall now prove the analogue of the inequality \ fau{x)dx—fav{x)dx\

s f I u(x) —v(x) I dx for numerically-valued functions u(x), v(x).

(23.9) Theorem. Let Fi(x), F2(x) and m(I) satisfy Hypotheses 20.1-20.4.

If RS [faFi(x)dm(x) ],i=l,2, exist, then

(23.10)

D^Rsj^J Fi(.x)tfr»(.x-)J , RS   j F2(x)dm(x) ̂

s J D(C [Fx(x) ], C [F,(x) ])dm(x).

The integral on the right in (23.10) is the upper generalized Riemann-

Stieltjes integral of a numerically-valued function (see Hobson [l, p. 546]).

To prove the theorem, we observe first that

D(RS[J" Fi(x)rfw(x)J, RS   J F2(x)dm(x)~Jj

s d(rs[ j Pi(x)dm(x)~^, I(Fx, 21, A*))

4- D(I(Fi, 21, Ak), I(F2, 21, Ak))

+ d(I(F2, 21, At), RS[ J F2{x)dm{x)

Then by (2.6), (2.7), (2.8), and the definition of I(F, 21, Ak) we have

D(I(Ft, 21, Ak), I(F2, 21, Ak)) s L77(C[F1(7,*)], C[Fs(Ii»)])»(/*).
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Finally, we observe that

D(C[FX(/*)], C[Ft(It)]) =2 sup DiCiF^x)], C[F2(x)]).

From these facts the proof follows.

The next theorem states a sufficient condition that the Riemann-Stieltjes

integral set be additive (see Theorem 23.2). In it and in its proof, we shall

understand fluctuation, saltus, and continuity in the second of the two senses

of §22 (see (22.2)).

(23.11) Theorem. Let Fi(x), F2(x), and m(I) satisfy Hypotheses 20.1-20.4,

and let the variation of m(I) over the points of discontinuity of Fi(x) and F2(x)

be zero. Then

(23.12)

RS   j   [Fi(x) + Ft(x) } dm(x)^

= Rsj^J Fi(*)<fr»(z)J +*Rsj^ j F2(x)dm(x)^,

the existence of these integrals following from Theorem 22.3.

The proof of this theorem depends on the following two lemmas, whose

proof we leave to the reader.

(23.13) Lemma. 7/$(F, I) is defined by (22.2), then^F^+Fi, I)S<f>(Fi, 7)

+<p(F2, 7).

(23.14) Lemma. Let Fi{x), F2(x) be constant, that is, let F1(x)=Fi, F2(x)

= F2for all x e 21. Then the relation (23.12) holds.

We proceed to the proof of the theorem. Let f and e be any positive

numbers. Then with each point £ of 21 we can associate an interval I of length

not greater than f such that $(F,-, 7)fSu(Ft-, £)-fe/2, i=\, 2 (see Hobson

[1, pp. 466-467 ]). Then by Lemma 23.13, $(F,.+F2,7) g w(F1; £) + co(F2, £) + e.

By the Heine-Borel theorem a finite number of these intervals cover 21.

Finally, we can replace these overlapping intervals by a finite set of non-

overlapping intervals 7 such that in each of them <p(Fi+F2, 7):£co(Fi, £)

+co(F2, £) + e, where £ is either an interior or end point of 7 (see Hobson

[l, pp. 466-467]). Let »/gf be the length of the shortest of these intervals,

and let their end points be a = x0<Xi< ■ ■ ■ <xn = b.

Let two functions Gi(x), G2(x) be defined on 21 as follows: Gi(x) =Fi(xk_i),

Xh-iSx<xk, for k = 1, 2, • • • , n and i = l, 2. Set G(x) =Gi(x)+G2(x).

Let A (e) be the closed set of points of 21 at which the saltus of either Fi(x)

or F2(x) is greater than or equal to e. With each point x zA(e) associate the in-
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terval x — pSx^x+p. These intervals coalesce to form a finite number of

nonoverlapping intervals contained in 21; denote them by A(e, p). The set

A (e) is the inner limiting set of the sets A (e, p) as p—4). Since the variation

of m(I) over A(e) is zero by hypothesis, it is possible to choose p so that the

variation of m(I) over A(e, p) is less than an arbitrary positive number f'.

Choose f so that f <p; then also rj <p. Then if one of the intervals I contains

a point of A (t), it is contained entirely in A (e, p). Let 2fi denote the sum of the

intervals I which contain no point of A (e) and 2I2 the sum of the remaining

ones. Then w(212)<f.

We can now establish (23.12) by showing that the distance between the

sets on the two sides of the equation is zero. By (2.5) we have

D^RS^J   {Ft(x) + F2(x)}dm(x)~^, RS |^ j Fl(x)dm(x)

+*Rs|^ J F2(x)dm(x)Jj

(23.15)        rSZ^RS^J*  [F^x) + Ft(x)}dm{x)~\, Rsj"J* G(*)<&»(*)1)

+ D^RS^ J G(x)dm(x)  , RS^J* Fi(a;)<fr»(:c)J

+ *RS[J Ft{x)dm(x)Jj.

By Theorems 23.1, 22.3, and (2.8) the first term in the right-hand member

of (23.15) does not exceed

d(rs[      {F^x) + F2(x)}dm(x)j, Rs[ G(x)dm(x)~j)

d(rs[J [Pi(x) +F,(*)}i»(*)J,Z)S^ J* G(x)dm(x)1^j.

By Theorem 23.9 and the results above, the first term here does not exceed

f D(C[Fx(x) + F2(x)], C[G(x)])dm(x) S f [u(Fu £) + «(F,, £) 4- e]dm(x)

S 3ew(2li) S 3ew(2l).

The upper integral of Theorem 23.9 is an ordinary integral here by Theorem

22.1 and the hypotheses of the present theorem. Also by Theorem 23.9, (2.5),

Hypothesis 20.2, and the results above, the second term in (23.16) does not

exceed

(23.16)

4-
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f D(P[Fi(x) + F2(x)], C[G(x)])dm(x) g f AKdm(x) < 4K?.
J 3t2 J %

Thus the first term in the right-hand member of (23.15) is less than

Now consider the second term in the right member of (23.15). By Lemma

23.14 and the definition of G(x) we have RS [faG(x)dm(x) ] = RS [fcGi(x)dm(x) ]

+*RS[f*G2(x)dm(x)]. Then by (2.7) and (2.8), the second term in the right-

hand member of (23.15) does not exceed

77^Rsj^J Gi(*)*»(*)J. RS^ j Fi(x)dm(x)^

+ 77^RS^ J G2(x)dm(x)~^, Rsj^ j F2{x)dm{x) ̂ ;

as before we can show that this expression does not exceed 3em(2I) +47£"f'.

Collecting results, we see that the left-hand member of (23.15) is less than

6ew(2l)+87Cf'; since ra(21), K are constants and e, are arbitrary, it is there-

fore zero. The proof is complete.

We turn next to a theorem of a different type. Let T denote an element

of X (see §3). We shall consider a transformation T(x) which depends on the

real parameter x. Then || [T(xi)—T(xt)]f\\ SsC(«i, x2)||/||. We shall say that

T{x) is continuous in x at x0 if and only if for each e >0 there exists a 8(x0, e)

such that C(x, x0)<e for \x — x0\ <d(x0, e).

(23.17) Theorem. Let F(x) and mil) satisfy Hypotheses 20.1-20.4, and let

T(x) be continuous in x on the closed interval 21. If RS [fcF(x)dm(x) ] exists for

every interval cS%Sd on%, then RS \J T(x)F(x)dm(x) ] also exists.

First we approximate to T{x) by a sequence T„(x), n = l, 2, ■ ■ ■ , such

that Tn(x) is constant on subintervals of 21. Then the proof is completed by

means of Theorem 23.1, a slight extension of Theorem 23.6, and Theorem

13.6.

24. Improper integrals. Let F(x) and m(I) satisfy Hypotheses 20.1, 20.3,

20.4, and let F(x) be bounded except atx = c, a < c < b. If lim RS [fl ~ * F (x)dm (x) ],

lim RS \_fc+JF(x)dm(x) ] exist as ej, e2-^0 independently, then we say that the

improper integral RS [faF(x)dm(x) ] exists and that its value is the closure of

the sum of these limits. If

lim [C 11 D(C[F(x)}, 0)dm(x),    lim f    D(C[F(x)], 0)dm(x)
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exist as ei, e2-^0 independently, we shall say that the improper integral

~RS[faF(x)dm(x)] converges absolutely. Similar considerations apply if there

are any finite number of points of 21 at which F(x) is unbounded.

(24.1) Theorem. Let T(x) satisfy the hypotheses of Theorem 23.17. If

RS [faF(x)dm(x) ] is an improper integral which converges absolutely, then

RS [f*T(x)F(x)dm(x) ] exists and converges absolutely.

25. Extreme integrals. We shall show that there are certain points of the

Riemann-Stieltjes set RS [faF(x)dm(x) ] which are exact analogues of the up-

per and lower Riemann-Stieltjes integrals of a numerically-valued function.

Let F(x) be a function defined and bounded on 21 which has its values in

m-dimensional euclidean space but is otherwise arbitrary. By Theorem

2.14 and §20, we have I(F, 21, A*) =£,Ü[F(/7)]m(7?). Assume that

RS [faF(x)dm(x) ] exists. Then the closed convex set RS \J^F{x)dm{x) ] has

at least two extreme points (unless it is a single point), and they are limit

points of extreme points of I(F, 21, A*) (see Price [l, §9]). Furthermore, if g

is an extreme point of I(F, 21, A*), then g=zZigim(Iik)> anCi by Theorem 2.15

gi is an extreme point of C[F(Iik)], i = l, ■ ■ ■ , nk. Moreover, the extreme

points gi are contained in the closure of the sets F(If). Finally, the set

RS [fmF(x)dm(x) ] is the closed convex hull of its extreme points.

For a numerically-valued function, the set

(25.1) I(u, 21, A.) = EC[*(I?)]m(I?)

has exactly two extreme points, and they are

(25.2) sup u{x) £     inf u(x)
i L »e/<* J

milt),      £    inf u{x) U(7*).

Also, supze/jfc u(x) and inflE/;* u(x) are extreme points of the set C[m(7,*)]

and belong to the closure of u(Iik). Moreover, the limits of the two extreme

points (25.2) of (25.1) are

/' b /• b
u(x)dm(x), I   u(x)dm(x),

a J a

the two extreme integrals of RS [fu{x)dm{x) ]. Finally, the set RS [flu(x)dm(x) ]

is the interval bounded by—that is, the closed convex hull of—the points

/' 6 /» b
u(x)dm(x), I u(x)dm(x).

a J a

These results hold at least in n-dimensional euclidean space and possibly
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in more general spaces (see Price [l, §9] and Theorems 2.14, 2.15 above).

It was in connection with the results of this paragraph that the author

rediscovered extreme points of convex sets.

26. An extension of Bochner's results. We shall now show how the pro-

gram of Bochner can be carried through in a more general case.

Let Fix), G(x), ■ ■ • denote functions defined for x in 21 whose values are

sets in 93. Let m{X) be a numerically-valued, nonnegative measure function

defined for sets X in X. Let G(x) denote a function which takes on only a finite

number of values, that is, a function for which there exists a finite decomposi-

tion of 21 into sets Xh ■ • ■ , Xr of X with G(x) =Gi c 93 for x t Xi, * = 1, • • • , f.

A function Fix) will be called measurable if there exists a sequence Gn(x) of

these functions such that lim,,..«, D{F{x), Gn{x)) =0 almost everywhere (X, m).

(26.1) Definition. J%Gix)dmix) =£ *C [Gt}m(Xt).

With this definition, we see that the integral of Gi(x)+G2(x) exists, and

that /a\Gi.(x)-\-Gi(x) }dm(x) =f%Giix)dmix)+*f%G2ix)dmix). The real-val-

ued function D(G{x), 0) is measurable. From (2.5) we have \D{F{x), 0)

-D(G„(x), 0)| SD(F(x), Gn(x)), from which it follows that D{F{x), 0) also

is measurable. We see then that f%D(G{x), 0)dmix) exists, and from (2.8) it

follows that D{JnGix)dm{x), 0) SfaDiGix), 0)dm(x).
We shall say that the measurable function F{x) is summable if D{F{x), 0)

is summable. Let u{x) be a positive, real-valued, summable function;

and let {F„(x)} be a sequence of bounded, measurable functions such that

D{Fn{x), 0)^w(x) for all n. By arguments similar to those in §18, we can

show that if F{x) is summable and F„{x)^yF{x) almost everywhere (X, m),

then lim /aFn(x)dm(x) exists and is unique. We define f%F{x)dm{x) to be the

closure of lim J%Fnix)dmix); it is therefore a closed convex set. Summable

functions and their integrals have the following properties:

(26.2) DifnFix)dmix), 0) iifnD(F(x), 0)iw(x) ;
(26.3) if Fix) is constant and equal to F, then J%xF(x)im(?c) = Ü[F]f»(3l);

(26.4) if ci, c2 are constants and Fi{x), F2(x) are summable functions, then

{c\Fi{x) + c2F2(x) }dmix) = a I  Fi{x)dm{x) +* c2 I F2{x)dmix);
Jn J % Ja

(26.5) if 2l = X,+X2+ • • ■ and XmXn = 0 for m^n, then

Part VI. Other measurable functions
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(26.6) if the summable functions Fx(x), F2(x), ■ ■ ■ on 21 have a summable

real-valued bound u{x), that is, if D(F„(x), 0) Su{x) for all n, and if lim F„(x)

exists for almost all x, then lim f%Fn(x)dm(x) = /alim Fn(x)dm(x).

27. A more general class of measurable functions. Bochner [l ] and Dun-

ford [l ] have obtained extensive classes of measurable functions from classes

of finitely-valued functions and continuous functions respectively. It is possi-

ble to show by means of examples that a more general class of measurable

functions can be obtained by starting from a more general class. We shall

describe such a class of functions.

Let G(x), Gi(x), • • ■ be functions defined on 21: aSxSb whose values are

sets in 23. Let <i> be a class of these functions with the following properties:

(27.1) G(x) e <3? implies D(G(x), 0) is bounded and continuous except pos-

sibly on a set of measure zero.

(27.2) G(x) e <p implies RS \j"G{x)dx] exists;

(27.3) Gi(x), G2{x) e $ implies Gi(x) +G2(x) e 3>.

(27.4) Gi(x), G2{x) e <3? implies the points of discontinuity of D(Gi(x),

G2(x)) are a set of measure zero at most.

(27.5) &(*), G2(x) e* implies RS[fa{G1(x)+G2(x)}dx] = RS[faG1(x)dx]

+*RS[faG2(x)dx].
The extension of the class $ and the determination of the properties of

the integrals of functions in the extended class are left to the reader.

Part VII. Fourier series

28. Fejer's theorem. For functions/(x) which are measurable and almost

separable, the fundamental results for singular integrals hold as for numeri-

cally-valued functions. The proofs are so similar that they need not be re-

peated here (see Hobson [l, vol. 2, chap. 7] and Bochner [l, §7]). We shall

give certain results for the Fejer integral of functions F(x), however.

Let F(x) be defined for — wSx<tt and elsewhere by F(x+2ir) =F(x); the

values of F{x) are sets in 23. Let RS [fiF(i)dt] exist for every interval 7/ con-

tained in —ir St Sir, and if it is an improper integral, let it be absolutely

convergent. The Fejer integral corresponding to this function is

1        r C * sin2 [m(x - t)/2] "1
(28.1) -RS -V--—F^dt \.

Itw,     [_J-*  sin2 [(* - 0/2] J

The existence of this integral, not only for the interval indicated but also for

every interval contained in it, for all m and x follows from the hypotheses

concerning F(x) and Theorem 24.1.

(28.2) Theorem. The limit as m—*<x> of the Fejer integral (28.1) exists for
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each value of x for which C[F{x±0)] exist, and the value of this limit is

(l/2){C[F(x+0)]+*C[F(x-0))}.

The proof of this theorem follows the general outline of the proof of the

corresponding theorem for numerically-valued functions. In the course of the

proof it is necessary to use (2.5), (2.6), (2.7), the second definition of continu-

ity in §22, and Theorems 23.1, 23.7, 23.9. The details are somewhat long and

will be omitted.

Let/(x) satisfy all the hypotheses imposed on F(x) above; in addition let

f(x) for each x be an element in 23, and let its points of discontinuity form a

set of measure zero. Then f*Tf(t)dt exists, and Theorem 28.2 holds for/(x).

Let elements an, bn in 23 be defined by

If If
(28.3) an = —      f(t) cos ntdt,       bn = — I   f{t) sin nt dt

7T J _„ 7T J —x

for n = 0, 1, 2, • • • . These integrals exist by Theorem 24.1. With these coeffi-

cients we form the Fourier series

00

(28.4) a0/2 + 22 (a« cos nx + bn sin nx).
n—1

The investigation of the summation by Cesäro means of order one (see Knopp

[l, chap. 13]) of (28.4) leads in the usual way to Fejer's integral (28.1).

Theorems 23.5, 23.6, and 23.11 enable us to make the necessary transforma-

tions. Then from Theorem 28.2 we have the following theorem.

(28.5) Theorem. Letf(x) have the properties just specified. Then the Fourier

series (28.4) associated with fix) is summable Cx at all points x at which the two

limits f{x + 0) exist, and its sum Ci is (1/2) [/(x+0)+/(x —0)].

Bochner [l, §7] has obtained a more general result by using the Lebesgue

integral rather than the Riemann integral. In the present case a theorem more

general than (28.5) might be expected, in particular, a theorem for functions

F{x) rather than/(x), the series (28.4) having sets rather than elements as

coefficients, corresponding to the greater generality in Theorem 28.2. The

more general result is lacking because of the restrictive hypotheses in Theo-

rems 23.3, 23.5, and 23.11. It seems therefore that there may be functions

which can be represented by the limits of their Fejer integrals but which can-

not be represented by their Fourier series.

29. A theorem on the Fourier coefficients. Bochner [l, §7] has shown

that the coefficients an, bn in (28.3) tend to zero as n—>°o for any function

which is measurable and almost separable. The following generalization of a
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well known theorem has a certain amount of interest because it is necessary

to construct a new proof.

(29.1) Theorem. Let fix) be a junction defined on 21 whose values are ele-

ments in SB; letf{x) have bounded total variation on 21. Then as X—>oo

f(x) sin \x dx, I   f(x) cos Xx dx
a J a

are0(1 A).

Since f(x) has bounded total variation on 21, its points of discontinuity

are denumerable and of the first kind only; hence the integrals in (29.2) exist

by Theorem 22.1. We shall set up a sequence of subdivisions of the interval 21

which can be used in constructing the integral faf(x) sin Xx dx. On the x axis

mark the points 2irm/(2k\), m = 0, +1, + 2, ■ ■ ■ . The intervals or parts of

intervals of this subdivision of the x axis which lie on 21 will be taken as the

intervals of the decomposition A* of 21, k = 1, 2, • • • . The decompositions of 21

have been chosen in such a way that the zeros of sin \x on 21 coincide with

end points of intervals. Let the end points of intervals of Ak taken from left

to right be *<*, i = 0, 1, « • • , »*, and let Axih denote the length of the interval

Xi-i SxS Xik.

It is clear that

(29.3)

f(x) sin Xx dx

+

zZ f(xik) sin \Xik Ax*
i

y, f{xik) sin \Xik Axik — I   f(x) sin Xx dx
i Ja

Since Jj(x) sin Xx dx exists, for each e > 0 it is possible to find a k0 such that

(29.4) £/(*,*) sin \xfAxf — I   f(x) sin Xx do,
i <f a

< e

for £^£o (see Definition 11.3).

Next consider the first term in the right-hand member of (29.3). Set

5, = sin \xik Axi*+ • • • +sin Xx/ Ax,* for i = 1, 2, • • • , nk. Then

nk

zZf(xf) sinXx*Ax* = f(xt)st + £/(as,*)(ii - S<-i)
i 1=2

= *i|/(*i*) - /W)] + s,I/(«/) -
+ ~t~ S"kf(X"k) :

from which it follows that
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£ f(xf) sin \xf Axik
i

+ \ st\ H/W) - f(x£)\\ + • • • +1 *»| •

From the definition of s< it follows that | s4| <x/X for i= 1, 2, ■ ■ ■ , nk. Then

since/(x) has bounded total variation on 21, there is a constant V such that

(29.5) £/(*!*) sin \xf Ax} < ttV/X.

Collecting results from relations (29.3), (29.4), and (29.5) we have

\\fj{x) sin \x dx\\ <irF/X + e. Since e is an arbitrary positive number, it

follows that \\faf(x) sin Xx dx\\ ^7rF/X. These results and similar considera-

tions for the other integral in (29.2) complete the proof.

30. Fourier's theorem. From Theorems 7.5, 28.5, and 29.1 we have the

following theorem.

(30.1) Fourier's theorem. Let f(x) be defined on — ttSx<iv and else-

where by f(x+2w) =f(x); let the values of f(x) be elements in 93. If f(x) has

bounded total variation on —ttSxStt, then the Fourier series (28.4) associated

withf(x) converges for each value of x to (1/2) [f(x+0) +f(x — 0) ].
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