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Introduction. There is an extensive literature dealing with the problem of

expanding analytic functions of a complex variable in generalized Taylor se-

ries of the form

oo

(1) /(*) = £ cngn(z),
n=0

where the gn(z) are, in a suitable sense, "nearly" the functions z"(1). If

g„(z) =zn[l+hn(z)], where the hn(z) are analytic and bounded in a circle

\z\ <r and vanish at z = 0, and/(z) is analytic in |z| <r, the possibility of

an expansion of the form (1) was established by S. Pincherle [9]; the series

converges to/(z) in some circle |z| <s, where in general s<r. Much of the

later work has been devoted to obtaining better estimates for the number s.

In this paper, a new attack on the problem is developed; it eliminates re-

arrangements of power series, and uses a criterion for "nearness" of two se-

quences of functions which is essentially contained in work of Paley and

Wiener [26, p. 100] (where it is applied to another problem). The results in-

clude some of those of G. S. Ketchum [4], which are the most precise yet

obtained, and in part go beyond them. Well known expansion theorems of

G. D. Birkhoff [l] and J. L. Walsh [17] are also obtained.

The simplest of my results (and the most convenient one for applications)

is that if the functions g„(z) in (1) are of the form specified above, and if the

hn(z) have a common majorant h{z) for large n (that is, if the coefficients in

the power series of hn(z) are less in absolute value than the corresponding co-

efficients of h(z)), then the expansion (1) converges to/(z) in \ z\ <s if h(s) < 1.

For example, if l+AB(z) =eanZ, with lim sup^^«, |a„|^l, we may take

h(z) = e(l+t)z— 1 (with any positive e), so that the region of convergence of

(1) is at least |z| <log 2; I have not been able to establish convergence in

a larger region than |z| <l/e by using the theorems in the literature(2).

It is also possible to restrict linear combinations of the coefficients of the
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(') The bibliography at the end of this paper contains all the references which I have

found (without however making an intensive search of the literature) on general expansions of

this type. For special theorems, other than those considered in this paper, see especially G. S.

Ketchum [4]. (Numbers in brackets refer to the bibliography.)

(2) Added in proof: Ibragimoff [32] has proved that every function analytic in \z\ <s is

the uniform limit in | z| gs' <s of a sequence of linear combinations of the functions in question

if sglog 2.
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&„(z) instead of the coefficients themselves; this can be done by a method

different from that used by G. S. Ketchum in obtaining the first such results

(see §5). Another generalization consists in modifying the assumption that

the functions g„(z) should have precisely the form zn[l + /i„(z)] (see Theorem

6.4).
The expansion theorems of this paper were originally developed in the

hope (which has so far proved illusory) of settling a conjecture concerning

the values taken by derivatives of entire functions. However, I have obtained

some new results in this field. In particular, I prove the following theorem

(Theorem 7.1): If /(z) is an entire function of exponential type k <log 2, with

/(0) = 1, and if the points a„ (n = 0, 1, 2, • • ■ ) are in the circle |z| ^1, then

for every r <k

A |/<n)(«n)|2 'i
Y-— £ 2er - e2r.

n r2n

This generalizes a theorem of S. Takenaka(') which states that/(n)(a„) cannot

be zero for all n.

Many of the papers listed in the bibliography treat, besides the conver-

gence of the series (1), the existence of systems of functions biorthogonal to

the g„(z), the form of the coefficients in (1), etc. These problems are not con-

sidered in this paper, although its methods could be made to furnish informa-

tion about them.

Some of the results of this paper were announced, with indications of the

proofs, in a note in the Proceedings of the National Academy of Sciences(4).

1. Abstract expansion theorems. We consider a normed complex linear

space E, and a sequence G= {xn} of elements of E. G is said to be a funda-

mental set if the set of all finite linear combinations of elements of G is every-

where dense in E; that is, if for every y e E there exist complex numbers

Ck,n such that

(1.1) y = Hm Y Ck.nXu.
n->«> i=i

G is said to be a base if every element y z E has a unique representation as

an infinite series of multiples of elements of E; that is, if for every y e E

there exists a unique sequence of complex numbers ck such that

n

(1.2) y = lim Y c***-
»-»<» k—l

The following theorem states in effect that a sequence sufficiently near

(3) See J. M. Whittaker [30, p. 44]; Takenaka [29].

(«) Vol. 26 (1940), pp. 139-143.
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another sequence which is a fundamental sequence or a base is also a funda-

mental sequence or a base.

Theorem 1.1. Let the sequences G= [xn] and H= \yn) have the property

that for some number X (0<X<1), and for all finite sequences a\, a% • • ■ , öjv

of complex numbers,

(1.3) 52 an(xn — yn) < X
jv

y ' anxn

n=l

Then

(i) if G is a fundamental set, so is H;

(ii) if E is complete and G is a base, H is a base.

In case (ii), furthermore, if the element x e E has the expansion

oo

52 c*y*,

the coefficients ck have the property

(1.4) ckxk
1 - X

Theorem 1.1 (ii), in the special form which it assumes when G is a normal

orthogonal base, was given (with a proof which applies to a general base G)

by Paley and Wiener [26, p. 100] for the Hilbert space L2( — tt, tt). For a gen-

eral Banach space, the proof given by Paley and Wiener needs only formal

modifications; in this paper, Theorem 1.1 (ii) will be used almost exclusively

for Hilbert spaces, and is consequently established by the proof of Paley and

Wiener (since all realizations of abstract Hilbert space are equivalent). We

omit the proof of Theorem 1.1 (ii).

The proof of Theorem 1.1 (i) is considerably simpler; this part would be

sufficient for the applications which will be made in §7 to derivatives of ana-

lytic functions. We suppose that G is fundamental, that H is not, and that

(1.3) is satisfied. Then there is a linear(6) functional/, defined on E, such that

f{jn)=0, n = \, 2, ■ ■ ■ , while/(z)=^0 for some z. Let

/(*»)  = f(xn — y„) = Cn (» = 1, 2, • ■ • ).

Let M = ||/||; that is, let M be the smallest number such that, for all x e E,

\f(x) \ ^M\\x\\. Then for any sequence {an\

52 anCi < M
N

^ ' an(xn < M\

(6) "Linear" means "distributive and continuous," as in Banach's book [2l],
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Hence(6) there is a linear functional g, defined on E, such that g(xn)=c„

(w = l, 2, • • • ), and \\g\\ =SifX<if. But since {xn} is a fundamental set and

f(Xn) — g(xn) =0 (« = 1, 2, • ■ ■ ), we must have f(x) =g(x) for every x, and

consequently if = ||/|] = ||g|| S£Xif<if, a contradiction; for if is not zero be-

cause /(z)9*0 for some z.

2. General expansions of analytic functions. We now apply Theorem 1.1

to the spaces Hp(r) whose elements are functions/(z) analytic in |z| <r, be-

longing to Lp (p^l) in this circle; that is, each function /(z) is assumed to

satisfy(7)

(2.1) 0 ^ p < r,

where A depends only on/. It is well known(8) that if /(z) satisfies (2.1) it

has boundary values almost everywhere on |z| =r, and that the boundary

function belongs to Lp. We complete the definition of Hp(r) by defining the

norm of/(z) by the relation

/ 1    c 2ir \ 1/p

11/11 = {2xJo   \f(re")\*d8j .

We introduce, to save repetition, the following

Definition. A sequence }/n(z)} of functions analytic in \z\ <r and belong-

ing to some class Hp(r) (Af^ptik 00) has Property T in \ z\ <r if every function

/(z) analytic in \z\ <r and continuous in \z\ ^r can be expanded in a unique

series of the form

00

(2.2) /(z) = D c„/„(z),
n=l

the series converging uniformly in every circle |z| ^r'<r. If furthermore the

series in (2.2) converges uniformly in \z\ ^r, the sequence has Property Tx.

The sequence (1, z, z2, • • ■ ) is an obvious example of a sequence having

Property TM in any circle.

Applied to the spaces Hp(r), Theorem 1.1 yields

Theorem 2.1. Let j/n(z)} and {g„(z)} be two sequences of elements of Hp(r)<

such that for some numbers p and X (l^p^ », 0<X<1), and for all sets of

complex numbers a\, a2, ■ ■ ■ , at?

(6) Banach [21, p. 56]. The result remains valid for complex linear spaces: see Bohnenblust

and Sobczyk [23].

(') Expressions involving p are to be interpreted according to the usual conventions when

p= m ; that is, as the limits as p—>x of the corresponding expressions for finite p.

(*) See, e.g., Zygmund [31, p. 162].
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{ j " I E an\jn(re») - gn(re«)] *dO^

U2x I   JV IP     \ l/j>
[ £ anfn{re*) | J»J .

Then,in \z\ <r, |g„} has Property T if {/„} has Property T; if (2.3) is satisfied

with p= «>, {gn} has Property T„ if {/„} A<zs Property T„. Moreover, if the

expansion of f(z) in terms of \gn(z)} has the form

00

(2.4) f(z)  = Y0ngn(z),
n=l

/Zte coefficients cn have the property

U2r I    oo p     \  1/p 1        f    /* 2,r 1 i/p

The direct deduction from Theorem 1.1 is that the series in (2.4) con-

verges to/(z) in the topology of Hp(r). In case p = », this is the desired con-

clusion. Otherwise, if \z\ ^s<r we have

/(z) - £ Cng«(s) ^ f      ifM ~ Z
dw

W — 0

an application of Holder's inequality shows that

lim
jv—»

/(z) - Z) c„g„(z) = 0,

uniformly in \z\ 5=s.

We shall use Theorem 2.1 most frequently in the special case when

fn(z) =zn~1. It then becomes

Theorem 2.2. The sequence {gn(z)} has Property T in \z\ <r if, for all sets

of complex numbers a0, ax, ■ ■ ■ , aN,

(2.6)

U.2x|   JV ]p \
I^h''"1 - gn(reie)]\ dd\

0     ! n=0 J

Hp

t   p 2t I   JV vp    -j 1/f

Ml      Z ö„r"ein» dd\

where p and X satisfy l^p= <», 0 <X <\. If (2.6) is irwe w^A p= x>, the se-

quence has Property Tx.

From Theorem 2.2 we can deduce in a few lines the following generaliza-

tion of expansion theorems of G. D. Birkhoff [l] and J. L. Walsh [17].
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Theorem 2.3. If the functions gn(z) are analytic in \z\ <r, continuous in

\z\ i£ r, and satisfy

(2.7) ?»(z) < 1, z \ = r,

the series converging uniformly, then the set {gn(z)} has Property Tx in every

circle \z\ <s = r.

In Birkhoff's theorem, (2.7) is replaced by

(2.8) ?»(Z) < 1,

this condition implies (2.7), by Cauchy's inequality. In Walsh's theorem (2.7)

holds, and in addition the series in (2.8) is assumed to converge.

We apply the case p=<*> of Theorem 2.2. The sum of the series in (2.7)

is continuous on \z\ =s, when s^r, and so has a maximum X2<1. We have,

with z = ei9,

max £a„[g„(z) - z"]

/   N \l/2 /   N \

^ ( El a»|2*2")     max ( £ s"2" | g„(z) - z»|2)

/ J     /■ 2i 1   Jf \ 1/2

^ X(— E««z"  *M )

^ X max   E a"Zn
oses2x „_o

This establishes (2.6) with p = co, and Theorem 2.3 follows.

In this section we have applied part (ii) of Theorem 1.1. The weaker

part (i) would yield a weak form of Property T with the uniformly convergent

series replaced by a uniformly convergent sequence of linear combinations.

3. Criteria for the existence of expansion theorems. From now on, we

shall use Theorem 2.2 exclusively in the case p = 2, which is the case in which

criteria for the validity of (2.6) are most easily set up. Our functions gn(z)

will, in this section, be of the form

(3.1)

where

(3.2)

gn(z) = z«[l + hn(z))

(n) k

h„(z) = E 7t z
*=i

(n = 0, 1, 2, • ■ • ),

(I z| < r0).
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We assume to begin with that the hn(z) have a common majorant h(z); that is,

that

(n) I

Jk        = Ok (k = 1, 2, • • • ; n = 0, 1, 2, • • • ),

where h(z) =52t=i°kZk (\z \ <r0). This restriction will be considerably relaxed

in §4. We introduce the quantity K„ by the definition

(3.3) K.
1    /•'',„    i.   ,! A    2 2*

= — I     I h(pe )\dd = £ Oys
27T »/ 0

(p < ra).

Theorem 3.1. The functions gn{z) have Property T in any circle \ z\ <s pro-

vided that one of the following conditions is satisfied:

(3.4)

(3.5)

h(s) < 1,

5 < SUp

We have to verify (2.6) with p = 2,r = s, for an arbitrary set (ao, a%,

We write

n = 0, 1, • • • , N,
an =

[0,        n > N;

00 TO

Hz) = 52 I < I Mz) = £ I a» I **•

Then condition (2.6) takes the form

(3.6)
2-7T «7 n a_fl2tt •/ o    i *=o

00

<p(r) can be rewritten as follows.

eineh„.(reie)

(3.7)

1     I ^-v     ,   n tnS ^     (n) ft i

$(r) = — I \l_lalre   2^ Y* r e
2w J o I n=0 *=1

1     /» 21 I   oo m—1
I x-^    to im?   Tr—. (m)

= — I \L^re   2^ a" y™-n
2tT J o I m=l 7i=0

(»)= 52r   52 a»
m=l n=0

In the first place, we evidently have
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(3.8) $(r) ^ Zr2m\ £ | «„' | om_,A
m=l ' n=0 I

If we retrace the steps in (3.7), we then find

[November

^ 2 TT j    oo 00

$(r) ^ — I       £ I a„' I r V9 £ 5*»"*«

= — f    I h{rei6)MreiS) \2d6

1  r2x
^ {a(0}2—        I t{rei6) \2d6

2ir J o

00

= {aw}2£| o.' |v2«.

Thus if h{r) <1, (3.6) is satisfied; this proves Theorem 3.1 under condition

(3.4).
We now observe that the expression

m- 1

n-=0

which occurs on the right of (3.8) is the coefficient of zm in the power series of

\pm^\{z)h(z), and consequently can be written as

Hence its square does not exceed

1    1   r2T , ,      1 C2r

h{z)^m-i(z)

7m+l
dz (I z I = p < r0).

2ir J n
Ä(pei9) |stf0 — f

p2m 2tt^ o

From (3.8) we now obtain, if r<p,

K m~l

P      n—0

oo    / ^ \ 2m m—l

m-l \ P / n=0

oo co    / y \2m y2 co

= *P£| a.' |2r2»£(-)   = --E| a.' |V.

Then (3.6) is satisfied if we can choose p so that K2r2/'{p2 — r2) < 1, or so that

p2

r2 <
K*,+ 1
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This shows that the relation (3.6) is satisfied if r=s and s satisfies inequality

(3.5).
In earlier theorems of the same type as Theorem 3.1, the conditions have

restricted the coefficients 8k of the function A(z) majorizing the hn(z); here

we restrict only the behavior of h(z) in the large(9). Two less precise known

theorems can be deduced as corollaries of Theorem 3.1.

Theorem 3.2 (10). If \hn(z) \ ^M(p) (n = 0,1, 2, ■ • • ; \ z\ ^ p), then the func-

tions g„(z) have Property T in \z\ <s if

n

(3.9) 5 < sup
0=Sp<r„ M(p) + 1

In fact, Cauchy's inequalities for derivatives yield, for 0<p<r0,

I yl"' I ̂  M(p)p~" (n = 0, 1, 2, • • • ; k = 1, 2, • • • ).

Consequently, if p<r0, we can take 5* = M(p)p~k (fe = 1, 2, • • • ); we then

have h(r) =rM{p)/{p—r), and h[f) <1 if r <p/ [M(p) +1 ]. If we choose p in

the most favorable way, Theorem 3.2 follows from Theorem 3.1.

Theorem 3.3(u). If

(3.10) L„ =   sup   5kpk (p < r0),
lg/c<»

the functions g„(z) have Property T in \z\ <s if

P
(3.H) s <   sup -—— ■

OS»<r0 Lf, + 1

We have

8* =s p-*LP;

h(r)^LPZ[-) (r<p)
71=1   \ p /

r
= £. -;

p - r

hence A(s)<l if s satisfies (3.11). The conclusion follows from Theorem 3.1.

For use in §5, we note the following property of the coefficients in the ex-

pansion whose existence is established by Theorems 3.1 and 3.2. If /(z) has

the expansion

(9) However, Theorem 3.1 (even as generalized in §4) does not seem to include Theorem III

of G. S. Ketchum [4].

(10) Narumi [7],Takenaka [IS], G. S. Ketchum [4].

(") Graesser [2]. See also G. S. Ketchum [4, p. 215, footnote].
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00

f(Z) =  £ C„g„(z), I Z I   < 5,

there is a number A(s), not depending on/(z), such that

oo /» 2tt

(3.12) El g       I |/(^i9)|2^e.

This follows from the last part of Theorem 2.1.

4. Improvement of the criteria. The conditions established in §3 can be

generalized by restricting the hn(z) only for large n. The generalized condi-

tions occur in part in the literature, and in part are new. It turns out that

only the behavior of the hn{z) for large n is relevant to the existence of ex-

pansions of the type which we consider, as the following lemma shows.

Lemma. Suppose that gn{z) and g*{z) are analytic in \z\ <r0, and

gn(z) =g*(z) for n>N. If {gn(z)} has Property T in \z\ <si<r0, and {g*(z)}

has Property T in every circle |z| <s*^s2, where ra^s2>si, then jg„(z)} has

Property T in \z\ <s2.

Let F(z) be an arbitrary function analytic in |z| <s2 and continuous in

I z| ^s2, and let

(4.1) F(z) = £ cngn(z),
n—0

where the series converges uniformly in any circle \z\ &s{ <Si. Define a func-

tion G(z) by the relation

00 00

(4.2) G(z) = F{z) - £ cngn(z) = £ cngn(z) = £ cng*(z).

n—0 n—AT+1 n—JV+l

Now G(z) has a unique expansion of the form

00

(4.3) G(z) = E^„g„*(z),

the series converging uniformly in |z| =^s2 <s2. By comparison with (4.2), we

see that dn = 0 (w = 0, 1, 2, • • • , TV). Hence the series in (4.1) converges uni-

formly in I z| =s2 , and necessarily converges to F(z). Since s2 is any number

less than s2, the proof is complete.

We now suppose, as in §3, that g„(z) =zn[l+A„(z)], where

An(z) = £ 7*" z (» = 0, 1, 2, • • • ).

We suppose further that
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7*"'I ^ oln) (k = 1, 2, • ■ • ; n = 0, 1, 2, • • • ):

where the series

Hn(z) m £ 5»*Y (n = 0, 1, 2, • • • )

converge in |z| <r0. We introduce, for p<r0, the quantities

2 A    An)   L 2 (») <„) ft
#P,n =  iL (5*   P )   > £p      =    SUP    5*   P I

*=1 1S*<»

and we then set

(n)
üTp = lim sup iTp.n,      Lp = lim supLp  ,        h(r) = lim sup Fn(r)

(4.4) n—»oo K—>oo 71—

(0 < r < r0).

Then we can state

Theorem 4.1. The functions g„(z) Aa»e Property T a«y cirde | z| <s pro-

vided that s satisfies one of the following three conditions if3-):

(4.5) h(s) < 1,

P
(4.6) s < sup

0£,<r. (A-2 + 1) l/s

(4.7) ^ <  sup —— •
0£»<n lp + 1

Theorem 4.1 states that Theorems 3.1 and 3.3 remain valid when Kp, L„,

and h(r) are defined by (4.4). The theorem follows at once from the lemma,

with g *(z) =z" for n<N, where N is chosen sufficiently large. It is only neces-

sary to verify that the functions g„(z) have Property T in some circle | z| <Si.

An application of Theorem 3.1 shows at once that this is true, with (for ex-

ample) Si such that

sup Hn(si) < 1.
os»i<»

Alternatively, we may suppose that, for w = 0, 1, 2, • • ■ ,

I K{z) ] % Mn(p)

and that

(4.8) M(p) = lim sup Mn{r)
n—>x

is finite. Then we can state

(12) For the theorem under (4.7), see G. S. Ketchum [4].
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Theorem 4.2(13). The conclusion of Theorem 3.2 holds if the quantity M(p)

in (3.9) is defined by (4.8).

Expansions in terms of functions g„(z), analytic in |z| <r0, are particu-

larly interesting if the expansion of every/(z) which is analytic in | z| <s con-

verges in every circle |z| sSs'<s (where naturally s^r0). This property

(which we may call Property U) is possessed, of course, by the functions z".

Using the theorems of this section, we can easily obtain the following suffi-

cient conditions for a set g„(z) to have Property U:

(4.9) h(rQ) < I,

(4.10) Lr,= 0,

(4.11) M(r0) = 0,

where h(r0), Lra, and M(r0) denote the limits of the respective functions of r

(defined in (4.4) and (4.8)) as r—>r0. Condition (4.11) shows, for example,

that if

(4.12) A„(z) = o(l), »-*<»,

uniformly with respect to z in each circle |z| —r' <r0, then the set |g„(z)}

= {z" [l + hn(z) ]} has Property U. This result was obtained by Sheffer and

by Takahashi(14); it generalizes a result of Widder [20 ], in which the condi-

tion hn(z) =0(1/«) appears instead of (4.12). Condition (4.9) will sometimes

establish Property U when (4.12) is not satisfied. For example, if

00

«n(z)  =  Zu °*   Z >

and

we have

rS —- (n = 0, 1, • • • ; k = 1, 2, ■ • • ),
k(k + 1)

1 - z
h(z) = 1-log (1 - z)

Zk k(k + l)

and Ä(r)<l if r<l. In this case the corresponding functions gn(z) have Prop-

erty U in |z| <1, although neither (4.10), (4.11), nor (4.12) is necessarily

satisfied.

5. Further generalizations. In Theorems 4.1 and 4.2 we made restrictions

on the individual coefficients in the power series of the functions A„(z). In

this section a method will be developed for replacing such restrictions by re-

(13) Takenaka [IS], G. S. Ketchum [4].

(14) Sheffer [10, pp. 588, 597], Takahashi [13]. Cf. G. S. Ketchum [4, p. 215].
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strictions on linear combinations of the coefficients. The results obtained

(which could evidently be generalized still further) overlap those of G. S.

Ketchum [4], who first obtained such results.

Suppose that L is a one-to-one linear operation from H2(r) to H2(r) (so

that L has a linear inverse). If the set of functions G„(z) = L[gn(z) ] is a base,

and/(z) is an arbitrary element of Hi(r), we have a unique expansion

L[j{z)\ = E^„(Z);

since Z/-1 is continuous, we have

/(z) = Z angn(z);

if we also have

then

/(Z)  =   Z b„gn(z),

L[f(z)} = EWJ.OO,

and an = bn (w = 0, 1, 2, • • • ). The convergence is convergence in the topology

of H2(r); this, as we have seen, implies uniform convergence in every circle

I z| = r' <r. Hence an expansion theorem for the functions L [g„(z) ] gives rise

to an expansion theorem for the g„(z) themselves. A trivial, but not unim-

portant, illustration is given by the operator L which transforms g„(z) into

<r(z)g„(z), where <r(z) is analytic and bounded in \z\ ^r, <r(0) = 1, and cr(z) 9^0

in I z| =>.
We now discuss a case which is not entirely covered by the procedure just

outlined; it includes some of the results of G. S. Ketchum mentioned above.

For simplicity we consider only the special case when the coefficients of the

functions hn(z) are combined two at a time. Let {kv\ {v = \,2, ■ ■ ■ ) be a se-

quence of complex numbers such that

lim sup I kv l11" = 1,
V—»oo

so that A(z) =5lT°kyz' is analytic in |z| <1. If

CO

/(z) = Z brz", I z I < r,

we define

(5.1)        F(z) == L[f] =/(z) + Z k^-iz" = Z (*, + W>v-i)z>.     (b-i = 0)
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By Hadamard's multiplication theorem(lB), F{z) has no singularities inside

the circle \z\ <r. We have the representation

(5.2) F(z) = /(#)-X— f A(z/w)f(w)dw (| z | < r> < r)
2iri J c

where C is the circle [ w\ =r' <r.

Let us now consider the expansion of a given analytic function /(z) in

terms of a set of functions

gn(z) = s"[l + *.(«)],

with hn(z) analytic in |z| <r and hn(0)=0. We introduce the functions

(5.3) F(z)=L[f],      Gn(z) = L[gn];

it is clear that we have G„(z) =zn[l-4-iIn(z)], where the Hn{z) are analytic

in \z\ <r and il„(0)=0. (It is not in general true that Gn(z) e H2(r) if

gn{z) e Hi{r)). Let us suppose that the G„(z) satisfy one of the conditions

of Theorems 4.1 and 4.2, so that we have in |z| <r a. unique expansion

00

F(z) = X c„G„(z)
n=0

converging uniformly in any circle |z| ^s<r, with

oo p 1r

n-0 -7 0

the last relation follows from the remark made at the end of §3. From (5.2)

and (5.3) we then have

(5.4) /(z)-f A(z/w)f(w)dw = zZcn\gn(z) - — f A(z/w)gn(w)dw\ ,
2-Kl J c n=0      1 2lTl J c J

the series converging in |z| <r, uniformly in |z[ —s<r. If s is temporarily

fixed, and we take p so that s<p<r, the series El c»12P2n is convergent, and

the functions w~ngn(w) are uniformly bounded on \w\ =s. It follows, by an

application of Cauchy's inequality, that the series £c«g»(w) is uniformly (and

absolutely) convergent on \w\ =s and so in |w| ^s. Since the series on the

right of (5.4) is uniformly convergent in any circle |z| -—s<r, we have

/(z) - E cngn(z) - — f A(z/w)if(w) - E cngn(w)\dw m 0

in \z\ <r, both series being uniformly convergent in any circle |z| ^s<r.

That is, the function f*(z) defined by

O6) See, e.g., Dienes [24, p. 346].
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/*(z) = /(*) - Z Cngn(z) = E b*z-> (i*, - 0)
n—0 v=0

is analytic in |z| <f, and we have L[/*(z)]=-0 in |z| <r. From (5.1) we see

that this means that

b* + = 0 (k = 0, 1, 2, • • • ),

and hence that b? = 0 {v = 0, 1, 2, • ■ • ). That is,

00

/(*)  = E C„g„(z),
7.-0

the series converging uniformly in any circle | z| <r. We sum up our con-

clusions in a formal theorem.

Theorem 5.1. If the functions Gn(z) =L[g„(z)], where L is defined by (5.1),

satisfy the conditions of Theorem 4.1 or Theorem 4.2, and 5 is defined as in those

theorems, the functions gn(z) have Property T in \z\ <s.

For example, if the numbers kv satisfy

lim sup I h\if' ^ 1;
V—* oo

if

hn(z) = E UV0»' (I 2 I < r0),
■HI

! Y»" + *n+»7p-i I IS ft (« = 0, 1, ■ • • ; v = 1, 2, • • • ),
oo

*(») = E&2" (I »|  < 'o),
Ml

and h(s)<l, then the functions z" [l+An(z) ] have Property T in |z| <s.

It is clear that linear operations other than that defined in (5.1) could also

be used.

6. Special expansion theorems.

Theorem 6.1. If 4>{z) is an analytic function whose Maclaurin series has

positive coefficients (l&), and radius of convergence R (R^ °°), if <p(0) = 1, and if

the complex numbers <x„ satisfy

(6.1) lim sup I an | ±£ 1, sup   | an | < R/(j>~~1(2),
71—>« 0^7i<oo

the functions

(6.2) zn<t>(anz) (n = 0, 1, 2, ■ • • )

have Property T in any circle \ z\ ^s <4>~l(2).

(16) That is, <t>(z) is absolutely monotonic on the segment (0, R) of the real axis.
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Here we have hn(z) = <b(anz) — 1; and, in the notation of §4,

Bu(r) = cA( I an I r) - 1,       h(r) = <j>(r) - 1,

and h(r)<l if <p{r) <2.

In particular, we may have(17) cp(z)=ez.

Various modifications of the situation considered in Theorem 6.1 are pos-

sible. We shall discuss three which have interesting applications.

Theorem 6.2. The functions g„(z) defined by

£o(z) = 1,

gn(z) = z"-1 ■
an — pn

(|«*|,JM,   I ßn I  =  1,  «n 7* ßn-,  « =  1, 2, • ■ • )

have Property T in the circle \z\ <r if r <log 2.

It is easy to show that we may take h(r) =er—1 in this case. For details,

the reader is referred to the author's note [22] where Theorem 6.2 is applied

to show that an entire function of exponential type less than log 2 has an

infinite number of derivatives which are Univalent in the unit circle, unless

it is a polynomial.

For the next two theorems, it is necessary to go back to Theorem 2.2.

Theorem 6.3. The functions gn(z) defined by

g2„(z) = z2"e«"z (| a I ^ 1),

g2n+i(z) = z2n+1,

have Property T in any circle |z| <r<0.780.

We note that log 2 = 0.693,7r/4 = 0.785. We thus have more than Theorem

6.1 would establish, but still less than the result which may be conjec-

tured(18), that Theorem 6.1 holds, when <p(z) = ez, for 5<7r/4.

By Theorem 2.2, Theorem 6.3 will follow if we show that for every se-

quence \an} of complex numbers and for every N

1     /» 2t j   N N

(6.3) Z an[gn(reiB) - r"eine] H6 = X(r) £ | r < 0.780,
2x J 0      I n=0 n-0

with X(r)<l. The left-hand side, by the reasoning of Theorem 3.1, does not

exceed

(") The corresponding theorem, with region of convergence |z| <l/e, was given by Ta-

kenaka [IS]. See also footnote 2.

(IS) See footnote 21.
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1     r> 2r [iV/2]

— |e*-l|2 2>2„z2"
2ir J o n-o

2

,20 (z = re<9)

-rf
1     /» T/2 1      /» «72

= -    I *(*)(«■ - i)   + -    !       - i)

e* - l H vHz) |2de
0

1    rW2 1 rW2

since |^(z) | is periodic in 6 with period it. Thus the left side of (6.3) does not

exceed

— i(er - l)2 +   max     | e~' - 1121 f    | ^(z) \2dd

\ r \ [/v/2]

= —\(er-iy+    max     | er* - 1 |2} £ I «2„ I2*-4".

We have

I e~z — 112 = e~2r cos 9 — 2e-r 003 9 cos (r sin 6) + 1

= e-2r cos « _L. 1  _ 2g-'' c°s 9 cos r

=

say. Now

A'(0) = 2r sin 0 e~T 008 '(e~r coa 9 - cos r),

and vanishes only when 0 = 0 or when cos 0 = (1/r) log cos (1/r). In the latter

case, exp ( — r cos 6) =cos r, and

,4(0) = 1 - cos2 r < 2(1 - cos r) = 4(J?r).

Consequently A (8) assumes its maximum when 0 = 0 or 6= For r = 0.780,

we find that A(0) <^4(57r). In fact, this inequality is

e~2r — 2e~r + 1 < 2(1 - cos r) + 2e~r cos r - 2e~,

which is equivalent to

1 + e~r > 2 cos r,

which is satisfied for r = 0.780. Hence

A(ff) S A{\t) = 2(1 - cos r),

and the left side of (6.3) does not exceed

{(T- 1)2 + 2(1 - cos r)} E| an|2r2»;

the brace is less than 2 when r = 0.780. This completes the proof of Theorem

6.3.
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Theorem 6.4. // r <log 2, and the complex numbers ßn are such that

00

(6.4) zZ\ ßn\2r~2n < 2e* - e2r,

the functions gn(z) defined by

(6.5) gn(z) = zne"»* - ßn

have Property T in \z\ <r.

(|«n|  = 1)

To apply Theorem 2.2, we need to show that if h„(z) =e"n*— 1, then for

all {a„} and N,

(6.6)       ^- f 2' I Z an[z»hn(z) - ßn] \2d0 = X(r)Z I an | V" (z = re"),
2lT J o     I n=0 n-0

with X(r)<l, when r and {ft} satisfy (6.4).

The left side of (6.6) may be written in the form

— I      Z anznhn(z) - Z Mo ^ö
2t J q     I n=o n=0

1     /• 2x I   iV 2 1     /* 2t     f   ^ N \

= — I      Z <*nZHhn(z)  dd-j    9t< Z ö„z"ä„(z) Z ämp\»><#
2x «/ 0      I n-0 TT J 0 \ n-0 m—0 '

I   iV 2

+    Z dnßn
I n-0

= "Si — St + Sz-

Now, by the proof of Theorem 3.1,

(6.7)

and

Si = (e' - 1)2Z| a„|2r2";

(6.8)        S3^('£\an\r»\ßn\r-"Y= Z I    |2'2nZ I ß
\ n—0 / n=0 n=0

by Cauchy's inequality. Finally,

/ 1    /. 2t   n n gz\

Si = 2dt \ — I     Z ö„z»Än(z) Z «,nft, — r = o,
\2t J o    »=o m=o       iz;

since hn(0) =0. Combining this with (6.7) and (6.8), we have

— f 2T I Z a„[z"hn(z) - ßn] 2dB = Ue* - l)2 + Z I ft |2<-2"} Z I <*« I2'2"-
2x J o     I n-0 ( n=0 / n-0
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Thus by Theorem 2.2 the system (6.5) has Property T if the brace in the last

inequality is less than one. This will clearly be true if (6.4) is satisfied.

7. Applications. We now use the theorems of §6 to prove theorems con-

cerning the values taken by derivatives of entire functions of order one and

exponential type. We need the following lemma.

Lemma(19). If f(z) is an entire function of exponential type k, it has the

representation

(7.1) f(z) = I e™F(w)dw,
J c

where C is any circle \ z\ =k'>k, and F(w) is analytic outside \z\

It follows that

(7.2) fin)(z) = I wne™F(w)dw (n = 1, 2, • • • ).
J c

If now the functions g„(w) have property T in \ w\ =k', we can expand the

function ezw in terms of them, substitute in (7.1), and integrate term by

term(20). We thus obtain an expansion of the form

(7.3) f(z) = f>„(z) f gn(w)F(w)d

We can now establish the following theorems.

Theorem 7.1. If f{z) is an entire function of exponential type k <log 2, and

*//(0) = l» |«n| =1> and r<k, the inequality

00

(7.4) zZ\ /<n)(«n) |V-2" ^ 2er - e2r
n— 0

is valid.

If (7.4) is not true, Theorem 6.4 applies, with ßn =/(n)(«»), and (7.3) has

the form

/(«) = E cn(z) {/<-)(«,) - fV(0)| = o,

which is impossible since /(0) = 1.

As a corollary we obtain the following theorem of S. Takenaka [29].

Theorem 7.2. If f(z) is an entire function of exponential type k<\og 2,

and(il) \an\ 21, then

(19) See P61ya [27, pp. 580 ff.].

(s») Cf. Whittaker [30, p. 67], Gelfond [25].
(21) Or even if lim sup |an\ gl.

IV.
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(7.5) /l"»W =0 (» = 0, 1, 2, • • • )

implies /(z) =0.

For, if/(0) 5^0, we consider/(z)//(0), to which Theorem 7.1 applies, since

the left side of (7.4) is zero if (7.5) is satisfied. If /(0) =0, while /(z0)^0 for

some z0 in |z| <1, we apply Theorem 7.1 to the function [/(z0)—/(z)]//(z0),

taking a0=Zo.

From Theorem 6.3, we obtain

Theorem 7.3. Iff(z) is an entire function of exponential type k < 0.780, and

\an\ ^ 1, then the conditions

/(2„+i,(0) m /(*»)(>„) = 0 (n = 0, 1, 2, • • • )

imply thatf{z) = 0.

This is more than follows from Theorem 7.2, but less than would follow

if Theorem 7.2 were proved to be true with &<7r/4, as has been conjec-

tured (22).

Analogous theorems concerning functions analytic in a finite circle(23) can

be proved by developing (w — z)_1, as a function of w, in terms of (for example)

(1 — anw)n

and substituting the expansion into Cauchy's integral formula.
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