GENERAL COMBINATORIAL TOPOLOGY

BY
PAUL ALEXANDROFF
To Serge Bernstein on his sixtieth birthday

After the fundamental conceptions of the so-called combinatorial topology
were transferred by the author of the present paper(!) as well as by Vietoris,
Lefshetz, Cech and others to arbitrary compact metric spaces and, having
obtained in the general duality law of Alexander-Pontrjagin, the homologi-
cal theory of dimensionality and a number of other essentially new investiga-
tions a concrete geometrical development, became a mighty and generally
recognized weapon in the investigation of different topological questions, it
became not only possible to speak of a new branch of topology—the homologi-
cal theory of spaces—but it also seemed that the directions of further develop-
ment of this new branch were more or less determined. This latter opinion,
however, was not confirmed: in 1934 Kolmogoroff(*) and nearly simultane-
ously with him Alexander(?) gave to the development of the homological
topology an essentially new direction by the discovery of the so-called upper
boundary operator (which we call here the V-operator) dual to the old bound-
ary operator (we call it here the A-operator) and permitting one to construct
two systems of homological invariants dual to each other in the sense of the
Pontrjagin theory of characters not only for polyhedrons and complexes but
also for arbitrary locally bicompact spaces.

The central fact of the theory is a proposition which was originally formu-
lated by Kolmogoroff and which we therefore call in the present paper the
duality law of Kolmogoroff. This proposition asserts that for any closed set 4
lying in a locally bicompact space R, the r- and (r+1)-dimensional Betti
groups of which are null groups, there exists an isomorphism between the
r-dimensional Betti group of 4 and the (r+41)-dimensional Betti group of
R—A4. This proposition enables us to give a new meaning to the duality law

Presented to the Society, September 12, 1940; received by the editors April 6, 1940.

(*) Kolmogoroff, International Tensor Conference and International Topological Confer-
ence, Moscow, May, 1934, and September, 1935; papers: (a) Uber die Dualitit im Aufbau der
kombinatorischen Topologie, Recueil Mathématique de Moscou, vol. 1 (43) (1936), pp. 97-102;
(b) Les groupes de Betti des espaces localement bicompacts; Propriétés des groupes de Betti des
espaces localement bicompacts; Les groupes de Betti des espaces metrigues; Cycles relatifs, théoréme
de dualité de M. Alexander—all four papers in the Comptes Rendus de I’Académie des Sciences,
Paris, vol. 202 (1936), pp. 1144, 1325, 1558, 1641.

(%) Alexander (abstracted in the proceedings of the National Academy of Sciences for 1935):
(@) On the connectivity ring of an absiract space, Annals of Mathematics, (2), vol. 37 (1936),
pp. 698-708. (b) A theory of connectivity in terms of gratings, Annals of Mathematics, (2), vol. 39
(1938), pp. 883-912. The same ideas appear in a different form in the “pseudocycles” of Lef-
schetz (see his Topology) as soon as 1930.
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of Alexander-Pontrjagin (which may be easily deduced from the duality
law of Kolmogoroff under the assumption that R is the n#-dimensional eu-
clidean or spherical space).

In the construction of the theory itself Alexander and Kolmogoroff pro-
ceed differently. The construction of Kolmogoroff, a concise exposition of
which without fundamental proofs was given by him in four notes in the
Comptes Rendus de I’Académie des Sciences, Paris(l), is based on a com-
pletely new approach to homological problems of the set-theoretical topology
and starts from the consideration of the functions ¢"(E,, Ei, - - -, E,) and
f(eo, €1, - - -, e,), where the E; are sets and the e;-points of the given space.
The functions ¢"(Eo, Ey, - - -, E,) are skew-symmetrical and finitely additive
with respect to all their arguments; their values belong to the bicompact com-
mutative group = (the “field of coefficients”). The functions f"(eo, €1, - - - , €,)
are also skew-symmetrical, but their values are taken from a discrete com-
mutative group. The functions ¢"(Eo, E;, - - - , E,) play the role of algebraical
complexes of the usual combinatorial topology of complexes and are the start-
ing point of the A-theory. As analogues of algebraical complexes in the V-the-
ory appear not the functions f"(eo, €1, - - - , €,) themselves but classes of such
functions equivalent to each other in a certain sense.

This way of construction may prove to be the most fruitful from the point
of view of further investigations. But it considerably differs from the methods
based on the elementary devices of combinatorial topology, which have domi-
nated so far. This newness of the method as well as, undoubtedly, the fact
that Kolmogoroff has not as yet given an exposition of the theory which is to
any extent complete, nor, in particular, the proof of his duality law account,
probably, for the fact that his theory is not yet as widespread as it deserves
to be and that it has not so far influenced the further development of the
topology to an extent to which it will doubtlessly influence it in the future.

Practically speaking, Alexander has realized his construction of the same
theory in several different ways. A proof of the already mentioned duality law
he gives, however, only in his last publication, 4 theory of connectivity in terms
of gratings(?), where to this end the whole theory is constructed on an entirely
new basis with the help of the so-called gratings. The equivalence of this
theory with the other theories of Alexander (as well as with the theory of
Kolmogoroff) is not yet proved, although it is highly probable. The apparatus
of gratings applied by Alexander in his last paper has a very simple geometri-
cal figure (the decomposition of the space by a plane into two half-spaces)
for its source. But in the general setting in which the construction proceeds
this original figure becomes so complicated that the whole resulting structure
is extremely involved.

In the present paper the theory is built on a completely elementary basis,
namely by means of well known considerations of the finite coverings of the
given space. I left my old devices of application of combinatorial methods
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to the study of general spaces only in one respect: along with the nerves of the
coverings I consider now the barycentrical subdivisions of the coverings intro-
duced by me recently elsewhere(®), which, as I think, give us often a more
elastic weapon for the study of topological properties of the given space.

The distribution of the material is as follows. In the first two sections we
construct the A- and the V-theories for complexes. Here we systematize and
prove things which are in the majority of cases known, but the proofs of which
(and sometimes even the formulations) are, in a large proportion of cases,
nowhere published (*).

In §3 we recollect the notion of inverse and direct series of homomorphisms
(instead of which we shall speak of direct and inverse spectra) of, in the gen-
eral case partially ordered (not necessarily enumerable), systems of groups.
This theory was originally constructed for enumerable sequences by Pontrja-
gin(®) and for arbitrary systems by Steenrod(%). I may point out the formula-
tion of the conception of the limit group of a direct spectrum, which is logi-
cally simpler than the usual one.

In §4 we formulate and prove the “formal duality law” in application to
arbitrary partially ordered systems of complexes. Substantially it is this
“formal” duality that forms the combinatorial basis of the duality law of
Kolmogoroff. The general formulation given here may prove convenient for
application to the study of different concrete problems (local properties of
sets, etc.).

In §§5 and 6 we prove the fundamental lemmas which shall be used in the
proof of the duality law of Kolmogoroff. The distribution into two sections
is made according to whether the lemmas concern finite coverings of an arbi-
trary set or special coverings of topological spaces. Thus the notion of the
topological space we meet in the present paper for the first time in §6.

In §7 we give the first definition of Betti groups for any spaces homeo-
morphic to open sets lying in normal spaces. This definition hangs together
with my old papers as well as with the paper of Steenrod referred to above,
i.e., it defines the Betti groups of a space as limit groups of respectively the
direct and the inverse spectra composed of Betti groups of the nerves of finite
coverings of the given space by its open sets. For the sequel it is, however, of
importance that along with the Betti groups which for normal spaces were
defined by Steenrod, we define also other groups taking particularly into ac-
count those elements of the covering, the closures of which are bicompact.

(3) Alexandroff, Diskrete Réume, Recueil Mathématique de Moscou, vol. 2 (44) (1937), pp.
501-518.

(*) See, however, Whitney, On matrices of integers and combinatorial topology, Duke Mathe-
matical Journal, vol. 3 (1937), and On products in a complex, Annals of Mathematics, (2), vol. 39
(1938), pp. 397-432, as well as Steenrod, Universal homology groups, American Journal of Math-
ematics, vol. 58 (1936), pp. 661-701.

(%) Pontrjagin, Uber den algebraischen Inhalt topologischer Dualititssitze, Mathematische
Annalen, vol. 105 (1931), pp. 165-205.
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It is just these groups, for the first time introduced in the present paper under
the name of inner Beiti groups, that form the object of the duality law of
Kolmogoroff.

The same §7 contains the proof of a theorem (Theorem 7.41), in which is
formulated all that I know in the direction of the duality law of Kolmogoroff
in the case when the space R is not locally bicompact.

In §8 we prove the duality law of Kolmogoroff for any locally bicompact
normal space and closed 4 c R.

In §9 is given a new definition of inner Betti groups based on the consid-
eration of barycentrical subdivisions of finite coverings of R by open sets
and is proved the equivalence of this definition with the old one. At the end
of this paragraph we give a formulation of the conception of Betti groups
which does not use any auxiliary conceptions except the conception of the
finite covering and the spectrum (series of homomorphisms) of groups.

In §10 is introduced the operation of multiplication of elements of Betti
groups and in this way the complete Betti group (i.e., the direct sum of Betti
groups of different dimensionalities) is turned into a ring (the connectivity
ring). Although this definition of multiplication follows that of Alexander(®),
it has in comparison with the latter an advantage consisting in the freedom
from any special ordering of vertices which was applied in Alexander’s paper
On the connectivity ring of an abstract space(?), as well as in the freedom from
any special conditions by means of which the multiplication is introduced in
the paper 4 theory of connectivity in terms of gratings(?).

NOTATIONS

Throughout this paper the following notations are of constant use:

(i) A u B means the set theoretical sum, 4 n B means the set theoretical
intersection of the sets 4 and B.

(i) \U,4. means the set theoretical sum and M.A4, the intersection of all
sets A, of a given family of sets.

(iii) 4 —B means the difference between the set 4 and the set B, i.e., the
set of all elements of 4 not belonging to B. In this way

A—B=A4—AnB,

where is it not supposed that B is a subset of 4. But if 4 is a commutative
group and B a subgroup of 4, then 4 —B means the factor (or difference)
group of 4 with respect to B.

(iv) A ¢ B means that every element of the set 4 is an element of the
set B (the identity 4 =B being not excluded).

(v) a € A means that ¢ is an element of the set 4.

(®) Introduced in the paper On the connectivity ring of an abstract space (see footnote 2).
See also in that paper the references to Cech and Whitney.
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(vi) If ¢t and ¢’ are simplexes, then ¢’ < ¢ means that ¢’ is a face of ¢. The
letter ¢ denotes a non-oriented as well as an oriented simplex.

1. COMPLEXES

1.1. By a complex we shall mean a finite simplicial complex K.

For any two oriented simplexes # and # " of consecutive dimensionalities 7
and 7 —1 of a complex K we define the incidence coefficient (f; : £;*) as follows:

1°. (4:£67 ") =0, if 4! is not a face of the simplex #.

2°. Let the vertices of # be e, - - - , €. and the vertices of t;" written in
the order determining the given oriented simplex #~* be e, - - -, €;,, where
e, - - -, e; are all vertices ey, - - -, e, with the exception of one, say e;. Then

r
(eky €ipy " Ty 8,") = el;,

where, as may be easily seen, the coefficient e= +1 depends only on the ori-
ented simplex # ' (and the oriented simplex #), but not on the special choice
of the order ¢;,, - - -, e;, determining the oriented simplex #~'. We put

—1
(tirt; ) =e

It is obvious that

(1.10) (60 = — 7Y = — (G £7Y.
Further, if ;= (eo, - - -, &,) and ;7 =(eo, - - -, €r—1, €41, * * * , €r), then
(1.11) Gty = (=1).

1.2. The classical construction of combinatorial topology presupposes that
a certain commutative group J (generally speaking topological) is given, and
is based on consideration of functions f7(¢7), the argument of which runs
through the set of oriented simplexes " of the complex K, and whose values
are elements of the group J. Besides, it is assumed that always

(=) == f@).
These functions, called the r-dimensional functions on the complex K to the
field of coefficients J (also the r-dimensional algebraical complexes or the r-di-
mensional chains), form in virtue of the operation of addition defined in J a
commutative group L7(K, J) which, if misunderstandings are excluded, we
shall denote simply by L7(K).

The topology defined in J defines a topology also in L7(K): we obtain a
neighbourhood of the element fj € L(K) by choosing any neighbourhood V of
the zero element in J and defining V(f;) as the set of all functions f* satisfy-
ing for all " £ K the condition

Jr@) = fo) e V.
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1.3. The boundary operators: the lower operator A and the upper operator
V. To each element fr of the group L7(K) we correlate: the element Afr of
the group L'—’(K) and the element Vf" of the group L™+!(K) in the following
manner:

(1.304) AT = 3 (T,
(1.30v) v = T @6,

which in virtue of the adopted definition of incidence coefficients means

(1.31A) Afr(eo, - -+ s €m1) = 2 frexs €0, - * 5 €r-1),

(1'31V) Vf"(eo, T ef+l) = Z (_ l)kfr(eOr cr g Bk, er+l)v

k
where, as always in the sequel, &; indicates that e, must be omitted. We have
(1.320) AAfT = 0.
In fact,
AAfr(eo, -+ + 5 €rm3) = Zk: Afr(ex, €0, * -+, €r2) = g Sf(en, €x, €0y -+ -, €r—2).

But in the last sum for each term fr(es, ex, €0, - - - , €,—2) We can find a term
fr(ex, eny €0, * + + , €r—2) = — f7(€n, €, €0, * * - , €r_3)

such thét their sum is equal to zero. Also

(1.32v) vvfr = 0.

In fact,

VS (€0, + + * s €rt2)
= E (_ l)kvfr(em Ty ék’ Tty er+2)

k

= ;(_’ 1)"2 (_ l)hf'(eo, ttt réhn R ’ er+2)

h<k

+ E(_ 1)"2 (_ l)h_lfr(efh R P 7 TR ’ er+2) =0
k >k

(since interchanging % and & we see that the terms of both sums differ only

by the sign).

From the definition of the operators A and V it directly follows that they
represent homomorphic mappings of L7(K, J) into LXK, J) and into
L+1(K, J). In the case of a topological group J these homomorphisms are
continuous.
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DEFINITION 1.33. If Afr =0, then the function f7 is called a A-cycle; if Vf* =0,
then the function f is called a V-cycle.

In this terminology the theorems (1.32A) and (1.32V) may be formulated
as follows: the A- and V-boundaries of every function are respectively A- and
V-cycles.

DEFINITION 1.34. The cycle f* is said to be homologous to zero on K if there
exists a function of which fr is the boundary (of corresponding denotation, i.e.
AorvV).

From the above follows: the r-dimensional A-cycles form the kernel of the
homomorphism A of the group L7(K) into the group LY(K). They form the
group Z;(K, J) (or simply Z;(K)). Similarly, the r-dimensional V-cycles form
the group Zy(K, J) or ZH(K)—the kernel of the homomorphic mapping V of
the group L7(K) into the group L™+ (K). Hence and from the continuity of
the homomorphisms A and V it follows that Z;(K) and Z}(K) are closed sub-
groups of the group L"(K).

The image of the group L7(K) under the homomorphism A is the group
H—YK, J) or Hi"'(K) of all (r—1)-dimensional A-cycles komologous to zero
in K. Similarly, the image of the group L7(K) under the homomorphism Vv
is the group H™ (K, J) or H3™(K) of all (r+1)-dimensional V-cycles homolo-
gous to zero in K.

If the group J is bicompact, then so are the groups L7(K) and also its
closed subgroups Z{(K) and Zy(K). The groups H;(K) and Hy(K), being
images of bicompact groups L™+'(K) and L !(K) under continuous homo-
morphisms A and V are bicompact and, consequently, closed in Z{(K) and
Zy(K) respectively.

1.4. DEFINITION 1.4. The factor groups

Zu(K,J) — Hu(K, J) = Ba(K, J),
Zv(K,J) — Hv(K,J) = Bv(K, J)

(where H is the closure of the group H in the group Z) are called respectively
the r-dimensional A- and V-Betti groups of the complex K to the field of coeffi-
cients J. If J is bicompact or discrete, then obviously H = H.

Henceforth we shall consider only bicompact and discrete fields of coeffi-
cients. ’

1.5. Let X and = be two commutative groups dual in the sense that each
of them is the group of characters of the other (see the Addendum at the end
of the paper). Let X be discrete and & bicompact. We consider the functions
fr and ¢" belonging respectively to L(K, X) and L7(K, Z) and introduce the
following notations:
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DeriNITION 1.51. (The scalar products of functions.)

of = 2 ¢ (t)f ().

tieK

Correlating to every function ¢” € L"(K, E) the element ¢'f" € k, we obtain
for a given fixed fr ¢ L7(K, X) a homomorphic mapping of the group L"(K, &)
into k. In other words, every fr & L*(K, X) may be considered as a character of
the group L"(K, E).

Let us prove that, conversely, every character of the group L7(K, F) is
generated in this sense by an element of the group L(K, X).

Let a character % of the group L"(K, E) be given. Take any simplex #; £ K
and consider those functions ¢” € L7(K, &) which only on { are different from
zero. The set of these functions completed by the function identically equal
to zero forms a subgroup L] of the group L"(K, &) isomorphic to the group Z.
The subgroup L] is mapped by the homomorphism % into « and this mapping
may be considered in virtue of the just established isomorphism between L}
and F as an element

=16
of the group X. Thus a function
fre L(K, X)

is defined.
For any ¢; € L] we have

r,r. r, r, r. h

o(8)f (4:) = ¢i(ts)fi = ki€ k.

If ¢ is an arbitrary element of the group Lr(K, E) and if ¢; is the function
from L] coinciding with ¢” on #; and equal to zero on all other simplexes
from K, then

of = Do f (1) = L oitdf (1) = 2 hoi = kX 6i = ho,
q.e.d. We have thus proved the following:

THEOREM 1.521. The group L*(K, X) is the group of characters of the group
L'(K, E).

Quite similarly is proved

THEOREM 1.522. The group L*(K, E) is the group of characters of the group
LK, X). :

THEOREM 1.53. The homomorphisms A and V are conjugate homomor-
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phisms of the group L*(K, E) into the group LYK, E) and of the group
LYK, X) into the group L"(K, X).

In other words

(1.53) ¢Vl = ApTfL
In fact,
r r—1 r, T ' r r—1 r—1 r—1 r r—1_r r r—1 r—1
oVf =2 W (it )f () =2t )6 (@)
% F] 7

P OB IICERTIGED W GO
_ f'—lA¢r,
q.e.d.

1.6. DEFINITION 1.60. Let M be any subset of the complex K (i.e., a set whose
elements are simplexes of the complex K). We shall say that the function
fre Lr(K, J) lies on M and write fr € M, if for every simplex trc K — M we
have fr(t7) =0.

The sum of two functions lying on M evidently lies also on M.
In the sequel M will always be either a subcomplex Q of the complex K
or the set K —(Q complementary to a subcomplex Qc K.

DErFiNITION 1.61. The group of all r-dimensional functions fr € L*(K) lying
on K —Q will be denoted by L"(K —Q). The group of all r-dimensional V-cycles
lying on K —Q will be denoted by Z'(K — Q).

Evidently
Zy(K — Q) = Zy(K) nL'(K — Q) cL'(K).
1.611. Iffre L"(K—Q), then

r4-1

v/ eZy (K — Q).

This assertion follows directly from the fact that all faces of a simplex be-
longing to Q also belong to Q.

DEFINITION 1.612. A V-cycle fr € Z"(K — Q) s said to be homologous to zero
on K—Q,
fr~0 on K -—0Q,

if 1t is the V-boundary of a function
fr—l € L'—I(K —_— Q).

The r-dimensional V-cycles lying on K—(Q and homologous to zero on
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K —Q form the subgroup Hy(K — Q) of the group Z"(K — Q) (and of the group
Hy(K)).
The factor group
Zy(K — Q) — Hv(K = Q)
will be denoted by BL(K —Q, J), or simply by By(K —Q).

DEFINITION 1.62. Let again Q be a subcomplex of K. The function f~ is said
to be a A-cycle modulo Q, if Afr c Q.

The r-dimensional A-cycles modulo Q evidently form a group; we shall
denote it by Z;(K mod Q). We have

ZA(K mod Q) 5Zs(K).
DEeFINITION 1.621. Let fr be a cycle modulo Q. If there exists a function fr+!
such that
A+ = g w, weQ,
then we shall say that f7 is homologous to zero modulo Q on K,

fr~ 0 modulo Q on K.

The r-dimensional A-cycles modulo Q homologous to zero on K modulo Q
form a subgroup H(K mod Q) of the group Z,(K mod Q). We have

Ha(K mod Q) > Ha(K).
The factor group
Z4(K mod Q) — Hu(K mod Q)

is denoted by B3(K mod Q) (or by Bi(K mod Q, J)).
Let again X and Z be two groups dual to each other, X discrete and = bi-
compact.

THEOREM 1.63. The annihilator of the group Hy(K—Q, X) in the group
L7(K, E) is the group Zy(K mod Q, Z).

We have to prove two assertions:

1°. If ¢ & ZA(K mod Q, E), frc Hy(K —Q, X), then ¢7f*=0.

2°, If ¢ € L*(K, E) is a function not belonging to Z4(K mod Q, E), then
there exists such an fr € Ho(K —Q, X) that ¢7fr=0.

Proof of 1°. By assumption

fr = Vfr—l, fr—-l £ Lr—l(K —_ Q, X);

then
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r, r—1

¢f = o9/ =867 = E g ) (5 ) =o.

Proof of 2°. Suppose that ¢ does not enter into Z;(K mod Q). Then there
exist such a ;' ¢ K —Q that

AG (57 ) = a0, aeE.
Choose an a £ X such that a0 and put

) =aq
r—1_ r—1 r—1 .
f @t )=0 for ¢ &K, i1,
Then obviously f~' & L~'(K — Q). Putting fr=Vf""!, we have
f's H;(K - Q) X)’
¢rfr — ¢rvfr—1 - AqS’:fr—l - A¢r(t:)fr—l(tfl'—l) = aa ?5 0’
and Theorem 1.63 is proved.

THEOREM 1.64. The annihilator of the group H{(K mod Q, E) in the group
L+(K, X) is the group ZH(K —Q, X).

Proof. We prove, firstly: if

¢ e Hy(Kmod Q, ), f eZy(K — Q, X),
then
¢rfr = 0.
In fact,
¢" = Aprtt 4 Y, yrco,
¢rfr - A¢r+lfr _|_ ‘,,rfr P ¢r+lvfr = 0.
We prove, secondly: if the function f* £ L7(K, X) is not a cycle lyiﬁg on
K —Q, then there exists a function ¢" € H (K mod Q, E) such that ¢7fr#0.
(a) Let fr be any function not lying on K —Q. Then there exists a #{ € Q
such that f(¢{) =a 0. Take such an a &€ & that aa0 and put
¢(0) = a,
¢'(t:) =0 onother #¢K.
Then we have
¢ & Hy(K mod Q, B),
of = (t)f (1) = aa # 0.
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(b) Letf & L7(K, X) lie on K—Q and not be a V-cycle. Then for a certain
£ & K—Q we have Vf"(#;™) =a 0. Choose a € E such that az0 and put

r+1, r41
¢ (tl ) = a,

¢'+1(t:+1) =0 forother #' eK.

Then
a¢™ & HA(K, E) ¢ Hy(K mod, E),

A¢r+lfr - ¢r+lvfr — ¢r+1(t11'+l)vfr(t;+l) = aa # 0,

and Theorem 1.64 is proved.
Putting in Theorems 1.63 and 1.64

Q=0

we have

1.631. The annihilator of the group Hy(K, X) in the group L7(K, E) is the
group Z(K, E).

1.641. The annihilator of the group HL (K, =) in the group L(K, X) is the
group Zy(K, X).

From the theory of characters it is known that if two groups G and I are
dual to each other and if the subgroup I'o €T is the annihilator in I of the

subgroup G, € G, then, conversely, G, is the annihilator in G of the group I',.
On ground of this remark we deduce from 1.63 and 1.64

1.632. The annihilator of the group Zj (K mod Q, E) in L"(K, X) s
Hy(K—-Q, X).

1.642. The annihilator of the group ZH(K—Q, X) in L"(K, E) is
H; (K mod Q, =).

1.7. Let 4, B, C be three commutative grodps, all three discrete or all
three bicompact, and let
(1.71) . A>B, A—-B=C.
If we denote the groups of characters of the groups 4, B, C respectively by
A’, B’, C’, then one of the fundamental theorems of the theory of characters
may be formulated as follows: C’ is a subgroup of A', namely the annihilator
of the group B in the group A’, and
(1.72) B =4'-C"
Or the annihilator of the subgroup B € Cin A’ is C’. On ground of this theorem
we deduce from 1.63 and 1.64
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1.73. The group Z)(K mod Q, E) is the group of characters of the group
L’(K’ X) _H;(K_Q: X)-

1.74. The group Z((K—Q, X) is the group- of characters of the group
L"(K, E)—H}(K mod Q, =).

In the same way from 1.642 and 1.632 we deduce

1.731. The group Hi(K mod Q, E) is the group of characters of the group
LK, X)—Zy(K—0, X).

1.741. The group Hy(K—Q, X) is the group of characters of the group
L (K, B)—Z%(K mod Q, =).

Recall now the so-called second theorem on isomorphisms of Emmy
Noether: If for commutative groups U, V, W we have the inclusion relations
U> Vo W, then considering (in a manner easily understood) V—W as a sub-
group of the group U—V, we have

U—-W)—V-W)=U—-V

(where = means isomorphic).
"~ Putting

U=L(K,E), V=Zy(KmodQ,5), W = Hy(KmodQ,E),
we find
[L'(K, E) — HA(K mod Q, E)] — Zs(K mod Q, E) — Ha(K mod Q, E)
~ L'(K, E) — Zy(Kmod Q, E),

wherefrom, on ground of 1.72,
x[Zi(K mod Q, E) — Ha(K mod Q, B)] = x[L'(K, E) — Ha(K mod @, %)]

— x[L'(K, B) — Z3(K mod Q, E)]
and on ground of 1.74 and 1.741,

x[Za(K mod Q, E) — Ha(K mod Q, E)] = Za(K — Q, X) — He(K — Q, X),
i.e., '
(1.79) x[BA(K mod Q, B)] = By(K — Q, X).

Putting Q =0 we obtain as a special case of formula (1.75)

THEOREM 1.751. The Betti groups B{(K, &) and By(K, X) are dual to each
other.

1.8. Consider separately the case r =0.
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Since a zero-dimensional V-cycle cannot be homologous to zero, B%(K)
=Zy(K).

Let K be an arbitrary complex. Every function f° constant on K (i.e., as-
suming for all null-dimensional simplexes £° € K one and the same value) is a
V-cycle.

In fact, for every one-dimensional simplex ! = (e, e;) we have

V(#Y) = f(er) — f*(e0) = O.
1.80. If K is connected and f* € Z3(K), then f° is constant on K.

In fact, if f° is not constant on K, then in virtue of the connectivity of K
we may find a ' = (e, e1) such that f°(e) £f%(e;) and, consequently, Vf(¢!) =0.

Thus on connected complexes the zero-dimensional constant functions and
only they are cycles.

Hence follows

1.81. For every complex K the group ZS(K) consists of those and only those
zero-dimensional functions which are constant on every component of K.

1.82. The group BY(K, J) is a direct sum of groups isomorphic to J and the
number of direct summands in this sum is equal to the number of components of
the complex K.

In the group Z%(K)=B(K) is contained the subgroup Z¥(K) of those
cycles which are constant on the whole K. The factor group

Z3(K) — Z3(K)
we shall denote by B¥(K).

1.83. If K consists of p components, then BY (K, J) is a direct sum of p—1
groups each of which is isomorphic to the group J.

Defining the group Z¥(K) as the group of those zero-dimensional func-
tions, the sum of values of which extended over all vertices of K is equal to
zero, we have in the group ZY(K) a subgroup Hy(K) of all zero-dimensional
A-cycles homologous to zero. The group BY(K) =Z(K) —H(K) is, as is well
known, also a direct sum of p —1 groups isomorphic to J and, consequently,
is isomorphic to the group BY¥(K). The groups BY(K, X) and BY(K, E) are
obviously dual to each other.

2. SIMPLICIAL MAPPINGS OF COMPLEXES

2.1. Suppose that to every vertex ¢ of a complex K? corresponds the ver-
tex Sef =e* of a complex K¢ such that to vertices belonging to any simplex
of the complex K* correspond vertices belonging to a simplex of the complex
K=. This correspondence of vertices establishes a mapping S of the complex K*#
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into the complex K¢: to every simplex #s=(é3, - - -, /) of the complex K?
corresponds a simplex St; of the complex K= with vertices Sef, - - -, Seéf and
the number of dimensions of S is less than or equal to the number of dimen-
sions of the simplex 5. The so-obtained mapping is called a simplicial mapping
of the complex KP into the complex K=.

In virtue of the mapping S, to an oriented simplex t5=(é3, - - - , &) of the
complex K?# corresponds an oriented simplex (which may be degenerate)

to = Stg = (Seﬁ, < ,Sef)

of a complex K= of the same number of dimensions as #.
2.2. A simplicial mapping S of the complex K? into the complex K= gen-
erates
1°. A homomorphic mapping p of the group L7(K?¥) into the group L7(K*).
2°. A homomorphic mapping ¢ of the group L7(K®) into the group L7(K?*).
Indeed, to every function fz& L7(KP?) corresponds a function pfge L7(K*)
defined by

(2.21) ofs(ta) = 2 1 (t9),

where the summation is extended over all #5 € Kf such that Stg=1¢,. To every
function fJ ¢ L7(K*) corresponds a function af] € L"(K*) defined by

(2.22) ofallh) = £ (Sth).

THEOREM 2.211. The homomorphism p preserves the lower boundary opera-
tor A:

(2.211) Apfs = pAf.

In fact,

r a a r a a «,
Apfﬂ(els ey, e,.) = prﬂ(eiv €1, "ty ef)
3

r B B
= Z E fﬂ(ei) (Z VIR eif);
LI FF JYRERNY 4

where the summation in the inner sum is extended over allsuch j, 71, - - - , j»
that Sef =¢f, Sef =ef, - - -, Séf, =¢2. Hence
r, a a r, B B B
Apfgles, - -+, &) = Z Zfﬂ(eiv €ipy " "ty €5)
FTRRETY P )
r, B B r, a a
= Z Afﬁ(ein R} eir) = PAfB(elv Tty er)-

1o i

THEOREM 2.221. The homomorphism o preserves the upper boundary opera-
tor V: .
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(2.221) Vof" = oVf'.
In fact, we have the inequalities
Vofalet ) = T (= D'ofuleh o)
= zk: (-1 fa(SeO, N ,Sef+1)’

r B 8
= Vfa(seor Y Sef+l)
B 8
= UVf:(COy MY er+1)-

2.3. Let two sub-complexes 0 € K= and Qf c K* be given and let the sim-
plicial mapping S be such that SQf ¢ Q=. Then from

r (]
fs€Q
follows
Pfﬁ'c Qa )
and from
fac K" = Q"
follows
ofec K — 0.
Therefore we have the inclusion relations
(2.311) pZi(K* mod Q%) c Za(K" mod 0%,
(2.312) pHA(K mod Q%) € HA(K" mod 0,
(2.321) oZo(K" — Q") eZy(K’ — @),
(2.322) cHu(K" — 0% c Hy(K" — ).

THEOREM 2.33. The homomorphism p generates the homomorphic mapping
& of the group BL(K? mod QF) into the group Bi(K* mod Q%) ; the homomorphism
o generates the homomorphic mapping w of the group By (K*—Q2) into the
group By(K#—QF).

2.4. Let, as always, = and X be two dual groups, = bicompact, X discrete.

THEOREM 2.41. The homomorphic mapping p of the group L*(K¥, E) into
the group L'(Ke, E) and the homomorphic mapping o of the group L7(K*, E)
into the group L7(K8, X) are conjugated.

In fact, for any ¢5 € L*(K?, E) and f] ¢ L"(K?, X),

Sp0fa = 22 03(1a1)fa(Sth)),
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or, denoting by )

7

the summation over all #; such that Stg; =1, (and zero, if such £ do not exist),

@ﬁ=z[$¢@ﬂmm

= 2 pfaltadfalted = ofs e
THEOREM 2.42. The homomorphic mapping & of the group By(KP mod Q8, E

into the group Bi(K* mod Q2, F) and the homomorphic mapping w of the group
By(Kf—QF, X) into the group BL(K*—Q=*, X) are conjugated.

In fact, let {# € BA(K? mod QF, =), 3= & BL(K*—(Q= X) be chosen arbi-
trarily. Choose the cycles ¢ € {# and f7 € 2. Then @&{* is an element of the
group Bj(K* mod Q¢, E) containing p¢s and wz* is an element of the group

v(K8—QF, X) containing af]. We have

B a r r r r B a
§ 72 = ¢g0fa = pdg fo =& -2,
g.e.d. From the result just proved directly follows

2.43. Let S and S’ be two simplicial mappings of the complex KP into the
complex K= such that for given subcomplexes QF c Kf and Q=c K* we have
S(Q?) € Q=+, S'(QF) € Q= Let both mappings S and S’ generate one and the same
homomorphism & of the group By (KP# mod Q8, E) into the group Br(K*mod Q¢, E).
Then the mappings S and S’ generate one and the same homomorphism w of the
group By(K*—Q2, X) into the group By(KPF—QF, X).

The dual formulation is, of course, also true.
The following remark is essential for the sequel. Let the simplicial map-
pings Sp and .S; of the complex K* into the complex K satisfy the condition

2.44. Whatever be the simplex tg € KP there exists a simplex t, € K* having
among its faces the simplexes Sots and Sig and if ts € QF, then we may suppose
that t, € Q.

In this case the mappings Sy and S; are evidently homotopic and if we
denote by S,, 0=u# =1, the deformation of S, into .S;, we may suppose that
for any % we have S,0# c Q=. Hence it follows that Sy and .S, generate one and |
the same homomorphism & of the group Bi(K? mod Qf, =) into the group
By (K= mod Q¢, X). From 2.43 it follows that S, and S, generate one and the
same -homomorphism 7 of the group By (K*—Q< X) into the group
BL(Kf—(QF, X).

2.45. If the simplicial mappings Sy and S, satisfy the condition 2.44, then
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they generate one and the same homomorphism & of the group By(K? mod Qf, =)
into the group By(K= mod Q°, E) and one and the same homomorphism w of
the group By(K>*—Q=, X) into the group BH(K?—Q?, X)(").

3. SPECTRA AND THEIR LIMIT GROUPS

3.1. A partially ordered set D shall be called unbounded, if for any two
elements d; and d; of the set D there exists an element d; following after d,
as well as after ds:

ds > dy, d3 > do.

Consider the unbounded partially ordered set A consisting of the groups

He=; for the sake of simplicity we shall suppose that the indices « are ordinal

" numbers (the order of which, however, must not be at all connected with the

order in A). Suppose that for any two groups H* and H? which are elements

of A and satisfy in A the condition Hf = H* a homomorphic mapping & (pro-

jection) of the group HP into the group H< is defined such that for H* = H? =z H*
we have always

B
o

Y
w 3

y
3 = W
and @ is the identical mapping.

The system of groups H* and mappings & is called the inverse spectrum
and is denoted by [H=; &f].

Every inverse spectrum defines the limit group

H=lim [H"; 5]

The elements of the group H are the threads of the spectrum [He; &], i.e.,
systems of elements 7= {52} satisfying the following conditions:

1°. Every 9= is an element of the group H* and 7 contains only one ele-
ment of each group.

2°. If = and %? are elements of the thread n and 7* & H*, #® ¢ H?, then
&P =1

If m={n{} and ne={n3} are two threads of the inverse spectrum
[H=; @8], then 9= {n‘l"-l—n;‘} is also a thread and we put

7 = 11+ 7.

Fixing o and correlating to every thread 7 the element 7 contained in it, we
obtain a homomorphic mapping &. of the group H into the group H*. The
inverse spectra are considered always under the assumption that the groups
H= are bicompact. Then the group H =lim._ [H<*; &2 ] will be also topologized;

(") A purely combinatorial proof of this theorem has been given by Cech, Théorie générale
de 'homologie, Fundamenta Mathematicae, vol. 19 (1932), pp. 149-183, especially pp. 158-159
(§12).



1941] COMBINATORIAL TOPOLOGY 59

a neighbourhood of the thread no= {n§} is obtained, if we choose a finite

number 7§, - - -, 7g° of its elements, choose for each of them a neighbour-
hood Ong' in H*i and take all threads n= {77"} satisfying the conditions
n%i e Oy for 1=1, 2, - - -, s. The so-topologized group H proves to be bi-
compact.

3.2. Suppose that we have an unbounded partially ordered set D of dis-
crete groups JC* and assume, further, for convenience that all elements A
of the group 3¢ are different from the elements k# of the group ¢4, if a==p.

Suppose further that for any two groups 32, 3¢# such that 3¢=<3cf in D
is established a homomorphic mapping 7§ (projection) of the group 3¢* into
the group 3¢ such that for 3= < 38 < 3¢ we have 7fr§ =72 and 72 is the identi-
cal mapping. The system of groups 3¢* and homomorphisms 7§ is called the
direct spectrum [3¢*; 7). The set-theoretical sum U3¢ of all groups 3¢ is
called the spectral set of the given direct spectrum. Two elements of the spec-
tral set, b= € 3C* and kP € 3CP are called equivalent if there exists in the spectrum
a group 3¢” such that 3¢ > 3%, 3¢ >3¢# and w5k =7hs.

This notion of equivalence obviously possesses the properties of reflex-
tivity, symmetry and, in virtue of the unboundedness of the partially ordered
set D, also of transitivity. The spectral set \U,3¢* falls therefore into classes
of equivalence which we shall for the sake of shortness call the bundles of the
direct spectrum [3¢*; 7§ ]. The bundles possess the following obvious property :
every projection of an element of any bundle is an element of the same bundle.
Hence follows: If 2> € 3¢ is an element of the bundle # and 38> 3Ce, then in
38 there is an element %8 of the bundle #. .

In any two bundles %, and %, we may find elements 4{ and /4§ belonging to
one and the same 3¢ In fact, choose arbitrarily *t & h; and h*2 £ hy and take
Jea>gcx, 3¢ > 3cez. Then

ay, ay a ay  az a
T h = 1118 lll, Ta h = ]128 hz.

Let £, and &, be two bundles. From the above follows that we can find
two elements /7 € ki, #3 € hs belonging to one and the same group 3¢*. We shall
call the bundle %, containing the element &% = A{ + k3 the sum of the bundles 4,
and hs. This definition does not depend on the choice of the elements kf € k,
and kS € hs. In fact, if B € hy, BS € ha, then h8=h’+hE belongs to the same
bundle as %= In order to prove this observe that since &% and #¢ belong to
one and the same bundle, there exists such an 3¢,

M > 30, LM > ICh,
that

a a g .8 71
1r.,,h1 = 1!'71}11 = h .

Similarly there exists an 3C2 such that
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a
7I'-y2h2 = 1"72}12 = h

Take an 3¢ following after 3¢ as well as after 3¢72. Then

Y1, B ki Y2, Y
Ty h = 7l'-,h1 = 1r-,h1 = hl; Ty hy = 1l'7h2 = 1r.,h2 = h;

and, consequently,
=hi+ b =msh" = wfhﬁ,
so that the equivalence of h*=hf+hg and k8 =H;+HS is proved.

The so-defined addition of bundles is obviously associative. It turns the
set of all bundles into a (discrete) group 3¢ =lim. [3¢*; 7§] which is called
the limit group of the direct spectrum [3¢; 75 ]. The zero elements of all groups
J¢e are all equivalent to each other and, consequently, belong to one and the
same bundle—the zero bundle, which is the zero element of the group 3C.

The elements — k= opposite to the elements k* of a bundle % form the
bundle —h.

Correlating to every element k* of the group 3¢* the bundle containing
this element, we obtain a homomorphic mapping 7= of the group 3¢* into
the group 3C. For 3¢ < 3C# we have

@ B a
T = T TR,

3:3. Let two spectra—the direct spectrum
a [}

(B ; @]
and the inverse spectrum

[3c”; ms)
—be given. If the groups H* and 3C* composing these spectra are dual to
each other for every given @ and the homomorphisms & and 7§ are conjugate,
then the spectra are said to be conjugate to each other. It is known that the
limit groups H and 3¢ of two conjugate spectra are dual (Steenrod(*)) and

that an element & of the group 3¢ =Ilim. [3¢; m5] realizes a homomorphism
of the group H=lim,_ [H%; @] in k according to the formula:

7 = 1%k,

where n* and h* are taken arbitrarily in 5 and A: it turns out that the so-
defined homomorphism does not depend on the elements of arbitrariness in-
volved in its definition.

3.4. In the sequel we shall almost exclusively consider direct spectra;
therefore by a “spectrum” without any adjective we shall understand a direct
spectrum and in accordance with this omit the arrows in the formulae.
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3.41. Let two spectra
[Ua; 7";]’ [Va; P;]

be given, the elements of which correspond to each other in one-to-one manner
(U*e2V<). For every o let there be given a homomorphic mapping ¢, of the group
U= in the group Ve. If for every «, every U<, and every u® &€ U< the condition

Padat’ = pgmau”
is satisfied, them we obtain a homomorphic mapping ¢ of the group
U=lim [U=; 7§] in the group V=Ilim [Ve; p§] as the mapping correlating to

every bundle u of the spectrum [U<; 75 ) the bundle v=q¢u of the spectrum
[Ve; p§] containing with an element u* € U= also the element ¢ u°.

It suffices to show: from u*=uf (where = is the sign of equivalence) fol-
lows ¢.u®=¢suf. But if u*=u#, then there exists such a U~ that

a a B8 B
Tohh = WU
and, consequently,

a a a «a 8 B8 8 s
PrPath = PyTylh = GaTyth = pydgh ,
q.e.d.
We add two remarks, the proofs of which may be left to the reader.

3.411. If, whatever be o and v* &€ V2, thereis a VE> Ve and a uP € UP such that
B a a
st = pgv ,
then the mapping ¢ is a homomorphism of the group U on the group V.

3.412. If from ¢u=0 it follows that u € U contains the zero element of some
group U®, then ¢ is an isomorphic mapping.

3.5. A partially ordered set D is called a part of the partially ordered set
D’, if every element of D is an element of D’ and if from d, >d, in D follows
d1>d; in D’ (but it is not demanded that from d,>ds in D’, d, € D, dz e D,
should necessarily follow d; >d; in D).

A part D of an unbounded partially ordered set D’ is called cofinal to the
whole D’ if D is unbounded and after every element of D’ in D’ follows an
element of D.

A spectrum I is called a part, respectively a cofinal part, of a spectrum 1I1I,
if the spectrum I considered as a partially ordered set of groups, of which it is
composed, is a part, respectively a cofinal part, of the spectrum II and if the
projections in I coincide with corresponding projections in II.

Let now the spectrum I form a part of the spectrum II. It is obvious that
two elements of the spectral set of I equivalent in the spectrum I are equiva-
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lent also in the spectrum II. If I is a cofinal part of 11, then, conversely, two
elements of I equivalent in the spectrum II are equivalent also in the spectrum
I. From the first assertion it follows that every bundle of the spectrum I is
contained in a bundle of the spectrum II. From the second assertion it follows
that in the case of cofinality of I and II every bundle of the spectrum II
contains only one bundle of the spectrum I (that every bundle of II contains
at least one bundle of I follows directly from the condition of cofinality).
Thus we have

3.51. If one of two spectra forms a cofinal part of the other, then both spectra
have isomorphic limit groups.

3.6. We shall also need the following proposition.
3.61. Suppose that the spectra

a a a\ ak
(U5 ms], (U ]

satisfy the following conditions:

1°. There exists an isomorphic mapping ¢ of the group U** on the
group U-.

2°. If UPr> U, then UP> U-.

3°. For every u** ¢ U** we have

aN o\ Bu.—1 a aN aX
Touth = (bu) TpPa U

Then the limit groups lim [U=*; 7] and lim [U=; 7§] are isomorphic.

For the proof construct first from the groups U= a partially ordered set D’
by putting always Uf*> U=, if in the spectrum [U<; 7§] the inequality
U > U= holds. The partially ordered set D’ is evidently unbounded.

We define now the projections

i = e e
Since

Bu a\ yv.—1 B Bu, Bu.—1 a aX w.—1 a ak a\
Prpss = (Dy) Tads (08) mapa = (dy) Tyba = poyw

[U=*; pgh] is obviously a spectrum containing the spectrum [U=*; 75 ] as its
cofinal part. Therefore the groups lim [U=*; pa] and lim [U=*; 75 ] are iso-
morphic. Identifying for every a the group U with the group U< isomorphic
to it, we may also consider the spectrum [U=; 73] as a part of the spectrum
[U=*; pg] and even as a cofinal part. In fact, in order to obtain U?! following
after a given U=* in the spectrum [U=*; pg.] it is sufficient to take UP> U= in
the spectrum [U=; 7§ ]; evidently, UB1> U=* in the spectrum [U=*; pi].

Thus the group lim [U=; 4] is isomorphic to the group lim [U=*; ] and,
consequently, also to the group lim [U=; 75 ], q.e.d.
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4. THE FORMAL DUALITY

4.1. Let there be given an unbounded partially ordered set & of complexes
K<. Suppose that in every complex K¢ are given two subcomplexes K§ and
Ce. The complex C¢ is called a special subcomplex of the complex K=, If
K#> K=, then simplicial mappings S? of the complex K? into the complex K=
are defined, which are called projections of K? into K¢; they satisfy the follow-
ing conditions:

1°. For any projection S?

Sikyek;  Siect.

2°. If S? and S? are two projections of Kf into K¢, then for any simplex
ts € KP the simplexes S%; and S84 are faces of a certain simplex ¢, € K* and,
if 4 & K5 or t &€ CP, then we may assume that correspondingly ¢, € K3, t, £ Ce.

From the condition 1° it follows that every projection S? generates a homo-
morphism o of the groups

L'(K*=C%, LK —C", LK —K;—C
respectively into the groups
Lk -c, L&-c), L[ -k'-ch;

the homomorphisms o3 generate further homomorphical mappings 7§ of the
groups

(4.11) Bo(Ko — C"),  By(K — K, —C")
into the groups

(4.12) By(Ko— C"),  By(K' — Ko —C’)

and from the condition 2° it follows that all projections of the complex K# into
the complex K= generate one and the same homomorphism wg of the groups (4.11)
into the groups (4.12). These homomorphisms are also called projections.

Suppose that beside the conditions 1° and 2° the following condition is also
satisfied :

3°. If K*>K#> K<, then whatever be the projections S5 and S} of respec-
tively K into K= and K" into K?¥, the simplicial mapping S5S% of the complex
K7 into the complex K= is a projection.

From the condition 3° it follows that

B a a
Ty = Ty

and that we have the spectra

(%) We recall that K5 —C* means the set of all simplexes of K§ which do not belong to C,
ie., Kf—C*=Kg—KgnCe
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[Bo(K" — C™);mp), By (Ko —C™);ms],
[By(K" — Ko — C%); mg .

DEeFINITION 4.10. A partially ordered set & of complexes K= satisfying the
conditions 1°, 2° and 3° is called simply-connected with respect to the dimensional-
ity r for given special subcomplexes Ce, if the group

lim [By(K* — C7); m5]
consists only of the zero element.
The aim of the present paragraph is the proof of the following

THEOREM 4.1. If & is simply connected with respect to the dimensionalities r
and r+1, then the groups

lim [By(K; — C%;ms],  lim [BY (K* — Ko — C%); ]

are isomorphic.

4.2. Preliminary remarks to the proof of Theorem 4.1. For the sake of
shortness we shall write
L}, instead of L"(K*— C?),
7. instead of L7(Kg — C9),
L;, instead of L"(K*—Kg§— C?),
Z, instead of ZL(K§ — C=),
Z,, instead of Z5(K*—K§— C*),
Hj, instead of HY(K§— C?),
H;, instead of Hy(K*—K§—C*),
0. instead of BL(K§— C%),
B}, instead of By(K*—K§— C*),
Bj instead of lim [By(K§—C®); 7§],
B; instead of lim [By(K*—K§i— C*); 75].
The elements of the groups

r+1 1

B;a) B ;) B ga s B ’:.
we shall denote respectively by

r r r+1 r+1
Uq, u, Va v o

The elements of the groups

r

r r
Lay LOau Lamy

we shall denote respectively by

T

f:’ f;a) ga-
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If some function f7, is given, we denote by f7 the function which is equal to
faon K§ and is equal to zero on K2—Kg; by Af. we denote the function fg,
equal to f] on Kj.

If a function f, is given, we denote by Efj, the function f] equal to fg,
on K§ and to zero on K*— Kj.

Let us now formulate some simple properties of the operators 4 and E:

(4.21) EAfe =7,
(4.22) AEfoa = fou
From
gt Ly
follows
(4.23) Ay =0.
If ;' & K3, then
(4.24) VAfa(ton) = Vialtor)s
(4.25) VEfoaltoa) = Vfoalton)-
Further,
(4.26) VAfo = AVfa
In fact, if £} & K2, then VAfI(6X) and AVS.(65") coincide with Vfi(43).

If S8 is any pro;ectlon of K* into K¢, then

(4.27) Aosfn = opAfe.

In fact, from #5 & K5 follows

a r, r ar, r r B r a r r r B r r B r
Ao'pfu(top) = O'ﬁfa(toﬂ) = fa(SatOﬂ)’ aﬁAfa(tOB) = Afa(SatOB) = fa(SatOB)-

Observe, finally, that from f, & Zj, follows VEf;. € Z,+'. In fact, for
£ ¢ C* we have

VEfou(ta') = 0,

since Eff, € L, and, consequently, VEfg, € L.**, and for £, € K,

VEfoa(ta’) = Vfoulta ) = 0,

since fg, € Zg,-
4.3. We proceed now to prove Theorem 4.1.
To each fg, & Zy, corresponds a definite g/*' € Z}', namely VEfg,.
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4.31. The operator VE, applied to the group Zg,, generates an homomorphism
& of the group By, into the group B,

In order to prove this it is sufficient to show that if fj, € Hg, then
VE}. € Hjt.
Let f. € Hg,; then

r r—1
an = Van .

Put
(4.31) fot= Efta.
For #,, € K§ we have
(4.32) Joaltoa) = Afa (fou)-
Put
(4.33) ha(ty) = 0, if fn & Ko,
(4.34) Kol = v (L), if e K — Ko

From (4.32), (4.33), (4.34) follows

1 r

ha(te) + Efoa(ts) = Ve (t)
for any £, € K2, whence
Vhe + VEfoa =0, VEfoa = — Vhy,
ie.,
VEf;a € H’:;l.

Let us now show that for any #, € Bf,

(4.35) Tobally = GpTgthy.

Let there be chosen some projection S? of the complex K? into the com-
plex Ke. Choose arbitrarily fi, € #. In order to prove the formula (4.35) it is
sufficient to show that under the homomorphism ¢§5 of the group Zj, into
the group Zy, generated by the projection .S we have

(4.351) 0V Efou ~ VEopfoa in K* — Kb — C’.

Having in view that
a a
JBV = Va'ﬁ’

we may write (4.351) in the form

(4.352) VosEfoa — VEosfoa~ 0 in K* - K§ - C°.



1941] COMBINATORIAL TOPOLOGY 67

But (4.352) obviously follows from
(4.353) 05 Efoa — Eopfoa € Lip.
We have thus only to verify this last formula. But

a r r r B r
O’gEfoa(tg) = Ean(Satﬂ),

that is,
o5 Efonlts) = 0, if ShtaeC”,
= fou(Shte), if Shtpe Ko,
=0, if Siise K* — Ko,
On the other hand,

Eosfoalts) =0,  feC,
Eosfoa(th) = oafoults) = foalSels), if tp€ Ko,
Eoafos(tf) = 0, if tye K — Kb
If £ & K§ or £; & C?, then, respectively,
Sitie Ky Shipe C°.
Therefore for
fhe Ky, feC’,
we have
o5Efoa(t) = Eoafoalts),
whence follows (4.353) and so (4.352), (4.351) and (4.35).
From (4.35) and (3.41) follows
4.32. The operator VE determines through the homomorphisms ¢, the homo-
morphism ¢ of the group By into the group B+,

If ur is an element of the group B}, then take any element %, of the bundle
u and any cycle f] contained in the homologic class of #". The element "
of the group B} containing the cycle VEf] is contained in the bundle ™+,
which is by definition the element ¢(u") of the group B,

4.4. The homomorphism ¢ is a mapping of the group B} on the group

Bt In order to prove this it is, on ground of (3.411), sufficient to show that

4.41. Whatever be e and v;t* & B}, there is always a K#> K= and a uze By,
such that

r a r+1
¢pup = TeVa .
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Let ¢! be given. Take a git* € ¢.!. Since K is simply connected with re-
spect to the dimensionality r+1, there is always a K#> K= such that

a;g:,+1~0 in I&"s —Ca.

Thus there exists such an f that

(4.41) Vs = osga -
Putting

(4.42) P AREAR

we have

r+1 r+1 a r+1
(4.43) g8 €U EmWeVq .

If 4 & K, then
: r, r+ r, r+41
VAfs(t) = Vists ) =0,
ie.,
Afs € Zop.
Observing that always EAf; =f3, put
g6 = fo — EAf = fs = Jae Lop.
Evidently '
Ves = Vfs — VEAf;.
Consequently, in view of (4.41) and (4.42), ’
g ~ AEAS; in K — Kb -,
i.e. (on ground of (4.43)),
VEAfye mpva .
If Afg € ug e Bg, then
r a r+1
bptis = TeVa
and 4.41 is proved.
4.5. The homomorphism ¢ is an isomorphism.
LEMMA 4.51. If fl &€ ZL(K<), then there exists such a Kf > K= that

Acsfa~0 in Kb - C’.
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In fact, since K is simply-connected with respect to the dimensionality 7,
in some Kf> K= there exists such an f;~' ¢ K#— C? that

r—1

08fa = Vfs

Hence
ar r—1 r—1
Aogfe = AVfs = VAfs ,

and Lemma 4.51 is proved.
For the proof of the assertion 4.5 it is sufficient, in virtue of (3.412), to
show that if

(4.52) Pur =
and
(4.53) foa€ e

then there exists such a Kf#> K= that
(4.54) oafoa~ 0 in Ko —C".

From (4.52) it follows that (4.53) may be from the outset chosen in such
a way that

VEft« = V8oy  8u€ Lya.

Evidently Efy,—g, is a cycle and hence, in virtue of Lemma 4.51, we may
choose K#> K< such that

A(0sEfou — 0ag) ~0 in Ky — C°.
Since
Ad;g.: = 0,
AcsEfos ~ 0 in Ky — C’,
and since

Ad’;Ef;a = U:AEf;a = U;f;m
ifra~ 0 in Ko — C’,

so that the assertion 4.5 and with it the whole Theorem 4.41 is completely
proved.

4.6. Consider separately the case # =0. Suppose that all K* are connected
complexes, so that the groups B¥(K®) consist only of the corresponding zero
elements.

Suppose, further, that all C2=0 and that our system of complexes { is
simply-connected with respect to the dimensionality 1.
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Instead of BX(Kj3) we shall write BY and instead of lim [BX; 73] we shall
write simply B.
The operator VE again correlates to every element f, € Z3, the element

1 r 1
ga = VEan &€ Zg.

Moreover, if fo, € Zoo, then VEfy, € H),. In fact, putting the function f2 on the
whole K= equal to the constant value of the function fj, on K§, we obtain on
ground of 1.81 a cycle f2. Here

0 0 0
fa = Ean + hay
where
0 0 a ] 0 a
he = fa on K — K, hae = 0 on K,.
Since fQ is a cycle,

0 0 0
0= Vfa = VEan + Vhay
ie.,

0 0
VEfoa 4 Hgao

Thus the operator VE applied to the group Z3, generates a homomorphism ¢e
of the group B into the group B,,.

Similarly, as in 4.3 we prove the formula (4.351), where now r =0 and the
arguments are only simplified by the fact that C*=0; from (4.351) follows
(4.35), where =0 and #/, denotes an arbitrary element of the group Bje. Thus
the operator VE determines through the homomorphisms ¢, a homomorphism ¢
of the group BY® into the group B,.

The reasonings of 4.4 remain in force and prove that the homomorphism ¢
is a mapping of the group BY on the group Bj.

Let us finally prove that ¢ is an isomorphism. From the connectivity of K«
and from 1.812 follows in the first place:

LemMA. If f2 is a cycle, then
AfaeZy.

In order to prove that ¢ is an isomorphism, it is sufficient to prove that
if u%e BY and, further,

(4.61) é(u0) = 0,
(4.62) foa € uz € uo,
then

(4.63) Foa € Zo.

From (4.61) it follows that (4.62) may be from the outset so chosen that
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VEfoa = Vga;  gaeL'(K" — K1)
Evidently Ef2 —g% is a cycle and hence, at.:cording to the above lemma,
A(Efo — g2) € Zou,
ie.,
AEfoue Zoa,
ie.,
f:a & Zoa.
Thus we have proved

THEOREM 4.6. If there is given an unbounded partially ordered set of com-
plexes K= connected and simply-connected with respect to the dimensionality 1
and thetr subcomplexes K= satisfying the conditions of 4.1 for C*=0, then the
groups

lim [Bv(Ko); ms],  lim [Be(K" — Ko); w5
are isomorphic.
4.7. From Theorem 4.1 follows
4.71. If C* and K§ have no common elements and each of the groups
lim [BY(K" — C*); ], lim [BY (K" — C*); w5,
lim [BY(K"); m5),  lim [BY(K"); w5 ]

contains only the zero element, then the groups

B = 1im [B(K" — Ko — C%); n2)
and

B, = lim [Bv (K" — Ko); 73]
are isomorphic.

In fact, in our case Ki—C*=Kjg and both groups B;*! and 8™ are iso-
morphic to the group

lim [BY(Ko); ms ).

4.8. Remark. In what follows we often will have to do with unbounded
partially ordered sets & of complexes K* with given subcomplexes C*c K¢,
and of simplicial mappings S? of K# into K= (“projections”), defined for every
K#>K-=. These projections will satisfy the conditions 1° and 2° of §4.1, with
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respect to C* and the condition 3°, so that there is a direct spectrum
[Bo(K" — C*); m3),
7§ being the homomorphism of By(K*— C¢) into By(K?#— Cf), generated by SE.
Under these circumstances the limit-group
By = lim [By(K" — C); m3]

can be defined in a particularly simple way. In fact, we shall consider the
set Z7 of elements of all groups Zy(K=*— (C?), i.e.,

Zr = \UZ"(K* — C%)
and call 2}, € Z"(K*— C*) and 23 &€ Z"(K?— CP) equivalent if a K7,

K7 > K-, K > K#
and projections .S}, S§ of respectively K” and K* into K* can be found in such
a way that

cr:z:,fvaiz; in K" -—C7,

02, o® being the homomorphisms of Z'(K*— C*) and Z7(K#— C?) in Z"(K*— C")

7YY
generated by S} and Sj respectively. Thus Z is divided into classes or bundles
of equivalent cycles and these bundles form a group, which, by definition,
is the group BYy; the addition in Bj is defined in the following way: {] and {}
being two bundles, we take an 2} € {] and a 27 & {} and call {J+{; the bundle
containing Z,+22. It is an easy task to show that this definition of

lim [By(K" — C"); m5]
agees with the definition given in §3.2.

5. COVERINGS

5.1. In the present paragraph R denotes one and the same infinite set.

An indexed subset e; is by definition a pair consisting of a certain subset | e
of the set R and a natural number <. Two indexed subsets e; and e; are consid-
ered to be equal if the sets |e;| and |e;| are identical and the indices 4 and j

are equal.

By a covering of a set we understand such a finite system of indexed subsets
(5.1) Q= {en -, e}
that

leaju---ule| =R

A covering Q is called simple if the identity |e.~| = | e;l is realized only in
the case of equality 2=}, i.e., only in the case of equality e; =e¢;. Since in the
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case of a simple covering the indexed sets e; correspond to the sets | e.-l in one-
to-one manner, we may not distinguish between the first and the latter and
consider the sets |e,~| themselves to be the elements of the simple covering.

The nerve of the covering Q= {el, ce e, e.} is the complex K with the
vertices ey, - - -, €; the vertices
€igy ©  * , €4,

form a simplex of the complex K when and only when

# 0.

lew|n---nle,

If a covering is denoted by the letter @ with some indices, then we shall
denote its nerve by the letter K with the same indices. For instance, the nerve
of the covering Q= shall be denoted by K¢, the nerve of the covering Q** by
K= etc.

5.2. DEFINITION 5.21. A covering
] 8 .
9={8f}! J=1,...’sﬂ,
s called a subdivision of the covering
Qa’:{e:}y i=1---, S
if each of the |eﬁ| is contained in at least one of the | e‘,"] .
DEFINITION 5.22. A covering ¥ follows after the covering =,
P > Qe
if QP is a subdivision of the covering Q=, but Q= is not a subdivision of the cover-
ing QF.

This definition of “follows” turns the set of all coverings € of a set R into
a partially ordered set 8. Every part % of the partially ordered set B is called
a system of coverings of the set R.

From Definition 5.22 follows

5.221. If QB> Q= and Q7 is a subdivision of QP, then Qv > Qe; if QP is a sub-
division of Q= and Q> QF, then Q> Q= .
For the nerves of the coverings we put K#> K<, if Qf> Q.

Let a covering Q== {ef} and its subdivision ¥ = {éf} be given. To each
& we correlate some definite ¢f under the only condition that

il e el

Such a mapping of the covering @ into the covering £¢ and also the corre-
sponding simplicial mapping of the complex K* into the complex K= shall be
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called a protection and denoted by S or, if no misunderstandings are to be
feared, simply by S.

5.3. Suppose that a certain system € of subsets of the set R called special
subsets is singled out. We suppose that the system of special subsets satisfies
the following condition:

5.31. If E is a special subset and E’'> E, then E’ is also a special subset.

The element €5 of the covering Q¢ is called special, if [e‘{l is a special sub-
set.

Special elements of the covering 2+ define a certain subcomplex C¢ of the
complex K= called the special subcomplex of the complex K<=.

From the condition 5.31 follows

5.32. For any protection SE of the covering QB into the covering Q= we have
Secec Ce.

Let S and S be two projections of the covering € into the covering Q=. If
s = (€ip "+ €5)
is any simplex from K?*, then the vertices
Sej,, Sejp; -+ 3 Sej, §e,~,

define a simplex ¢, in K= having among its faces Stg as well as Stg; if, moreover,
tg € CP, then ¢, € C*. Hence all projections of the covering {# into the covering
Q= define one and the same homomorphism &2 of the group Bi(K# mod C¥)
into the group B3(K* mod C¢) and one and the same homomorphism 7§ of
the group By (K=— C?) into the group By(K¥f— C?P).

If the system of coverings 8 is unbounded, then we obtain the inverse
and the direct spectra

[Ba(K"mod C); 4],  [BY(K" — C%); ms),

the limit groups of which we denote respectively by BL(%, €) and By(%, €).
From the investigations of Steenrod (%) it follows that the groups Bi(%, €)
and B%(B, €) are dual to each other.

5.4. Consider some covering, which we shall denote by

02 = {ea};

by ei, €2, - - -, €; are denoted all elements of the covering Q=* for which
|ea| =|ea|=--- = | ein;| , namely | ea| =e. The sets e; form a simple cover-
ing Q= denoted also by | SZ“"I .

To every element e;; of the covering Q= there corresponds an element e; of
the covering Q= and this correspondence establishes a simplicial mapping D2
of the complex K* into the complex K<, under which the special complex
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C* c K= is transformed into the special complex C*c K= The simplicial

mapping D2 generates a homomorphism p2 of the group Bi(K** mod C**)

into the group Bi(K* mod C¢) and a homomorphism ¢35 of the group
v(K*— C=) into the group By (K=*— C}).

5.41. The homomorphisms p2 and o2\ are isomorphic mappings of, corre-
spondingly, BA(K™ mod C**) on Bj(K* mod C2) and of By(K=*—C) on
By(Kr—C=),

For the proof observe in the first place that the subcomplex KM of the
complex K** consisting of all simplexes of K** whose vertices have the form e,
is isomorphic to the complex K2. In virtue of this isomorphism between K2
and K= to the simplicial mapping D2 of the complex K** on the complex K¢
there corresponds a simplicial mapping D2, of the complex K** on KM cor-
relating to the vertex e;; the vertex e;; and, consequently, leaving all vertices
and all simplexes of the complex K** ¢ K2 fixed.

An arbitrary simplex

tar = (eioko) R} et',.k,)

of the complex K** and its image under the mapping D%,

Dani(ta) = (eigt, * -, €,1)
are faces of a simplex
To= (6.'01, Ctt gCighgy Tt 5 6igdy t t t 8.‘,»,)
(we write ko instead of &y, « - « , b, instead of k;,) belonging to the complex K=*

and, moreover, if £, € C**, then T, € C**. Hence it follows that for

for e Za(K™ mod €

we have

a\ r r a\ . al

Darifar ~ far modulo C in k¥,
i.e., for every homologic class
r r al al.

tarn € Bo(K modC )

we have
a\ r r
Par1fer € $ane

On the other hand every homologic class

tan1 € Ba(K ! mod Cm)

is contained in a uniquely determined homologic class

tone Ba(K™ mod C™).
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It remains to show that the homologic class {J, contains only one homo-
logic class {{, i.e., that from

r r al a r r a a.
foareZa(E™ mod €™, fiare Ha(K™ mod €™
follows
(5.41) foare Ha(K™ mod ™).

Since under our assumptions
r+1
fa)\l = Afa)\ )

we have
a\ r r+1 ah  r+1

fau = Danifer1 = Da)\lAfa)\ = ADa1far
so that the inclusion (5.41) is proved.
Thus p2* is an isomorphic mapping of the group Bi(K** mod C**) on
(K mod C*), consequently ¢% is an isomorphic mapping of the group
By(K=*—C*) on By(K**—C*").
5.5. Let there be given coverings Q=*, Qe Qf Q8 connected by the rela-
tions

Qr=|Qa|, @=|om|; o> e

Then also 9> Q* and, moreover, if S&% is a projection of Q% into Q=*, then
we have a completely determined projection S: defined by the formula

(5.51) Shes = ShDRen = DI,

Denoting by p2, pf*, 0%, ag,‘ the isomorphisms (deﬁned in 5.4) generated
by the mappings D2 and D§*, we see that @p§* and pZ@f4 is one and the same
homomorphism of the group Bi(Kf* mod CP*) into the group Bi(K* mod C¥%)
~and, consequently, ohm5 and whof, express one and the same homomor-

phism of the group B (K"‘ C?) into the group By(KP?*— CP*). Hence
a\ I} a —1
7o = 0,75 (0an)
or, denoting by ¢2, ¢ the isomorphic mappings respectively inverse to the
isomorphisms o3, and agp,
-1 a a\
(5.52) T = (85) Tode -

5.6. Suppose now that we have an unbounded system 8 of coverings Q=*

of the set R. Let the system
|8 = {o},

where Q== | Q=}| be also unbounded. Under these conditions we have
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5.61. The groups
BA®, €) = lim [Bo(K™ — C); mau],
By(| 81, €) = lim [Bv(K" — C%); m3]
are isomorphic.

In fact, in virtue of (5.52) the conditions of 3.61 are satisfied.

Let us establish an important particular case of 5.61.

Let A be any subset of the set R. Suppose that, the condition 5.31 being
satisfied, some subsets of the set 4 are singled out as special. Denote the sys-
tem of special subsets of the set 4 by €,.

Let there be given an unbounded system 2 of coverings Q¢ of the set R.
We construct for each Q== {¢f} a covering 4 Q= of the set 4 in the following
manner. The elements of the covering 4 Q= are the indexed sets

(4 "‘Ie?l)s,

which we shall simply denoted by Aéf.

If Q> Q= put A ¥ > A Qe The obtained system of coverings 4 Q= we shall
denote by A%.

The system | AB| consists of all simple coverings | 4 Q=|, where | 4 Q|
may be defined as the simple covering consisting of all non-void sets repre-
sentable in the form 4 N |¢f|, where f £ Q<.

From what has been proved above follows

5.611. If for an unbounded system of coverings V of the set R and for a sub-
set A CR the system | AB| is also unbounded, then the groups By(AV, §y) and
By(| AB], &) are isomorphic.

6. COVERINGS OF TOPOLOGICAL SPACES

6.1. A covering of a topological space is called open if it is composed of
open sets, and closed if it is composed of closed sets.

6.11. Every two open (closed) coverings Q= and QF of a topological space R
have a common simple subdivision Q.

It is sufficient to take for the elements of the covering Qv the sets
leg] n|éf|, where ef € Q= & & Q.

6.121. Let
Qa={e:}, 1:=172y"'vsm

be an open covering of a Ti-space R. If at least one of the sets € contains more
than one point, then there exists an open covering ¥ = {&} following Qe,

P > Qe
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In fact, let, for instance, €f contain at least two points ¢ and a’. Put

8 a .
e; = e — a for i < s,

ef=e‘;—afor 1= S5,+ 1.

The so-defined covering Q= {ef}, 1=1, 2, ., s.+1, is evidently a sub-
division of the covering €. But Q¢ is not a subdivision of ¥, since ¢f is not
contained in any of the sets é;.

6.122. Let R be a Ti-space consisting of an infinite number of points. Then
every closed covering

(6.1) Qa= {e:}y i=1’2’°"rsm

of R possesses a subdivision QF, containing an element with an infinite number of
points not belonging to any other element of the covering QP.

In fact, let us delete from (6.1) one after another all elements, all points
of which with the possible exception of a finite number of them are contained
in the sum of the following elements of the covering Q*. At every such deletion
we lose not more than a finite number of points of the space R. Hence, if R
consists of an infinite number of points, we shall at last reach such a first ele-

ment e; that the set O;=e¢; —(e;;1U - - - U &) contains infinitely many points.
If at the preceding deletion we lost the finite set of points py, - - - , ps, then
a a a
{Ply' i yphret‘t ei+11‘ A reca}

is the required subdivision of the covering Q.
6.123. Let R be a Ta-space consisting of an infinite number of points. For
every closed covering
(6.2) o = {e}, i=1,2, 0, Sa
of the space R there is a covering
( 8
o = {e;}
following after Q.
In fact, we may suppose that Q= satisfies the conditions of 6.122 and that,

for instance,

a a
01=e1— |V [

251S3q

contains infinitely many points. Take two points a and ¢’ of the set O, and
choose such a neighbourhood O, of the point a that

6,, cO, — a'.
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Since O, is an open set, such a neighbourhood may be found. Put now

8 a ep s
€ = € — Oa: lf té Say
B =

e; = 0,, if ¢=1s,+4+1.

The covering Q= {ef } ,3=1,2,-.-,5,+1, is the required covering.
From what has been proved above follows

6.12. The system of all open coverings of every Ti-space comsisting of an
infinite number of points and the system of all closed coverings of every Ts-space
consisting of an infinite number of points are unbounded systems of coverings.

6.2. From now on and until the end of the present paper we shall suppose,
if the contrary is not explicitly stated, that R is a normal space consisting
of an infinite number of points. By a covering of the space R we shall always
mean an open covering. The system of all open coverings of the space R we
shall denote by O.

By A we always denote a closed set lying in the space R. 4 itself is a nor-
mal space, which, in general, cannot be asserted with respect to R—A4.

In every covering Q= {e.-} ,1=1,2, - -,5s, of the space R we distinguish:
1°. Elements of the first kind, i.e., elements meeting 4 ; we denote them by
ey, - -, ep
2°. Elements of the second kind, ept1, - - - , €, not meeting 4.
The elements of the second kind are subdivided into boundary elements:
€ptly * * * y €gy
satisfying the condition 4 N &;%0, i=p+1, - - -, q, and inner elements:
€gtly * "y Cay
for which &;c R—A4,i=q+1, - -,s.

DEeFINITION 6.21. A covering
Q= {e}, i=1,2--,s5,

of the space R is called regular with respect to A, if it satisfies the following con-
ditions:

1°. The covering Q contains no boundary elements of second kind.

2°. If for some elements of the first kind e;,, - - - , e;, we have

Aneyn...ne =0,

then

Observe that from these conditions follows
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3°. If for any elements ey, - - - , e;, of the covering  we have
Ane,n---neg =0,
then
Ang,n...ng =0
6.22. Every covering
Q= {e: !,

Y
I

1’ 2’ **y Say
of the space R has a subdivision QF regular with respect to A.

Proof. Consider the open covering

(6.21) CAQ" = {dey, -+, Ae,)
of the set A. Since 4 is a normal space, there exists a closed covering
(6.22) ay, -, ap

of the set A similar to it and inscribed into (6.21). About the system of closed
sets (6.22) we circumscribe a system of sets

(6.23) Oa,, - - -, Oa,
open in R and similar to it such that for j=1,2,-.-,p
(6.24) | a;c0a;Ce;.

For each a; take a neighbourhood O’a; such that

(6.25) O'a;cOa;
and put
(6.26) ef-=0’a,', j=1,2,-++,p.
Take further a neighbourhood O’’4 of the set 4 such that
0"dc U e':
1s4=p

and denote the non-void sets among the ¢ —0""4 by &, j=p+1, - - -, s
These last exhaust all elements of the second kind of the covering

] 8 .
9={6f}’ J=172v"°’sﬁv
and all these elements are evidently inner elements.

Thus the covering Q¥ satisfies the first condition of regularity with respect
to 4.

Let us prove that the second condition of regularity is also satisfied. Sup-
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pose that for certain elements of the first kind, which we shall for simplicity’s
sake denote by €8, - - - , ¢, we have

Andn...ne =0
and, consequently, also

Adn...nde=o0.
Since a; c Aéf, we have also a; 0 - - - N a,=0 and, consequently also

Oa;n---nQ0g, = 0.
And moreover

Oain--- nﬁa—r—= 0,
ie.,
fn-.-nd =0

Since {f is by very construction a subdivision of ¢, (6.22) is proved.

6.3. Consider in any covering Q¢ of the space R the set of elements of the
first kind and of boundary elements of the second kind. These elements con-
sidered as vertices of the nerve K¢ of the covering Q* define in K= a sub-
complex K. By K§ we as always understand the nerve of the covering 4
considered as a subcomplex of the complex K¢ Evidently we always have
Kjc K§. ‘

6.31. If a covering Q= is regular with respect to A, then K7 = Kg.

In fact, from the first condition of regularity it follows that the complexes
K% and K§ have the same vertices, while from the second cendition it follows
that every simplex of K{ is at the same time a simplex of Kj.

At every projection of the covering @ into the covering Q= the complex K%
is obviously transformed into K§; hence we may speak of the spectrum

(6.31) [BYK" — K1 — C%); m5),

where, as always, C* denotes the special subcomplex of the complex K.
The elements of the spectrum (6.31) corresponding to coverings Q= regu-
lar with respect to 4 form in virtue of 6.22 a cofinal part of this spectrum.
Hence, having in view 6.31, we obtain
6.32. The groups
lim [By(K" — K¢ — C*); m3),
lim [By(K" — Ki — C%); 3]
are isomorphic.
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7. BETTI GROUPS OF TOPOLOGICAL SPACES
(FIRST DEFINITION)

7.1. Let R be a normal space consisting of an infinite number of points.
Let O={ Q*} be the system of all open coverings of the space R. By K= we
always denote the nerve of the covering Q2.

DeFINITION 7.11. The group(®)
(7.1) lim [BY(K®); ms],

where n§ is a projection of the group By(K<®) into the group By(KF), generated by
any projection of the covering QF into the covering Q* will be denoted by BL(R).

7.2. Let G be a topological space consisting of an infinite number of points
and homeomorphic to an open set of a certain normal space (in particular,
for G may be taken any normal space). By a special subset of the space G we
shall mean any set E € G whose closure in G is not bicompact. The system €
of special subsets of the space G obviously satisfies the condition 5.31: any
set E c G containing a special subset is itself special. By O={ @2} we denote
the system of all open coverings of the space G. Special elements of the cover-
ing Qe i.e., elements ¢, for which Ie‘{l is a special subset, determine the spe-
cial subcomplex C* of the complex K<: the complex C*c K* consists of sim-
plexes of the complex K¢, all vertices of which are special elements of Q.

DEFINITION 7.2. The group(®)
(7.2) lim [By(K" — C%); m5),

where 7§ is a projection of the group By(K*—C*) into By(KP— C¥), generated
by any projection of the covering Q¥ into the covering Q* is called the r-dimensional
(inner) Bettr V-group of the space G and is denoted by By(G).

7.3. The field of coefficients forming the foundation of the above defini-
tions is, as always in the V-theory, supposed to be a discrete commutative
group X. If = is the bicompact group dual to X and

Bu(K®) = BA(K",E), Ba(K modC") = Ba(K mod C", E),
then the limit groups

BA(R) = lim [BY(K"); a0,

Bu(R) = lim [BA(K" mod C%); &2]

(where @ is the homomorphism of the group Bi(K?) into BA(K*), respectively
of the group BL(K? mod C#) into Bi(K* mod C=), generated by the projection

(°) See 4.8.
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of K into K*) are dual to, respectively, the groups By(R) and BY(R); the
group BA(R) is called the r-dimensional (inner) Betti A-group of the space R.

Remark. The simple coverings obviously form a cofinal part of the system
of all coverings. In the definitions just given we may therefore always assume
that all coverings are simple.

7.4. THEOREM 7.41. Let each of the groups BH(R) and B (R) consist of the
zero element only. Let A be a closed set of the space R. Then By (A) is isomorphic
to the groups

lim [BY (K° — Kol; m3),  lim [BY (K" — K1); 75),

where the complexes K§ and K5 are defined as in 6.3.
Proof. In the first place, for €=0 in virtue of 6.32 the groups

lim [BY (K* — Ko); 5], lim [BY (K" — K1); ms)
are isomorphic, and hence it is sufficient to show that 8B5(4) is isomorphic

to the group
lim [ByH(K= — K3); 5],

But in virtue of Theorem 4.1 this last group is isomorphic to the group
2(A9). Thus, everything is reduced to the proof of the following

LEMMA 7.411. The group By(A) is isomorphic to the group BL(AD).

We begin the proof of Lemma 7.411 with the consideration of the case
when 4 consists of a finite number of points.

Consider coverings Q* of the space R satisfying the following conditions:

1°. The covering Q¢ is a simple covering.

2°. Every element of Q¢ contains not more than one point of 4.

3°. Two different elements of Q= containing points of 4 do not meet (in
particular, no two elements of Q* contain one and the same point of 4).

It is easily seen that every covering of R has a subdivision satisfying the
conditions 1°-3°, so that the system 8 of coverings satisfying these conditions
forms a cofinal part of the system O of all coverings Q2. But if Q= satisfies the
conditions 1°-3°, then A4 Q¢ has for its elements the points of 4 themselves,
and the nerve K§ of the covering 4 Q~ is a zero-dimensional complex which
may be identified with the same finite set 4. Hence By(K§) =B%(A4); in the
spectrum

[BY(Ko); 73]

the projections 75 are identical mappings of By(4) onto itself and, conse-
quently, the group By(49), being isomorphic to BL(4B), is also isomorphic
to By(4).
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Let now A4 be infinite. For €y =0 in virtue of 5.611 the groups B,(40) and
w(| AD|) are isomorphic. Hence it is sufficient to show

7.42. The group By(A) is isomorphic to the group By(| AD]).
This proposition follows in its turn from

7.43. The system of all simple coverings of the space A coincides with the
system | AD)|.

To prove 7.43 it is sufficient to show that every simple open covering
QA={a.-}, 1=1,2,---,5,

of the set A4 is an element of the system | 4D|. To this end choose for every
a; e Q4 a set ¢; open in R such that a;=A4 N ¢,. The sets e; in their sum form a
certain neighbourhood OA4 of the set 4. Choose a neighbourhood 0’4 such
that 0’4 € 04 and put

€541 = R — O’A.
Denoting by € & O the covering {e,-} ,1=1,2,-.-,5s, of the space R, we evi-
dently have
Q=] 42|,

which proves 7.43 and, consequently, 7.42 and 7.41.

7.5. Let now R be a locally bicompact normal space, 4 an infinite closed
subset of the space R. Special subsets of the set R (in particular, of the set 4)
shall be as above sets, the closures of which are not bicompact. Let

(7.51) Q={e, -, el

be a covering of R. An element e; ¢ Q we shall for a moment call unregular
if &; is not bicompact and 4 N ¢é; is bicompact and non-void.

7.51. Every covering (7.51) has a subdivision not containing any unregular
element.

For the proof it is sufficient to construct for every covering { containing
unregular elements such a subdivision €, that the number of unregular ele-
ments in ; should be by unity less than the number of unregular elements
in Q.

Let e; be an unregular element of the covering . Since 4 N ¢, is bicompact,
we may, using the local bicompactness of R, construct such a neighbourhood
U, of 4 0 ¢ that T, is bicompact. The bicompact set Uy may be again en-
closed into a neighbourhood U; with a bicompact closure. Put

enn = e NUy, ez = e1 — Uy, Q= {ew, €10, €2, -+, &}

Since e;; and ey are regular, & is the required subdivision.
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7.52. Let there be given a covering Q of the space R. As usual denote by K
the nerve of the covering Q, by K, the nerve of the covering AQ, and by C and C,
spectal subcomplexes of the complexes K and K. If the covering Q does mot con-
tain unregular elements, then Co=K, 0 C.

In fact, from 7.51 it follows that the complexes C, and K, N C have the
same vertices, which correspond in one-to-one manner to special elements of
the covering @ meeting 4. Since in C, as well as in Ko 0 C the vertices
ei, - - -, €;, determine a simplex, if

Aneg,n---neg, #0,
7.52 is proved.

DEeFINITION 7.53. A locally bicompact space R is said to be simply connected
with respect to the dimensionality r, if the group BL(R) consists of the zero element
only.

THEOREM 7.54. Let R be a locally bicompact normal space simply connected
with respect to the dimensionalities r and r+1. Let A be a closed set of the space R.
Then the group By(A) is isomorphic to the groups

lim [By (K “— K5 — C™);m5),  lim [BY (K" — Ki — C%); 73]

Proof. Let first A consist of an infinite number of points. In virtue of 7.43
the group By(A4) is isomorphic to the group BY( | AD| , &) (where G, denotes
the system of special subsets of the set 4) and, consequently, on ground of
5.611, to the group

B9(4D, 6,) = lim [BY(Ks — C3); 75 .
On ground of 7.51 and 7.52 for the cofinal part of the spectrum
[By(Ks — Co); 7]
(corresponding to the coverings ¢ not containing unregular elements)
Ko —Co =Ko —C"

so that lim [By(K§— Cg); 75] and consequently also By(4) are isomorphic to
lim [By(K§— C*); 7§]. But this last group is isomorphic in virtue of Theorem
4.1 to the group

lim [Bv(K® — Ko — C%); 78]
and, consequently, on ground of 6.32, also to the group

lim [BY(K® — K1 — C°); 73],
q.ed.
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Let now A be finite. Then Cy=0 and, by Lemma 7.411,
By(4) = By(4) = By(40).
For coverings Q¢ not containing unregular elements we have
Ko =Ko — C°,
so that the group By(4) is isomorphic to the group
lim [By(Ks — C%); 7).
The rest of the proof is the same as in the case of an infinite 4.

7.6. THEOREM 7.6. Let R be a connected bicompact space simply-connected
with respect to the dimensionality 1. For any closed set A € R the group B¥(A)
s isomorphic to the groups

lim [Bo(K" — Ko); 5],  lim [By(K™ — K1); 75 ).

For the proof observe in the first place that from the connectivity of R
follows the connectivity of all complexes K*. Noting this, we construct the
proof of Theorem 7.6 precisely on the same lines as the proof of Theorem 7.54
with the only deviation that instead of taking reference to Theorem 4.1 we
now apply Theorem 4.6.

8. THE DUALITY LAW OF KOLMOGOROFF

8.1. By the duality law of Kolmogoroff we mean the set of the two follow-
ing theorems, the proof of which is the object of the present section.

THEOREM 8.11. Let r be a natural number, R a locally bicompact normal
space simply connected with respect to the dimensionalities r and r+1. For any
closed set A c R the groups By(A) and By (R—A) are isomorphic.

THEOREM 8.12. Let R be a connected bicompact normal space simply con-
nected with respect to the dimensionality 1. For any closed set A the groups
BY(A) and BY(R—A) are isomorphic.

8.2. Put G=R—A. We begin the proof of Theorems 8.11 and 8.12 by the
consideration of the trivial case when G consists of a finite number of points.
As regards Theorem 8.12 in this case, from the connectivity of R it follows
that the number of (necessarily isolated) points, of which G consists, cannot
exceed 1, so that we have either the case when G consists of one point and 4
is void, or the case when G is void and 4 = R. Since in both these cases Theo-
rem 8.12 is true, it is proved for a finite G.

Let us prove Theorem 8.11 under the assumption of a finite G. In this
case B3 (G)=0. But for #>0 the abstraction from the space R of a finite
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number of isolated points does not, as may be easily seen, affect Bi(R), so
that the group By(4) =By (R—G) is isomorphic to the group By(R), which,
by our assumptions, consists of the zero element only and hence is isomorphic
to By(G). Thus for a finite G Theorem 8.11 is also true.

Let now G consist of an infinite number of points. In virtue of Theorems
7.54 and 7.6 for the proof of Theorems 8.11 and 8.12 it is sufficient to prove
the following proposition:

8.21. For any natural number r and any locally bicompact normal space R
the groups Boy(G) and lim [By(K*—Kg— C=); 7] are isomorphic.

8.3. The proof of 8.2.
DerFINITION 8.31. Let
Q= {ely"')emep-i-l)"' »ea}

be a covering of the space R. Denote by ¢a the sum of all those sets &;, which are
bicompact and lie in G. The covering Q is called regular with respect to G, if it
satisfies the following two conditions:

1°. No element of the first kind of the covering Q meets pq.

2°. The elements of the second kind of the covering 2 form a covering of the
space G, which we denote by G2:

G2 = {eprs, - -+, &)
8.32. Every covering
Q= {81,"',%,"‘,6-}
has a subdivision regular with respect to G.
Proof. Denote all non-void sets of the form G N ¢; by
gty ER

they form a covering T of the set G. Denote by ¢ the sum of those among the
the sets g; € G which are bicompact. After this consider the sets e;—ér,
1=1,2, .-, p, and denote them by

’ ’
e, -y Cpr
The covering
! ’ 14
Q = {el,..-,ep,’gh...,gh}

of the space R is a subdivision of the covering Q. Since ¢r=¢q+, Q' is regular
with respect to G.

8.33. For every covering
I = {glv"'ygh} l
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of the set G there is a covering Q of the space R regular with respect to G and such
that

Ge=T.

In fact, denote by ¢ the sum of those of the sets g; which are bicompact
and lie in G. The covering Q consisting of all elements of I' and of the set
R—¢r is the required covering.

Remark. Among the elements of the second kind of the covering Q (regular
with respect to G) those and only those are special elements of the covering
G Q which satisfy at least one of the following two conditions:

1°. They are special elements in Q.

2°. Their closure meets 4.

8.4. Consider the system D¢ of all coverings

I‘a"—" {g:}’ k=11 2)"'1hay
of the set G. Denote by
Qa)‘={€:}‘}u{g:}, i=172)""Pahk=Iaz""yhm

every regular with respect to G covering of the space R having I'* for the set
of its elements of the second kind, i.e., satisfying the condition

GQa)\ = e,

For convenience we shall sometimes write instead of gf also €, where
i=pa—+k. The nerves of Q** and I'* we denote respectively by K** and K*;
the special subcomplexes of K«* and K* we denote respectively by C** and Ce.
By K2 we denote, as usual, the subcomplex of K=* determined by those ver-

tices e £ K* for which
ak

Aneg #=0.
Let us prove the identity
(8.41) K —C"=K" - K-
Let ¢t € K*— C= The vertices of ¢ are some elements of the second kind
g2 & K* ¢ K**; suppose they are gf, g3, - - -, g&. We have
gin---ng 0.

Since t ¢ C*, among these g; there is at least one, which is not a special element
of the covering I'?, i.e., has a bicompact closure lying in G; consequently ¢ can
belong neither to K¢ nor to C**, and so ¢t ¢ K**— K — C**. Conversely, if

a\

1e K™ — Kp - C™,
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then among the vertices of ¢ there is at least one belonging neither to K2 nor
to C*, i.e., representing a certain & with a bicompact closure lying in G.
In virtue of the regularity of Q** with respect to G all remaining vertices of ¢
are elements of the second kind of the covering Q*?, i.e., elements of I', so
that ¢ € K= Since among the vertices of ¢ at least one has a bicompact closure
in G, t ¢ C¢, and, consequently, ¢t ¢ K*— Ce.
Since K« c K**, from 8.41 follows
(8.42) C*ckiuc™

(which, by the way, follows also from the remark made at the end of 8.3).

From (8.41) and (8.42) it follows that the groups L7(K=—(C%) and
L7(K“*— K2 —(C*)) are isomorphic: a quite definite isomorphism between
these groups is obtained if to every function fr ¢ L7(K**— K — C*}) is corre-
lated the function Gf" £ L"(K*— C<), where

Gfr(tr) = fr(¢") on all i€ Ke.

It is easily seen that the isomorphism G is commutative with the opera-
tor V:

(8.43) VGfr(tr+1) = GVf’(tr+l)

for any ¢+l e Ke,
In fact, for any simplex ¢+ £¢ K= we have

VG = 2 GI(r) = 30 S = vf@),
Gvfr(tr-#—l) = Vfr(tr+l).

From (8.43) it follows that the isomorphism G between the groups
Lr(K*—K$—C=*) and L7(K*—C*) generates an isomorphic mapping ¢
of the group By(K**—K$ —(C**) on the group By(K*—C%).

8.5. LEMMA 8.5. Any two coverings
o = (M) ufer}, 9" = (]} u {4l
regular with respect to G have such a common subdivision
2" = {¢/ } v {gn}

regular with respect to G that every element of the second kind gy, of the covering Qv
1s contained in at least one element of the second kind of each of the coverings Q=
and QP+,

In fact, let

9:{61,...,ep,gl,...’gh}
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be any common subdivision of the coverings Q** and Qf* regular with respect
to G. Denote all non-void sets of the form g n g n g, thus: :

v v
gh e, gh_'
Since
a B
Ugr = Ug = Ug, =G,
we have also \Ug},=G. Denote by ¢, the sum of all bicompact g* € G and put

v .
e = € — ¢, i=1,2,---,p.
For the covering
L2d yv hid Y k4
Q ={91,"';8p,81,"',gh.,}

not only Ui<nca;gn =G, but also ¢po™ =¢,; so that Q7 is regular with respect
to G. Besides, for every g, there are g%, ¢°.and g, such that

@ 8
g; = grN g Ng,
and consequently
k4 a k4 8
Em C &k gm € gi.
The limit group of the spectrum

(8.51) [Buk™ — & — ¢™); mp)
will not be changed if in this spectrum we retain only elements corresponding
to coverings Qe* regular with respect to G and put Q> Qe* only if Q8 fol-
lows after Q°* and every element of the second kind of Q# is contained in
some element of the second kind of Q2

Thus, if By(K#* — K8 — C##) > By(K** — K — C**) in the spectrum (8.51),
then

ByK® — ) > Byk" - C%

in the spectrum
(8.52) [BYK" — C%); ms].
Let us, finally, prove that
By « a a
(8.53) ' B Tostiar = T tar

for any element #q of the group By(K**—K$—C=*). To this end denote by

% some projection of Q2 into Q= transforming every element of the second
kind of 2% into an element of the second kind of Q2*. Such a projection S%
generates a projection S¢ of the covering I'# into the covering I'«.
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We denote the homomorphisms of the groups L7(K**—K2—C=") into
Lr(Kf:— K% —C#) and L7(K*—C*%) into L"(Kf— C#) generated by the pro-
jections S% and S respectively by o and o

For the proof of (8.53) it is sufficient to show that for any element
fire L'(K*— K — C**) and any simplex #; ¢ K# ¢ K# we have

a\ r

(8.54) Gopufar(ts) = 05 Gfan(t).
The last assertion follows from

a\ r Bu r

Gomfallh) = omfalts) = far(Sta),

if we take into account that for 5 ¢ K#
Shty = Sata.
Thus the spectra (8.51) and (8.52) satisfy all conditions of 3.61 and there-
fore their limit groups

lim [B{(K™ — Ki — C™);m],  lim [By(K™ — C"); 73]

are isomorphic. This proves 8.2 and, consequently, also the duality law of
Kolmogoroff.

9. THE SECOND DEFINITION OF BETTI GROUPS

9.1. Let O be the system of all simple (open) coverings Q¢ of a space R.
As always, denote by K= the nerve of the covering Q== {¢f}. Special elements
of the covering Q¢ we call those sets ¢, the closure of which is not bicompact.
The nerve of the aggregate of all special elements of the covering 2= we denote
by C= and call it the special subcomplex of K<,

The barycentric subdivision of the complex K= shall be denoted by K1¢,
the barycentric subdivision of the complex C>—by Ce.

The vertices of the complex K'* are expressions of the form

la a a a a
€ = €, &, ex€Q,

(all ¢ entering into ¢;* are different). An aggregate of certain vertices of the
complex K'* defines a simplex of this complex if and only if for any two
vertices

(9.111) o' =eiy- e
(9.112) e =5 e,

of this aggregate all factors in one of the two expressions (9.111) and (9.112),
for instance, all factors e,o, - -+, € entering into the express1on (9.112), enter
also in the other expression, i.e., into (9.111).
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It is easily seen that the vertex

la a a
€ = €y €6

r

of the complex K'= belongs to the complex C'¢ (is a special vertex of K'%)

if and only if all elements ¢, - - -, ef are special elements. We introduce yet
the following notation. For any vertex e“=e¢ - - - ef € K'* denote by
lej*| =|e - - - €| the set

e,Nn---ne.cR.

9.11. Every projection St of the complex KP into K= generates a simplicial
mapping S of the complex K8 into the complex K'*; moreover, we have

sic®yec™.

We obtain this mapping correlating to the centre of gravity of any simplex
ts € K# the centre of gravity of its image S and observing that S2C?# c C=.

9.2. DEFINITION 9.20. 4 covering Q< is called multiplicative if the intersec-
tion of any number of elements of Q= is etther void or an element of Q.

9.21. Every covering Q= has a subdivision QF, which is a multiplicative cover-
ing.

For ©QF it is sufficient to take the covering consisting of all elements of Q<
and of all non-void sets, which are intersections of several elements of 2e.

DEFINITION 9.22. By a barycentric subdivision of the covering Q= we mean
a complex K2, whose vertices are elements €5 of the covering Q% and whose
simplexes are decreasing sequences

a a a
e,De;,d - - De;, € F €y
of elements of the covering Q.

The complex K?2* is evidently a subcomplex of the complex K< Put
C?e= K22 n Ce; we call C?* the special subcomplex of the complex K?2°.

Let us come to an agreement, which will enable us to consider K2« also
as a subcomplex of the complex K'2. To this end observe in the first place the
following: if for the vertices of the complex K« )

la a a la a .3
€ = € - bip € = €y " Cig
a

we have |e}*| =|¢}%|, then, obviously, for e, consisting of all different factors
entering into ¢* or into €)* we shall have

la la la
ek|=|e.~ |=le,- .

Therefore, among all expressions
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la a a
€ T €ipt "t €

T

with one and the same set le | we shall have one longest, i.e., one consisting
of the maximum number of factors Correlating to every vertex e of the com-
plex K2= the longest expression e}* satisfying the condltlon Ie,°‘| =¢2* and ob-
serving that from €} > &2* follows that all factors of ¢;* are contained among
the factors of ¢, we obtain an isomorphic mapping of the complex K2* into
the complex K} If we now identify €2* with ;% then we can consider K2 as a
subcomplex of the complex K'<.

On the other hand, correlating to every vertex e;* of the complex K!* the
vertex le}"| of the complex K2¢, we obtain a simplicial mapping Sy of the
complex K'@ on K?2*, which, if K2« is considered as a subcomplex of the com-
plex K'e leaves all simplexes of the complex K2« fixed. Besides, SiX(C'?) € C2=
and hence:

9.23. The mapping Sy of the complex K'= on the complex K2« generates an
isomorphic mapping py: of the group B’V(K le. mod C'¢) on the group
B,(K?* mod C?*) and an isomorphic mapping o2 of the group B (K?=— C2=)
on the group BL(K'«— C'*).

Correlating to every vertex

la a a la

e = e e, &K

one of the vertices of its bearer in the complex K« (i.e., one of the ¢;), we ob-
tain a simplicial mapping S.* of the complex K'= on the complex K= generat-
ing, as we know, an isomorphic mapping p,* of the group BL(K'* mod C'¢)
on the group Bi(K* mod C*) and, consequently, an isomorphic mappmg a5
of the group BL(K*— C*) on the group By(K!e— C'9).

9.3. Let there be given two multiplicative coverings Q¢ and Qf of the
space R, of which Q8 follows after Qo. Construct the projection S? of the cov-
ering Q8 into the covering Q= in the following way: for every & £ Q8 we take
for S2¢} the smallest ¢ containing €, i.e., the intersection of all ¢ containing
the given ¢;. The so-constructed projection is called the canonical projection
of the covering Qf into the multiplicative covering Q.

9.31. Under the canonical projection SE of the multiplicative covering QF into
the multiplicative covering Q= the complex K?*¢ c K¢ is mapped into K2*c K= so
‘that C*f is mapped into C?°.

The second assertion follows from the first, since C22=K?22 n Ce,
C#=K?2 n C8 and SPCPc C-.
For the proof of the first assertion of 9.31 it is sufficient to show

9.311. If St is a canonical projection of QP into Q= and if &> ¢, then
RN
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In fact,

B 88 8 8 BB
e;CSqe;, €;Ce; CSae;.

Since S2¢f is the smallest element of the covering Q= containing ¢,
;] BB BB
S:e,- N Sqe; = Saej,
i.e.,

B B
Siei 20a€;
q.e.d.

Thus every canonjcal projection S5 generates a homomorphic mapping
@ of the group Bi(K2?f mod C?f) into the group Bi(K?* mod C2%) and a
homomorphic mapping 735 of the group By(K?*—(C2%) into the group
Bl (K6 — ().

On ground of 9.11 we know, moreover, that S? generates through the sim-
plicial mapping S a homomorphic mapping & of the group Bi(K'# mod C'#)
into the group B,(K'* mod C'¢) and a homomorphic mapping 7§ of the
group By(K '« — C'%) into the group BL(K¥— C18),

Let us now prove the formulae

_18 la,—1_8 18

(9.32) {(9.321) O1a = (pa) @aps ,
. _28 la_18, 18 —1
(9.322) @90 = pra@d1a(p2p)

la B a a -1

(9.33) {(9.331) T1s = o1pme(014)
. 2a 28 —1 la 2a
(9.332) e = (0’13) T1801a.

On ground of Theorem III (see the Addendum) it is sufficient to prove the
formulae (9.32) which may be written in the form

la_18 B8 18
(9 34) {(9.341) Pa Wia = wapﬂlé
. 1, la
(9.342) Graprh = prodoin
la-18

Observe that the homomorphism p;*@)% is generated by the simplicial
mapping S¥S} of the complex K!8 into the complex K<; in the same way the
homomorphism &pf is generated by the simplicial mapping SES¥ of the com-
plex K'# into the complex K= Hence for the proof of (9.341) it is sufficient
to show the truth of the following assertion:

9.32. For any simplex tg € K'# the simplexes Sy>Sittis and SESFs are faces
of a.certain simplex T . € K*; moreover, if t15 € C'8, we may take Ty & C°.

In the same way (9.342) follows from

9.33. For any simplex tg € K'8 the simplexes SyxSietis and SatSiatis are faces
of a certain simplex T € K*; moreover, if tig € C'f, we may take To € C°.
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Proof. Let
(9.35) P S A
where ¢ =g(n) depends on g,
(9.36) S5ty = eu
(9.37) Sf.e:, = ¢ ezoa I e,lfl,
so that
(9.38) Shsiers |e|.
If e & C'4, then &5,& CPand f & C.
Let

18 18 la a « la la a
Slaep=ex =6t Oy Sean = e,

If f & C'5, then * £ C'*, ¢ & C=.

Since
a la 18
el |o]a ],
we have
SuSe | 6|,
whence

N ShSie nSusShme s> N e | =0,
0Spsr 0spsSr
ie., all SESFe and Si*Sifel? are vertices of a certain simplex T, & K. If all
e € C'8, then both 5S¢ and Si*Sifelf are vertices of C=and hence T. & C=.
The assertion 9.32 is thus proved.
The assertion 9.33 is proved in the same way. In fact, in the first place we
have '

18 18 18 28 28 28 2a 18
Sg,ge,.=|e,. =e,, S2.6, =€ D e,.l,
and if ¢’ € C'8, then ¢}* & C?e.
Thus
28 18 18 18
(9.391) SsaSages O | € |-
Let
18 18 la « a
S1aby =€ = € - " €,

Again for ¢} € C'# we have e}* e C'<,
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Soex =er =|e| 2 |e |,
(9.392) SaaStatn 3 | & |,

and if ¢ & C'8, then e?= & C2°.
From the inclusions (9.391) and (9.392) we easily deduce (9.33).
From the formulae (9.32) and (9.33) follow

181y 1y 28 _2v 27

(9.393) B1a018 = P1a Q2028 = P24,
18 la la 28 2a 2a

(9.394) T14T18 = Tiyy TayT2g = Ty

Thus we have the inverse and the direct spectra:
[Bi(K'" mod C'%); 6ra],  [BA(K™ mod C™); ana),
r la la la 2a 2a 2a
[Bo(K™“ = C);me),  [Bo(K ™ —C);mas),

the limit groups of which are, on the basis of 3.41 and the formulae (9.32),
(9.33), isomorphic to the groups Bi(R) and By(R) respectively.

9.4. On the basis of what has been proved we may now formulate the
following new definition of the (inner) Betti groups of a space R.

Consider the system O of all finite simple multiplicative coverings

o @ .
Q={e‘}’ 7'=1v2r""say
of the space R, whose elements are open sets. Consider the functions
r r a a
fa = falei - -+ €5)

with values from a given commutative group J defined for all possible de-
creasing sequences

€,DenDd - - De;,
consisting of 7+1 elements of the covering Q=. By assumption fi(e5, - - - , €f)
may be different from zero only when the sequence
a (- a
e,-o:e,-la st De,
is strictly decreasing (i.e., when ¢f. #ei,,, for k=0, 1, - - - ,r—1). The functions
f> form the group L7(Q2¢, J). The boundary operators are defined thus:

The lower:

r (-3 a £ r a a a a a
Afa(eiw ) e‘r—l) = Z (=1 fa(eiov C oty Cikyy Giy €5yt " ei'—x)
i
(where the summation is extended over all ¢ for which there exists such an ¢,
that e, D efdej).
The upper:
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r, o« a kr, a a a a
(9'4) Vfa(eio’ T e‘r+l) = Z (_ 1) fa(eiov Tty i eix.'.n Y ei,+1)-
«

(Remark. 1t is easily seen that applying the operators A and V to functions
satisfying the condition to which the functions f were just subjected, we ob-
tain functions satisfying the same condition (i.e., vanishing for all sequences
€,d - - - Deg containing equal elements). This assertion is obvious for the
operator A. Let us prove it for the operator V. If in the sequence ¢, > - - - D¢,
there is more than one pair of coinciding elements, then in each of the se-
quences €2 - - - ey ey, D - - Dep  there is at least one pair of co-
inciding elements; but then the left-hand side, and consequently the rlght-
hand side of the equality (9.4) vanishes. If, on the other hand, in the sequence

€52 - -+ Dé;,, there is only one pair of coinciding elements, say
a a
€ix = Cigp

then on the right-hand side of the equality (9.4) only two terms can be differ-
ent from zero, namely

a a a a a
(— 1) fa(eio’ Tty ei‘_p eix.(.p ei,ﬂ.z; Tty ei,+1)7
41 r a ] @ a
(=1 fa(eior Tty Cigoyy Cigy Cigggy T eir+1);

but these terms differ only in the sign and their sum is zero, so that again both
sides of the equality (9.4) vanish.)

Let, as always, X and = be two groups dual to each other, of which X
is discrete and & bicompact. In the group L"(Q¢, E) we consider the following
subgroups: The subgroup of relative cycles Z,(Q2, E) consisting of all functions
fa satisfying the following condition: if ef;> - - - 2ef and Afg(ef;, - - -, €7)#0,
then &7 is not bicompact. In the group Z,(Q¢, &) we consider the subgroup
H{(Qe=, E) of relative cycles homologous to zero: by definition H(Q, E) con-
sists of functions f satisfying the following condition: there exists such a
function fI*! & L+1(Qe, &) that the function Af:*'—f’ vanishes for all
€, - -+ Deg with bicompact é. ‘

In the group L7(Q2, X) we consider the subgroup Ly( 22, X) consisting of
all functions f] satisfying the following condition: if

a
€,d - De;,
and é; is not bicompact, then

r a a
falti - -+, €,) = 0.

Further we consider the group Zy(Qe, X) of all V-cycles contained in
Ly(9Qe, X), i.e., of all functions f] &£ Li(Qe, X) satisfying the condition Vf;=
In the group Z3(Q*, X) we consider in its turn the subgroup Hg(Q2, X) of
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cycles homologous to zero, i.e., the subgroup consisting of functions f; for
which there exist such functions f; ™' € Lj(Qe, X) that Af"'=f].

(Remark. In the case of a bicompact R all these definitions may be simpli-
fied: Z3(Q=, E) becomes the group of all cycles, i.e., functions f] & L*(Q2, &)
satisfying the condition Af] =0; H;(Q*, X) becomes the subgroup of all cycles
homologous to zero, i.e., the subgroup of those functions f; € L7(Q=, E) for
which there exist fI7! with Afi*'=f; the group Lj(Q¢, X) coincides with
Lr(Qe, X);the group Z3(Q9, X) is the group of all V-cycles, i.e., of all functions
fo with Vfi=0; Hg(Qe, X) is the group of all V-cycles homologous to zero,
i.e., of those functions f7 for which there exist f2~! with Af.~! =fI.)

The factor groups

Ba(Q", J) = Za(Q", J) — Hu(2", ),
By(Q", J) = Zy(Q7, J) — Ho(2, J)

are called, respectively, the Betti A- and V-groups of the covering Q.

For a bicompact R and r =0 we define, besides, the groups Z(Q, J) and
Z¥(Qe, J). The group Z¥(Qe, J) is the group of all functions fI, the sum of
values of which is equal to zero; the group Z¥(Qe, J) is the group of all con-
stant functions (observe that the group Z9(Qe, J) is the group of all functions
constant on every component of the covering Q¢).

The groups BX(Q¢, J) and BY(Q¢, J) we define by the equalities

Ba(Q%, J) = Z2(Q", J) — Ha@", J),
By (97, ) = Zo(27, 7) — Zy (27, J).

If the covering QFis a subdivision of the covering Q¢, then we make corre-
spond to every element of the covering ©f the smallest element of the cover-
ing Q¢ containing it. The so-obtained mappings of the covering Qf into the
covering Q¢ we denote by S? and call them canonical projections. To a decreas-
ing sequence of elements of the covering 2% under a canonical projection cor-
responds a decreasing sequence of elements of the covering Q2= and we have
the following homomorphisms:

1°. The homomorphic mapping p of the group L7(Q8, E) into the group
Lr(Qe, E) defined by the formula

ng;(e::r ) GZ) = Ef;(e?o’ T e?r))
where the sum is extended over all €} > - - - ¢ such that She}, =ef.

2°. The homomorphic mapping o of the group L7(2*, X) into the group

L7(QF, X) defined by the formula

ar, B 8 r, B8 8B
aﬂfﬂ(eio’ R ei,—) = fa (Saeio’ ) Saeir)'

The homomorphisms p? and ¢ preserve respectively the lower and the
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upper boundary operators and generate, correspondingly, the homomorphism
@2 of the group B3(Q8, E) into the group Bi(Q¢, &) and the homomorphism
wg of the group By(Q¢, X) into the group By(Q%, X).

If = is, as always, a bicompact topological group, then the groups
B, (99, E) are also bicompact and we have the inverse spectrum

r a B
[-BA(Q ’ E)) wa]

with a bicompact limit group Bi(R, E) called the r-dimensional A-group of
the space R to the field of coefficients E.
Let X be a discrete group; the limit group of the direct spectrum('°)

[Bo(27, X); ms]

is called the r-dimensional V-group of the space R to the field of coefficients X
and is denoted by By(R, X).

9.41. If X and E are dual groups and X is discrete and E bicompact, then
the groups By (R, X) and BL(R, E) are also dual.

9.42. In the case of a normal R the just-defined Betti groups remain the same
up to an isomorphism, if instead of the system of all open coverings of the space R
we consider the system of all closed coverings.

The proposition 9.41 follows from Theorem 6.1 of Steenrod’s paper cited
in footnote 4.

The proposition 9.42 may be deduced by the following considerations. The
equivalence of the two definitions of Betti groups, namely of the definition
given in the present paragraph and the definition given in §7, is proved in
the case of open coverings precisely in the same way as in the case of closed
coverings; indeed, in the present paragraph we made nowhere use of the fact
that the coverings Q¢ consist of open sets. But as regards the equivalence of
the definition given in §7 with the analogous definition based on closed cover-
ings, it was proved by Cech().

Remark. If the multiplicative coverings Qv, @8, Q¢ follow one after an-
other,

Q> 0> Qe

and S}, S%, SY denote the corresponding canonical projections, then the equal-
ity

(9.4) ShsY = ST
may not be true in spite of the fact that (9.393) and (9.394) always hold.

(1) Here again the definition of the limit-group can be given in a simplified form analogous
to that of 4.8.
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However, it may be easily shown that the equality (9.4) always holds, if Q8
is a so-called exact subdivision of 2= and 2 is an exact subdivision of Q5.
We say that a subdivision @ of the covering Q* is an exact subdivision if
it satisfies the following condition: for any ¢f & Q=, &f ¢ 5, the set ¢f N ¢ is an
element of the covering Q4.

In the first place it is easy to prove that if Q7 is an exact subdivision of Q8
and QFf is an exact subdivision of Q¢ then Q7 is an exact subdivision of Q<.
In fact, let ¢ € 2= and €] € @ be chosen arbitrarily. Take any ¢ > ¢]. Then

a Y a B v [:] v k4
e;Ney =¢; Ne;Ne = e, Nep = e

For the proof of the equality (9.4) in the case of exact subdivisions consider
some ¢ £ 27 and put

T B 8 a Y v a
Sgek = ¢j, Siei = é;, Satr = e

Evidently ¢ c ¢ and hence it is sufficient to show that efcef. To this end
consider the set ¢} N ¢f. Since 2# is an exact subdivision of Q¢, we have

8 a B B
e,-ne;,=ezsﬂ,

and (since Sje} =¢;, €} c ¢f)

B B ;]
e;jNe = ¢
ie.,
6 B
e;ce.
On the other hand
8 B a 8 3 ;]
e, =¢;jNe,Ce;Neg; = e
hence
B 8 a
e; = €;C ép,

and consequently €f c e}, q.e.d.

Observe that any two multiplicative coverings Q¢ and ©f have a common
exact subdivision ©. In fact, it is sufficient to take for Q7 the covering con-
sisting of all sets of the form ¢ N &, where ¢ € 2= and & & Q.

10. THE CONNECTIVITY RING

10.1. The definition of the Betti groups given in the preceding paragraph
enables us to transfer to these groups the operation of multiplication defined
by Alexander (). The advantage of the so-obtained theory in comparison with
Alexander’s theory consists in the independence of our constructions from any
arbitrary ordering of the vertices.
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Let then be given a commutative ring J (the ring of coefficients), a multi-
plicative covering

Q={e,~}, i=1y2v"')si

of the space R and two functions f?(e;,, - - -, €:,) and f*(es,, - - -, €;,) satisfying
the conditions of 9.4. Construct the function fr+¢= [f7-fd] putting for any
decreasing sequence

€igD -+ c Deip,
of p+q+1 elements of the covering Q

fp+q(eior R eip+q) = f”(e,'o, tt eip)fq(eim ttty eip+q)'

In the same way as Alexander we deduce by means of simple computation
that this multiplication is associative and distributive with respect to addition
and that it possesses the following fundamental property:

10.11. V[f?fe]=[Vfr-fo ]+ (= 1) [fr-vfe].
From 10.11 immediately follows
10.12. The product of two cycles is a cycle.

10.13. The product of any cycle with a cycle homologous to zero is equal to
zero.

Hence in its turn it follows that the operation of multiplication of func-
tions generates the operation of multiplication of elements of Betti groups:
if 27 € B%(Q, J), 22 € BY(Q, J), then by [27-22] we denote the class of
homologies z7+2 & Br+e(Q, J) containing the cycle fr+e= [f7-fe], where f» and f¢
are arbitrary cycles belonging respectively to the homological classes 2? and 2°.

10.2. Let now be given two elements of the groups B%(R, J) and BY(R, J),
i.e., two bundles #? and u? of the spectra

[Bo(2", 7); ms],  [Bu(@", J); mal.

Choose in every bundle an element, u? & u?,u £ 4* (with the same « in both
cases) and denote by [«?-u?] the bundle u?*+? &£ B5tY(R, J) containing the
element [u2-u2].

Let us prove that the so-defined product [#?-u2] does not depend on the
choice of the elements #% € »? and 42 € 4% To this end we prove in the first
place

10.21. If Q8> Q< and og is a mapping of the group L7(Q=) into the group
Lr(Q8) generated by some projection S° of the covering QP into the covering Qe,
then

o3 [fafa] = [oafa-oafal-
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In fact,
a a1, B 8 ? 97,88 BB
og [f:'fdl(eio tet 3iﬁ+q) = [fa'fd](Sdeio T Saeipﬂ)
», BB BB, a9, B8 B8 B8
= fa(Saeior ] Sdeip)fa(saeim T Saeipﬂ)
a B B, a.q, B B
= “ﬁfz(eio’ 0y €ip)08fal€in * s Eipra)

a a ;] ;]
[aﬁfz"’ﬂf:](eio Ct €iprg)-
From 10.21 follows immediately )

10.22. 7§ [ul-ul] = [mgul-mgul].

Let now beside # € u? and u{ € u? be chosen uj € u?, uj € u?. We shall prove
that [#2-4Z] and [42-4%] belong to one and the same bundle.
From our assumptions follows the existence of such a covering Q7 that
Q> Qe Q7> Q8 and
a p B » a g B aq
Tylha = Ty U, Tylha = TUG.

Hence, on ground of 10.22,
wylun-usl = [mous-myus] = [mous woug) = m[us ug),

whence indeed it follows that [#2-%2]and [uf-u,%] belong to one and the same
bundle.

DeriNiTION 10.23. The direct sum of the groups By(R, J), r=0,1,2, - -,
is denoted by By(R, J) and is called the complete Betti V-group of the space R.

From what has been proved it follows that the established operation of
multiplication of elements of the group By(R, J) transforms this group into a
commutative ring. This ring is called the connectivity ring of the space R.

ADDENDUM. ON CERTAIN PROPOSITIONS OF THE THEORY OF GROUPS

1. The theory of characters of commutative groups is taken for granted
in the present paper.

If of two groups X and =, of which X is discrete and = is bicompact, one
is the group of characters of the other, then the groups X and = are called
dual or conjugated. For any x € X, £ ¢ = we have in this case that

£(x) = x(8)

is en element of the group « denoted by &x =x£. The group of characters of a
group G we denote by aG.

2. Let there be given two groups 4« and A# both discrete and both bi-
compact; their groups of characters we denote by X* and X#. Let there be
given a homomorphic mapping ¢ of the group 4 into the group 4¢. To



1941] COMBINATORIAL TOPOLOGY 103

every element x, € X* we correlate in the following manner an element
xp=fgxo of the group X?: by definition, the character xs € X? of the group
AP maps every element ag e A on the element x.¢%as of the group «. In
other words, the character xg=fgx. of the group 4% is determined by the
equation

@ B
(1 f8%als = Xababs.

The mapping ¢f of the group 4# into the group A= and the mapping f§
of the group X« into the group X°¥ are called conjugated mappings. The rela-
tion of conjugateness of two mappings is a symmetrical relation.

THEOREM 1. Let there be given two isomorphic groups A« and AF; denote
by &5 any isomorphic mapping of A on A=. Then the homomorphism fg con-
jugated to the isomorphism @5 is an isomorphic mapping of the group X*=xA=
on the group XP=xA".

Proof. The mapping f§ is defined by the formula (1); in order to prove
that fg' is an isomorphic mapping it is sufficient to show that for x, & X<,
x.7#0, we have also fgx.#0, i.e., that at least for one ag & A?

fa%aag # 0.

Since x,#0, there exists such an a, € 4% that x,a,70. Since ¢¢ is an isomor-
phism, there exists such an a0 (and, moreover, a unique one) that ¢2as=a..
Then

a B
fﬂxaaﬁ = xa¢aaﬂ = Xalaq # 0’

and our assertion is proved.
Thus fg is an isomorphism. Let us prove that fg maps X on X#. Let there
be given x5 € X8, x3#0. We have to find an x, € X such that for any ag & 4%

3 B
fe%a08 = XaPals = X5ag.

Since ¢£ is an isomorphism on A<, for every a. € A¢ there exists a unique
ag € AP such that ¢2ag=a,.. Putting

Xala = Xgag,

we determine the required x,.
Theorem I is thus proved.

THEOREM I1. Let there be given two groups A= and A8 respectively dual to the
groups X« and X5, an isomorphism @2 of the group AP on A= and the isomor-
phism ¢ of the group A= on A dual to the isomorphism ¢f:

¢ = (o2
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Denote by f§ and f& the isomorphisms conjugated to the isomorphisms ¢ and ¢j.
Then
a —1
fo= U7
Proof. The isomorphisms f§ and f? are determined by the equations
a B 8 a
f8%a08 = Xadaas, fa®80a = %P la.
Let
a B, —1 a
ag = Pty = (¢a) [/ X8 = fﬂxa-

For any a. € A= and any xp & fgx. € X? we have
’ﬁ a a I}
a%ple = XgPpla = Xgag = fE%als = X°Pals = Xala,

a —1 a —1 a
(f6) wsas = (fs) fo%ala = %ala,
i.e.,
a, —1
fawata = (f8) ot
q.e.d.
THEOREM II1. Let the groups

Xe, X8, Xto, X8
be dual respectively to the groups

A, A8, Ale, 418,
Let there be given isomorphic mappings pi* and pf of A'= and A on A«
and AP respectively. The conjugated isomorphisms we denote by 0%, and o%. Let
there be given, besides, homomorphic mappings &2 and &1 correspondingly of
A8 into A= and A8 into A'*, and the conjugated homomorphisms w5 and mij.

Let it be known that

_18 la,—1_8 18
(2 ®1a = (Pa) @app -

Then
la B a, a —1
mig = 016mp(01a) -
Proof. For the proof it suffices to show that
B a -1
o18Tg (“ra)
satisfies the functional equation

la 18
T18¥1a@18 = ¥1aW1al18
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determining g, i.e., it is sufficient to prove that for any x:1. and a;s we have

8 a, a -1 18
(3) g18T8 (Ula) X1a@18 = X1aW1al18.

Let us prove this. To this end, replacing (¢%,) %1« by x. and &} by its
expression (2), we write (3) in the form

B a la,—1_8 18
4) 018Tp Xal18 = F1a(Pa ) @app G1p.

But (pX)-! and (0},)~! are conjugated isomorphisms and hence

a -1 la -1
(o'la) X1ala = xla(Pa) Qq.

Thus
la —1 -1
xla(Paa) Qe = (U;a) X1ala = Xalaq.

Substituting this into (4), we obtain as the equality to be proved the fol-
lowing:

B a B 18
(5) T18TR Xal18 = XaWaPp 18-
But
a B a B B
TpXals = XaWalp, TpXe = Xa@a & X
and o} and p;’ are conjugated isomorphisms. Therefore the left-hand side of
the equality (5) may be transformed to the form
BB B 18
018%aWal1f = XaWapPp G16,

i.e., may be brought to coincidence with the right-hand side of the same equal-
ity. The equality (5) and Theorem III are thus proved.

Moscow, U.S.S.R.



