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Introduction. One may ask how great generality in a domain is to be per-

mitted if we are to have for this domain a formula possessing the more signifi-

cant features of the Poisson-Stieltjes integral formula for the circle or the

sphere(1). Even if there is agreement as to what the more important conse-

quences of the formula are, there are two approaches, differing not so much in

content as in emphasis, along which partial answers to the question lie. The

first consists in determining hypotheses, as weak as possible, upon a domain

under which all, or substantially all, of the important features of the formula

admit of extension. The second consists in attempting to determine for each

of the important consequences of the formula the class of domains for which

it holds. While this sounds very much like the distinction between obtaining

sufficient and obtaining necessary conditions for an extension of the formula

together with all of its important features, actually it goes a little deeper, since

the second viewpoint involves implicitly the notion that what a significant

extension of the formula is may depend upon what it is going to be used for.

It is a particular consideration from the viewpoint of the second approach

which leads to the concept of a minimal positive harmonic function with

which we are concerned in the present article.

A function positive and harmonic in a given domain we shall call mini-

mal^)—for this domain—if it dominates there no positive harmonic function

except for its own constant submultiples. An important instance of this kind

of function occurs in connection with the principle of Picard(3), whose relation

Presented to the Society, October 26, 1940; received by the editors May 10, 1940.

0) For the two-dimensional case the possibilities have been rather fully discussed by

G. C. Evans, The Logarithmic Potential, American Mathematical Society Colloquium Publica-

tions, vol. 6, New York, 1927, esp. chaps. 5 and 6. For the three-dimensional case under hy-

potheses related to bounded curvature of the boundaries, see C. de la Vall6e Poussin, Propriitis

des fonctions harmoniques dans un domaine ouvert limite par des surfaces d courbure bornee,

Annali della R. Scuola Normale Superiore di Pisa, (2), vol. 2 (1933), pp. 167-192; George A.

Garrett, Necessary and sufficient conditions for potentials of single and double layers, American

Journal of Mathematics, vol. 58 (1936), pp. 95-129. An approach from a different viewpoint is

given by A. J. Maria and R. S. Martin, Representation of positive harmonic functions, Duke

Mathematical Journal, vol. 2 (1936), pp. 517-529. A significant extension of the last results has

recently been given by J. W. Green, Harmonic functions in domains with multiple boundary

points, American Journal of Mathematics, vol. 61 (1939), pp. 609-632.

(2) It is scarcely necessary to mention that the present use of the term minimal bears no

direct relationship to its use in connection with the problem of Plateau.

(3) See G. Bouligand, Fonctions Harmoniques, Principes de Dirichlet et de Picard, Memorial

des Sciences Matheinatiques, no. 11, Paris, 1926; also, Etude des singularity de certains champs

scalaires, Annales de l'Ecole Normale Superieure, (3), vol. 48 (1931), pp. 95-152.
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to a fairly general form of the integral formula has been discussed by Maria

and the author(4). The general notion of a minimal function arises naturally

when one considers from a more or less algebraic standpoint the way in which

the integral formula represents the positive harmonic functions.

In space for a unit sphere with center at the point 0, the formula in ques-

tion is(6)

where F(S, P) = (1 — OP2)/SP3, and where n(e) is a finite, non-negative, com-

pletely additive function of Borel sets (mass distribution function) on the sur-

face of the.sphere. The function u(P) defined by this formula is always posi-

tive (non-negative) harmonic, and every such harmonic function is represented

in this form by exactly one p(e).

So far as the form of this representation is concerned, the two important

features present are these: (1) A fixed family of functions, or basis, in terms

of which the positive harmonic functions of the domain (sphere) are repre-

sented. This, of course, is the family of functions F(S, P), where 5 plays the

part of a parameter or index. (2) A linear process, or rather, a positively homo-

geneous and additive family of such processes analogous to and having as in-

stance the formation of finite linear combinations with positive coefficients

of functions from the basis. This is realized as the process of integration with

respect to the mass distribution. Because of the properties of the Stieltjes

integral with respect to a "point mass" distribution, this family of linear proc-

esses must contain all "unit combinations"—that is, all combinations of the

form of a positive multiple of a single element of the basis—and the unit

combinations, and only those, must be non-expressible as the sum of two

linearly independent combinations^). In terms of these notions, there is a

one-to-one representation of the positive harmonic functions of the domain as

(generalized) positive linear combinations of functions from the basis.

Now the point to this formulation is that within the limitations described

there is essentially only one basis that can be used in a representation of this

type, namely, a suitably normalized family of minimal harmonic functions.

More precisely, it can be shown that all functions of the basis must be positive

harmonic and minimal in the domain and that exactly one positive multiple

of each minimal function in the domain must occur in the basis. This is what

the basis must be like, but it is, of course, not evident a priori that in a given

(4) Maria and Martin, loc. cit.

(6) See H. E. Bray and G. C. Evans, A class of functions harmonic within the sphere,

American Journal Mathematics, vol. 49 (1927), pp. 153-180.

(6) Without this restriction it would seem that formal resemblance to the Stieltjes integral

is for the most part destroyed. The point need not be pressed, since it is relevant only to the

motivation of the present developments and not to the developments themselves.

05=1
(OP < 1),
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domain minimal functions will exist, or, if they do, will exist in sufficient num-

ber to form the basis for such a representation. This leads to

Problem A. In a given domain, is the class of minimal functions sufficiently

wide that, with a suitable normalization and a suitable definition of the linear

process involved, it contains a basis for the positive harmonic functions of the

domain^

A central result of the present article is to give a general affirmative answer

to this question; that is, to show that the answer is in the affirmative for an

arbitrary domain. It is also shown that the linear process can always be real-

ized by an integral of the Stieltjes type, and further, that every positive

harmonic function of the domain is the limit of functions which are finite

linear combinations with positive coefficients of minimal functions. Thus, in

so far as the properties outlined above are considered indispensable to what

ought to be considered a significant extension of the Poisson-Stieltjes integral

formula, the present analysis, in view of its general applicability, serves as a

background against which to examine critically the possibility of obtaining

extensions which preserve other important features of the integral formula.

The arguments employed do not involve in an essential manner the di-

mensionality of the Euclidean space in which the domain is supposed to lie.

Thus though the results here are explicitly for the three-dimensional case,

only obvious modifications would be necessary for the others. For unbounded

domains in the plane, the exceptional behavior of the logarithmic potential at

infinity necessitates minor changes in some of the statements.

We sketch briefly the scheme of the argument. Returning for a moment to

the Poisson-Stieltjes integral formula, we recall that the function F(S, P)

occurring there is actually the normal derivative at the point 5 of the Green's

function G{M, P) for the sphere. This normal derivative, not only in the case

of the sphere but also in the case of any domain with a sufficiently smooth

boundary, is equal (neglecting a positive factor independent of P) to the limit,

as M approaches S, of a quotient of the form G(M, P)/G(M, P0), in which P0

has been chosen as some fixed point of the domain. Approach here is not re-

stricted to be along the normal at S; in fact, the quotient may have a well

defined limit for all modes of approach to a boundary point even though at

that point there is no normal. In the case, however, of a sufficiently irregular

domain, there will be boundary points at which the limit of the quotient is

not determinate. This suggests the introduction of ideal boundary elements.

Speaking roughly, we identify an ideal boundary element with the totality of

modes of approach to the boundary for which the quotient has a specified

limit. This procedure is carried out in §2. With these ideal elements adjoined

to the domain, we are able to obtain a convenient limiting form of the Riesz

representation of superharmonic functions and, through it, an integral repre-

sentation of positive harmonic functions bearing certain features of analogy
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with the Poisson-Stieltjes formula (§3). The feature which this representation

lacks is uniqueness; there may be more than one distribution representing a

given harmonic function. The failure of the uniqueness is shown in §4 to be

connected with the presence of non-minimal functions among the quotient

limits. In the same section minimal functions are characterized, and it is

shown that among all representations of a given harmonic function there is

always exactly one (called canonical) which involves only minimal quotient

limits. In this sense we recover the uniqueness of the representation and com-

plete the answer to Problem A. In the concluding §5 certain applications and

examples are treated.

1. Auxilliary results on superharmonic functions. We begin by recalling

a number of results concerning the solution of the generalized Dirichlet prob-

lem^). Let T be an open set in three-dimensional space; let / be its boundary.

If P is a point of T, we denote by mT{e, P) =m(e, P) the mass distribution

function resulting from sweeping a unit mass located at P out of T. P being

fixed, m(e, P) is a finite, non-negative, and completely additive function of

sets e measurable Borel. The total mass is located upon t, more precisely upon

the boundary of that component (maximal open connected subset) of T in

which P lies, and is, in case this component is bounded, equal to unity; if P

lies in an unbounded component of T, the total mass may be less. For fixed e,

m(e, P) is a non-negative harmonic function of P in T.

Let </>(£>) be a function defined for Q in measurable Borel, and summable

over t with respect to m(e, P) for each(8) P in T. The integral

taken in the sense of Radon-Stieltjes-Lebesgue, defines a harmonic u(P) in T.

We speak of this u(P) as determined in T by the boundary function <p(Q). In

particular, if <p(Q) is continuous and, in case t is unbounded, approaches zero

at infinity, the function u(P) is identical in each component of T with the

harmonic function determined there by the sequence solution, in the sense of

Wiener, of the generalized Dirichlet problem for the boundary values <p(Q).

Also under these circumstances u{P) takes on continuously the boundary

(') A rather complete bibliography of work relevant to this problem, together with an

expository account, will be found in G. C. Evans, Dirichlet problems, American Mathematical

Society Semicentennial Publications, vol. 2, New York, 1939, pp. 185-226. We shall cite:

N. Wiener, Certain notions in potential theory, Journal of Mathematics and Physics (M.I.T.),

vol. 3 (1924), pp. 127-146; C. de la Vallee Poussin, Extension de la methode du balayage de

Poincare et Probleme de Dirichlet, Annales de l'Institut H. Poincar6, vol. 2 (1932), pp. 169-232;

G. C. Evans, Potentials of positive mass, parts I and II, these Transactions, vol. 37 (1935),

pp. 226-257, and vol. 38 (1935), pp. 201-236; O. Frostman, Potentiel d'Equilibre et Capacite
des Ensembles, avec Quelques Applications d la Theorie des Fonctions, Thesis, Lund, 1935.

(8) Summability of the function for some one point P in each component of T is, of course,

sufficient.

(1.1)
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values (p(Q) except possibly at the irregular points of t, and approaches zero

at infinity. The irregular points of t form at most a set of capacity 0(9).

Now let D be an arbitrary domain (open connected set) with boundary d.

We shall assume in the sequel that D is fixed. Certain results concerning the

positive superharmonic functions in D will be useful in the developments that

follow.

Theorem I. Let u(P) be positive and superharmonic in D. Let a be a subset

of D relatively closed in D. There exists uniquely a function u*(P) defined in D

such that:

(a) u*(P) is superharmonic in D.

(b) w*(P) = m(P) at all points of a except possibly for those belonging to a

subset of zero capacity.

(c) In D — a, u*(P) is identical with the function harmonic in D—cr de-

termined by the boundary function 0(0 =<£(°"i u'< (?)> where

It is convenient to introduce the following notation: if f(P) is defined in D,

non-negative and Borel measurable there, we denote by/(<r; P) the function

defined as/(P) for P in a, and for P in D —a as the value at P of the harmonic

function determined in D—a by the boundary function 0(<r, /; Q). It follows

from this definition and the properties of an integral, in particular the integral

of (1.1), that(10) if/„(P) t/(P), or /„(P)->/(P), then correspondingly we have

/„(<r; P) T/(cr; P), or/„((r; P)—>/(tr; P), provided only in the latter case that

there is a summable majorant for all the boundary functions involved.

Assume for the moment that the theorem is true. Consider the function

u(ct; P). This function and u*(P), assumed to exist, agree except possibly

on a subset of cr of zero capacity, a fortiori almost everywhere in -D(u). It

follows that for P in any bounded subdomain completely interior to (contained

with its boundary in) D, and for all sufficiently large n, Anu(a; P) — Anu*(P),

where for an integrable f(P) we denote by AJ(P) its integral mean (volume

average) over a sphere of center P and radius 1/rc. Since m„*(P) is super-

harmonic(12), A„u*(P) f m,*(P); hence Anu(a; P) T «*(P). Thus for a proof

(9) Capacity is used here in the sense of de la Vallee Poussin. In this sense, a set is of zero

capacity if every distribution of positive mass which is positive on the set generates an un-

bounded potential.

(10) The symbols T , I , and —* will denote respectively increasing, decreasing, and un-

specified convergence of sequences of numbers, functions, or point-sets. Context will determine

the sense.

(u) Sets of zero capacity are necessarily of zero spatial measure.

02) For a connected exposition of various known properties of super- (sub-) harmonic func-

tions the reader is referred to the tract by T. Rad6, Subharmonic Functions, Ergebnisse der

Mathematik und ihrer Grenzgebiete, vol. 5, no. 1, Berlin, 1937.

M(ö)i when Q is a boundary point of D — a lying in D,

0,        when Q is a boundary point of D — a in d.
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of the theorem we are led to investigate the existence and properties of the

limit of the sequence {Anu{<7; P)}. Incidentally, the argument just given

proves that if u*(P) exists it is unique.

Suppose now that we have shown that (i) u{a; P) is lower semicontinuous

at all points of D except possibly for a subset of a of capacity zero, and that

(ii) u(<r; P) dominates its integral mean over any sphere of center P contained

with its boundary in D. If Di is a bounded domain completely interior

to D, there follows from (ii) for all P in D\ and all sufficiently large n,

«(<r; P)=^L«(<r; P). For these n and for all P in a second domain D2

completely interior to Du we then have for sufficiently large m, Amu(a; P)

^.AmAnu(<r; P) — AnAmu{a; P). Thus Amu{a; P), since continuous, is super-

harmonic in Z>2- From this it follows, in particular, that if n<p, then

AmAnu{a; P)=AnAmu(a; P) ^ApAmu(o-; P)=AmAvu(o; P). On making

w—> °o in the first and last members of this relation and using the continuity

of the average functions, we obtain Anu(a\ P)SAvu(a\ P) (n<p). Since D\

and Di are at our disposal, we have in D, A„u(<t; P) | w'(P) Su(<t; P), where

u'(P) is superharmonic and where it is understood that approach of the pre-

scribed type holds from some n on in any bounded domain completely interior

to D. Now since the lower limit of the sequence of its average functions clearly

dominates a function in any of its points of lower semicontinuity, it follows

from this last relation and (i) that u(<r; P) and u'(P) are identical except

possibly on a subset of a of zero capacity. Thus w'(P) satisfies the require-

ments for u*(P). To prove the theorem it therefore suffices to demonstrate (i)

and (ii).

Now let u(P) and a be as in the statement of the theorem. Let /(P) be a

function which is non-negative, continuous in D+d, zero on d, nowhere in D

greater than w(P), and which approaches zero at infinity if D is unbounded.

Let 2' be a bounded open subset of 2=Z> — a completely interior to D and

having only regular boundary points. Write a' =D — 2', and consider/(a-'; P).

From the definition of a superharmonic function follows/(er'; P) ^u(P). If 2'

runs through an increasing sequence whose sum is 2, then/(er'; P)—rf(<r; P).

This is Wiener's result mentioned above. Thus we have/(<r; P) ^u(P). Now

u(P), being non-negative and lower semicontinuous in D, may (e.g. by defin-

ing it as zero on d) be extended so as to have these properties on the closed

set D+d. It follows from this that u{P) can be approximated in D by an

increasing sequence of functions satisfying the conditions imposed upon

/(P) above. Allowing /(P) to run through such a sequence, we obtain

/(er; P) t u(a; P)^u(P). At all points of D except possibly those irregular

boundary points of 2 which are in D—and these form at most a subset of a

of zero capacity—the functions /(<r; P) are continuous. Hence, with exactly

the same possible exceptions, u(a; P) is lower semicontinuous in D. This es-

tablishes (i), and proves, incidentally, that w(tr; P) ^w(P).

To prove (ii), it is convenient to write v(P) =u(<r; P). Let 2" be any
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bounded open set completely interior to D having only regular boundary

points; write o-"=Z>- 2". We prove that v(P) ^v(<r"; P). Assume that/(P)

is continuous in D, non-negative, and not greater than v(P). From the defini-

tions and v(P) ^u(P), it follows that the difference w{P) =v(P)-f(<r"; P) is

non-negative in <r+<r". In the remaining points of D, those of the open set

2-2", the function w(P) is harmonic and bounded from below. Since a

boundary point of 2- 2" is in a-\-a", w(P) has a non-negative lower limit in

any such boundary point which is also a point of lower semicontinuity of v(P).

As this means all boundary points except possibly those of a set of zero ca-

pacity, w(P) is also non-negative in 2-2"(13); that is, v(P)^f(a"; P). Now

v(P), though not necessarily lower semicontinuous, could be made so by modi-

fying it on a set of zero capacity(14). Thus we can find an increasing sequence

of continuous functions approaching v(P) except on a set of zero capacity.

On allowing/(P) to run through such a sequence and observing that sets of

zero capacity are null sets with respect to the swept-out mass in (1.1), we

obtain for P in 2", f(<r"; P) ] v{v"; P). This proves that v(P) ^v(<r"; P),

since the equality holds by definition in it".

Now let Pi be any point of D ; let Sp be the open sphere of center Pi and

radius p, where p is less than distance (Pi, d). Denote by s„ the boundary of S„.

If we take 2" above as S„, the function v(o"; P) = v{D — Sp; P) is given for P

in Sp by Poisson's integral with the boundary function v(Q) on sp. In particu-

lar, for P = Pi

where integration is with respect to area. On multiplying the first and last

members of this relation by 47rp2 and integrating with respect to p between

the limits 0 and r, where r is less than distance (Pi, d), we obtain

integration now being with respect to volume. This establishes (ii), and com-

pletes the proof of Theorem I.

In the next theorem are listed a number of useful elementary properties

of the function u*(P) defined above. In the statement of the theorem, u(P),

(13) If not, then for some negative number the set of boundary points at which the lower

limit of the function does not exceed this number is of positive capacity. Cf. 0. D. Kellogg,

Foundations of Potential Theory, Berlin, 1929, p. 335. It may be noted that Kellogg uses the

term capacity in the sense of Wiener, but for closed sets this coincides with the present usage.

(u) For example, this could be done by redefining the function as its lower limit at those

points where it fails to be lower semicontinuous. These points form at most a set of zero ca-

pacity. Since the lower limit is not decreased in any point by this process, the modified function

must be lower semicontinuous.
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v(P), etc. will be understood to denote non-negative superharmonic functions

in D; <r, r, etc., will be subsets relatively closed in D.

Theorem II.

(a) u(P) St u*(P) St0, for all P in D.

(b) If u{P) St zj(P) at all points of a except for a subset of zero capacity, then

u*(P) Stt> *(P) for all P in D.

(c) (u+v)*(P) =u*(P)+v*(P).

(d) (c-u)*(P) =c-u*(P), c being a non-negative number.

(e) If m„(P)—>u(P) at all points of a except for a subset of zero capacity,

and if there exists a majorant U(P) to the un(P), where U(P) is superharmonic

in D, then (un) *(P)—*(P) in D, except for a subset of a of zero capacity. Lack-

ing the majorant U(P), we may still assert that lim inf,,^ (wn)„*(P) =^u*(P) at

all points of D—a.

(f) Ifagr, then («*) *(P) = (« *) *(P) = u *(P).
(g) If act, then « *(P) f£ w*(P).  More generally, if an Iff, then u*n{P)

t «*(P).
(h) ut+T{P) Su*(P) +u*(P).

It is pertinent to make the obvious remark that if u(P) and v(P) are super-

harmonic, and u(P)^v(P) at almost all points of D, then consideration of

volume averages extends the inequality at once to all points of D. Thus (a)

holds, since it was established almost everywhere in the proof of Theorem I.

The statements (b), (c), and (d) are easy consequences of the definitions and

the remark just made.

For (e), a point P of a where («,) *(P)—>u*(P) fails must be a point where

un(P)~^u(P) fails, where uc*(P)^u(P), or where, for some n, (w„)„*(P)p^m„(P).

All such points form at most a subset of a of zero capacity. In D—a, in case

the majorant U{P) exists, the boundary functions <p(<r, u„; Q) are dominated

by the summable function <p(a, U; Q), and the result is a consequence of

Lebesgue's convergence theorem. If U(P) fails to exist, we may still apply a

well known lemma of Fatou.

Turning to (/), we observe that when oct, u*(P) and u(P) agree at all

points of a except those of a set of zero capacity. From (b) then follows

(u*)*(P) =u*(P). Using this result in conjunction with (a) and (b), we obtain

K*)r(P) St  ((U*)r)*(P) =  (uX(P)  = «T(P) = («*)r(P),

which proves the other half of (f).

The first statement of (g) follows from (f) and (a). For the more general

statement, write vn(P) =«*„(P). Then vn(P) | v(P), where v(P) is superhar-

monic and not greater than m(P). In any point of <r where, for some n,

vn(P) =u(P) holds, thus in all points of a except for a set of zero capacity,

v(P) =u(P). From this and (e) it follows that (vn)*(P)-^u*(P) in D except
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for a subset of er of capacity zero. From (f), however, (n„) *(P) = zj„(P). This

implies (with the aid of the remark at the outset of the proof) that «*(P)

= v(P) in D. Thus we have vn(P) t w *(P).

For (h), write v(P) = w,,*(P) +mt*(P). It is clear from the non-negative

character of the functions and from the definitions that u{P) ^f(P) at all

points of (T+t except for a set of zero capacity. Thus using (b), (c), and (f) in

succession, we have

We conclude the present section by obtaining for a special case the Riesz

representation of the function u*(P). It may be recalled that the general-

ized Green's function G(M, P) for D is defined as 1/MP minus the harmonic

function vm(P) determined in D by the boundary function <p(Q) = 1/MQ.

G(M, P), thus defined for M and P in D, is non-negative and symmetric in

its arguments. For fixed M it is harmonic in P except at P = M and ap-

proaches zero at every regular point of d; it also approaches zero at infinity

if D is unbounded.

Theorem III. If u(P) is non-negative, superharmonic, and continuous in

D, and if a is a bounded closed subset of D, then{n)

where va{e) is a finite, non-negative and completely additive function of Borel sets

having its total mass in a.

It is convenient to take Riesz's result in a form due to Frostman(16), who

proved that the functional

l r r_       .....    r .

under the same hypotheses upon u{P) and <r as in the statement of the present

theorem, is minimized by a unique v(e) =va(e) among all non-negative mass

distributions v{e) whose total mass is in a. The function v(P) given by

(15) The hypotheses here are obviously unnecessarily restrictive, but the result in its present

form is adequate for our purposes.

(16) O. Frostman, La methode de variation de Gauss et les fonctions sousharmoniques, Acta

Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Iosephinae, Szeged,

vol. 8 (1936-1937), pp. 116-126.

«(.+r,(P) ^ «W,(P) = («X+r)(P) + («X+r)(P)

= u*(P) + u*{P).

(1.2)
a
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is equal to u(P) at all points of a except possibly for those of a subset of ca-

pacity zero, and nowhere in D exceeds u(P). The proof of the present theorem

reduces to showing that i>(P)=w*(P).

The function v(P) is superharmonic in D, harmonic in D—a and ap-

proaches zero at every regular point of d and also at infinity in case D is

unbounded. From the inequality v(P) ^m(P), the continuity of u(P), and the

lower semicontinuity of v(P), follows the continuity of v{P) in any point where

v(P)=u(P). Thus in D—a the function v(P) approaches boundary values

4>{a, u; Q) at all boundary points of D—a except possibly for a set of zero

capacity. The function u*(P) satisfies exactly the same boundary conditions

in D—a, and, since both functions are bounded, they are identical there. In

a the functions differ on at most a set of zero capacity; hence they are identical

in£>.

2. The ideal boundary elements and the metric p. In this section we de-

fine for D a set of ideal boundary elements and derive certain properties of

the domain with these elements adjoined.

Let Po be a point of D chosen arbitrarily but fixed for the ensuing discus-

sion^7). We denote by G(M, P) the generalized Green's function for D, and

define for M and P in D

(G(M, P)/G{M, Po)      (M * Po),

K(M, P) =   0      (M = P0; P ^ Po),

11      (M = P = Po).

The function K(M, P) is for fixed M a non-negative harmonic function of P

except at P = M; its value at P = Po is 1. For fixed P, K(M, P) is continuous

as a function of M except at M = P.

Consider now a sequence { Mn} of points of D having no point of accumu-

lation in D. In any bounded closed subdomain of D, the functions K{Mn, P)

form, from some n on, a bounded sequence of harmonic functions of P—thus

a normal family(18). A subsequence of these functions, therefore, is convergent

in D to a positive harmonic function. A sequence { Mn} of points of D having

no accumulation point in D, for which the corresponding K(Mn, P) have the

property of the subsequence just mentioned—that is, converge to a harmonic

function in D—will be called fundamental. We have just seen that any se-

(") As will be seen presently, the particular choice of this point makes no essential differ-

ence in the structure of the ideal boundary or in the theory that follows. In fact, the only effect

of a change in the choice is to multiply the functions K(M, P) by a factor 1/K(M, Po), where

Po is the new normalizing point.

(18) The normalization at Po entails the boundedness both from above and positively from

below of the function K(M, P) for P in a bounded domain containing P0 uniformly in M when

M is kept more than a fixed positive distance from this domain. Kellogg, loc. cit., pp. 263-265.

The normal family property is a well known consequence of Harnack's inequality and the

theorem of Ascoli.
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quence of points of D without accumulation point in D has a fundamental

subsequence. Two fundamental sequences are called equivalent if their corre-

sponding K(M, P)'s have the same limit. This has the usual properties of an

equivalence relation.

Definition 1. The class of all fundamental sequences equivalent to a given

one determines (or, simply, is) an ideal boundary element of D. The set of all

ideal boundary elements of D will be denoted by A, and the set DA-A, by <D.

The domain of definition of K(M, P) may now be extended by writing

K(M, P) = Um K(Mn, P) (M in A; P in D),
n—»«o

where {Mn} is any fundamental sequence determining M. For M in A,

K(M, P) is thus a positive harmonic function of P in D having the value 1

forP=P0.

Evidently the function K(M, P) is characteristic of the point M in the

sense that the identity of two points of D is equivalent to the equality of their

corresponding K(M, P)'s as functions of P. Thus, in view of the possible

application of the normal family theory, it is to be expected that D can be

given a topology with respect to which it is compact and with respect to

which K(M, P) as a function of M possesses certain continuity properties.

This may be shown more explicitly by introducing a metric. Actually, the

precise analytic form of the metric we choose to introduce is not of great im-

portance in the present developments but has some technical advantages.

Definition 2. Select a fixed sphere 2 completely interior to D having, say,

Pa for center. For M and M' in <D we define(ia)

K(M, P) - K(M', P) \
(2.1) o{M, M') = r -

J s 12 14-1 K(M, P) - K(M', P)
dP,

in which integration is with respect to volume and in which the integrand is de-

fined conventionally if P = M or M'.

Theorem I. The function p(M, M') is a metric in D. With respect to it *D

is complete and compact, D is open, and A is the boundary of D. The relative

topology in D arising from the metric is equivalent to the original topology there.

That p(M, M') is finite, non-negative, symmetric, and that it satisfies

the triangular inequality and vanishes if M = M' is clear from (2.1). If

p(M, M')=0, the integrand in (2.1), since non-negative, must vanish in

every point of 2 at which it is continuous. Hence, K(M, P) =K(M', P) for

all P in 2 except possibly P = M or P = M'. Harmonic continuation extends

(19) Taking the integrand in this form is, of course, a purely technical device for obtaining

a bounded integrand. Cf. S. Banach, Theorie des Operations Lineaires, Warsaw, 1932, pp. 9-10.
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the equality to all P in D. Thus p(M, M')=0 implies M=M'. This estab-

lishes the first statement of the theorem.

The remainder of the proof will be carried out in a number of brief steps.

A sequence {Mn\ of points of 33 convergent to a point M in the sense of the

metric p will be called p-convergent to M.

(i) A sequence { Mn} of points of D convergent to a point M of D is p-conver-

gent to M. For, if in (2.1) M is taken as the present M, and M' is replaced

successively by Mi, M2, • • • , the integrands are bounded and converge to

zero except possibly at a single point.

(ii) A fundamental sequence {Mn} determining a point M of A is p-conver-

gent to M. This follows from the same argument as in (i) and the definition

of a fundamental sequence.

(iii) A sequence {Mn} of points of A has a subsequence p-convergent to a

point M of A. Let Fi, F2, ■ ■ ■ be an increasing sequence of bounded closed

sets whose sum is D. Consider a fixed Mn. A fundamental sequence determin-

ing Mn has at most a finite number of points in Fn. We can, by (ii), select from

such a fundamental sequence a point which is not in Fn and whose p-distance

from M„ does not exceed 1/w. Call this point Ml ■ We thus obtain a sequence

{MJi } of points of D which, since Mn' is not in Fn, can have no accumulation

point in D, and for which p(M„, Mn ) £ 1/«. A subsequence of { Ml } is funda-

mental, and determines an M in A. Application of the last inequality, the tri-

angular inequality, and (ii) shows that the corresponding subsequence of

{ Mn} is p-convergent to M.

(iv) Any sequence {Mn} of points of 33 has a subsequence p-convergent to a

point M of'33. If an infinity of points of { Mn\ are in D, and these have an ac-

cumulation point M there, a subsequence consists of points of D and con-

verges to M. We then apply (i). If an infinity of points of { Mn\ are in D but

there is no point of accumulation there, a subsequence is fundamental, and

we apply (ii). This leaves only the possibility that an infinity of the Mn are

in A; (iii) applies here.

(v) A sequence {Mn} of points of D which is p-convergent to a point M of D

is convergent in the ordinary sense to M. For, if the sequence {Mn} did not

converge to M, it would either have a subsequence convergent to an M' ^ M

in D, or would have a fundamental subsequence. In the first case (i), and in

the second (ii), would imply a contradiction.

The various statements of the theorem now follow at once, (iv), as the

statement of self-compactness, implies completeness and compactness. That

A is p-closed follows from (iii). D, as the complement of A in D, is p-open.

From (ii) and the fact that a fundamental sequence consists only of points of

D, it follows that every p-neighborhood of a point of A contains points of D.

The equivalence of the two topologies in D is a consequence of (i) and (v).

Theorem II. The function K(M, P), for fixed P, is p-continuous as afunc-
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tion of M in D, except at M = P. More generally, if F is a bounded closed subset

of D and if G is a p-closed subset ofO — F, then K(M, P) is uniformly continuous

in both arguments for M in G and P in F.

The first statement, when M is in D, is a consequence of the equivalence

of continuity and p-continuity in D. Suppose that M is in A, and let {M„}

be any sequence of points of O p-convergent to M. For a subsequence {Ml }

of {Mn], we have K{Ml, P)—>v{P), where v(P) is harmonic in D. If in (2.1)

M is taken as the present M and M' is replaced successively by M{, Ml, ■ ■ ■ ,

then the condition p(M, Ml)—+Q implies that the integral in (2.1) with

K(M', P) replaced by v{P) has the value zero. Thus v(P) =K(M, P) for all

P in 2, and harmonic continuation extends this equality to all P in D. In

other words, {M„} has a subsequence {Ml } such that K{Ml, P)^-K(M, P).

Since the same argument applies to any subsequence of {Mn}, it follows that

K(Mn, P)->K{M, P).
For the second statement, consider the K(M, P) with M in G as a family

of harmonic functions of P in D — G. They form a family uniformly bounded

near any point of D — G; thus, since harmonic, they are equicontinuous at

any such point, in particular at any point of F. Hence, for M in G and P in F,

K(M, P) is continuous in M and continuous in P uniformly in M. Continuity

in both arguments follows from this and the compactness of the ranges of M

and P.

The notions of p-closed and p-open sets arising from the metric p in D

extend in a familiar manner to that of a p-Borel set. A system of sets in a space

is customarily called a Bor el field if it contains the empty set, contains with

each of its sets the complement, and contains with each sequence of its sets

the sum(20). The system of p-Borel sets of 2D is defined as the smallest Borel

field consisting of sets in D which contains all p-open sets.

Theorem III. The p-Borel subsets of D are identical with the subsets of D

measurable Borel in the ordinary sense.

Consider the system © of sets of V whose intersection with D is a Borel

set. © is clearly a Borel field. Since the intersection of a p-open set with D

is p-open and, hence, by Theorem I, open, © contains all p-open sets, and

thus all p-Borel sets. It follows that every p-Borel subset of D is Borel.

Conversely, a similar consideration of the system ©' of all sets in space

whose intersection with D is p-Borel shows that ©' contains all Borel sets in

space. In particular, every Borel subset of D is p-Borel.

Relative to any Borel field there are definable the notions of a completely

additive function of sets of the field, of measurability of a point function with

respect to the field, and of an integral of a measurable point function with

(20) See, for example, S. Saks, Theory of the Integral, 2d revised edition, translated by

L. C. Young, Warsaw, 1937, p. 7. Saks uses the term additive class.
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respect to a completely additive function of sets(21). In particular, we shall

make use of these notions relative to the system of p-Borel sets. Since D is

p-compact, the theory of such an integral does not differ essentially from that

a Radon-Stieltjes-Lebesgue integral over a bounded closed portion of Eu-

clidean space.

We shall have occasion to use only those completely additive set functions

which are finite and non-negative, and shall use the terms mass distribution

or mass function only in reference to such. The notion of weak convergence of a

sequence of mass distributions is of considerable importance, and may be re-

called. If F is a closed and compact set in a metric space, a distribution p(e)

over F is called the weak limit of a sequence {pn(e)} of distributions over F,

if the condition

holds for every function /(S) which is continuous over F. The most important

feature of weak convergence is the

Selection theorem(22). A sequence of distributions over a closed compact

set F in which the total masses are uniformly bounded has a subsequence weakly

convergent to a distribution over F.

3. The function uA(P) and the representation. Throughout this section

and the next we shall employ the metric p in ©. Thus, the terms, open, closed,

distance, etc., will be understood, in the absence of specific mention to the con-

trary, in the sense of this metric. If G is any set in D, we shall denote by [G]

the intersection of D with the p-closure of G. [G] is a relatively closed subset

of D in the sense of the ordinary topology of D.

(21) The integral most convenient for our present purposes is one of Stieltjes type; that is,

one whose dependence upon a mass distribution is explicit. The theory in the extended form

needed here may be found in Saks, op. cit.

C22) The definition of weak convergence given above is copied after that of J. Radon,

Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsberichte der

Akademie der Wissenschaften, Vienna, 1913, p. 1337. All that is really essential for the ex-

tension of the result is the observation that, since we are in a metric space and F is compact,

there is a countable neighborhood system covering F. It may be noted that the condition (2.2) is

equivalent to three: (i) the pn{F) are bounded independently of n; (ii) lim inf„_„ fnn{e) l^p(e), for

subsets e open in F; (iii) lim sup„^„ pn(e) SsAi(e), for closed subsets e of F. It is possible to imbed

the countable neighborhood system of F in a system of sets also countable, containing with

each of its sets the complement in F, and with each pair of its sets the sum and intersection.

By the "diagonal process" we can determine a subsequence of the mass distributions having a

limit X(f>) for each set p of ty. \(p) is additive in the restricted sense for sets in and can be

used to generate a Caratheodory outer measure expressible in a familiar fashion in terms of

coverings by sequences of sets from 'iß. The measure function of this outer measure, when re-

stricted to Borel sets, satisfies the requirements (ii), and (iii) for ß(e).

(2.2)

10- j ; G- f) D l
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Definition 1. Let u(P) be a non-negative harmonic function in D, and let A

be a closed subset of A. The function uA(P) is defined as the greatest lower bound

of u*g\(P) as G ranges over all open sets containing A.

Lemma 1. Let u(P) and A be as in the above definition. Let G\, G%, ■ ■ ■ be a

descending sequence of open sets which contain A and whose closures have A as

their intersection. Then u*g„](P) I uA(P).

Obviously, the sets [G„] form a descending sequence having a void inter-

section. The functions u*g„](P) form a descending sequence and, from some n

on, are non-negative harmonic in any bounded closed subset of D. Thus,

«[*(?„] (P) i v(P)> where v(P) is non-negative harmonic in D. From Definition 1,

we have v(P) ^Ua(P). On the other hand, corresponding to any point P and

any positive e, there is an open set G containing A such that, for this particu-

lar P, we have ufaiP) SuA(P)+e. But, since G will contain all but a finite

number of the sets Gn, we have uf0](P) ^v(P). Combining these inequalities

and using the arbitariness of e, we obtain v(P) =uA{P).

We now derive a number of elementary properties of the function uA(P).

In the statement of the following theorem, u(P) and v(P) will denote non-

negative harmonic functions in D; A, B, etc. will be closed subsets of A.

Theorem I. The function uA(P) is non-negative harmonic in D. It has the

following properties (23):

(a) u (P) >t uA (P) for all P in D.

(b) 7/ u(P) ^v(P) for all P in D, then uA{P) ^vA(P).

(c) (u+v)A(P)=uA(P)+vA(P).

(d) (c-u)A(P) = c-uA(P), where c is a non-negative number.

(e) uA(P)=u(P).

(f) If A 15, then (UB)A(P) =uB(P).

(g) If A2B, then uA(P)tuB(P). More generally, if An | A, then uAn(P)

i uA(P).

(h) uu+B)(P)^uA(P)+uB(P).

That uA(P) is harmonic was shown incidentally in the proof of Lemma 1.

Statements (a), (b), (c), and (d) are immediate consequences of Lemma 1 and

the corresponding statements in Theorem II of §1.

To prove (e), suppose that G is an open set containing A. D — G is a subset

of D, is p-closed and, therefore, is closed in the ordinary sense. It is also

bounded. If it were not, there could be selected from it a sequence of points

having no point of accumulation in D; this sequence would contain a funda-

mental subsequence determining a point of A. This is impossible. From this

it follows that D— [G] is a bounded open set completely interior to D. In

(23) Several of the statements here are shown by Theorem III, §4, and its Corollary 3 to

admit of considerable strengthening.
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every boundary point of D— [G], m(P) is harmonic; thus it is determined in

D— [G] by its own boundary values. It follows that in D— [G], u*g](P) = m(P).

(e) now follows if we let G close down upon A through a sequence of the type

prescribed in the statement of Lemma 1.

To prove (f), let G and H be open sets containing A and B respec-

tively, and assume that C2H. From (f) of Theorem II, §1, we have

iu*n])i&](P) =w[1/](P)- If we keep G fixed and allow H to run through a

descending sequence of sets closing down upon B as in Lemma 1, we ob-

tain, with the aid of (e) of Theorem II, §1 (using u(P) for a majorant),

(ub)*g](P) = ub(P) for all P in D— [G]. (f) now follows as the limiting form

of this last relation when G is allowed to run through a descending sequence

of sets closing down upon A.

The first statement of (g) follows from Definition 1 and the fact that any

open set containing A also contains B. For the more general statement, the

functions ua„(P) form a descending sequence having a harmonic limit v{P),

which clearly must dominate uA{P). On the other hand, since any open set G

containing A contains all but a finite number of the A„, we have, for such G,

u?G](P)^v(P).  It follows that uA(P)^v(P), and therefore that uA(P)

To prove (h), let G and II be open sets containing A and B respectively.

From (h) of Theorem II, §1, we have, writing K = G+H and observing that

[K] = [G]+ [H], «[>](P) ^m[*G](P)+m[*/n(P). If now G and H run simultane-

ously through descending sequences of sets closing down respectively upon A

and B, K runs through a sequence closing down upon A-\-B, and (h) follows

as the limiting form of the last inequality.

Theorem II. If u(P) is non-negative harmonic in D, and A is a closed

subset of A, then there exists a mass distribution nA{e) over A such that

for all P in D. The total mass, nA{A), is equal to the value of the function uA(P)

at the point Po.

It should be remarked that the uniqueness of the distribution pA{e) is not

asserted in this statement. As we shall see later, there may actually be more

than one distribution satisfying the requirements of the theorem.

Let G be an open set containing A and having the point Po as an exterior

point. Denote by G the p-closure of G. Let a be a closed subset of [G]. a is

then closed and bounded (cf. the proof of part (e) of Theorem I of the present

section) in the ordinary topology of D. If we now transform the integral of

(1.2), and use the fact that G(M, P0) as a function of M in er is continuous and

positive, we obtain

= v(P).

(3.1)
a
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(3.2)

u*(P) = Jg(M, P)dv„(eM)

in which

= j K(M, P)G(M, P0)d^(eM) = f^K(M> PW,(eM),

u,(e) = fG(M, Pü)dva{eM).

Since M„(e) is a Borel mass distribution vanishing outside <r, it may, by the

result of Theorem III of §2, equally well be interpreted as a p-Borel mass

distribution over cr. Since acG, the result of (3.2) may be written

(3.3) ut(P) = ( K(M, P)dp„{eM).
j g

The total mass of ß,(e), calculated by writing P=P0 in (3.3) and recalling

that K(M, Po) = l, is w*(P0), and thus does not exceed u(P0).

If now <t is allowed to run through an ascending sequence of sets whose

sum is [G], then, since the n„{e) have total masses not exceeding w(Po) and

lying in the closed compact set G, we have for some subsequence of {y.a{e)} —

and we may assume it already extracted—a weak limit distribution jUff(e)

having its total mass (also not greater than u(Po)) in G. From Theorem II,

(g)> § 1, we have u*(P) | u*q\{P). Using the weak convergence of the distribu-

tions and the continuity of K(M, P) as a function of M in G when P is in

D— [G], we obtain as the limiting form of the equation (3.3)

(3.4) «!gi(P) = f K(M, P)dy.ä(eM) (P in D - [G]).
* g

Now allow G to run through a sequence closing down upon A in the man-

ner prescribed in the statement of Lemma 1. From the result of Lemma 1, by

an argument similar to that of the preceding paragraph coupled with the ob-

servation that a weak limiting distribution, /x^(e), of the Hg(e) must have its

total mass in every G and thus in A, we obtain (3.1) as the limiting form of

(3.4) . The last statement of the theorem is immediate if we put P = Po in (3.1).

We now have a representation theorem:

Theorem III. If u{P) is non-negative harmonic in D, then there exists a

distribution n(e) over A such that

(3.5) «(P) = f K(M, P)dti(eM),

for all P in D. Conversely, for any distribution /x(e) over A, the integral in (3.5)
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represents a non-negative harmonic function u(P). The total mass, p(A), is equal

to the value of u{P) at the point Pa-

The first and last statements follow as corollaries of Theorem I, (e), and

Theorem II of the present section if A is taken as A in the latter theorem.

For the converse statement, since K{M, P) is continuous as a function

of M in A, the integral in (3.5) can be approximated by means of Riemann

sums. Indeed, in view of Theorem II, §2, the approximation is uniform for P

in any bounded closed subset of D. The approximating sums are finite positive

linear combinations of K(M, P)'s with M in A, and, as such, are non-negative

harmonic. The result is now immediate.

4. The minimal functions and the uniqueness problem. As has been indi-

cated before, the representation obtained in the preceding section fails to give

a complete determination of the distribution in terms of which a specified

harmonic function is represented. In this section we shall obtain a charac-

terization of the minimal harmonic functions and establish the existence of

a unique canonical representation in terms of these functions.

Lemma 1. Suppose that u(P) is positive harmonic and minimal. Let A be

any p-Borel subset of A. If now a relation of the form

obtains for all P in D, then u{P) =u{Pa) K(S, P), where S is some point in A.

p(A) is positive, as is easily seen by setting P = P0 in (4.1). A, therefore,

has a closed subset Ai for which p(A{) is positive. Ai, being compact, can be

covered by a finite number of its closed subsets, all of them having diameter

less than some selected positive number. At least one such subset has a posi-

tive p. mass. We select a particular such and call it A2. By proceeding in this

way inductively, it is possible to construct a descending sequence A\, A% ■ ■ ■

of closed subsets of A whose diameters approach zero and each of which has

a positive p mass. Let S be the (unique) point common to all the An-

Now since p(An) is positive, the integral in (4.1) extended over An instead

of A represents a positive harmonic function dominated by the minimal func-

tion u(P), and is thus equal to cn-u{P), where c„ is positive. If we write

ßn(e) = cn~1-ß(An-e), there follows

(4.1)
A

(4.2)

The total mass of the distribution pn(e) is u(Pa) and is located upon An. Thus

the p„(e) have as weak limit a point mass of amount u(Po) located at 5. The

relation u(P) = w(P0) -K(S, P) now follows as the limiting form of (4.2).
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Corollary 1. Every minimal positive harmonic function in D is a positive

multiple of some K(S, P), where S is in A.

This follows on taking A =A in the lemma and recalling the result of

Theorem III of the preceding section.

Corollary 2. If K(S, P) is minimal and A is a closed subset of A such that

KA{S, P) is positive, then S is in A.

Since K(S, P)~^KA(S, P), Theorem II of the preceding section with A

taken as the present A implies a relation of the form (4.1).

Definition 1. We define the function \j/(S) for S in A as K[S] (S, P0); that

is, as the value at P0 of uA(P), where u(P) is K(S, P) and A is the set consisting

of the single point S.

Theorem I. The function \p(S) has only the two possible values 1 and 0.

The function K(S, P) is minimal or not according as ip{S) is equal to 1 or 0.

Theorem II of the preceding section with A = {S} has the following con-

sequence :

(4.3) M1S)(P) = f   K(M, P)dy.\s]{eM) = uls\(P0)-K(S, P).
J Is)

In particular, putting u(P) =K(S, P), we get

R[B](S, P) = KS)-K(S, P).

Application to this of (f) and (d) Theorem I, §3, yields

Km{S, P) = {Kis))iü(S, P) = KS)-Kui{S, P).

If we put P=P0, this yields \(/(S) = [\p(S) ]2, which proves that i^(5) = 1 or 0.

Assume now that ip(S)=l. We show that this implies that K(S, P) is

minimal. Let u(P) be any positive harmonic function dominated by K(S, P).

Write v(P) =K(S, P)—u(P). Then v{P) is non-negative harmonic. Now

(4.4) u(P) 7z mB)(P),      v(P) ^ visl(P),

and

K(S, P) = u(P) + v(P) ^ uls](P) + v{s](P)

= KiS) (S, P) = *(S) ■ K(S, P) = K(S, P).

But clearly (4.5) can hold only if equality obtains in both of the relations

(4.4). In particular, u(P) =m!S|(P) ; from (4.3) the latter function is a multiple

of K(S, P). Thus K(S, P) is minimal.

Assume, conversely, that K(S, P) is minimal. Suppose that A is a closed

subset of A having 5 as an interior point relative to A; let B be the closure



156 R. S. MARTIN [January

of the complement of A in A. We now have Rb(S, P) =0; for, if not, Corollary

2 above would imply that 5 is in B. Thus,

Riß, P) - RL(S, P) = K(A+B)(S, P)

Ik Ra(S, P) + RB(S, P) = JSaGS, P) £ R(S, P);

that is, TO(S, P) =R(S, P). If nowvl is allowed to run, for example, through

the sequence {.<4„}, where An is the set of points of A whose p-distance

from 5 does not exceed 1/n, then An j {S\, and we have, as the limiting form

of the result just obtained, R[S){S, P) = K(S, P). On writing P = P0 in this,

there follows \fs(S) = 1.

Definition 2. We shall denote by A0 and Ai respectively the sets of points

of A for which \p(S) has the value 0 and the value 1.

Theorem II. The set A0 is either void, or closed, or an F,.

We introduce an auxiliary sequence of sets r„, where n = 1, 2, ■ • ■ . The

set r„ is defined as the set (possibly void) of all points S of A having the follow-

ing property: If G is any open set in D containing 5 and having a p-diameter

less than 1/n, then KfaiS, P0) ^i- It is clear, incidentally, from this defini-

tion that the T„ form an ascending sequence.

Since R(S, P) is continuous as a function of 5 in A, it follows from the

second statement in (e) of Theorem II, §1 that for any open set G the func-

tion R*o](S, Po) is lower semicontinuous as a function of S. In particular,

if S0 is a limit point of T„ (assumed non-void) and G is an open set of diameter

less than 1/n containing So, then the function Rfa(S, Po) has a value not

exceeding J at points S of a sequence approaching So. It follows that So is

in r„; that is, Tn is closed.

Now let 5 be a point of Tn. Select an open set G (e.g., an open p-sphere)

containing 5 and having a diameter less than 1/n. There follows ^(5)

*=Kim(S, Po)SRi*o](S, Fo)3Si<l; that is, ^(S)=0. This proves that
r„iA0 (n = l, 2, •   • )•

Assume, conversely, that .S is in A0. Denote by Gn the set of points of ©

whose distance from S is less than 1/n. Then, since Gn I we have

K?on](S, Po) i Ris\(S> Po)=^(S)=0. Hence, we may choose n = m so great

that K"[*Gm](S, Po) Sh Any open set G which contains S and has a diameter

less than 1/m is contained in Gm. Since for any such G, R*0\(S, P0)

SR*Gm](S, Po), it follows that 5 is in Tm.

The result of the last two paragraphs is to the effect that Au is identical

with the sum of the r„, which were proved above to be closed or void(24).

(M) It seems a reasonable conjecture that the sets Vn are nowhere dense in a; thus that a0,

actually, is of the first category in a. An answer to this question would have interesting con-

sequences.



1941] MINIMAL POSITIVE HARMONIC FUNCTIONS 157

The particular consequence of the theorem just proved, that A0 is a

p-Borel set, is needed in

Definition 3. A distribution n(e) over A will be called canonical if p(Ao) = 0.

A representation of the form given by Theorem III, §3, is a canonical representa-

tion if the distribution occurring in it is canonical.

In a canonical distribution the total mass is carried on the set Ai. Thus a

canonical representation is one which involves, in a sense, only minimal

K(S, P)'s. It is our purpose to show that every non-negative harmonic func-

tion in D has exactly one canonical representation. Before proceeding to this

result it is convenient to prove a number of lemmas.

Lemma 2. If Tn is one of the auxiliary sets introduced in the proof of Theo-

rem II, then uFn(P) =0,for any function u(P) positive harmonic in D.

The set rn, being closed and compact, may be covered by a finite number

of its closed subsets each of diameter less than 1/n. It is sufficient (Theorem I,

(h), §3) to prove that uA(P) =0 whenever A is such a subset of T„. A being

such a set, let G be an open set also of diameter less than 1/n containing A.

From the defining property of r„, we have KfaiS, Po) Sh for every 5 in the

set A.

Let v(P) be a finite linear combination, with positive coefficients, of

K(S, P)'s with Sin A:

m

(4.6) v(P) = ^c,-K(S„ P) (c,>0;S,inA).
i

We then have

* m        * 1 m

V[G](Pq) = X c,-k[a](S» P0) ^ — cP
1 2 i

(4-7) i i

= — Z c,-K(Sy, Po) = —v(Po),
2 i 2

for any v(P) of the form (4.6).

More generally, suppose that the function v(P) is expressible in the form

of an integral:

(4.8) v(P) = f K(M, P)dß{eM).

Approximation to this integral by means of Riemann sums yields an approxi-

mation to the v(P) in (4.8) by a sequence of functions vn(P) of the form (4.6).

Using the last statement in part (e) of Theorem II, §1, and the result of (4.7)

for the functions v„(P), we obtain
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Va(Po)     »To](Po) ̂  Hm inf (»,,)*oi(Po)
n—►«

(4.9)
£ 1 lim »„(Po) = i»(Po),

for any v{P) of the form (4.8).

In particular, by Theorem II, §3, Ua(P) is of the form (4.8). Hence, we

have

MPo) = (ua)a(Po) 4«a(Po);

from which it follows that ua(Po) =0, thus that ua(P) —0.

Lemma 3. Let w(P) oe positive harmonic in D, and let e be an arbitrary posi-

tive number. Then there exists a closed subset A of Ai such that w(Po) S ma(Po) +«•

The set A depends, of course, upon u{P) and e.

Denote by Tm,„ (m, n = l, 2, ■ ■ ■ ) the set of points of A whose distance

from r„ does not exceed 1 /m. The sets Tm ,„ are closed, and, for n fixed, m—> °o,

we have Tm,n j Tn. As a consequence of Theorem I, (g), §3, and the result of

the preceding lemma, we may, for each n, choose m = m(n) so great that if

Pn = rm(„),„, then ubn(Po) <2~n e. Having for each n selected Bn in this fash-

ion, define Cn as Bi-\-B2-\- ■ ■ ■ +P„. The sets C„ are closed and form with

increasing n an increasing sequence. Denote by An the closure of the com-

plement on Cn in A. The distance of the sets An and Tn is at least l/m(n);

thus the An, which form a descending sequence, have an intersection A which

is closed and, having no point in common with any T„, is a subset of Ax.

We show that this A satisfies the requirements of the lemma. By the con-

struction above,

«cn(Po) ^   E «*,(Po) < E 2-' « < e.
i i

Observing that An + Cn = A and using (e) and (h) from Theorem I, §3, we ob-

tain from this

«(Po) = «a(Po) = «U„+c„)(Po) ^ «a.(Po) + «c.(Po) ^ wA„(P0) + e.

The limiting form of this inequality as n becomes infinite, calculated with the

aid of (g) from the theorem just cited, is the inequality of the lemma.

Lemma 4. Let A and B be closed subsets of A having no common point. As-

sume that B is a subset of Ai and that e is an arbitrary positive number. Then

there exists an open set G containing A such that for every S of B, KfaiS, Po) <«•

Let Gi, G2, ■ ■ ■ be a descending sequence of open sets which have Po as

an exterior point, which contain A, and whose closures have A as their inter-

section. If the present lemma were false, we could find for each n a point Sn
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of B and a number 5, positive and independent of n, such that K^b„](Sn, P0)

>t 5. We show that this leads to a contradiction.

Using equation (3.4) from the proof of Theorem II, §3, with u{P) and G

there as the present K(Sn, P) and G„, we have

K*oj(Sn, P) = f K(M, P)dßn(eM),

where pn(e) is a distribution over Gn whose total mass, calculated by writing

P = P0 in the equation, must be between the numbers 5 and 1 inclusive. It

is now possible to extract a subsequence of the natural numbers such that

the corresponding subsequence of these distributions converges to a weak

limiting distribution po(e) over A having a total mass of at least 5. Since B

is closed and compact, it is then possible to extract from this subsequence a

second, such that the corresponding subsequence of {S.„} converges to a point

So in B. We may assume that both these extractions have already been per-

formed, so that

K(So, P) = lim K(Sn, P) S lim sup K%n](Sn, P)
7i—> oo n—> oo

= lim   f K(M, P)dßn(eM) = f K(M, P)dß0(eM).
n->» J an Ja

Since the last integral is positive and since K(So, P) is minimal, it follows

from Corollary 2 that So is in A. This is the desired contradiction.

Lemma 5. Let A be a closed subset of A, and E a Borel subset of Ai having no

point in common with A. Let u(P) be a harmonic function of the form

(4.10) u(P) = f K(M, P)dn(eM).
J E

We then have uA(P) = 0.

Assume first that E=B, where B is as in the statement of Lemma 4. Let

v(P) be a finite linear combination with positive coefficients of K(S, P)'s with

5 in B :

m

(4.11) v{P) = £ cv-K(S„ P) (cr>0;S„ in B).
i

Now, e being an arbitrary positive number, let G be the G of Lemma 4 corre-

sponding to it for the present A and B. We then have (cf. (4.7) in the proof

of Lemma 2)

ttl 771 771

v*gi(Po) = Z c,-K*iai(ßn Po) S «■ Z c, = e- £ c,-K(S„ Po) = e v(Po).
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By the use of Riemann sums, any u(P) of the form (4.10) (with E=B) can

be approximated by a sequence of functions vn(P) of the form (4.11). There

follows (cf. (4.9) above)

Ua(Po) =" «(ei(P«) S hm inf (»„)[{?] (P0) ^ Ihn e-vn(P0) = e-u(PQ).

Since e is arbitrary, uA(Po) =0; hence, ua{P) =0.

When £ is of a more general form, we may write E=B + C, where B and C

are without common points, B is as above, and C has a /z-mass smaller than

a preassigned e. If now u(P) is decomposed into two parts represented by the

integral of (4.10) extended over the sets B and C respectively, then, by what

has just been proved, the first of these contributes nothing to the value of

Ua(Po), while the second contributes an amount less than e. It then follows

as above that uA(P) =0.

Theorem III. Every non-negative harmonic function u(P) in D admits of

exactly one canonical representation. The canonical distribution p{e) representing

u{P) is characterized by the relation

which holds for every closed subset A of A.

We prove first the existence of a canonical representation. Let u(P) be

non-negative harmonic, « positive, and A the A of Lemma 3 for this u{P)

and this e. Consider the decomposition

By the result of Theorem II, §3, the function uA(P) admits a representation

in terms of a distribution whose total mass is in A, thus a canonical represen-

tation. The function u(P)—Ua(P) is non-negative harmonic, and its value

at Po, by the inequality of Lemma 3, cannot exceed e. This means: Any non-

negative harmonic function in D can be expressed as the sum of two, one of

which admits a canonical representation, and the other of which has a value

at Po smaller than a preassigned positive number.

Let €i, «2, • ■ • be a decreasing sequence of positive numbers having

zero as limit. Starting with the given w(P) effect the decomposition

u(P) =Ui(P)+u{ (P), where Wi(P) admits a canonical representation, and

where u{ (P0) < *». Repeat the process for u{ (P), writing u{ (P) = u2(P) + w2' (P),

where u2(P) has a canonical representation, and where u{ (P0) <t2. Proceeding

in this way we obtain recursively a sequence of decompositions:

(4.12)
A

u(P) = uA(P) + [«(P) - uA(P)].

u{P) = «!(P) 4- u[(P),   «'„_i(P) = «n(P) + u'n{P)       (n = 2, 3, • • • ),
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where un(P) has a canonical representation, and where ul (Po) <e„. Combin-

ing the first m of these relations, we get

m

«(P) = £ un{P) + um{P).
1

Since the Um (P) form a decreasing sequence of non-negative harmonic func-

tions vanishing in their limit at Po, the limit vanishes identically and we have

00

«(P) - E Hn(P).
1

Now, for each n, let pn(e) be a canonical distribution representing un(P).

Write
00

1

Any distribution represented by a partial sum of this series, since it represents

a harmonic function which does not exceed u{P), has a total mass not exceed-

ing m(Po). Hence, the series defines a finite distribution n{e), which is obvi-

ously canonical. We now have

00 oc /■»

«(P) = Z«»(P) = Z I K(M,.P)dßn(eM)
1 1   «J a

= f K(M, P)du(eM),
J a

which completes the existence proof.

We prove the uniqueness by showing that the relation (4.12) holds for any

canonical distribution \i(e) representing u{P). This is sufficient, since (4.12),

with P = Po, yields ua(Po) =h(A), and thus shows that n(e) is determined for

all closed, hence for all Borel, sets in A.

Assume thus that /i(e) is a canonical distribution representing m(P). For

brevity we shall write

i(E; P) = f K(M, P)dp(eM),

when E is any Borel subset of A. Since A and Ai differ by the /i-null set Ao,

we have for such E

(4.13) u(E; P) = w(Ai£; P).

Now let A be a closed subset of A. From the additivity of the integral as

a function of sets there follows

u{P) = m(A; P) = «(Ai; P) = u(AxA) P) + m(Ai - A; P).
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Applying to this result that of Lemma 5 with E there taken as Ai — A and A

taken as the present A, we obtain

(4.14) uA(P) = uA(AxA ; P) + wA(Ai - A; P) = uA{^A; P).

Denote by An (n = 1, 2, • • • ) the set of points of A whose distance from A

does not exceed 1/w, and by Bn the closure of the complement of A „ in A.

An and Bn are closed, An-\-Bn = A, and Bn has no point in common with A.

With the aid of Lemma 5 with E taken as Ai^4 and A there taken as the pres-

ent Bn, we have

u{AiA;P) = uA(A!A;P) = uUn+Brt){AiA; P)

= uAn(AiA; P) + uBn(AiA;P) = uAn(AiA; P) :S *(A%A; P).

Since An j, A, the limiting form of this is

(4.15) «a(A!A; P) = «(Ai4; P).

From (4.14), (4.15), and (4.13) follows

uA(P) = uA{AxA;P) = «(Ai4; P) = «04; P),

which completes the proof.

Corollary 3. The function uA{P), defined originally for closed subsets of A,

admits of extension to a completely additive function of Bor el sets in A.

Corollary 4. The condition that A0 be void is both necessary and sufficient

for the uniqueness in generali25) °f Ihe representation of Theorem III of the pre-

ceding section.

If Ao is void, all representations are canonical, and thus unique. On the

other hand, if 5 is a point of A0, K(5, P) has at least two representations, viz.,

its canonical representation and its representation by a unit point-mass at S.

5. Examples and applications. We shall first clear up by an example the

question of the existence of a domain for which the set A0 is non-void. Since a

point of divergence of the representation in §3 from the Poisson-Stieltjes in-

tegral formula lies in the (presumable) failure of that representation to be

unique, and since much of the complication of §4 occurs on this account, it is

desirable to have this example to show that the difficulty is genuine, and not

simply the result of an ineffectiveness of the particular analytical devices em-

ployed. To show further that the presence of the set A0 is not connected with

any necessary complication in the topological structure of the domain, this

(2s) It is a question of interest whether bounded positive harmonic functions can have any

but canonical representations. This reduces to an investigation of the representations of

l(P) mt. It may be remarked that the function lA(P) plays a role analogous to that of the swept-

out mass function m(e, P), and serves as a natural starting point for an investigation of the

"Dirichlet problem" associated with the present notion of ideal boundary.
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example has been chosen so that the domain together with its (ordinary)

boundary is the topological image of a closed sphere.

We require certain properties of the swept-out mass for a domain limited

by a simple closed surface of bounded curvature^). Such a domain may for

our present purposes be characterized by the existence of a positive number r

(called here an admissible radius for the domain) such that each boundary

point of the domain lies at the point of tangency of two spheres of radius r

having their interiors respectively interior and exterior to the domain. The

boundary surface of such a domain necessarily has in each point a well de-

fined normal varying continuously in direction from point to point, and has

an area given by the elementary formula. The distribution m(e, P) is ab-

solutely continuous with respect to area, and its superficial density ß(5, P)

at a boundary point S is positive, varies continuously with S, and is given by

the Poisson formula

Q(5,P) =-1--^-G(5, P),
4ir dns

in which ns denotes the inward directed normal at the point S, and G(M, P)

is the Green's function. ß(S, P) is positive harmonic in P, approaches zero

as P approaches a boundary point distinct from S, and admits the estimate

1   cos <f>
C5-1) 0(5, P) £ — -==^- 4-

2tt   SP2 AwrSP

where <p is the angle between the inward normal at S and the directed segment

SP, and where r is an admissible radius for the domain.

Lemma 1. Let D be a {bounded) domain whose boundary d is of bounded

curvature, and let 8 be a positive number. There exist positive constants ki and k2

such that

£rdist (P, d) £ Q(S, P) S /e2-dist (P, d),

whenever SP 2: 5. ki depends only upon the domain; k2 depends only upon the

domain and S.

Let r be an admissible radius for D. Let Di be the set of points of D whose

distance from d is at least r. ß(S, P) has a positive lower bound m taken over

all P in A, S in d. Obviously, if P is in Du Q(S, P) ^ (wi/diam (£>)) ■ dist (P, d).
Suppose that P = Pi is a point of D not in D\. Let Sx be the closest point of d

to Pi. Let 2i be the sphere of radius r internally tangent to d at Si, and let Qi

(26) See de la Vall6e Poussin, loc. cit.^). The definition used here is equivalent to that of

the cited reference for domains with simple boundaries. It may be remarked, however, that the

largest admissible radius in the sense used here is not necessarily identical with the minimum

radius of curvature of the boundary surface.
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be its center. Qi is in Di, and Qi, Pi, Si lie in that order along the inward nor-

mal at Si. Using the inequality 0(5, Qi) Stjw, and the Harnack inequality for

the sphere 2i, we obtain 0(5, Pi) ^ (m/±r)-P~[Si = (m/4r)dist (Pi, d). Thus

we may choose ki as the smaller of the two numbers w/4r and ra/diam (D).

For the existence of k2, let M be an upper bound, estimated by (5.1), of

0(5, P) for SP >t 5/3. If dist (P, d) >t 5/3, then the inequality of the lemma

is satisfied with k2 = 3M/ 8. Suppose that P = Pi is a point of D such that

dist (Pi, d) < 8/3. Let Si be a closest point of d to Pi. If now SiPS 8/3 and

Spät 5, then we have SP^ 8/3, and hence 0(S, P) ^ M. Let 2/ be the sphere

of radius r and center Q{ externally tangent to d at Si; let QI' be the mid-

point of the segment SiQ{. The function </>(Si; P) = 1 - (S^QC /PQC) isa bar-

rier^7) for D at Si. The greatest lower bound m' of </>(Si; P) for PQ[ >tr,

SiP = 5/3, is positive and depends only upon r and 5. From the properties of a

barrier and the relations P^Si < 5/3 and P&l' = PiSi + S\~Qi' there follows for

SP >: 5, 0(S, Pi) ^ (2M/m'r) • SxPi- We now take k2 as the larger of the two

numbers IM/m'r and 3M/8.

Assume now that a domain D is the sum of two, Dx and D2, of which the

latter is limited by a surface of bounded curvature. Consider the set <r of

boundary points of D2 at a positive distance from Di and at a distance exceed-

ing the positive number 5 from that part t of the boundary of Di lying in D2.

We assume that a is not void; thus, since it is open in the boundary of D2,

it has positive superficial measure. If now a positive mass lying in Di is swept

out of D, the result is equivalent to that of commencing with Di and sweeping

out Di and D2 alternately in infinite succession. We seek a bound for the super-

ficial density of the final distribution in points of a.

Lemma 2. Under the circumstances just mentioned, the distribution resulting

from sweeping out D has in each point of a a superficial density which varies

continuously with the point and which nowhere in a exceeds k/x/A, where n is

the total mass lying on r after the first sweeping-out of Di, where A is the super-

ficial measure of a, and where k is a constant which depends only upon the domain

D2 and the number 8.

Let/(5) be a function of the form

where n{e) is a distribution of positive mass over r and 02(S, P) is 0(5, P)

for the domain D2. f(S) is a continuous function of 5 in a, and represents the

density in the point S of the distribution which results if we sweep the dis-

tribution p(e) out of D2. Now let k — k2/ki, where ki and k2 are from Lemma 1

for D2 and the present 5. It follows readily from Lemma 1 and (5.2) that

(") Kellogg, loc. cit., p. 329.

(5.2)
T
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f(S) ^k-f(S') for any two points S and S' of a. Thus, if we denote by / and /

respectively the least upper and greatest lower bounds of f(S) in <r, we have

Now let fn{S) be the density of the contribution to the mass on <r made by

the reth sweeping-out of D2, and let gn(S) be the density of the total distribu-

tion on cr at this stage. Since the total mass on cr at no stage exceeds n, we have

T.MS) s~ 2 /. s Z *•/, = k-gn - — f gn<fs £ — f gn(5)-is ̂  ^ ■
i i i     - 4 yl 4

This relation not only shows that the infinite sum of the fn(S) representing

the density of the final distribution is convergent and admits the desired up-

per bound, but also, since the sum of the /„ admits the same bound, that the

convergence is uniform in cr.

Example 1. Domain with singular edge. Let x, y, z be rectangular cartesian

coordinates in space. We denote by C(r), where r >0, the capsule-formed do-

main described by the conditions

x2 + y2 < r2;       j z j < 1 + (r2 - x2 - y2)1'2.

The surface bounding C(r) evidently has bounded curvature. The segment of

the z axis for which | z\ ^ 1 we shall refer to as the core of-C{r). For a>0, we

shall denote by C(r, a) the configuration obtained from C(r) by a translation a

units in the direction of the positive x axis.

Consider for fixed r, r' the intersection of the closures of the domains

C(r) and C{r', a). If a<r-\-r', this is non-void, and, when a t r+r', it closes

down upon a line segment. Thus it is possible to choose a<r-\-r' so that the

capacity of the intersection is arbitrarily small.

Now let r0, t\, r2, ■ ■ ■ and hi, h2, ■ • ■ be respectively decreasing and in-

creasing sequences of positive numbers of fixed selection subject only to the

requirement that r0 = 1, that the sum of the rn be convergent, and that Ä„—>«.

In terms of these sequences we define (n = l, 2, ■ ■ ■ ):

mn as the minimum value of the function fl(5, P) for the domain C(rn)

when 5 ranges over its boundary and P over its core,

An as the area of the surface bounding C(r„),

k„ as the k of Lemma 2 with C(r„) for D2 and \rn for 8,

an as a positive number chosen so that r„_i + \rn <an<r„_i + rn and so that

the capacity of the intersection of the closures of C(r„_i) and C(rn, an) is less

than

ßn as ai+a2+ ■ ■ ■ +an,

Co as C(fo) = C(l), and Cn as C(rn, ßn),

Do as Co, and Dn as C0+Ci+ • ■ ■ +Cn.

The domains Co, G, C2, ■ • • are decreasing in size and lie parallel to each

other with their centers in order along the positive x axis. Two successive do-
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mains intersect each other, but neither contains the center of the other. The

centers have as limit point the point (ß, 0, 0), where ß = lim ßn<2^rn.

We now define the domain D as lim D„. D is bounded, and together with

its boundary it is the topological image of a closed sphere. Every boundary

point is regular with respect to the Dirichlet problem; in fact, Poincare's

"cone condition" applies in every boundary point. The boundary consists of

parts of the boundaries of the Cn and also the limiting line segment x=/3,

y=0, \z\ £1. This segment we shall refer to as the singular edge of D. It is

convenient to take for P0 the center of Co, that is, the origin of coordinates.

Theorem I. Any function «(P) positive harmonic in D„ taking on continu-

ous boundary values which are zero for those boundary points not in Cn+i satisfies

(5.3) u{P) ^ hn-u(Po)

for all P on the core of C„. Thus, if u(P) is positive harmonic in D and ap-

proaches zero at every boundary point not on the singular edge, it is unbounded

in the neighborhood of every point of the singular edge(2*).

Consider £>„ as _D„_i+C„ («2:1). Consider the set an of boundary points

of C„ whose distance from that part t„ of the boundary of D'n_x in C„ exceeds

\rn. Since an>rn-i+lrn, the set <rn includes all boundary points of C„ whose

x-coordinate exceeds ßn; thus, it has a superficial measure of at least \An.

Since the distance of r„ from P0 is at least unity, the total mass received

by t„ when a unit mass at Po is swept out of £>«_i cannot exceed the capacity

of t„, thus cannot exceed jnn^4„/2ftn&n. It follows from Lemma 2 that the

density in points of cr„ of the distribution resulting when a unit mass at P0

is swept out of Dn cannot exceed mn/hn. On the other hand, when a unit mass

at P on the core of Cn is swept out of C„, the resulting density at points of a„

is at least mn; this remains true a fortiori if the sweeping-out is continued into

Dn. Since the boundary points of Dn in Cn+i are in cr„, the relation (5.3) is

immediate from the estimates just made if u(P) is represented in Dn in terms

of its boundary values by means of (1.1). The last statement of the theorem

is an obvious corollary.

(28) This example, here introduced as auxiliary to the construction of Example 2, is not

without intrinsic interest. First, it exhibits another way, besides that already pointed out by

Bouligand, in which the principle of Picard may be in default. For, consider a point Q of the

singular edge. Instead of having at least two linearly independent positive harmonic functions

approaching zero at all boundary points except Q, we have none at all. Second, with a suitable

choice of the constants, the example serves to answer in the negative a conjecture of N. Wiener,

Discontinuous boundary conditions and the Dirichlet problem, these Transactions, vol. 25 (1923),

p. 313. For, if the numbers hn are so chosen that, say, hn/2"—><», then it is possible to define a

non-negative, summable boundary function (j>(Q) which vanishes at all boundary points Q

whose z-coordinate is less than unity, and which determines a harmonic function unbounded

near all points of the singular edge. Thus, in particular, we have an example of a simple domain

for which the condition (7), Maria and Martin, loc. cit., p. 519, is not fulfilled.
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Example 2. Domain for which Ao is non-void. We write D2 for the D of Ex-

ample 1. Retaining the notations introduced in connection with that example,

let A and A' be the end-points of the singular edge, and let 2 and 2' be open

spheres of radius § (<1) having these points respectively for centers(29). We

define the domain D as £>2+2-|-2'. This domain is symmetric about the plane

z = 0, it has the same simple connectivity as does D2, and it is regular with

respect to the Dirichlet problem. It is convenient also to define the auxiliary

domain D\ = D2 — 2 — 2'. Since D\C.D2cD, we have

G^M, P) < G2(M, P) < G(M, P)

for the corresponding Green's functions.

Form the functions K2(M, P) and K(M, P) corresponding respectively to

D2 and D as in §2, taking in both cases Pa as the origin of coordinates. Con-

sider a sequence {Mn} of points which lie on the x axis and whose x coordi-

nates form an increasing sequence with limit ß. Without loss of generality

it may be assumed that {Mn} is fundamental for both D2 and D, thus de-

termining for them ideal boundary elements S2 and S together with the corre-

sponding harmonic functions K2(S2, P) and K(S, P). We shall prove that

K(S, P) is not minimal for D.

In D\ we have

G(M, P) = Gi(M, P) +G?2+y,(Af) P).

From this, on writing vn(P) =Kfs+^(Mn, P)and wn{P) =Gi{Mn,P)/G{Mn, P0),

K(Mn, P) = w»(P) + vn(P).

Now w„(P)—->0 in D\. If not, a subsequence would have a positive harmonic

limit w{P) in D\. If k were any positive number less than w(Po), we should

have infinitely many n such that wn(Pa) =Gi(M„, P0)/G(M„, P0)>k. This

would imply that

G2{Mn, P) G(M„, P)
K2(S2, P) = lim —-— ^ lim inf —-

n-« G2{Mn, Po)       »-»   Gi(M„, PQ)

l ear* p) 1
^ lim sup-= — K(S, P).

«-.-    k   G(Mn, Po) k

But this is impossible since, in particular, K(S, P) is harmonic atP=A, while

K2(S2, P), as follows readily from Theorem I, is unbounded near A. Thus we

have proved that vn(P)-^K(S, P) for P in Di.

The functions vn(P) approach zero in every boundary point of D; further-

(29) The device of forming two modified domains by means of a sphere (here two spheres)

is due to A. J. Maria. The argument below which enables us to prove the boundedness of

K(S, P) at points distant from 2 + S' is a paraphrase of that shown the author by Maria some

time ago.
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more, they are uniformly bounded over any set at a positive distance from

2+2'. In fact,

vn(P) S K*m(M„ P) + K*l2.i(Mn, P),

and, for AP>\, we have(30)

* 2-XP+l
Km(Mn, P)* K(Mn,A)- {2 ___i)2,

together with an analogous bound for the other function when A'P>%. This

result, coupled with the result of the preceding paragraph, implies that

K(S, P) approaches zero in every boundary point of D which is at a positive

distance from the spheres 2 and 2'.

Now let <t be the closure of the set of those boundary points of D which

are limit points of 2 and for which K(S, P) has a positive superior limit(31).

Similarly define a' in terms of 2'. Since K(S, P) is symmetrical about the

xy plane, a and a' are reflections of each other in it. Let crn and er„' be the sets

of points of D whose distance from a and a' respectively does not exceed 1/re.

In D — cr„ —<r„', K{S, P) is bounded and takes on continuous boundary values.

These are zero at those boundary points which are also boundary points of D.

Thus,

(5.4) K(S, P) = K%n+;n)(S, P).

Write un(P) =K*n(S, P). If «>1, the boundary values determining this func-

tion in D—<jn are continuous; hence the function itself must approach zero

in every boundary point of D not in <r. Since as n—>» the un(P) form a de-

scending sequence, they have a limit u(P) which is non-negative harmonic

in D and which approaches zero in every boundary point not in cr. An analo-

gous statement holds for the functions «„' (P) similarly defined in terms of a I

and for their limit u'(P). By the symmetry of the construction, the functions

u(P) and u'(P) are images of each other in the xy plane. Neither function

can be zero, since (5.4) in conjunction with (h) of Theorem II, §1, shows that

K(S, P) is dominated by w„(P)+w„'(P) and hence by w(P)+w'(P). Now

K(S, P) dominates both u(P) and u'{P). Thus, if K(S, P) were minimal,

these functions would be multiples of each other. This would give a contradic-

tion, since, by what was shown above, it would imply that both functions

approach zero in every boundary point of D. This proves

Theorem II. There exist structurally simple domains for which the set A0

is not vacuous.

(30) This is readily shown by considering a smaller sphere 2, concentric with 2, solving

the exterior Dirichlet problem for 2i with boundary values <j>(Q)—K(M„, Q), and making

2i T 2.
(31) The set o- actually consists of the single point in which the surface of 2 intersects the

singular edge of £>2.



1941] MINIMAL POSITIVE HARMONIC FUNCTIONS 169

Let us turn now to another point. The definition of ideal boundary point

in §2 is purely potential-theoretic in the sense that it involves the actual

structure of the domain only indirectly as the structure influences the be-

havior of Green's functions. It is natural to ask whether these boundary ele-

ments are identifiable with some suitable topologically defined boundary ele-

ments analogous, perhaps, to prime-ends(32). We show by Example 3 that if

by this there is meant a purely topological definition, that is, naturally, one

which is invariant under topological mappings of two domains together with

their boundaries upon each other, then the answer is in the negative. This,

of course, does not preclude the possibility of obtaining a more geometric

definition equivalent to that of §2, but indicates, rather, that such a definition

must take into account the metric structure of the domain as well. The do-

main is of sufficient simplicity to permit the carrying out explicitly of the

representation of the positive harmonic functions in the terms of the present

analysis, and we do so.

Example 3. A simple domain in which a certain boundary point corresponds

to a continuum of ideal boundary elements. The domain we consider is one of

the two bounded by the surface of two spheres, one internally tangent to the

other, and by a plane containing the common diameter. The boundary point

of interest is naturally the point of tangency of the bounding spheres. By a

succession of inversions commencing with an inversion about this point the

domain can be thrown into(33)

D:   0 < x < co,      — co < y < oo,       — \t < z < \t.

The corresponding Kelvin transformation reduces the study of the positive

harmonic functions of the original domain to the study of those of D. Evi-

dently the minimal property is preserved under the transformation.

For this discussion we shall designate (£, r/, f) as the coordinates of a point

M of D and by (x, y, z) those of P. (p, cp, f) and (r, 0, z), where £ = p cos (f>, etc.,

will be the corresponding cylindrical coordinates. For P0 we choose (1, 0, 0).

By the methods of images, the Green's function G(M, P) for D may be

determined as a conditionally convergent lattice potential:

(5.5) G{M, P) = £ Z (- D^'W^P"1,
H——OC v—0

in which {M)ßlP denotes the point [( —1)"£, n, /X7r + ( —l)"f ].

(32) In particular, we may cite the definition of boundary element given by F. W. Perkins,

The Dirichlet problem for domains with multiple boundary points, these Transactions, vol. 38

(1935), pp. 106-144. In so far as the results of Green, loc. cit., are dependent upon this definition

of boundary element, there will necessarily be a point of divergence from the present analysis.

(33) Exactly this domain D has been considered from a closely allied viewpoint of Bouligand,

loc. cit. (Etude des singularities, ■ ■ ■ ), pp. 140-144. Certain of the facts here derived are con-

tained in his work.
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We form the function K(M, P) and suppose that M runs through a se-

quence having no point of accumulation in D. Two cases are to be distin-

guished: (1) M—>S, where S is a boundary point of D; (2) p—and </>—>a

where a is some angle between — \-k and \t inclusive.

In the first case, K(M, P) approaches a harmonic limit in D which de-

pends upon S but not on the particular manner of approach. The limit func-

tion approaches zero as P approaches any boundary point of D distinct from

S and also approaches zero at infinity. To see this, we may observe that the

series in (5.5) extends the definition of G(M, P) to the whole of space. In

particular, when M does not coincide with P or any of its image points,

G(M, P) is analytic in £, i?, and f, of period 2x in f, odd in f ±§7r, and odd in £;

similar statements hold in x, y, and z. From this it follows that if we write

h(M) = £ cos f, the quotient G(M, P)/h(M) has a determinate limit H(S, P)

as M—>S. Writing (£0, vo, f o) for the coordinates of S, we have

H(S, P)

dG    / dh
(So = 0; f0 * ± k*h

( dG   / dh\

\ Of   /       Of /m=s

(-/-)     (So = 0; f0 = ± y).
\a£3f/ dtps/us

A straightforward computation of these derivatives in (5.5) shows that

H(S, P), as a function of P, has singularities at 5 and its image points and

only there; furthermore that it approaches zero as P moves to infinity in D.

Because of the presence of these singularities, H(S, P) cannot vanish identi-

cally. In particular, H(S, P) must be positive harmonic in D. Since the parity

relations of G(M, P) in x and z are preserved in H(S, P), the latter function

must vanish in every boundary point of D distinct from S. Finally,

H{S, P) G(M, P)/h(M)
= Inn - = hm K(M, P).

H(S, P0)      m^s G(M, Pa)/KM) m^s

In the second case, K(M, P) approaches a positive harmonic limit which

depends upon a but is otherwise independent of the manner of approach of M

to infinity. The limit function, which approaches zero in every boundary

point of D but is unbounded at infinity, is given explicitly by

csch (cos a) ■ cos z • exp (y sin a) ■ sinh (x cos a)      ([ a \ < |x),

(5,6) r    ■    \ (       4- i ix-cos z-exp (y sin a) (a = ± ^V-

This result can be derived from an asymptotic development for G(M, P)

valid as M recedes to infinity. To obtain such an expression from (5.5) we

apply contour integration to each of the functions
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cos f [sin f - sin ^[(x ± £)2 + (y - -n)2 + (z - t)2]'1'2

made single valued in the complex / plane by cuts parallel to the imaginary

axis from the branch points to infinity, the integration in each case being

around the boundary of the cut plane. The result is

C° fc6(f, z;\ + p)     c»(r, z; X + q))
(5.7)        G(M, P) = I    \  ( y -   U * VtfX,

Jo \(\2 + 2\py2    (\2 + 2\qy2f

where

P = [(* - a)2 + (y - v)2]112,   q = [{x + it)2 +(y- v)2]1'2,

2 cos f • cos z • sinh X
<p(f, z; X) = —--rj- •

x  [cosh X -f- cos (f + z) J [cosh X — cos (f — z) J

Now evidently as X—»°o we have, uniformly in f and z, c/>(f, z;X)~(4/7r) cos f

•cos z e_x, where by this is meant that the quotient of the two functions

approaches unity. Also, as p—»°o, uniformly for r bounded and X>0,

p = p - r cos (0 - <b) + O(p-0;   q = P + r cos (8 + <t>) + 0(p-1);

(X2 + 2\p)1'2 ~ (X2 + 2X5) !'2 ~ (X2 + 2Xp)1/2.

From these and (5.7) we have as p—> =0 , uniformly for r bounded,

G(M, P) ~ cos f cos z- {exp [r cos (0 — <p)] — exp [— r cos (0 — #)]} • $(p),

in which

g-(X + D)

(X2 + 2Xp)1/2

4  /*"
*(p) = — I -"-d\.

T J 0

The expressions in (5.6) are now immediate.

Since a sequence of points M having no point of accumulation in D has a

subsequence falling under one or the other of the above two cases, it follows

from the results of the preceding two paragraphs that these cases subsume

all fundamental sequences. Thus the ideal boundary elements of D fall into

two corresponding classes. Those of the first class may be identified with

boundary points of D, the relative neighborhoods in D being the same as those

of the corresponding boundary point. The same symbol will be used to desig-

nate a boundary point of D and its corresponding boundary element of this

class. The ideal boundary elements of the second class are to be identified

with directions a of approach to infinity. We denote these elements by Sa,

where — fir 5S a ^ \ir. The sets N(R, ß, 7) consisting of all P in D for which

r>R and ß<6<y, where R^O and — tbr^/3<7 5S§7r form a convenient sys-

tem of relative neighborhoods in D of the boundary elements Sa.

It is now readily proved that the set A0 for D is void. First, let 5 be a

boundary element of the first class, and let <r be the closure in D of a relative
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neighborhood of S. By an argument similar to that used to establish (5.4),

we obtain K*(S, P) =K(S, P); from this follows yp(S) = 1. To prove that the

functions K(Sa, P) are minimal, assume first that — J71-<a<§7r. Let ct(R, ß, y)

be the closure in D of the set N(R, ß, y) above. It is sufficient to show that

F(a, R, ß, y)=K*{R,ß,y) (Sa, Po) = 1 whenever ß <a<y. That the latter is true

when ß = — \ir and y = \n is easily shown by another argument similar to that

cited above from (5.4). Using (h), Theorem II, §1, we then have

F(a, R, - Jt, ß) + F(a, R, ß, y) + F(a, R, y, Jx)

^ F(a, R, - hr, Jr) = 1-

Since F is a positive non-increasing function of R whose value never exceeds

unity, it suffices to show that the first and third terms of the first member of

(5.8) approach zero as i?—>co. Consider, for example, F(a, R, — Jx, ß). Let

M(R) be the maximum value of the quotient R(Sa, P)/R(Sß, P) for P in

a=a{R, — fx, ß). By a direct estimate from (5.6) we have M(R) =0(exp

[R cos(a-ß)-R])^OasR^oo. Also F(a, R, - Jx, ß) =K*(Sa, Po) ^ M(R)

■R*(Sß, Po) ^M(R). This completes the proof for — |x<a<fx. If a has one

of the extreme values, say §x, we write y = and omit the third term of the

first member of (5.8). The rest of the proof proceeds as before.

Now return to the original domain bounded by the two spheres and the

plane. Denote this domain by D', and by T the point of tangency of the two

bounding spheres. If Po is the image of Po under the conformal transforma-

tion which maps D on D', then, as is readily verified, the functions K'(M, P)

formed for D' with normalization at Po are fixed multiples of the Kelvin

transforms of the functions R{M, P) for D. Thus the neighborhoods in D'

of its ideal boundary elements are the images under the mapping of the corre-

sponding neighborhoods in D. In particular, neighborhoods in D of boundary

elements of the first class map into ordinary neighborhoods in D' of its bound-

ary points distinct from T; the neighborhoods N(R, ß, y) of the Sa map into

fang-shaped sets in D' each having at its apex the point T. We denote by Ta

the ideal boundary element in D' corresponding to Sa in D. The set of all Ta

( —|x^a^i7r) is evidently closed in the ideal boundary of D'. The general

representation of §3 coupled with the uniqueness theorem of §4 now gives the

following representation for the most general positive harmonic in D':

u{P) = (       R'(Q, P)dn{e0) + f ' R'(Ta, P)dv(ea),
j d'-\T\ j -x/2

where p{e) is a non-negative distribution over d' — {T] and v(e) is a similar

distribution over the interval (— \v, \v). n(e) and v{e) are both uniquely de-

termined by u(P).
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