
ON FINITELY MEAN VALENT FUNCTIONS. II

BY

D. C. SPENCER

1. We suppose/(z) is regular in |z| <1 and denote by W the Riemann

domain which is the transform of |z| <1 by/. We shall say that/(z) has

valency p if /(z) takes no value w more than p times. More generally, let

W(R) be the area (regions covered multiply being counted multiply) of that

portion of W which lies in the circle \ w\ ^R; then, if

(1.1) W(R) g pirR2

for all R>0, where p is a positive number (not necessarily integral), we shall

say that/(z) is p mean valent (p.m.v.)(1). This paper is a sequel to one of the

same title to appear shortly in the Proceedings of the London Mathematical

Society(2) in which I have shown that many of the known theorems concern-

ing p-valent functions may be extended to the wider class of p.m.v. functions.

I discuss here the behavior of p.m.v. functions on paths tending to points

on the circumference | z| =1.

The theorems which I discuss here remain true under hypotheses some-

what less restrictive than the one stated above. For example, the hypothesis

that W(R) ^pwR2 only for R^RQ>0 would suffice (constants now depending

on Ro as well as p). Furthermore, slightly less precise versions of the theorems

(with p replaced by p + e) could be stated subject to the still weaker condition

that
W(R)

lim sup-S p.
ß->» irR2

Certain theorems(3) proved elsewhere, however, require the full strength of

(1.1) for all R>0, and for this reason I have not introduced a new definition

here.

2. We begin by expressing the inequality (1.1) in a form more convenient

for our purpose. Let n(r, w) be the number of times (necessarily bounded by

a constant depending on r) that/(z) takes on the value w in | z| <r; and let us

take

Presented to the Society, April 27, 1940; received by the editors October 13, 1939, and, in

expanded form, April 4, 1940.

(*) This definition was suggested to me by Professor J. E. Littlewood, to whom I am also

indebted for advice in the preparation of the paper.

(2) This paper will be referred to as Vi.

(3) For example, Theorem 1 of Vi. The complication of an additional parameter Ro is

avoided thereby as well.
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1
(2.1) p(r,R)=—\   »(r, Re**)d*,

(2.2) p(R) = p(l, R) = lim p(r, R).
r->l

Since p(r, R) is an increasing function of r, p{R) exists (but may be infinite).

We have

/»   R      /» TI   n(r, Rei*)RdRdV
o   J -I

= f  ( lim — f  n(r, Re**)dV) d(wR2)

=  f %(R)d(,rR»).
o

Hence the hypothesis (1.1) may be expressed in the form

/> R
p(R)d(TrR2) ^ pwR2 (R > 0).

0

3. We shall make frequent use of the following lemma:

Lemma 1. Suppose Si^s2. Then the hypothesis

(3.1) f Rlp{R)d{Rl)     PR\X (Ri>0)

<J o

implies

(3.2) f Rlp(R)d(R!) ^ pR{

J 0

but not conversely.

(Ri > 0),

Making some trivial transformations of variable, we see it is enough to

show that, if s ä; 1,

(3.3) f lpl(R)d(R) ^ pR\ {Rx > 0)

implies

(3.4) f Rlpi(R)dR g pRi (Ri>0),

J o

where px{R) =p(R1,3i), but that (3.4) does not imply (3.3).
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Integrating by parts, we have (dropping subscripts)

p{R)dR= I p{R)R>-iRi-°dR
o <J o

= ^R1-' J p(R) ■R'-1dR^
o

+ (s - 1) J pWR'-idRj-R-'dR

1 (5-1)
g — pRi -\-/.Äi

= P(Ri)

by (3.3).
On the other hand, the converse implication is false. In fact, take

it,    2?1 g R < 2ft, ß - i, 2, * • •
(3.5) tfÄ) - { '       1 .

1.0, otherwise;

and write i?i = w + 0, where n is an integer and 0^#<1. Then

f0,      «even,/, Äl [n/2] /Q
*(2?)<*Ä = £ {(2M- 1) - 2M} + <» '

0 M-l « odd,

\n, n even,

[£(« - 1) + 6,      n odd,

Hence (3.4) is satisfied with p = \. But

V p{R)d(R>) = f " ' = £ {(2m)s - (2/x - l)s}
J 0 J 0 ,i=l

= K2f)s + M*)-1 + 0(r'-2) > \{2v)\

if s>l and »^^(s). Thus, if s>l, (3.3) is false for Ri = 2v, v>v0. We have

shown that the converse of the lemma is false for some function p(R), but

not for a p(R) corresponding to an actual Riemann domain. However, the

p(R) of the schlicht function which maps the unit circle on the domain shown

in Fig. 1 differs as little as we please from the choice (3.5), and for it, there-

fore, the converse of the lemma is false.

4. Lemma 1 shows that the hypothesis

(s) f  1p(R)d(Ra) g pR\ (R, > 0)
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is the stronger the larger s is. For the sake of completeness I include the fol-

lowing two theorems (but they may be omitted by the reader if he so desires;

they have no bearing on the rest of the theory).

Fig. 1

Theorem 1. If (s) is true for all s>0, and p(R) corresponds to a Riemann

domain W(4), then p(R)^p.

Theorem 2. If

f{z) = <*iz + a2z2 + • • •

is mean p-valent, so is the (generally algebraic^)) function [f(zk)}llk. On the

other hand, if k > 1, the mean p-valency of the function

fk{z) = a& + ak+rzk+l + an+iz2k+1 H-

does not imply that of the function (of form fi)

{fk(zllk) } k = akz + kak-iak+1z2 + ■ ■ ■ .

Hfk(z) is £-valent, then so is {fk(zllk)}k. This result and its converse are

well known when the functions are £-valent(6).

We take Theorem 1 first, and note that if for a given value of R, R0 say,

p(Ra) = p(\, Ro) > p,

then, since p(r, R0)^>p(Ro) as r—*1, there exists a 5>0 and r0 = r0(8) <1 such

that, for r>r0,

0) The theorem is false if this clause is omitted (and is therefore not trivial).

(6) {/(z*) j1'* has branch points at the zeros of/ other than the origin. In the neighborhood

of the origin, however,
f., *, il/* Ilk     .   ,. ...  l/i-l     k+l .
\f(z )}     = o, z + (1/&K    a2z    + ■ ■ ■ .

If / is mean 1-valent, then / has at most one zero (by the definition of mean 1-valency), and in

this case, therefore, {/(z*) }llh is regular in |s| <1 (and so of the form/*).

(6) See V,.
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(4.1) p(r,R0)>p + d.

We show that this cannot happen.

Suppose it does. Then in the first place p(r, R) is discontinuous at R = R0,

qua function of R, for each fixed r>ro. For if it were continuous we should

have(7)

lim — I    p(r,R)d(Rs) = lim   I   p(r, xR0)d(x°) = p(r, R0),
s—>w Rq J 0 s—♦»   J 0

which is incompatible with the combination (4.1) and (s) for R = R0.

Now let B(r) be the transform of the circumference | z\ =r by/(z) (B(r) is

the boundary of W{r)). Then B(r) is an analytic curve, and crosses the cir-

cumference \w\ =R0 a finite (even) number of times if it crosses it at all.

If B(r) does not meet \ w\ =Rt>, or meets it only in points, then it is obvious

that p(r, R) is continuous at R0. Hence the intersection of B(r) with | w\ =R0

contains one or more intervals if r>ro- These intervals depend upon r, but

by (4.1) the intervals corresponding to any r>r0 have positive total length.

It follows that if r >r0 the plane measure of B(r) is positive, and so the length

(or linear measure) of B{r) is infinite. This is a contradiction of the regularity

of/(z) in (zI <l,and proves Theorem 1.

Next, to prove the first part of Theorem 2, let p(R), pk{R) correspond

respectively to/(z), \f{zk)}11 h. Then

pk(R) = p(RX).

In fact, {/(z)}1'* (or branch thereof) maps |z| <1 cut along a radius from 0

to 1 on a surface 5 with function (l/k)p(Rk); hence {f(zk)}llk (which maps

|z| <1 on 5 covered &-times) has for function

k-(l/k)p(Rk) = p(Rk).

Finally

f lpk(R)d(wR2) = f 1 p{Rk)d{irR2) = f 1p(R)d(TrR2ik) ̂ pwR2,

by the mean ^-valency of / and Lemma 1. This proves the first half of the

theorem.

As for the second half, let pi(R), pk(R) correspond respectively to /i

= {h(z"k)}k,fk(z). Then

p^R) = pk(W'k).

An argument similar to that given above to prove the negative part of Lem-

ma 1 now shows that there exist mean £>-valent functions fk and arbitrarily

large Ri for which

(7) Since x" increases practically from 0 to 1 in an arbitrarily small neighborhood of x — 1

when 5 is large.
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P^RWtR*) =       pk(Rl'k)d(irR2) = pt(R)d(xRtk) > prR\,
o Jo Jo

if k>l. If, however, pk(R) gp, then pi(R) gp, and in this case (in particular

if fk is p-valent) /i is mean p-valent.

5. After these preliminaries we now study the rate of growth of mean

p-valent functions. The method depends on the distortion theory of Ahl-

fors(8), a theory which has already been applied by Cartwright(9) to obtain

an upper bound of M(r, /) (the maximum modulus of /(z) on |z| =r) for

p-valent functions. By K(a, /?,•••) we denote a positive number depending

on the parameters shown explicitly. If it is clear on what parameters K de-

pends, as often happens, we simply write K. K's will not necessarily be the

same in different contexts.

It is convenient to suppose first that/(z) is regular for |z| gl. We write

Wo=/(0). Let C(R) be the circumference \w\ =R in the w-plane, and let

E(R) = WXC(R), the set of points common to W and C(R) (so that tnE(R)

= 2irRp(R)). Two points of E(R) are considered distinct if they corre-

spond to distinct sheets of W, even though they have the same projection

on the complex w-plane. E(R) consists of a finite set of arcs {I,(R)} (10),

(f = l, 2, • • • , A7), where N depends on R (and /). For fixed Ri let r,(Ri)

be the value of r for which B(r) (the transform of |z| = r by/) just touches

I,(Ri) (for the first time). If \ wo\ <R<Ri, at least one arc of E(R) separates

Ir(Ri) from Wo\ if more than one, let Iv{R) be the first which is met in de-

scribing a continuous curve lying in W and connecting Wo with a point of

7,(2?i). Let mIv{R)=®v(R).

Theorem 3. Suppose that 0<r<l, and that Ri>M(r0, /). Then

rBl       dR 1
(5-1} 2ir        7T7^ = log7^-+ K(n), (»= 1,2,-■■ .NW).

Jm^j) ®,(R) (1 - r^RO)2

Take Ri = M(r, /), and let 7,(r) be any one of the intervals {7„(i?i)} which

is touched by B(r) (there is at least one). Then, if r>ro, we have by Theorem

2 (with R^M{r,f), v = v(r))

(.MiTj)   dR i
(5.2) Irr x-r^glog-- + K(r«).

This formula has been proved in effect by Cartwright [3]. I omit the proof of

the more general formula (5.1) since no essentially new ideas are involved.

6. Let

(8) Ahlfors [l].

(9) Cartwright [3].

(10) C(R) may not cut B (the transform of |z| =1 and the boundary of W), in which case

each interval of E(R) is the whole of C(R), and the number of intervals is the number of sheets

cut by C(R) (zero for large R).
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fk{z) = aiz + ak+lzk+1 + • • • .

We deduce the following theorem from Theorem 3:

Theorem 4. Iffk(z) is mean p-valent and M(r,fk) is the maximum modulus

offk on the circle \z\ =r, then

(6.1) M(r,fk) g K(p, *W*](1 - r)-2"'k, ■

where

ßlp/k] = max (I       • • ' , I alp/k] | ).

Theorem 4 was stated without proof in Vi. It is known for p-valent func-

tions, the case k = 1 having been proved by Cartwright (loc. cit.); and the gen-

eral case is an easy deduction from the case k — \ when/* is p-valent(n). By

combining Theorem 4 above with Theorem 3 of Vi we obtain the following

theorem (also stated without proof in Vi):

Theorem 5. If fk(z) is mean p-valent, then

provided p>\k.

Theorem 5 for p-valent functions was proved in Vi(12). The restriction

that p>\k is necessary. In fact, if n^: 1, take

f 1
-— znk+\  if I {nk + 1) - \„ I g k/2 and X„ ̂  nk + 1,

ank+i = i v(K)112

[ 0, otherwise,

where (X,) is a rapidly increasing sequence, and take ax = 1. We suppose that

the X, satisfy the inequality

1
X - g 1 - (tt/6)1'2.
Zf, Kx,)1/2

Then/4(z) is zero only at the origin, and each point of the circle | w\ < (jr/6)in

is covered by Wk (the transform of |z| <1 by fk) once and only once. Since

the area of Wk is less than or equal to 7rXlLil /'v2' = ~k%'/'6, we see that W(R)

^7r2i?2 for R>0, so thatis mean 7r-valent. On the other hand, given any

function \p(n) tending steadily to 0 as n—> oo, we can choose the X„ such that

\an\ >\p(n)/n112 for an infinity of n. This Gegenbeispiel in modified form was

suggested to me by Professor J. E. Littlewood.

C1) For then the function /i(z)= {fk(zllk)} * is £-valent. This line of argument is not pos-

sible here (see Theorem 2).

(l2) The theorem for p-valent functions was known subject to certain restrictions on/*; in

Vi these restrictions were removed.



1940] FINITELY MEAN VALENT FUNCTIONS 425

7. We now prove Theorem 4. We define &y(p, R), the function of Theorem

3, in terms of fk(p, z), where p<l. Then we define

@,(R) = lim 0„(p, R) g lim 2rRp(p, R) = 2irRp(R),

since fk is mean p-valent. ©„(i?) is thus an integrable function of R (over any

finite interval). Now let Wk be the transform of \z\ <1 by /*. Since rotation

of Wk about the origin through an angle 2w/k transforms Wk into itself, we

see that if T0 is any "tube" of Wk extending to oo, there are (k — 1) other tubes

Z\,, (? = 1, 2, • • • , (fe-l)), each identical to TV If, therefore, ®V(R) is the width

of T, measured on C(R), we have

k

Z0,(Ä) = k®o(R) g mE{R) = 2ttP(R),

and so

2tt
@o(R) ^ —Rp(R).

k

Hence

• MM       rf£ rM(r)       1 JJJ /.logM(r) ^

p(eR)

J.™                                   p MM        l         dg /.log Mir)
- ^ &   |-= £

KM   ©v(r)(-R)           JmItJ     P(R)     R JlogM(r0)

^ k (log Af(r) - log M(r0))2

floKMMpteR)dR

since (writing ^(i?) = \/p(eR))

ab V 2 /» 6 /» &

by Schwarz's inequality. But

?(e«)rfi? =        #(J?) —

p{R2 - Ri)

by the hypothesis of mean valency p and Lemma 1 (with Si = 2, s2 = l). Sub-

stituting from (7.2) (with i?i = log M(r0), R2 = log M{r)) in (7.1) and using

(5.2) , we have

p 1
(7.3) log M{r) S -f log —-77" + K(p, k, r„) + log M(r„).

k        (1 — r)2
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Theorem 4 will follow at once from (7.3) (with r0 = i, say) if

(7.4) M(r„,/) < K{p, h, r0)u[p/4].

To prove (7.4) it is sufficient to show that the family of mean p-valent func-

tions/j; is quasi-normal of order [p/k] at most, and this follows from the defi-

nition of mean valency p and the form of fk(n). This completes the proof of

Theorem 4.

8. The full strength of the hypothesis of mean valency p is not used in

Theorem 4; all that is used is (7.2), and this in the form

'p{eR)dR g p/s + p(R2 - Rr),

where s>0, is implied by (s). The hypothesis (1) is, in fact, sufficient for the

truth of all theorems proved in this paper. Furthermore, only the properties

of IF in the neighborhood of a> are relevant. For example, if W(R) ^pxR2

only for R>R0>0, then

M(r,f) = 0(1- r)-2»,

where the constant implied in the O depends on R0, f, and p. More generally if

W(R)
(8.1) lim sup- g p,

tR

then, for every e>0,

M(r,f) = 0(1 - r)-*v~:

Moreover, if (8.1) is satisfied with p = 0, then

M(r,f) = 0(1 - r)->.

We thus obtain, in particular, the striking result that a schlicht function

which fills only an infinitesimal part of the w-plane is of infinitesimal order.

9. We shall say that a set of points in a domain D is a path P if it is a

Jordan curve. If the equation of P is

p(t) = x(t) + »>(4

where / varies from 0 to 1, and if, given e,

I P(t) - a I < e

for t0(e) <t<l, then we say a is an end of P, or that P converges to the point a.

A path in \z\ < 1 with end eie will be denoted by P(6).

(13) See Montel [5, p. 73]. The test given there for quasi-normality [p/k] is satisfied if

applied to the functions/t^1'*), which are regular in the unit circle slit along a radius, and this

implies that the family /t(z) is quasi-normal of order [p/k].
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Theorem 6. Suppose thatf(z) is p.m.v. and that Ee is a set of distinct points.

If to each point 9 of Ee there corresponds at least one path P(d) for which

(9.1) lim inf (1 - r)»<»> |/(z) | > 0,

then

(9.2) Z«W = 2#.
Eg

It is sufficient to prove the theorem for an enumerable set (0„)(14). It is

then enough to show that

n

(9.3) E«, g2#,

where a„ = a(0„) > 0. Under these circumstances there correspond toR>Ro(n,f),

n arcs IV(R), (lsSpgw), such that the transform of Iy(R) by z=f~x(w) is a

cross section(15) yr{R) of the unit circle separating the point eie* from the ori-

gin and converging to eie' as R—>oo (16). Let R„(r) be the largest R for which

7,(7?) has points in common with the circle |z| =r, and write

mI,(R) = @r(R) = lirRaAR).

Then

<-KM   dR rioSRy<r)    dR    ^ (log R^r} _ Riyrw* dR rl

*Jk      ®,(R)  ~ JKl®,(R)      JKl E„(efi) ' ß°^'MS,(es)dR

as in the proof of Theorem 4. That is to say,

Zv{eR)dR = -——-_n t ^ ^
'Kl 2TfWdR/e,(R)    ~ log 1/(1 - r)2 +

by Theorem 3,

£ J«, log R,'r) + o(log

by the hypothesis (9.1). This inequality may be written in the form

/■ R
S,(e*)«*R + o(R).

k

Summing over v from 1 to n, we obtain

(") But even a schlicht function may tend to « at a non-enumerable set of discrete

points et9.

(16) By a cross section of a domain D we mean a path lying in D (except for its end-points)

and connecting two distinct boundary points of D.

(16) That is, given c, y,(R) lies in a circle of radius « and center eiiv if R>Ra{t). The state-

ment is intuitive, and in any case is covered by familiar arguments.
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n /» R    n s* R

\RY <*> = I    £ E,(e*)dR + o(R) g I   p(e*)dR + o(R),
v=l J K    v-1 J K

since X"=iSv(iv)gp(i?),

^ pR + o(R),

by the hypothesis of mean valency p (see (7.2)). Dividing by R and letting

P—><x>, we obtain (9.3), and (since « is arbitrary) this proves the theorem.

10. Theorem 7. Supposef(z) is p.m.v. and that

(10.1) /CO = 0(1)

on some path Pi(#o). Then on any path P(0o)

(10.2) lim sup (1 - r)2» | /(z) | = 0.

We suppose there is an infinite sequence of points, (z„) say, tending to e*9"

and a number K>0 such that \f(zn) | > |/(z„_i) |, and

(10.3) |/(z„) I > K(l - rn)-*v, I z„| = r„;

we argue by reductio ad absurdum.

Suppose first that there exists an arbitrarily large R such that the trans-

form of E(R) by z=f~x(w) contains an infinity of nonoverlapping cross sec-

tions y,{R) of |z| <1 converging to eie° as v—»co(17), and that each y„ sepa-

rates at least one point z„„ from the origin. Changing the numeration (if

necessary) we may suppose that 7„(P) separates z„ from z = 0. Let IV(R) be the

transform by/(z) of y,(P), and write mI,(R) = 0„(P) =2ttPS,(P), P„ = |/(z„) \.

Then

(log Rv - K)2

2irJÄ"aP/0,(P)

Otherwise

dR 1
-hO(l) < log-

0,(7?) 8 (1 - r,)2
log R, < 2irp f R" + 0(1) < log 77-^-7- + 0(1)

K

by Theorem 3, and this contradicts the hypothesis (10.3). But (as in the proof

of Theorem 6)

(log Ry - K)2        r logR>

2irJR"dR/®v{R)
K.

J K
2,(eB)dR,

and so, substituting in (10.4),

(") But no 7, separates e'e° from the origin.
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/• log B„
3„(eR)dR + 0(1).

K

Finally, since y„_i and y„ are nonoverlapping, we see that S,_i(i?) and ay(R)

are distinct for all (sufficiently) large R, and so

/> log Ry n log Rv n log Ä„

E,(e*)<*Ä g p(e*)<27? - E_i(>«)iÄ
X J K J K

= p log Rv - p log R,rl + 0(1)

by the hypothesis of mean valency p and (10.5) for v — \. (10.5) and (10.6)

give a contradiction if v > i>o, and so the infinity of nonoverlapping cross sec-

tions with the properties stated cannot exist. The alternative is that fori? > i?»

one cross section, y(R) say, separates all but a finite number of (z„) from z = 0.

Now we can find a number Rt such that, for i?>i?i, y(R) does not sepa-

rate e'e° from z = 0. Otherwise there would exist no path Pi(0o) on which

/=0(1), contrary to the hypothesis of the theorem. Since, on the other hand,

y(R) separates all but a finite number of the (z,) from z = 0, we see that, for

R>Ri, y(R) has eie" as one end-point. This, I say, is impossible(18). In fact,

suppose i?i <i?2 <Rs, and connect y(R2) with y(i?3) by a simple analytic curve

lying in \z\ < 1. Let q\ be the last intersection of this curve with y(i?2), q% the

first intersection with y(Rz). Then the portion P of the curve connecting qi

with r/2 lies in a sub-domain D of |z| <1 (bounded by y(i?2), 7(7?3), and points

of I z| =1), and divides D into two domains. Let Di be the domain bounded

by y(Rt), y(Rs), P, and eiH; and let IFi be the transform of A, n the trans-

form of P, by/. Suppose R2<R<R3, and let I(R) be the first cross section

of IFi on C(R) which is met in describing a continuous curve from E(R2) to

E(RS) in W\. We write 0(i?) =mI(R). Then, by the hypothesis of mean va-

lency p,
'Ä2 2

mI(R)dR = pirR2.

Hence, if K = 2pivRJ{R2-Rx), and E is the set of values of i? in the interval

Ri<R<R2 for which

mI{R) > K,

then

(10.7) mE <\{R2-R,).

Next, we define

J(R)
jl(R), if ml(R) < K,

\a portion of I(R) of length K measured from II if ml(R) > K.

(18) For finitely mean valent functions, but not for infinitely mean valent functions.
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Let W2 be one of the sub-domains of W\ swept out by J(R) as R varies from

R2 to R3, which contains, as part of its boundary, a set A of boundary points

of IF of positive measure. Such a sub-domain exists by (10.7). Further, IF2 is

plainly a finitely valent domain; and every point of its boundary is accessible

(by the definition of accessibility). We map IF2 on a sub-domain Z?2 of | z| < 1

by/-1, the set A corresponding to the boundary point eiS". This contradicts

well known theorems on the correspondence of boundaries(19) and proves our

statement.

11. The conclusion (9.2) of Theorem 6 is a best possible one when p is

integral, as shown by the p-valent function

Zp
fjß) =-

(l + znyvi"

On the other hand, the hypothesis (9.1) cannot be relaxed to the extent of

replacing lim inf by lim sup. We have in fact

Theorem 8. If \p(r) is any real function of r satisfying

(11.1) (1 - rf = o(4,(r)),

then there is a function /(z) regular and schlicht in \ z\ < 1 such that, for at least

one path P{6,),

(11.2) limsupiKr) \ f{z) \ > 0

at an enumerable infinity of discrete points (0„).

The following theorem shows that Theorem 7 is best possible.

Theorem 9. Suppose \p(r) satisfies (11.1). Then there is a schlicht function

f(z) such that the radial limit, limr,i/(reiS), exists everywhere and is finite, but

(11.3) lim sup^(r) | /(z) | > 0

on at least one path P(8q).

The function whose existence is asserted in Theorem 9 is simpler and we

discuss it first. We take/(z) to be the function which maps |z[ <1 on the

simply-connected domain IF shown in Fig. 2, with/(0) =0 and/'(0) real and

positive (so that / is uniquely defined by W). W consists of the whole w-plane

slit along an infinity of concentric circles of radii Rv, (v = l, 2, ■ ■ ■), each

annular region (Rv, Rr+i) being connected by a "thin tube" to the interior

of the circle of radius Ri. Every point of the boundary B of W is accessible

except points on the line extending from co to =°. The line from to to =0 is an

infinite prime-end with the single accessible nuclear point (Hauptpunkt)

(19) See, for example, Caratheodory [2].
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co(20). Let eiH be the point corresponding to this prime-end by/"1. The func-

tion /(z) tends to a finite limit on every radius, the limit being, however,

unbounded in the neighborhood of eie". We choose (successively) the radii

oo

t
I
I

Fig. 2

(R,) of the figure and construct a path P(0o) whose transform by/(z) approxi-

mates to every point of the infinite prime-end and on which (11.3) is satisfied.

We show that the radii (R„) can be so chosen that

Rv ~\~ Rv4-i R

(n.4) -r^>77T (»=i,2,...)

where rv is the value of r for which B(r) first touches the circumference

C(%(R„-\-Rv+i)). Then if z„ satisfies

Ry + R,+ l I I
/(z„) =-, I z| = r„

we have only to connect the z„ to obtain the desired path P(0o). For if R>Rlt

the set E(R) transforms by z=/_1(w) into a sequence of nonoverlapping cross

sections (yr(R)), where y*(R) separates z„ from the origin if v>yo(R)- Since

(20) See Caratheodory [2].
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yy(R) converges to eie° as v—> cc , z„ tends to the same point (as v—> °o) and

I       I           Rv ~\~ Rn+i

Wr>) I /{«») I = Mr,)-~-> K

by (11.4).

If, having chosen i?„, we can choose Rv+i such that (11.4) is satisfied by the

function /„(z) which maps (with/„(0) =0,/„'(0) >0) the circle |z| <1 on the

sub-domain Wv of W shown in Fig. 3, it will follow by the subordination prin-

ciple(21) that (11.4) is a fortiori satisfied by/uniformly in v.

Fig. 3

To show that, for suitable choice of Rv+i,f, satisfies (11.4), we cut W, along

a radius from 0 to a point w of its boundary on | w\ =Rlt and map the result-

ing domain by means of s„(z) =r/-HY = log w on a strip S„. Now for a parallel

strip U defined by

f (z) = f + So < £ < fi, I v I < aw,

we have

(11.5) M(r, f) = log      1      + o)
(1 - r)2°

if £o+A <M(r, £)<%1 — A. But for suitable z0 (depending on R), the function

sv(h{z)), where

z — z0
h(z) =-,

zzo — 1

is superordinate to a U with £0 = log Ry, £i = log Rr+i and a = l — l/£i (since

we may make the angular spread of the annular region of IF, as near to 2w

as we please). Hence

M(r, s,) ^ M{r, s,(k)) - K(R,) ^ M(r, f) - K(R,),

by subordination. If Ki(Rv) < M(r, f)<Iog R,+i— Kh this is not less than

(21) See Littlewood [6].
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log
1 1

- — log
(l - ry    fa - 1 -

by (11.5); and is greater than or equal to

K(R,),

log
1

Fig. 4

K(R,) ^ log
K

(l - ry      r 7,'.... Hr)

if r (and so R„+i) is large enough. In particular,

Ry +
log-= M(r„ Sy) = log

K

Hry)

if Ry+i>Ro(Rv). We can thus choose Rv+i so that/, satisfies (11.4), and this

completes the proof of Theorem 7.

12. In Theorem 8 let f(z) be the function which maps |z| <1 on the

w-plane slit as shown in Fig. 4. The domain consists of an infinity of "tubes"

(numbered as shown) connecting the circle \w\ g2?i with °o . If we write

n

C-l
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then the vth tube has an angular spread of nearly 2tt over the "long" intervals

(oiR):

(12.1) RN (»j+k-i < R < Rnw+v (n >. v).

Using the same notation as in Theorem 9, we see it is enough to show that

the radii may be chosen successively in such a way that

Rv 4- Rv+i K->- 2, •••).
2 Mr,)

The proof is, however, now similar to that given already in the preceding sec-

tion for the corresponding inequality (11.4), and I omit it.

13. I add finally a theorem of a somewhat different sort:

Theorem 10. Suppose that f(z) is regular in \z\ <1, and satisfies the con-

dition that W(R) < *, 0 ^R < oo. Let Ex{8), E2(9) be the sets of limit points as

f(z) tends to eie along two paths Pi{9), P2(0) respectively. Then £i(0)X£2(0)

^0(22).

This theorem is related to a well known theorem of Lindelof(23) which

states that, if/is bounded in | z \ < 1 and tends to limits l\, k, along two paths

P\{9), P2(0), then li = l2. Theorem 10 is false for bounded functions; there exist

(infinitely mean valent) bounded functions such that, for at least one point

eie, E1(9)XE2(9)=0(2i). On the other hand, if F(9) = Ex(9) XE2(8), the hy-

pothesis "F(d) ?£0 for all 9" does not imply the finiteness of W(R)(25), so that

the conditions F(9) t*0, W(R) < oo are not equivalent.

In proving Theorem 10 we may plainly suppose that |/| is bounded on

Pi(9), Pi{9) and that Pi, P2 do not intersect. Then, joining Pi to P2 by a path

Q lying inside \z\ <1, we can map the sub-domain of |z| <1 bounded by

Pi, P2, and Q, onto the unit circle, the paths Pi, P2 being transformed into

two arcs, LTi, n2, abutting at a point eie. Let L\, L2 be the transforms of Hi, II2

by/, and let Ai, A2 be the projections of Lu L2 on the w-plane. We suppose

PiXP2 = 0, and argue by reductio ad absurdum.

If EiXE2 =0, there exist two positive numbers 5 and ri such that the por-

tions of Ai and A2 corresponding to the arc of | z\ =1 which lies inside a circle

of radius rx and center ea are separated by a distance 5. Let c(r) be that arc

of the circle of radius r and center e'e which lies in \z\ <1, and let T(r) be

(22) That is, Ei and E2 contain a common point (which may be «).

(23) Lindelöf [4].

(24) An example is the function / which maps the unit circle on the circle \w\ covered

infinitely many times, with winding point at w = 0. There is then one point ete, and two paths

Pi, P2 converging to it, such that the transforms of Pi and P% by/are concentric circles.

(26) In fact, if / maps the unit circle on a Riemann domain bounded by a "spiral" with

asymptotic point io=0, then / tends to a limit on every path P(B). By coiling the spiral suffi-

ciently loosely, the sum of the areas bounded by successive loops can be made infinite.
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that portion of the transform of c(r) which connects Ai to A2. Let Wri be the

simply connected domain bounded by r(ri), • • • , r(ri), and subsets -Bi(ri),

-62(71) of the boundary continua Ai and A2. Now I say no point w is covered

by Wn more than a finite number of times. For, by the construction of Wri,

the boundary curves 5i(n), I^t/i) are both simple, and T(ri) (the transform

of a portion of c(ri)) is analytic. Hence, if a point w were covered an infinity

of times, some neighborhood of w would be covered an infinity of times, and

the area of TFri would therefore be infinite, contradicting the hypothesis that

W(R) < 00 , for finite R (since TFr, is a finite domain). Similarly, if Wr' is an

interior domain, the boundary of which is at distance 5/4, say, from the

boundary of TFr, then the valency of points of TF/ is uniformly bounded by

a number K.

Finally, as r—»0, T(r) converges to an "end" £ of W(r{) in the sense of

Caratheodory(25). Since W(r{) is bounded and A(ri), A(r2) are separated by a

distance 5/2, T(r) cannot converge to a point or to =o. Therefore, £ is not a

prime-end, and so cannot correspond to a single point. This is a contradiction

and proves the theorem.
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