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After the fundamental conceptions of the so-called combinatorial topology

were transferred by the author of the present paper(') as well as by Vietoris,

Lefshetz, Cech and others to arbitrary compact metric spaces and, having

obtained in the general duality law of Alexander-Pontrjagin, the homologi-

cal theory of dimensionality and a number of other essentially new investiga-

tions a concrete geometrical development, became a mighty and generally

recognized weapon in the investigation of different topological questions, it

became not only possible to speak of a new branch of topology—the homologi-

cal theory of spaces—but it also seemed that the directions of further develop-

ment of this new branch were more or less determined. This latter opinion,

however, was not confirmed: in 1934 Kolmogoroff(l) and nearly simultane-

ously with him AIexander(2) gave to the development of the homological

topology an essentially new direction by the discovery of the so-called upper

boundary operator (which we call here the V-operator) dual to the old bound-

ary operator (we call it here the A-operator) and permitting one to construct

two systems of homological invariants dual to each other in the sense of the

Pontrjagin theory of characters not only for polyhedrons and complexes but

also for arbitrary locally bicompact spaces.

The central fact of the theory is a proposition which was originally formu-

lated by Kolmogoroff and which we therefore call in the present paper the

duality law of Kolmogoroff. This proposition asserts that for any closed set A

lying in a locally bicompact space R, the r- and (r + l)-dimensional Betti

groups of which are null groups, there exists an isomorphism between the

r-dimensional Betti group of A and the (r + 1)-dimensional Betti group of

R— A. This proposition enables us to give a new meaning to the duality law

Presented to the Society, September 12, 1940; received by the editors April 6, 1940.

(') Kolmogoroff, International Tensor Conference and International Topological Confer-

ence, Moscow, May, 1934, and September, 1935; papers: (a) Über die Dualität im Aufbau der

kombinatorischen Topologie, Recueil Mathematique de Moscou, vol. 1 (43) (1936), pp. 97-102;

(b) Les groupes de Betti des espaces localement bicompacts; Proprietes des groupes de Betti des

espaces localement bicompacts; Les groupes de Betti des espaces metriques; Cycles relatifs, theoreme

de dualite de M. Alexander—all four papers in the Comptes Rendus de l'Academie des Sciences,

Paris, vol. 202 (1936), pp. 1144, 1325, 1558, 1641.
(2) Alexander (abstracted in the proceedings of the National Academy of Sciences for 1935):

(a) On the connectivity ring of an abstract space, Annals of Mathematics, (2), vol. 37 (1936),

pp. 698-708. (b) A theory of connectivity in terms of gratings, Annals of Mathematics, (2), vol. 39

(1938), pp. 883-912. The same ideas appear in a different form in the "pseudocycles" of Lef-

schetz (see his Topology) as soon as 1930.
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of Alexander-Pontrjagin (which may be easily deduced from the duality

law of Kolmogoroff under the assumption that R is the w-dimensional eu-

clidean or spherical space).

In the construction of the theory itself Alexander and Kolmogoroff pro-

ceed differently. The construction of Kolmogoroff, a concise exposition of

which without fundamental proofs was given by him in four notes in the

Comptes Rendus de l'Academie des Sciences, Paris(1), is based on a com-

pletely new approach to homological problems of the set-theoretical topology

and starts from the consideration of the functions <pr(Eo, E\, • • • , Er) and

fr(eo, e\, ■ ■ ■ , er), where the Ei are sets and the Cj-points of the given space.

The functions 4>r(Eo, Ei, ■ • • , Er) are skew-symmetrical and finitely additive

with respect to all their arguments; their values belong to the bicompact com-

mutative group S (the "field of coefficients"). The functionsfr(eo, ei, • • • , er)

are also skew-symmetrical, but their values are taken from a discrete com-

mutative group. The functions 4>r(E-o, E\, ■ ■ ■ , Er) play the role of algebraical

complexes of the usual combinatorial topology of complexes and are the start-

ing point of the A-theory. As analogues of algebraical complexes in the V-the-

ory appear not the functions/r(e0, e\, ■ ■ ■ , er) themselves but classes of such

functions equivalent to each other in a certain sense.

This way of construction may prove to be the most fruitful from the point

of view of further investigations. But it considerably differs from the methods

based on the elementary devices of combinatorial topology, which have domi-

nated so far. This newness of the method as well as, undoubtedly, the fact

that Kolmogoroff has not as yet given an exposition of the theory which is to

any extent complete, nor, in particular, the proof of his duality law account,

probably, for the fact that his theory is not yet as widespread as it deserves

to be and that it has not so far influenced the further development of the

topology to an extent to which it will doubtlessly influence it in the future.

Practically speaking, Alexander has realized his construction of the same

theory in several different ways. A proof of the already mentioned duality law

he gives, however, only in his last publication, A theory of connectivity in terms

of gratings^-), where to this end the whole theory is constructed on an entirely

new basis with the help of the so-called gratings. The equivalence of this

theory with the other theories of Alexander (as well as with the theory of

Kolmogoroff) is not yet proved, although it is highly probable. The apparatus

of gratings applied by Alexander in his last paper has a very simple geometri-

cal figure (the decomposition of the space by a plane into two half-spaces)

for its source. But in the general setting in which the construction proceeds

this original figure becomes so complicated that the whole resulting structure

is extremely involved.

In the present paper the theory is built on a completely elementary basis,

namely by means of well known considerations of the finite coverings of the

given space. I left my old devices of application of combinatorial methods
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to the study of general spaces only in one respect: along with the nerves of the

coverings I consider now the barycentrical subdivisions of the coverings intro-

duced by me recently elsewheref3), which, as I think, give us often a more

elastic weapon for the study of topological properties of the given space.

The distribution of the material is as follows. In the first two sections we

construct the A- and the V-theories for complexes. Here we systematize and

prove things which are in the majority of cases known, but the proofs of which

(and sometimes even the formulations) are, in a large proportion of cases,

nowhere published(4).

In §3 we recollect the notion of inverse and direct series of homomorphisms

(instead of which we shall speak of direct and inverse spectra) of, in the gen-

eral case partially ordered (not necessarily enumerable), systems of groups.

This theory was originally constructed for enumerable sequences by Pontrja-

gin(5) and for arbitrary systems by Steenrod(4). I may point out the formula-

tion of the conception of the limit group of a direct spectrum, which is logi-

cally simpler than the usual one.

In §4 we formulate and prove the "formal duality law" in application to

arbitrary partially ordered systems of complexes. Substantially it is this

"formal" duality that forms the combinatorial basis of the duality law of

Kolmogoroff. The general formulation given here may prove convenient for

application to the study of different concrete problems (local properties of

sets, etc.).

In §§5 and 6 we prove the fundamental lemmas which shall be used in the

proof of the duality law of Kolmogoroff. The distribution into two sections

is made according to whether the lemmas concern finite coverings of an arbi-

trary set or special coverings of topological spaces. Thus the notion of the

topological space we meet in the present paper for the first time in §6.

In §7 we give the first definition of Betti groups for any spaces homeo-

morphic to open sets lying in normal spaces. This definition hangs together

with my old papers as well as with the paper of Steenrod referred to above,

i.e., it defines the Betti groups of a space as limit groups of respectively the

direct and the inverse spectra composed of Betti groups of the nerves of finite

coverings of the given space by its open sets. For the sequel it is, however, of

importance that along with the Betti groups which for normal spaces were

defined by Steenrod, we define also other groups taking particularly into ac-

count those elements of the covering, the closures of which are bicompact.

(3) Alexandroff, Diskrete Räume, Recueil Mathematique de Moscou, vol. 2 (44) (1937), pp.

501-518.
(4) See, however, Whitney, On matrices of integers and combinatorial topology, Duke Mathe-

matical Journal, vol. 3 (1937), and On products in a complex, Annals of Mathematics, (2), vol. 39

(1938), pp. 397-432, as well as Steenrod, Universal homology groups, American Journal of Math-

ematics, vol. 58 (1936), pp. 661-701.
(5) Pontrjagin, Uber den algebraischen Inhalt topologischer Dualitätssätze, Mathematische

Annalen, vol. 105 (1931), pp. 165-205.
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It is just these groups, for the first time introduced in the present paper under

the name of inner Betti groups, that form the object of the duality law of

Kolmogoroff.

The same §7 contains the proof of a theorem (Theorem 7.41), in which is

formulated all that I know in the direction of the duality law of Kolmogoroff

in the case when the space R is not locally bicompact.

In §8 we prove the duality law of Kolmogoroff for any locally bicompact

normal space and closed A cR.

In §9 is given a new definition of inner Betti groups based on the consid-

eration of barycentrical subdivisions of finite coverings of R by open sets

and is proved the equivalence of this definition with the old one. At the end

of this paragraph we give a formulation of the conception of Betti groups

which does not use any auxiliary conceptions except the conception of the

finite covering and the spectrum (series of homomorphisms) of groups.

In §10 is introduced the operation of multiplication of elements of Betti

groups and in this way the complete Betti group (i.e., the direct sum of Betti

groups of different dimensionalities) is turned into a ring (the connectivity

ring). Although this definition of multiplication follows that of Alexander(6),

it has in comparison with the latter an advantage consisting in the freedom

from any special ordering of vertices which was applied in Alexander's paper

On the connectivity ring of an abstract space{2), as well as in the freedom from

any special conditions by means of which the multiplication is introduced in

the paper A theory of connectivity in terms of gratings(2).

Notations

Throughout this paper the following notations are of constant use:

(i) A u B means the set theoretical sum, A n B means the set theoretical

intersection of the sets A and B.

(ii) VJaAa means the set theoretical sum and C\aAa the intersection of all

sets Aa of a given family of sets.

(iii) A —B means the difference between the set A and the set B, i.e., the

set of all elements of A not belonging to B. In this way

A-B = A- AnB,

where is it not supposed that B is a subset of A. But if A is a commutative

group and B a subgroup of A, then A—B means the factor (or difference)

group of A with respect to B.

(iv) A c B means that every element of the set A is an element of the

set B (the identity A=B being not excluded).

(v) a e A means that a is an element of the set A.

(6) Introduced in the paper On the connectivity ring of an abstract space (see footnote 2).

See also in that paper the references to Cech and Whitney.
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(vi) If t and /' are simplexes, then t' < t means that is a face of t. The

letter / denotes a non-oriented as well as an oriented simplex.

1. Complexes

1.1. By a complex we shall mean a finite simplicial complex K.

For any two oriented simplexes t\ and fj-1 of consecutive dimensionalities r

and r — 1 of a complex K we define the incidence coefficient {t\'. ff1) as follows:

1°. (4 : ff1) =0, if t)~x is not a face of the simplex t\.

2°. Let the vertices of f{ be e0, ■ ■ • , er and the vertices of ff1 written in

the order determining the given oriented simplex ff1 be eSl, ■ ■ • , eir, where

e<, ■ ■ • , e,-r are all vertices e0, ■ ■ ■ , er with the exception of one, say e*. Then

(ck,       ' ' ' , c,r) = eti,

where, as may be easily seen, the coefficient e = +1 depends only on the ori-

ented simplex f,~l (and the oriented simplex f{), but not on the special choice

of the order eiv • • ■ , eir determining the oriented simplex JjJ-1. We put

(h :tj  ) = e.

It is obvious that

(1.10) (-ft: t]-1) = (t\: - I]'1) = -«-.:$-$

Further, if /J = (eo, • • • , er) and fj~~1 = (e0, ■ • ■ , ek-i, e*+i, ■ • • , er), then

(l.n) (tr.tT1) = (- if.

1.2. The classical construction of combinatorial topology presupposes that

a certain commutative group J (generally speaking topological) is given, and

is based on consideration of functions f'(tT), the argument of which runs

through the set of oriented simplexes tr of the complex K, and whose values

are elements of the group J~. Besides, it is assumed that always

/r(- t') = - /'CO-

These functions, called the r--dimensional functions on the complex K to the

field of coefficients / (also the r-dimensional algebraical complexes or the r-di-

mensional chains), form in virtue of the operation of addition defined in / a

commutative group Lr(K, J) which, if misunderstandings are excluded, we

shall denote simply by Lr{K).

The topology defined in J defines a topology also in Lr(K): we obtain a

neighbourhood of the element/0r £ LT(K) by choosing any neighbourhood V of

the zero element in / and defining F(/0r) as the set of all functions fr satisfy-

ing for all tr £ K the condition

nr) - un £ f.
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1.3. The boundary operators: the lower operator A and the upper operator

V. To each element fr of the group LT(K) we correlate: the element A/r of

the group L'^iK) and the element V/r of the group LT+l(K) in the following

manner:

(l ■ 30A) Af(r) -        O/OÖ-
i

(1.30V) V/V+1) = E       : ¥(4
i

which in virtue of the adopted definition of incidence coefficients means

(1.31A)       A/r(e0, • • • , «r-i) = Z/r0*> e<>, ■ • • > er-0,
k

(1.31V)       V/r(eo, • • • , er+i) = Z (- l)*/^, •••,«*,•••, er+i),
I

where, as always in the sequel, indicates that must be omitted. We have

(1.32A) AA/r = 0.

In fact,

AA/r(e0, • • • , er_s) = X) A/"r(e*> «»>'••> ^-2) = £ /r(e*> e*> «*.'■■ 1 «r-s).

But in the last sum for each term fr(eh, ek, e0, • • • , er-s) we can find a term

fT(ek, eh, e0, • • • , er-2) = — /r(e/>, e*, e0, ■ ■ ■ , er_2)

such that their sum is equal to zero. Also

(1.32V) VV/r=0.

In fact,

VV/r(eo, • • • , er+2)

= 2 (_ l)*V/r(eo, • • • , e*, • • • , er+2)
k

k h<k

+ Z (-      (- i)^1/^,        ••-,«»,     6r+2) = 0
* h>k

(since interchanging h and k we see that the terms of both sums differ only

by the sign).

From the definition of the operators A and V it directly follows that they

represent homomorphic mappings of Lr(K, J) into L'^iK, J) and into

Lr+l(K, J). In the case of a topological group J these homomorphisms are

continuous.
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Definition 1.33. If Afr = Q, then the function fr is called a A-cycle; ifVfT = 0,

then the function fr is called a V-cycle.

In this terminology the theorems (1.32A) and (1.32V) may be formulated

as follows: the A- and "^-boundaries of every function are respectively A- and

V-cycles.

Definition 1.34. The cycle fr is said to be homologous to zero on K if there

exists a function of which fT is the boundary (of corresponding denotation, i.e.

A or V).

From the above follows: the r-dimensional A-cycles form the kernel of the

homomorphism A of the group Lr(K) into the group LT~l(K). They form the

group Z^(K, J) (or simply Z&(K)). Similarly, the r-dimensional V-cycles form

the group Z?(K, J) or ZTV(K)—the kernel of the homomorphic mapping V of

the group Lr(K) into the group Lr+1(K). Hence and from the continuity of

the homomorphisms A and V it follows that Zl(K) and Z^(K) are closed sub-

groups of the group Lr(K).

The image of the group Lr(K) under the homomorphism A is the group

HT-X(K, J) or HT^~l(K) of all (r — l)-dimensional A-cycles homologous to zero

in K. Similarly, the image of the group Lr{K) under the homomorphism V

is the group Ä^+1(IC, /) or IT^iK) of all (r + l)-dimensional V-cycles homolo-

gous to zero in K.

If the group / is bicompact, then so are the groups Lr{K) and also its

closed subgroups Z±(K) and Z^(K). The groups H^(K) and H^(K), being

images of bicompact groups Lr+1(K) and Lr~l(K) under continuous homo-

morphisms A and V are bicompact and, consequently, closed in ZlfK) and

Zy(JC) respectively.

1.4. Definition 1.4. The factor groups

{where H is the closure of the group H in the group Z) are called respectively

the r-dimensional A- and V-Betti groups of the complex K to the field of coeffi-

cients J. If J is bicompact or discrete, then obviously H — H.

Henceforth we shall consider only bicompact and discrete fields of coeffi-

cients.

1.5. Let X and S be two commutative groups dual in the sense that each

of them is the group of characters of the other (see the Addendum at the end

of the paper). Let X be discrete and S bicompact. We consider the functions

fr and <j>r belonging respectively to Lr(K, X) and LT{K, S) and introduce the

following notations:

Z\(K, J) - HrA(K, J)

Zv{K, J) - Hv(K, J)

b1(k, j),

Bv(k, J)
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Definition 1.51. (The scalar products of functions.)

Correlating to every function <pr £ Lr(K, 2) the element 0r/r e k, we obtain

for a given fixed/' £ Lr(K, X) a homomorphic mapping of the group Lr(K, E)

into k. In other words, every fr e Lt(K, X) may be considered as a character of

the group LT{K, S).

Let us prove that, conversely, every character of the group Lr(K, S) is

generated in this sense by an element of the group Lr(K, X).

Let a character h of the group Lr(K, S) be given. Take any simplex tTt e K

and consider those functions <j>r £ LT(K, S) which only on tTf are different from

zero. The set of these functions completed by the function identically equal

to zero forms a subgroup L\ of the group Lr(K, S) isomorphic to the group S.

The subgroup L\ is mapped by the homomorphism h into k and this mapping

may be considered in virtue of the just established isomorphism between L\

and S as an element

h        r, r,

U = f ft)
of the group x. Thus a function

}'zL'(K, X)

is defined.

For any <f>[ £ L\ we have

&(*<)/(*<) = *<(*<)/* = A*Iek.

If 0r is an arbitrary element of the group Lr(K, S) and if 4>\ is the function

from L\ coinciding with </>r on t\ and equal to zero on all other simplexes

from K, then

4>'f = Z <t>\t*)f\u) = £ *'(*<)/(# = E ^ = a£ ii = h<t>r,
i i i i

q.e.d. We have thus proved the following:

Theorem 1.521. The group LT(K, X) is the group of characters of the group

L'(K, S).

Quite similarly is proved

Theorem 1.522. The group L'{K, a) is the group of characters of the group

L'(K, X).

Theorem 1.53. The homomorphisms A and V are conjugate homomor-
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phisms of the group Lr(K, S) into the group LT~X{K, 2) and of the group

LT~l(K, X) into the group Lr(K, X).

In other words

(1.53) <*>rv/r-1 = A^-y-1.

In fact,

<fi V/   - E </> ft) £ ft: 'i )/  ft ) - T, ft: *i )* ft-)/  («,- )
»' ;' »,/

/  ft )Zft:^ )4>ft) = E/  ft )A*ft )

r-l r

= / A0,

q.e.d.

1.6. Definition 1.60. Let M be any subset of the complex K (i.e., a set whose

elements are simplexes of the complex K). We shall say that the function

fr e Lr(K, J) lies on M and write fr c M, if for every simplex tr cK — M we

havefr(tr)=0.

The sum of two functions lying on M evidently lies also on M.

In the sequel M will always be either a subcomplex q of the complex K

or the set K — q complementary to a subcomplex q c K.

Definition 1.61. The group of all r-dimensional functions fT e Lr(K) lying

on K — q will be denoted by Lr(K — q). The group of all r-dimensional V-cycles

lying on K — q will be denoted by Z'(K — q).

Evidently

Z\(k - q) = Zv(k) n l\k - q) cLr(k).

1.611. Iffr-eLr(K-q),then

vftzT{k-q).

This assertion follows directly from the fact that all faces of a simplex be-

longing to q also belong to q.

Definition 1.612. A V-cyclefr e Zr(K — q) is said to be homologous to zero

onK-q,

f* ~ 0   on   k - q,

if it is the V-boundary of a function

f^eL^(k-q).

The r-dimensional V-cycles lying on K — q and homologous to zero on
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K — Q form the subgroup H^(K-Q) of the group Zr(K — Q) (and of the group

WO).
The factor group

Zv(K - Q) - Hv(K - Q)

will be denoted by B\{K-Q, J), or simply by Brv(K-Q).

Definition 1.62. Let again Q be a subcomplex of K. The function fT is said

to be a A-cycle modulo Q, if Afr c Q.

The r-dimensional A-cycles modulo Q evidently form a group; we shall

denote it by Z\(K mod Q). We have

Z\{K mod Q)oZL(K).

Definition 1.621. Letfr be a cycle modulo Q. If there exists a function /r+1

such that

A/r+l = f + ur, W c Q,

then we shall say that fr is homologous to zero modulo Q on K,

fT ~ 0 modulo Q on K.

The r-dimensional A-cycles modulo Q homologous to zero on K modulo Q

form a subgroup Hl{K mod Q) of the group Z\(K mod Q). We have

HrA(K mod (2) = Hl(K).

The factor group

Z\{K mod Q) - HrA(K mod Q)

is denoted by BrA(K mod Q) (or by BTA(K mod Q, J)).

Let again X and S be two groups dual to each other, X discrete and S bi-

compact.

Theorem 1.63. The annihilator of the group H^{K — Q, X) in the group

Lr(K, S) is the group Zrv{K mod Q, S).

We have to prove two assertions:

1°. If <p £ Zl(K mod Q, K),f* <zIL\{K-Q, X), then <j>*f = 0.
2°. If <f>r £ Lr(K, E) is a function not belonging to ZA(K mod Q, E), then

there exists such an/r £ H^(K-Q, X) that <f>rfr^0.

Proof of 1°. By assumption

{' = Vf-\ f"1 z Lr-i(K - Q, X);

then
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r r r—1 r r—1 »—^       r.  r— 1.   r—1,   r—1.

</>/ = 0V/    = A<£/    = X) A0 (*i )/   (*, ) = 0.
i

Proof of 2°. Suppose that 4>T does not enter into Z^iK mod Q). Then there

exist such a /j-1 £ K — Q that

r r—1

A</> (*i  ) = a     0, a £ S.

Choose an a e X such that aa 5^0 and put

/"   (<i ) = a,

r-1, r-1, . r-1

f   (ft  ) = 0   for   U   e K,   i ?± 1.

Then obviously/r-' e -£/->(/<:-Q). Putting/' = V/r_1, we have

f\Hr^{K - Q, X),

r r r     r—1 r r— 1 r, r.   r— 1 . r—1.

0/ =    V/    = A<£ /    = A</> (h)f   (h ) = aa^ 0,

and Theorem 1.63 is proved.

Theorem 1.64. 77ze annihilator of the group HA(K mod Q, S) t» /Ae group

Lr(K, X) is the group Z'V(K-Q, X).

Proof. We prove, firstly: if

(pr e Ha(K mod Q, H),      /■'eZvCK - 0.

then
4>'/r = 0.

In fact,

(j,r = A0r+1 + iAr, ^rcQ,

<brfr = A(br+1f + <fiTfr = <bT+1Vfr = 0.

We prove, secondly: if the function fr e Lt(K, X) is not a cycle lying on

K — Q, then there exists a function <pr e Ha(K mod <2, S) such that 4>rfr^0.

(a) Let/r be any function not lying on K — Q. Then there exists a t\ £ Q

such that /'(/[) =0 5^0. Take such an a e S that aa^O and put

r r

<P (ti) - a,

/(/<) = 0   on other   tie K.

Then we have

$ zHA(K mod Q, S),

<// = <t>\h)f\t\) = aa^O.
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(b) Let/r e LT{K, X) lie on K — Q and not be a V-cycle. Then for a certain

t[+1 £ K — Q we have V/r(*i+1) = a^0. Choose a £ S such that cwz^O and put

r+l r+l

<P   (h ) = a,

<#>r+1(ii+1) = 0   for other        £ # •

Then

A</»r+1 £ Hl(K, S) c #!(*: mod, E),

'+1 r+l    t r+l. r+l       r, r+l,

A<*>   / = </>   V/ = </«    (/i  )V/ Oi  ) = aa ^ 0,

and Theorem 1.64 is proved.

Putting in Theorems 1.63 and 1.64

0 = 0,
we have

1.631. The annihilator of the group H^(K, X) in the group LT(K, S) is the

group ZT^K, S).

1.641. The annihilator of the group HA(K, S) in the group Lr(K, X) is the

group Z^K, X).

From the theory of characters it is known that if two groups G and V are

dual to each other and if the subgroup r0 c T is the annihilator in V of the

subgroup Go c G, then, conversely, G0 is the annihilator in G of the group To.

On ground of this remark we deduce from 1.63 and 1.64

1.632. The annihilator of the group Z^iK mod Q, S) in Lr(K, X) is

HTv(K — Q, X).

1.642. The annihilator of the group Z^(K — Q, X) in Lr(K, a) is

Hi (K mod <2, S).

1.7. Let A, B, C be three commutative groups, all three discrete or all

three bicompact, and let

(1.71) . AoB,      A - B = C.

If we denote the groups of characters of the groups A, B, C respectively by

A', B', C', then one of the fundamental theorems of the theory of characters

may be formulated as follows: C' is a subgroup of A', namely the annihilator

of the group B in the group A', and

(1.72) B' = A'-C'.

Or the annihilator of the subgroup B c C in A' is C'. On ground of this theorem

we deduce from 1.63 and 1.64
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1.73. The group 27A{K mod Q, H) is the group of characters of the group

l'{K, X)-HTV(K-Q,X).

1.74. The group Z\(K — Q, X) is the group of characters of the group

l*(K, Z)-irA(K mod Q, S).

In the same way from 1.642 and 1.632 we deduce

1.731. The group ITA{K mod Q, S) is the group of characters of the group

L'(K, X)-Z^{K-Q, X).

1.741. The group ITV(K — Q, X) is the group of characters of the group

l'(K, S) -Z,(K mod Q, S).

Recall now the so-called second theorem on isomorphisms of Emmy

Noether: If for commutative groups U, V, W we have the inclusion relations

Uz> 7s W, then considering (in a manner easily understood) V— W as a sub-

group of the group U—V, we have

(U - W) - (V - W) « U - V

(where ~ means isomorphic).

Putting

U = lt{k, S),      V = zl{k mod Q, S),     W = H\{k mod Q, E),

we find

[l\k, E) - Hra(k mod Q, E) ] - za(k mod Q, E) - Ha(k mod Q, E)

~ l\k, E) - zI(^mod Q, E),

wherefrom, on ground of 1.72,

x[Za(k mod Q, E) - Ha(k mod Q, E)] = x[£(#. E) - Ha(k mod Q, a)]

- x[l(k, E) -Z\{k mod Q,E)]
»

and on ground of 1.74 and 1.741,

X[Za(k mod Q, E) - Hra(k mod £>, E)] ~ zl(k - Q, X) - H^(k - Q, X),

i.e.,

(1.75) x[Bra(k mod Q, 5)] = Bl(k-Q, X).

Putting <2 = 0 we obtain as a special case of formula (1.75)

Theorem 1.751. The Betti groups BA{K, S) and Brv(K, X) are dual to each

other.

1.8. Consider separately the case r = 0.
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Since a zero-dimensional V-cycle cannot be homologous to zero, B%(K)
= Z%(K).

Let K be an arbitrary complex. Every function/0 constant on K (i.e., as-

suming for all null-dimensional simplexes t° e K one and the same value) is a

V-cycle.

In fact, for every one-dimensional simplex t1 = (e0, d) we have

V/V1) = f (fit) - f(e0) = 0.

1.80. If K is connected andf e Z%(K), thenf0 is constant on K.

In fact, if/0 is not constant on K, then in virtue of the connectivity of K

we may find a tl = (eo, «i) such that/°(e0) Kf(«0 and, consequently, V/°(i1) ^0.

Thus on connected complexes the zero-dimensional constant functions and

only they are cycles.

Hence follows

1.81. For every complex K the group Z%{K) consists of those and only those

zero-dimensional functions which are constant on every component of K.

1.82. The group B%{K, J) is a direct sum of groups isomorphic to J and the

number of direct summands in this sum is equal to the number of components of

the complex K.

In the group Z%(K) = B%(K) is contained the subgroup Z^{K) of those

cycles which are constant on the whole K. The factor group

o oo
ZW(K) - Zv (K)

we shall denote by B%(K).

1.83. If K consists of p components, then B^(K, J) is a direct sum of p — 1

groups each of which is isomorphic to the group J.

Defining the group Z^(K) as the group of those zero-dimensional func-

tions, the sum of values of which extended over all vertices of K is equal to

zero, we have in the group Z^(K) a subgroup H2(K) of all zero-dimensional

A-cycles homologous to zero. The group Bl°(K) =Z^{K)-Hl(K) is, as is well

known, also a direct sum of p — 1 groups isomorphic to J and, consequently,

is isomorphic to the group B%(K). The groups B™(K, X) and B^(K, S) are

obviously dual to each other.

2. SlMPLICIAL MAPPINGS OF COMPLEXES

2.1. Suppose that to every vertex eß of a complex Kß corresponds the ver-

tex Seß = ea of a complex K" such that to vertices belonging to any simplex

of the complex Kß correspond vertices belonging to a simplex of the complex

K". This correspondence of vertices establishes a mapping 5 of the complex Kß
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into the complex Ka: to every simplex tß = (ßo, •••,«£) of the complex Kß

corresponds a simplex Stß of the complex K" with vertices Se?0, ■ ■ ■ , 5ef and

the number of dimensions of Stß is less than or equal to the number of dimen-

sions of the simplex tß. The so-obtained mapping is called a simplicial mapping

of the complex Kß into the complex K".

In virtue of the mapping 5, to an oriented simplex tß = {el, ■ • ■ , ef) of the

complex Kß corresponds an oriented simplex (which may be degenerate)

ß ß
ta = Stß = (Sen, ■ ■ ■ , Ser)

of a complex K" of the same number of dimensions as tß.

2.2. A simplicial mapping 5 of the complex Kß into the complex Ka gen-

erates

1°. A homomorphic mapping p of the group Lr(Kß) into the group Lr(Ka).

2°. A homomorphic mapping tr of the group Lr(Ka) into the group Lr(Kß).

Indeed, to every function fß e Lr(Kß) corresponds a function pfß£ Lr(K")

defined by

(2.21) Pfß{ia) = D/(<J),

where the summation is extended over all tß e Kß such that Sfß = fa. To every

function/^ e Lr(Ka) corresponds a function ofra e LT(Kß) defined by

(2.22) afa(h) = f\Stß).

Theorem 2.211. The homomorphism p preserves the lower boundary opera-

tor A:

(2.211) Apfß = pA/ß.

In fact,

Apfß(ei, • • • , e,) = 2-1 pfß(eu eu • • • . eT)
i

= 23       23    fß(eh eiit      ') eir),
i       J.Jl. ■■■.ir

where the summation in the inner sum is extended over all such j, ji, ■ ■ • , jr

that Se? = e?, 5^=e?, • • ■ , Se£ = e?- Hence

Apfß(ei, ■ ■ ■ , er) =  23    23/f(eJ> eh* ' - ' > e0

=   23   A/pOL •••.«/,)= pAfl(el, ■ ■ ■ , e").

Theorem 2.221. The homomorphism a preserves the upper boundary opera-

torV:
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(2.221) Vo/r = <rV/r.

In fact, we have the inequalities

r     ß ß k    T    ß ß ß

V<rfa(eo, er+1) = 2^ (— 1) o/a(«o, • • • , ek, ■ • ■ , er+l)
k

= X (— l)*/«(^eo, • • • , ek, ■ • ■ , Ser+i)
k

T ß ß

= Vfa{Se0, • • • , SeT+i)
r    ß ß

— ffV/a(co. ■ • • . «r+l).

2.3. Let two sub-complexes Q" c 2?a and (2s c Kß be given and let the sim-

plicial mapping 5 be such that SQß c Qa. Then from

W
follows

and from
r a a

/a CAT -Q

follows
r s 8

o-/Q c k - Q .

Therefore we have the inclusion relations

(2.311) pza{k mod q ) cZlOfifmod qa),

(2.312) pHa(kä mod qb) c hI(k" mod Q"),

(2.321) <rZv(iCa - q") cZv(XS - £>"),

(2.322) <rHv(k" - q°)cHv(kß - (/).

Theorem 2.33. The homomorphism p generates the homomorphic mapping

w of the group BrA(Kß mod Qf) into the group BrA(K" mod Q"); the homomorphism

<r generates the homomorphic mapping it of the group Brv(Ka — Qa) into the

group Brv(Kß-Qß).

2.4. Let, as always, S and X be two dual groups, S bicompact, X discrete.

Theorem 2.41. The homomorphic mapping p of the group Lr(Kß, 2) into

the group Lr(K", 2) and the homomorphic mapping a of the group Lr{Ka, 2)

into the group Lr(Kß, X) are conjugated.

In fact, for any # e L'(Kß, 2) and£ £ Lr(K", X),

<rW<* = £ 4>ß(tßj)fa(Stßj),
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or, denoting by

the summation over all fßj such that Sfßj = tTai (and zero, if such fßl do not exist),

Theorem 2.42. The homomorphic mapping ü of the group BrA(Kß mod Qß, a)

into the group BA(K" mod Q", a) and the homomorphic mapping it of the group

Brv(Kß — Qß, X) into the group Brv(Ka — Qa, X) are conjugated.

In fact, let f e BTA{Kß mod Qß, S), z" e B^(K"-Qa, X) be chosen arbi-

trarily. Choose the cycles <pß e f3 and f* e za. Then ü£ß is an element of the

group BTA(Ka mod Q", S) containing p<pß and wza is an element of the group

BTv{Kß — Qß, X) containing afa. We have

q.e.d. From the result just proved directly follows

2.43. Let S and S' be two simplicial mappings of the complex Ke into the

complex K" such that for given subcomplexes Qß c Kß and Q" c K" we have

S(Qß) c Qa, S'(Qß) c Qa. Let both mappings S and S' generate one and the same

homomorphism ü of the group BrA(Kß mod Qß, S) into the group BrA{Ka mod Q", a).

Then the mappings S and S' generate one and the same homomorphism ir of the

group BTV(K" — Q", X) into the group B'v(Kß — Qß, X).

The dual formulation is, of course, also true.

The following remark is essential for the sequel. Let the simplicial map-

pings St, and Si of the complex Kß into the complex Ka satisfy the condition

2.44. Whatever be the simplex tßcKß there exists a simplex tacKa having

among its faces the Simplexes Sotß and Sitß and if tß c Qß, then we may suppose

that ta c Q".

In this case the mappings So and Si are evidently homotopic and if we

denote by Su, O^m^I, the deformation of So into Si, we may suppose that

for any u we have SuQß c Qa. Hence it follows that S0 and Si generate one and

the same homomorphism ü of the group BrA(Kß mod Qß, S) into the group

BA(Ka mod Qa, S). From 2.43 it follows that S0 and Si generate one and the

same homomorphism it of the group Brv{Ka — Qa,  X)  into  the group

= X Pfß(tci)fa(tai) = pfß-fa-

ß        a t      jf r     t ß a

f -its   = <bß-afa = p4>ß-fa = <£f  2 ,

Brv(Kß-Qß, X).

2.45. If the simplicial mappings So and Si satisfy the condition 2.44, then
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they generate one and the same homomorphism ü of the group BA(Kß mod Of, S)

into the group B'A(Ka mod qa, 2) and one and the same homomorphism it of

the group B%{Ka-q°, X) into the group Brv(Kß-qß, X)(7).

3. Spectra and their limit groups

3.1. A partially ordered set D shall be called unbounded, if for any two

elements dx and dt of the set D there exists an element d3 following after di

as well as after d2:

d3 > di, d3 > d2.

Consider the unbounded partially ordered set A consisting of the groups

H"; for the sake of simplicity we shall suppose that the indices a are ordinal

numbers (the order of which, however, must not be at all connected with the

order in A). Suppose that for any two groups H" and Hß which are elements

of A and satisfy in A the condition Hß^Ha a homomorphic mapping ü>ßa {pro-

jection) of the group H8 into the group H" is defined such that for Hy ^Hß^Ha

we have always

-T

and     is the identical mapping.

The system of groups H" and mappings üf is called the inverse spectrum

and is denoted by [Ha; wf ].

Every inverse spectrum defines the limit group

H = lim [H ; S>a].

The elements of the group H are the threads of the spectrum [Ha; i.e.,

systems of elements r) = {rj"} satisfying the following conditions:

1°. Every t]a is an element of the group H" and 77 contains only one ele-

ment of each group.

2°. If t)a and rjß are elements of the thread 77 and rf z H", rjß e Hß, then

If 771 = {77"} and 772=1772} are two threads of the inverse spectrum

[Ha; w£]> then 77= {77" +772} is also a thread and we put

77 = 771 + 7)2.

Fixing a and correlating to every thread 77 the element 77" contained in it, we

obtain a homomorphic mapping w„ of the group H into the group H". The

inverse spectra are considered always under the assumption that the groups

H" are bicompact. Then the group H = lim^_ [Ha; cif ] will be also topologized;

(7) A purely combinatorial proof of this theorem has been given by Cech, Theorie generale

de VHomologie, Fundamenta Mathematicae, vol. 19 (1932), pp. 149-183, especially pp. 158-159

(§12).
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a neighbourhood of the thread 770 = {770} is obtained, if we choose a finite

number 770% ■ ■ ■ , 77J* of its elements, choose for each of them a neighbour-

hood O7701 in Hai and take all threads -17 = {77"} satisfying the conditions

7]ai £ Orfö for 2 = 1, 2, • • • , s. The so-topologized group H proves to be bi-

compact.

3.2. Suppose that we have an unbounded partially ordered set D of dis-

crete groups 3C° and assume, further, for convenience that all elements h"

of the group 5Ca are different from the elements hß of the group 3Cß, if ap^ß.

Suppose further that for any two groups 3C", 3C" such that SC"<SCß in D

is established a homomorphic mapping (projection) of the group X" into

the group 5Cß such that for 3C" ̂  X" ^ X^ we have 7^7$ =ir° and < is the identi-

cal mapping. The system of groups X" and homomorphisms tt% is called the

rfirerf spectrum [xa; 7^]. The set-theoretical sum WaX<" of all groups Xa is

called the spectral set of the given direct spectrum. Two elements of the spec-

tral set, ha £ X" and hß e 3Cß are called equivalent if there exists in the spectrum

a group SC such that 3Cy>3Ca, 3Cy>3Cß and iv"ha =irßyhß.

This notion of equivalence obviously possesses the properties of reflex-

tivity, symmetry and, in virtue of the unboundedness of the partially ordered

set D, also of transitivity. The spectral set W„Xa falls therefore into classes

of equivalence which we shall for the sake of shortness call the bundles of the

direct spectrum [X"; tt^]. The bundles possess the following obvious property:

every projection of an element of any bundle is an element of the same bundle.

Hence follows: If ha e Xa is an element of the bundle h and X^>Xa, then in

3Cß there is an element hß of the bundle h.

In any two bundles hi and hi we may find elements h" and h2 belonging to

one and the same 3C". In fact, choose arbitrarily hai e hi and A°2 £ hi and take

3C°>3C"1, 5Ca>3Ca2. Then

tta h     = 111 £ hi, tta h     = hi e hi.

Let hi and hi be two bundles. From the above follows that we can find

two elements h" e hi, h% e hi belonging to one and the same group 3C". We shall

call the bundle h, containing the element h" = h"+h2 the sum of the bundles hi

and hi. This definition does not depend on the choice of the elements h\ e hi

and h2 e hi. In fact, if h\ e hi, h2 £ hi, then hß = hß-\-h2 belongs to the same

bundle as h". In order to prove this observe that since h" and h\ belong to

one and the same bundle, there exists such an 3C,yi,

5Cyi > X", 3Cyi > 90»,

that

■  , ■ ß  , ß , Tt
7TYl«i = 7T7,«1 =  n .

Similarly there exists an SCy2 such that
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a  , « ß   , ß , 72

Take an X1" following after X™ as well as after X^2. Then

71,7 <*.« ß ,ß        ,7 72 .7 a.« ß. ß .7

7T7 «l = 7T7«l = 7T7«l = «l| TTy «2 = 7TT«2 = TT7«2 = «2

and, consequently,

y y y <x   a ß ß

h  = hi + hi = izyh  = iTyh ,

so that the equivalence of ha = hi-\-h\t and W = h\A-h\ is proved.

The so-defined addition of bundles is obviously associative. It turns the

set of all bundles into a (discrete) group X = lim.. [Xa; tt%] which is called

the limit group of the direct spectrum [X"; ir%]. The zero elements of all groups

3C" are all equivalent to each other and, consequently, belong to one and the

same bundle—the zero bundle, which is the zero element of the group 3C.

The elements — h" opposite to the elements h" of a bundle h form the

bundle —h.
Correlating to every element ha of the group X" the bundle containing

this element, we obtain a homomorphic mapping tt" of the group X" into

the group X. For X" < Xs we have

a ß a

7T    = 7T 7T0 .

3:3. Let two spectra—the direct spectrum

W ;«-]
and the inverse spectrum

[X ; TTß\

■—be given. If the groups Ha and X" composing these spectra are dual to

each other for every given a and the homomorphisms <if and ir% are conjugate,

then the spectra are said to be conjugate to each other. It is known that the

limit groups H and X of two conjugate spectra are dual (Steenrod(4)) and

that an element h of the group X = lim_ [Xa; ir%] realizes a homomorphism

of the group i/ = lim,_ [Ha; <if ] in k according to the formula:

rih = r\aha,

where t\a and h" are taken arbitrarily in r; and h: it turns out that the so-

defined homomorphism does not depend on the elements of arbitrariness in-

volved in its definition.

3.4. In the sequel we shall almost exclusively consider direct spectra;

therefore by a "spectrum" without any adjective we shall understand a direct

spectrum and in accordance with this omit the arrows in the formulae.
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3.41. Let two spectra

[UM;*Ü,     [V*; {£]

be given, the elements of which correspond to each other in one-to-one manner

(Ua^± Va). For every a let there be given a homomorphic mapping <pa of the group

Ua in the group V". If for every a, every U", and every W e U" the condition

a        a a a

pß(j>aU    = fyßltßU

is satisfied, then we obtain a homomorphic mapping <fr of the group

L7 = lim [Ua; tt%] in the group F = lim [Va; p^] as the mapping correlating to

every bundle u of the spectrum [Ua; irß] the bundle v = <pu of the spectrum

[V"', Pß] containing with an element u" e U" also the element <pau".

It suffices to show: from ua = uß (where = is the sign of equivalence) fol-

lows <paua=cpßUß. But if ua = uß, then there exists such a U"1 that

a   a 8 8
TTyU      = TTyU

and, consequently,

a        a a   a 88 88

Py4>aU       =   (frylTyU       =    (f) yW yU      =   Py<\>ßU ,

q.e.d.

We add two remarks, the proofs of which may be left to the reader.

3.411. If, whatever be a and V e V", there is a Vß> V" and a uß e Uß such that

ß a a

<bßU   = pßV ,

then the mapping <p is a homomorphism of the group U on the group V.

3.412. If from <pu = 0 it follows that u e U contains the zero element of some

group Ua, then <p is an isomorphic mapping.

3.5. A partially ordered set D is called a part of the partially ordered set

D', if every element of D is an element of D' and if from d\>di in D follows

di>di in D' (but it is not demanded that from d\>d2 in D', d\ e D, d2 e D,

should necessarily follow di > d2 in D).

A part D of an unbounded partially ordered set D' is called cofinal to the

whole D' if D is unbounded and after every element of D' in D' follows an

element of D.

A spectrum I is called a part, respectively a cofinal part, of a spectrum II,

if the spectrum I considered as a partially ordered set of groups, of which it is

composed, is a part, respectively a cofinal part, of the spectrum II and if the

projections in I coincide with corresponding projections in II.

Let now the spectrum I form a part of the spectrum II. It is obvious that

two elements of the spectral set of I equivalent in the spectrum I are equiva-
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lent also in the spectrum II. If I is a cofinal part of II, then, conversely, two

elements of I equivalent in the spectrum II are equivalent also in the spectrum

I. From the first assertion it follows that every bundle of the spectrum I is

contained in a bundle of the spectrum II. From the second assertion it follows

that in the case of cofinality of I and II every bundle of the spectrum II

contains only one bundle of the spectrum I (that every bundle of II contains

at least one bundle of I follows directly from the condition of cofinality).

Thus we have

3.51. If one of two spectra forms a cofinal part of the other, then both spectra

have isomorphic limit groups.

3.6. We shall also need the following proposition.

3.61. Suppose that the spectra

[U";irß],      [U ;irßß]

satisfy the following conditions:

1°. There exists an isomorphic mapping </£x of the group UaX on the

group U".

2°. If Uß»> f/"\ then Uß>Ua.
3°. For every uaX e UaX we have

a\   a\ ßfi—1   a   a\ a\

TßßU     =  (<j>p )    1Tß(ba U .

Then the limit groups lim [f/aX; tt^] and lim [Ua; Wß] are isomorphic.

For the proof construct first from the groups UaX a partially ordered set D'

by putting always Uß">UaX, if in the spectrum [Ua; irß] the inequality

Uß> Ua holds. The partially ordered set D' is evidently unbounded.

We define now the projections

o:X   crX ßti — 1   a   a\ a\

Pß,iU      =  (<bß )    TTß(ba U .

Since

ftu  aX 1  ß   ßn .  PM,— 1   a   a\ .  7^.-1   a   aX aX

Pyvpßp. =  {<j>y )    Vy4>ß (4>ß )    1Tß4>a   =  {4>y )    7t-W>a    = Pyv,

[t7aX; PßX] is obviously a spectrum containing the spectrum [t7"x; 7r£x] as its

cofinal part. Therefore the groups lim [UaX; p£x] and lim [L7aX; tt^x] are iso-

morphic. Identifying for every a the group Ua with the group Ual isomorphic

to it, we may also consider the spectrum [Ua; ir%\ as a part of the spectrum

[UaX; p^x] and even as a cofinal part. In fact, in order to obtain Ußl following

after a given UaX in the spectrum [C/aX; p£x] it is sufficient to take Uß> Ua in

the spectrum [Ua;       evidently, Ußl> t/aX in the spectrum [(7«x; p£x].

Thus the group lim [Ua; Tr%] is isomorphic to the group lim [Ua*; p^x] and,

consequently, also to the group lim [?7aX; 7T^X], q.e.d.
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4. The formal duality

4.1. Let there be given an unbounded partially ordered set $ of complexes

Ka. Suppose that in every complex K" are given two subcomplexes K% and

C". The complex Ca is called a special subcomplex of the complex Ka. If

Kß>K", then simplicial mappings Sf of the complex Kß into the complex Ka

are defined, which are called projections of Kß into K"; they satisfy the follow-

ing conditions:

1°. For any projection Sf

Sßa(Ko)cKo, £(<?)cC*.

2°. If Sf and Sßa are two projections of Kß into Ka, then for any simplex

tß £ Kß the simplexes 5% and S% are faces of a certain simplex e K" and,

if ^ e Kq or ^ £ Cß, then we may assume that correspondingly ta e üTq, ta z Ca.

From the condition 1° it follows that every projection Sf generates a homo-

morphism oß of the groups

T      et a r       a a v       a a a

L{K - C ),      L (K0 - C ),      L(K - K0-C )(*)

respectively into the groups

r    _ß ß r     ß ß r _ß ß d

L(K-C),       L(K0-C),       L(K -Kf-C\

the homomorphisms <Tß generate further homomorphical mappings itß of the

groups

(4.11) £{Kt-<f),      Brv(K"- Ko - C")

into the groups

(4.12) Bv(Kß0-Cß),      BviK3 - k\ - (?)

and from the condition 2° it follows that all projections of the complex Kß into

the complex K" generate one and the same homomorphism tt% of the groups (4.11)

into the groups (4.12). These homomorphisms are also called projections.

Suppose that beside the conditions 1° and 2° the following condition is also

satisfied:

3°. If Ky>Kß>K", then whatever be the projections Sf and Sß of respec-

tively Kß into Ka and Ky into Kß, the simplicial mapping Sf S} of the complex

Ky into the complex K" is a projection.

From the condition 3° it follows that

ß    a a

TTylTß = TT y

and that we have the spectra

(8) We recall that Kg — C means the set of all simplexes of K" which do not belong to C,

i.e., KZ-Ca = KZ-K0*r\C.
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[Bv(Ka - C">; r|J,      [4(J^ - (f);^],

[B;(ir"-jt;-0;»;].

Definition 4.10. ^4 partially ordered set ® of complexes Ka satisfying the

conditions 1°, 2° awrf 3° is called simply-connected with respect to the dimensional-

ity r for given special subcomplexes Ca, if the group

lim [B'viK" -C");*;]

consists only of the zero element.

The aim of the present paragraph is the proof of the following

Theorem 4.1. If $ is simply connected with respect to the dimensionalities r

and r-\-l, then the groups

lim [By(Ka0 - C*); Tß],      lim [Sv+'(^ - K* - <f); ■?]

are isomorphic.

4.2. Preliminary remarks to the proof of Theorem 4.1. For the sake of

shortness we shall write

Ua instead of LT{Ka - C),

U0a instead of Lr(K% - C),

Uga instead of Lr(Ka-K%-Ca),

Z^ instead of Z'V(KZ-C),

Z7^ instead of ZTv(Ka-K%-O),

IT0a instead of H^{K%-C"),

HTsa instead of Hrv(K» - K% - C),

Br0a instead of B^K^-C),

BTga instead of B\{K" - K% - C"),

Br0 instead of lim [Brv(K%- C)

B\ instead of lim \B\(K" -K% - C); ir?].

The elements of the groups

Boa,       Bo,       Bga,       B Q

we shall denote respectively by

r r r+1 r+1

The elements of the groups

Tr       Tr Tr

we shall denote respectively by
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If some function is given, we denote byfa the function which is equal to

/« on Kq and is equal to zero on Ka — Kl; by Afra we denote the function /0r„

equal to/« on Kq.

If a function     is given, we denote by Ef^ the function fa equal to

on K% and to zero on K" — Kq.

Let us now formulate some simple properties of the operators A and E:

(4.21) EAfa=fra,

(4.22) AE/0a = f0a.

From

la

follows

(4.23) Arga = 0.

If      e KS, then
r    )*-+•1 t    r4-1

(4.24) V^/a(/0« )  =  V/«(*0« ),

(4.25) VEfUO = VfUtlV).

Further,

(4.26) vA/a = Avfl

In fact, if tTotl £ KS, then VA£(0 and AVfÄC1) coincide with V/KC1).
If 5f is any projection of Kß into then

(4.27) Aclfa = wJA/-

In fact, from tTQß £ if£ follows

Acßfa{t<iß) = Cßfa(hß) = fa(Sjoß),       <TßAfa(toß)  = Afa(Sjoß)  = fa(Sjoß).

Observe, finally, that from /£, £ follows V£/oo £ Z^1. In fact, for

£+' £ C>
-•gat

we have

r+K
VEf0a(ta ) = 0,

since Ef^ e     and, consequently, V-E/i* E        and for tTa+1 £ ü^,

VEflaiC1)  = VfoaiC)  = 0,

since f^ e Z^.
4.3. We proceed now to prove Theorem 4.1.

To each/i, e Zr0a corresponds a definite g£+1 £ Z£\ namely VEf^.
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4.31. The operator V-E, applied to the group ZJ„, generates an homomorphism

<j>a of the group B^ into the group B'^1.

In order to prove this it is sufficient to show that if foa e then

vE0a £ ir+\

Let fZc £ Hl«; then

JOa — VjOa ■

Put

(4.31) BfV.

For 4* £ Kq we have

(4.32) fla(L) = Af7\L).

Put

(4.33) hra(ta) = 0, if CeKo,

(4.34) ha(ta)  = Vfä\ta),   if  L e K " - JT*

From (4.32), (4.33), (4.34) follows

+ = V/TV«)
for any 4 £ K", whence

Vha + vEfr0a = 0, VEfla = - vhra,

i.e.,

r r+1

VEf0a e H got •

Let us now show that for any uTa z B^

. a       r a r

(4.35) TTß<t>aUa — 4>ßVßUa.

Let there be chosen some projection 5f of the complex Ka into the com-

plex K". Choose arbitrarily/^ £ ura. In order to prove the formula (4.35) it is

sufficient to show that under the homomorphism cr^ of the group Zq„ into

the group ZJp generated by the projection Sf we have

(4.351) o-ßVEfla ~ VEo-ß/oa in Kß — Ko - c".

Having in view that

a a

o-ßV — Vo-ß,

we may write (4.351) in the form

(4.352) Vo-ßEfo» - vEaßfla ~ 0 in K* - Ko - Cß.
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But (4.352) obviously follows from

a     r a r r

(4.353) O-ßE/oa — E(Tßfaa £ Lgß.

We have thus only to verify this last formula. But

a     r     t T       ß T

OßEfda{tß)  = Ef0a(Satß),

that is,

o-ßEfT0a(tß) = 0, if slfß e C",
r       S r ß r a

— foa(Satß), if Satß£ Ko,

= 0, if S% e K° — Kl

On the other hand,

Eo-ß/Qa(iß) =0,      tß e c",

E<Tßfoa(tß)  =  (Tßfoa(tß)  = foa(Satß),   if  ^e ^0,

Eaßfoa(tß) = o, if /^s:'- id

If   e Kf, or ^ e C^, then, respectively,

ß r a ß r ct

Satß e Ko,      Satß £ C .

Therefore for

tß £ Ko,        tß £ (f,
we have

a     r     r a r r

0-ßEfoa{tß)  = Eo-ßfoa(tß),

whence follows (4.353) and so (4.352), (4.351) and (4.35).
From (4.35) and (3.41) follows

4.32. The operator VE determines through the homomorphisms <f>a the homo-

morphism <p of the group Br0 into the group Brs+1.

If W is an element of the group BT0, then take any element uTa of the bundle

ur and any cycle f* contained in the homologic class of W. The element ua+1

of the group B^1 containing the cycle Vü/i is contained in the bundle vr+1,

which is by definition the element <p{ur) of the group BT0+i.

4.4. The homomorphism <f> is a mapping of the group BT0 on the group

B'g+l. In order to prove this it is, on ground of (3.411), sufficient to show that

4.41. Whatever be a and e B'^1, there is always a Kß>Ka and a uTß£ Broß

such that
r a r+1

(bßuß — TßVa •
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Let vra+1 be given. Take a gra+1 e vTa+1. Since K is simply connected with re-

spect to the dimensionality r + l, there is always a Kß>Ka such that

o-^fa   ~ 0 in a - C .

Thus there exists such an fß that

(4.41) vfß = cßgT-

Putting
a r+1 r+l

(4.42) aßga   = gß ,

we have

(4.43) gß     EVß     ETCßVa .

Hfß+leKß0, then

VA/ßiC) = V/M+1) = 0,

i.e.,

Afß £ Z0ß.

Observing that always EAfß =fß, put

gl   =   fß   ~    EAf   =   fß~   fß £ Lgß.
Evidently

Vgß = vfß — VEAf'ß.

Consequently, in view of (4.41) and (4.42),

i.e. (on ground of (4.43)),

If AfßZ uß zBrß, then

'+i     .r,/ •    „ß     „ß rfi
gß   ~ AEAfß in A  — K0 — C

r        a r+1

VEAfßETßVa •

r a r+1

(bßUß = 1TßVa ,

and 4.41 is proved.

4.5. The homomorphism <f> is an isomorphism.

Lemma 4.51. If fa e Z^iK"), then there exists such a Kß>Ka that

a T ß ß

A<Sßfa ~ 0 in Ko — C .
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In fact, since K is simply-connected with respect to the dimensionality r,

in some Kß>K" there exists such an fß~l cKß—Cß that

a r r-1

<Tßfa = Vfß ■

Hence

Ao-ß/a = Av/ß 1 = VAfß 1,

and Lemma 4.51 is proved.

For the proof of the assertion 4.5 it is sufficient, in virtue of (3.412), to

show that if

(4.52) <pur m 0

and

(4.53) foa e ua e u

then there exists such a Kß > K" that

(4.54) <rßf0a~0 in Kl - CB.

From (4.52) it follows that (4.53) may be from the outset chosen in such

a way that

V-E/o« = Vga,      ga e L\a.

Evidently Ef^—g^ is a cycle and hence, in virtue of Lemma 4.51, we may

choose Ke>Ka such that

a     r a r ß ß

A(o-ßEfQa — o-ßga) ~ 0 in Ko — C .

Since

Ac"ßga = 0,

a     r ß ß

AaßEfoa ~ 0 in Ko — C ,

and since
a     r a r a r

AcfßEf0a = ffßAEfoa = &ßfoa,

<* r .8 /9
Vßfoa ~ 0 in Ko — C ,

so that the assertion 4.5 and with it the whole Theorem 4.41 is completely

proved.

4.6. Consider separately the case r = 0. Suppose that all K" are connected

complexes, so that the groups B^{Ka) consist only of the corresponding zero

elements.

Suppose, further, that all C" = 0 and that our system of complexes $ is

simply-connected with respect to the dimensionality 1.
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Instead of B™(K%) we shall write B^, and instead of lim [-Bj£;7rj] we shall

write simply B00.

The operator V.E again correlates to every element f0ra e      the element

gl = vEflcEZ].

Moreover, iff°a e Z^, then VEf°a e H]a. In fact, putting the function /° on the

whole K" equal to the constant value of the function /0^ on K%, we obtain on

ground of 1.81 a cycle/". Here

0 0 0

fa = Efoa + hay

where
0 0 a a 0 a

ha = fa on K — KQ,      ha = 0 on K0.

Since/" is a cycle,
ooo

0 = Vfa = VEfoa + VÄa,

i.e.,

0 0

VEfoa E Hga.

Thus the operator VE applied to the group Z^a generates a homomorphism <pa

of the group B™ into the group B)a.

Similarly, as in 4.3 we prove the formula (4.351), where now r = 0 and the

arguments are only simplified by the fact that Ca = 0; from (4.351) follows

(4.35), where r = 0 and ura denotes an arbitrary element of the group B^. Thus

the operator VE determines through the homomorphisms <pa a homomorphism <p

of the group B^ into the group B].

The reasonings of 4.4 remain in force and prove that the homomorphism <p

is a mapping of the group B™ on the group B\.

Let us finally prove that <j> is an isomorphism. From the connectivity of Ka

and from 1.812 follows in the first place:

Lemma. Iff° is a cycle, then

oo
■4 fa E Z a •

In order to prove that <p is an isomorphism, it is sufficient to prove that

if uaEB\l° and, further,

(4.61) <K«o) = 0,
0 0

(4.62) foaEUaEU ,

then
o oo

(4.63) foaEZoa-

From (4.61) it follows that (4.62) may be from the outset so chosen that
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0 0 0        0,    a or

V-E/o* = Vg«;      gazL{K - Ko).

Evidently Ef^ — ga 1S a cycle and hence, according to the above lemma,

0 0 00

A(Ef0a — go) zZ0a,

i.e.,

0 00

AEf0«ZZ0a,

i.e.,

foa ZZoa.

Thus we have proved

Theorem 4.6. If there is given an unbounded partially ordered set of com-

plexes Ka connected and simply-connected with respect to the dimensionality 1

and their subcomplexes Ka satisfying the conditions of 4.1 for Ca = 0, then the

groups

r     00       ct oc-i r     1        a ct fit i

lim [Bv(K0);Tß],      lim [BV(K - K0);vß]

are isomorphic.

4.7. From Theorem 4.1 follows

4.71. If Ca and K% have no common elements and each of the groups

lim [Brv(Ka - C"); xj],      lim [B?\k" - C°); ttJ],

lim [Bv{K); TTß],      lim [^'(if"); tJ]

contains only the zero element, then the groups

2?;+1 = lim [B+\k-K; -C");*a]

and

5S„   = lim [Bv (K  - K0);irß]

are isomorphic.

In fact, in our case K%— Ca = Kl and both groups Be+1 and W0+1 are iso-

morphic to the group

lim [Bv(K°);irß].

4.8. Remark. In what follows we often will have to do with unbounded

partially ordered sets $ of complexes Ka with given subcomplexes C" c K",

and of simplicial mappings Sf of Kß into K" ("projections"), defined for every

Kß>K". These projections will satisfy the conditions 1° and 2° of §4.1, with
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respect to C" and the condition 3°, so that there is a direct spectrum

r    l* ,     a _ a a

[Bv(K  -C );**],

TTß being the homomorphism of Br7{Ka — C) into Brv(Ks - Cß), generated by Sf.

Under these circumstances the limit-group

B% = lim [Bv(Ka - C"); xj]

can be defined in a particularly simple way. In fact, we shall consider the

set Zr of elements of all groups Z^K" — C"), i.e.,

Zr = \JaZT{K" - C)

and call zTa e Zr(K" - C) and z£ e Zr( iC" - C") equivalent if a TO,

> Ka,    Ky > jp

and projections 5^, 5^ of respectively ÜCT and if" into Ka can be found in such

a way that

* t        ß t y y
<Tyza ~ <rtz3 in       — C ,

<, (7^ being the homomorphisms of Zr(K" - Ca) and ZT{Kß - C*) in Zr(Ky - Cy)

generated by SI and Sß respectively. Thus Zr is divided into classes or bundles

of equivalent cycles and these bundles form a group, which, by definition,

is the group Brv; the addition in BTV is defined in the following way: ft and ft

being two bundles, we take an zTa e ft and a e ft and call ft+ft the bundle

containing zTa+zar. It is an easy task to show that this definition of

lim [5v(ü:  - c ); 7r„]

agees with the definition given in §3.2.

5. Coverings

5.1. In the present paragraph R denotes one and the same infinite set.

An indexed subset is by definition a pair consisting of a certain subset | e<|

of the set R and a natural number i. Two indexed subsets e< and e,- are consid-

ered to be equal if the sets | e, | and | e,| are identical and the indices i and j

are equal.

By a covering of a set we understand such a finite system of indexed subsets

(5.1) 0 = {«,, ■ ••,€,}

that

I e\ I u • ■ ■ u j es I = R.

A covering ß is called simple if the identity | e<| = | is realized only in

the case of equality i=j, i.e., only in the case of equality e, = e,-. Since in the



1941] COMBINATORIAL TOPOLOGY 73

case of a simple covering the indexed sets correspond to the sets | e<| in one-

to-one manner, we may not distinguish between the first and the latter and

consider the sets       themselves to be the elements of the simple covering.

The nerve of the covering ß = {e\, • ■ ■ , es} is the complex K with the

vertices t\, ■ • • , e,; the vertices

form a simplex of the complex K when and only when

I e<01 n • • • n I eir I ̂  0.

If a covering is denoted by the letter ß with some indices, then we shall

denote its nerve by the letter K with the same indices. For instance, the nerve

of the covering ßa shall be denoted by Ka, the nerve of the covering ß"x by

KaX, etc.

5.2. Definition 5.21. A covering

0? = {ej), j = 1, • ■ • , sß,

is called a subdivision of the covering

0 = {e<}, i = \, ■ ■ ■ , sa,

if each of the \e%\ *> contained in at least one of the \ e" \.

Definition 5.22. A covering ß3 follows after the covering Q.",

UP > fi°,

if ßs is a subdivision of the covering ß", but ß" is not a subdivision of the cover-

ing QP.

This definition of "follows" turns the set of all coverings ß of a set R into

a partially ordered set SB. Every part 93 of the partially ordered set SB is called

a system of coverings of the set R.

From Definition 5.22 follows

5.221. If ß0> ß° and ß? is a subdivision of ß*3, then W> ß"; if ß" is a sub-

division of ß" and Qt > ß", then ß? > ß«.

For the nerves of the coverings we put Kß>Ka, if ß3 > ß".

Let a covering ßa= {ef} and its subdivision ßs= {ef} be given. To each

ef we correlate some definite e" under the only condition that

Such a mapping of the covering ß" into the covering ß" and also the corre-

sponding simplicial mapping of the complex Kß into the complex K" shall be
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called a protection and denoted by Sf or, if no misunderstandings are to be

feared, simply by 5.
5.3. Suppose that a certain system S of subsets of the set R called special

subsets is singled out. We suppose that the system of special subsets satisfies

the following condition:

5.31. If E is a special subset and E' 3 E, then E' is also a special subset.

The element e" of the covering ß" is called special, if | | is a special sub-

set.

Special elements of the covering ß" define a certain subcomplex C of the

complex Ka called the special subcomplex of the complex K".

From the condition 5.31 follows

5.32. For any protection 5f of the covering ffl into the covering ß" we have

Let 5 and S be two projections of the covering QP into the covering ß". If

h " (e;V - - - > e0

is any simplex from Kß, then the vertices

SejQ, SejQ) ' • • ; Se3-r, Sejr

define a simplex ta in K" having among its faces Stß as well as Stß; if, moreover,

tß e Cß, then ta e C". Hence all projections of the covering ß3 into the covering

ß" define one and the same homomorphism ü£ of the group BA(Kß mod Cß)

into the group BA(K" mod C") and one and the same homomorphism ir% of

the group Brv{Ka-Ca) into the group B^K8-^).

If the system of coverings 93 is unbounded, then we obtain the inverse

and the direct spectra

[Bl(Ka mod C"); fi£],      [b\{K - C");

the limit groups of which we denote respectively by 2%(93, 6) and BTV($Q, £).

From the investigations of Steenrod(4) it follows that the groups 5^(93, S)

and i3v(93, S) are dual to each other.

5.4. Consider some covering, which we shall denote by

Ö"x = {eik};

by en, en, • ■ ■ , e,/,,. are denoted all elements of the covering ß"x for which

I e,i\ = I e«| = ■ • • =| tihi \, namely | ea| =e*. The sets ef form a simple cover-

ing ß" denoted also by | ß"x |.

To every element of the covering ß°x there corresponds an element e,- of

the covering ßa and this correspondence establishes a simplicial mapping £>£x

of the complex KaX into the complex K", under which the special complex
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CaX c KaX is transformed into the special complex Ca c K". The simplicial

mapping Z>£x generates a homomorphism p°x of the group BA(KaX mod CaX)

into the group BA(Ka mod C") and a homomorphism tr^ of the group

B'^K" - C) into the group B^K^ - CaX).

5.41. The homomorphisms p£x and cr^x are isomorphic mappings of, corre-

spondingly, B'A(K^ mod CaX) om i3^(is:» mod O) awd o/ ^(if»-Ca) ore
&%(if"x-C>x).

For the proof observe in the first place that the subcomplex KaXl of the

complex KaX consisting of all simplexes of KaX whose vertices have the form en

is isomorphic to the complex K". In virtue of this isomorphism between KaX1

and Ka to the simplicial mapping Djf1 of the complex KaX on the complex Ka

there corresponds a simplicial mapping D£Xi of the complex KaX on KaX1 cor-

relating to the vertex ej4 the vertex en and, consequently, leaving all vertices

and all simplexes of the complex KaXl c KaX fixed.

An arbitrary simplex

of the complex KaX and its image under the mapping D^,

Da\i(ia\) = (c<,ii • • • , e<ri)

are faces of a simplex

Ta\ — (e^i, ' ' • ,£i0A0,      , £tri,      , eirhr*)

(we write ho instead of hi0, ■ ■ ■ , hr instead of hir) belonging to the complex KaX

and, moreover, if ta\ e CaX, then Ta\ e Cx. Hence it follows that for

fa\ £ Za(K"X mod C"X)

we have

aX   r r ^,aX . aX

öaxi/ax ~ /«X modulo C in if ,

i.e., for every homologic class

f        —r .    «X „oX,

fax£SA(ü:   modC )

we have

aX   r r

PoXlf aX c f aX-

On the other hand every homologic class

r r       aXl ,-,aXl\

faXi£5A(if    modC )

is contained in a uniquely determined homologic class

r        ~r .    <*X        . „aX,

£a\£BA(K   modC ).
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It remains to show that the homologic class ftx contains only one homo-

logic class ftxi, i.e., that from

/Ixi e Zl(KaX1 mod C""),     faX1 e hI(K"X mod C"X)

follows

(5.41) faki £ Hl(KaX1 mod C"X1).

Since under our assumptions

/ a /+1
Ja\l = A/aX ,

we have
r a\   r aX . J+l a\ r+1

/oXl = L>a\l]a\l = Da\lAfa\   = ADa\lfa\ ,

so that the inclusion (5.41) is proved.

Thus p£x is an isomorphic mapping of the group B'A(KaX mod Ox) on

-B^-K" mod C"), consequently <t"x is an isomorphic mapping of the group

BT,(K"-C) on BTV{K"X-CX).

5.5. Let there be given coverings 12aX, 12a, 12s", 12s, connected by the rela-

tions

Qa = I naX |,      0s = I OP" I; > 12°x.

Then also 12" > £2" and, moreover, if Sfx is a projection of £2"" into i2"x, then

we have a completely determined projection Sf defined by the formula

ß ß ß    ßt* ßt* «x   8m $m
(5.51) Saej = SaDß en = Da Sa\en-

Denoting by p£x, pß", <r°x. the isomorphisms (defined in 5.4) generated

by the mappings Z)£x and Dß", we see that üfcpß" and p«xö>£x is one and the same

homomorphism of the group BA(Kßß mod Ca") into the group BrA(Ka mod C")

and, consequently, OßjTß and Tr^o^ express one and the same homomor-

phism of the group B%(K" — Ca) into the group B^K?" - Cä"). Hence

aX ß     a     a    —1

Ifßli = O-ßliTß(0~a\) ,

or, denoting by <#f\ 4^" the isomorphic mappings respectively inverse to the

isomorphisms cr"x and <r^,

aX 8*1.-1   a aX

(5.52) Tßf. =  {4>ß )    TTß<j)a .

5.6. Suppose now that we have an unbounded system 93 of coverings 12aX

of the set R. Let the system

|93| = {n«},

where 12"= | 12aX| be also unbounded. Under these conditions we have
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5.61. The groups

Sa(93, 6) - lim [Bv(k°* - CaX);

£v( I 93 |, 6) = lim [Bv(k" - C°); 4\

are isomorphic.

In fact, in virtue of (5.52) the conditions of 3.61 are satisfied.

Let us establish an important particular case of 5.61.

Let A be any subset of the set R. Suppose that, the condition 5.31 being

satisfied, some subsets of the set A are singled out as special. Denote the sys-

tem of special subsets of the set A by (So-

Let there be given an unbounded system 93 of coverings £2" of the set R.

We construct for each £2" = {e"} a covering A £2" of the set A in the following

manner. The elements of the covering A £2a are the indexed sets

(A n I el I )<,

which we shall simply denoted by Ae".

If £2<s> £2", put A £23 >A £2". The obtained system of coverings A £2a we shall

denote by .493.

The system | A 931 consists of all simple coverings | A £2" |, where | A £2" |

may be defined as the simple covering consisting of all non-void sets repre-

sentable in the form A n | e"\, where e" e £2".

From what has been proved above follows

5.611. If for an unbounded system of coverings V of the set R and for a sub-

set A cR the system \ASß\ is also unbounded, then the groups Brv(A V, So) and

5y( IA 93 [, So) are isomorphic.

6. Coverings of topological spaces

6.1. A covering of a topological space is called open if it is composed of

open sets, and closed if it is composed of closed sets.

6.11. Every two open {closed) coverings £2" and £2S of a topological space R

have a common simple subdivision Qy.

It is sufficient to take for the elements of the covering £2^ the sets

I et\ n I ef |, where e" e £2«, ef e £2».

6.121. Let
a        *   a \

0  = je< }, i = 1, 2, ... , sa,

be an open covering of a Ti-space R. If at least one of the sets e" contains more

than one point, then there exists an open covering £2^ = {e^} following £2",

£2" > Q".
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In fact, let, for instance, e" contain at least two points a and a'. Put

d = d — a for i = sa,

ß a

e, = e\ — a for t = sa + 1.

The so-defined covering 12s = {ef}, t = l, 2, • • • , sa + l, is evidently a sub-

division of the covering 12". But 12" is not a subdivision of 12s, since e" is not

contained in any of the sets ef.

6.122. Let R be a Ti-space consisting of an infinite number of points. Then

every closed covering

(6.1) O" = {«."}, » - 1,2, ••«,*«,

of R possesses a subdivision 12s, containing an element with an infinite number of

points not belonging to any other element of the covering 12s.

In fact, let us delete from (6.1) one after another all elements, all points

of which with the possible exception of a finite number of them are contained

in the sum of the following elements of the covering 12". At every such deletion

we lose not more than a finite number of points of the space R. Hence, if R

consists of an infinite number of points, we shall at last reach such a first ele-

ment e< that the set Oi =d — (e,+i u ■ • ■ u eSa) contains infinitely many points.

If at the preceding deletion we lost the finite set of points pi, • • • , ph, then

/ a       a a \

\ pi, • ■ ■ , ph, ef, ei+u ■ ■ ■ , e,a\

is the required subdivision of the covering 12".

6.123. Let R be a Ti-space consisting of an infinite number of points. For

every closed covering

(6.2) 12° = \e1\, i = 1, 2, • • • , s„,

of the space R there is a covering

following after 12".

In fact, we may suppose that 12" satisfies the conditions of 6.122 and that,

for instance,

a a

Oi = ei —   \J e,

contains infinitely many points. Take two points a and a' of the set Oi and

choose such a neighbourhood Oa of the point a that

ÖaCÜ! - a'.
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Since Oi is an open set, such a neighbourhood may be found. Put now

e< = e< — 0„, if i g sa,

ß _
e< = 0a,        if i = sa + 1.

The covering ßs= {e?}, i = l, 2, - • • , sa + l, is the required covering.

From what has been proved above follows

6.12. The system of all open coverings of every Ti-space consisting of an

infinite number of points and the system of all closed coverings of every T^-space

consisting of an infinite number of points are unbounded systems of coverings.

6.2. From now on and until the end of the present paper we shall suppose,

if the contrary is not explicitly stated, that R is a normal space consisting

of an infinite number of points. By a covering of the space R we shall always

mean an open covering. The system of all open coverings of the space R we

shall denote by O.

By A we always denote a closed set lying in the space R. A itself is a nor-

mal space, which, in general, cannot be asserted with respect to R — A.

In every covering Q = {e<}, i = 1, 2, • • ■ , s, of the space R we distinguish:

1°. Elements of the first kind, i.e., elements meeting A; we denote them by

e\,       , ep.

2°. Elements of the second kind, ep+\, • ■ ■ , es, not meeting A.

The elements of the second kind are subdivided into boundary elements:

satisfying the condition A n e.-^O, i = p-{-\., ■ ■ ■ , q, and inner elements:

for which e< cR — A, * = g + l, • • • ,s.

Definition 6.21. A covering

fi = i = 1, 2, • • • , s,

of the space R is called regular with respect to A, if it satisfies the following con-

ditions :

1°. The covering    contains no boundary elements of second kind.

2°. If for some elements of the first kind «,„,•■•, e,-r we have

A n e,0 n ■ • • n aT = 0,

then

eio n • • • n eir = 0.

Observe that from these conditions follows
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3°. If for any elements e<0, ■ • • , e,r of the covering Q we have

A n gio n • - • n eir = 0,

then

A n gio n • • • n g;r = 0.

6.22. Every covering

tt  = {e,: }, » = 1, 2, • • • , 5«,

of the space R has a subdivision 12s regular with respect to A.

Proof. Consider the open covering

(6.21) AÜ  = {Ae", • ■ • , Ael]

of the set A. Since A is a normal space, there exists a closed covering

(6.22) a,

of the set 4 similar to it and inscribed into (6.21). About the system of closed

sets (6.22) we circumscribe a system of sets

(6.23) Oau ■ ■ ■ ,Oap

open in R and similar to it such that for j = l, 2, • • • , p

(6.24) ajCOfljCe,-.

For each as take a neighbourhood O'a, such that

(6.25) O'ajCOaj

and put

(6.26) 4 = 0'ah j = 1, 2, • • • , p.

Take further a neighbourhood 0"yl of the set A such that

0"A c   U e,-

and denote the non-void sets among the e" — 0"A by ef, j =p + l, ■ ■ ■ , sß.

These last exhaust all elements of the second kind of the covering

Ü = {e/}, j — 1, 2, • • • , sß,

and all these elements are evidently inner elements.

Thus the covering tiß satisfies the first condition of regularity with respect

to A.
Let us prove that the second condition of regularity is also satisfied. Sup-
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pose that for certain elements of the first kind, which we shall for simplicity's

sake denote by ef, ■ • • , ef, we have

ß ß
A n e1 n • • • n er = 0

and, consequently, also

ß ß
Aei n • • • n Aer = 0.

Since o, c^4ef, we have also ai n • • • n ar = 0 and, consequently also

Oai n ■ • • n Oar = 0.

And moreover

O'ai n ■ • • n 0'ar = 0,

i.e.,

ß ß
ei n • • • n e, = 0.

Since UP is by very construction a subdivision of £2", (6.22) is proved.

6.3. Consider in any covering £2" of the space R the set of elements of the

first kind and of boundary elements of the second kind. These elements con-

sidered as vertices of the nerve Ka of the covering £2a define in K" a sub-

complex K". By Kq we as always understand the nerve of the covering A £2"

considered as a subcomplex of the complex Ka. Evidently we always have

6.31. If a covering £2" is regular with respect to A, then K" = Kq.

In fact, from the first condition of regularity it follows that the complexes

K" and K% have the same vertices, while from the second condition it follows

that every simplex of K" is at the same time a simplex of K%.

At every projection of the covering £2s into the covering £2a the complex K\

is obviously transformed into K"; hence we may speak of the spectrum

(6.31) [BTm(K" - K° - Ca);Ttßi

where, as always, C" denotes the special subcomplex of the complex K".

The elements of the spectrum (6.31) corresponding to coverings £2" regu-

lar with respect to A form in virtue of 6.22 a cofinal part of this spectrum.

Hence, having in view 6.31, we obtain

6.32. The groups

lim [Bv(Ka - Ko - C°); xj],

lim [Btv(K" - K° - C"); xg]

are isomorphic.
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7. Betti groups of topological spaces

(first definition)

7.1. Let R be a normal space consisting of an infinite number of points.

Let £> = { ß<"} be the system of all open coverings of the space R. By K" we

always denote the nerve of the covering ß".

Definition 7.11. The groups)

(7.1) lim [Brv(Ka);Tß],

where 7$ is a projection of the group Brv(K") into the group BTv(Kß), generated by

any projection of the covering ßs into the covering ßa will be denoted by Sßrv(R).

7.2. Let G be a topological space consisting of an infinite number of points

and homeomorphic to an open set of a certain normal space (in particular,

for G may be taken any normal space). By a special subset of the space G we

shall mean any set EcG whose closure in G is not bicompact. The system S

of special subsets of the space G obviously satisfies the condition 5.31: any

set EcG containing a special subset is itself special. By £)= { ßa} we denote

the system of all open coverings of the space G. Special elements of the cover-

ing ß", i.e., elements e", for which | e"\ is a special subset, determine the spe-

cial subcomplex C" of the complex K": the complex C" cKa consists of Sim-

plexes of the complex K", all vertices of which are special elements of ß".

Definition 7.2. The groups)

(7.2) lim [Bv(Ka - C"); ttJ],

where ir% is a projection of the group Brv(Ka — Ca) into Brv{Kß — Cß), generated

by any projection of the covering QP into the covering ß" is called the r-dimensional

{inner) Betti \'-group of the space G and is denoted by B'V(G).

7.3. The field of coefficients forming the foundation of the above defini-

tions is, as always in the V-theory, supposed to be a discrete commutative

group X. If S is the bicompact group dual to X and

B\(Ka) = B\{Ka, S),      BTa(k" mod C") = b\{K" mod C", E),

then the limit groups

B\(R) = lim [B%(k");5?a\,

B\(R) = lim [b\{K mod C°);u„]

(where <ä£ is the homomorphism of the group BTA(Kß) into BTA(K"), respectively

of the group BTA{Kß mod Cß) into BTA(Ka mod C"), generated by the projection

(8) See 4.8.
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of Kß into Ka) are dual to, respectively, the groups b\{R) and bTV{R); the

group bTA(R) is called the r-dimensional (inner) Betti A-group of the space R.

Remark. The simple coverings obviously form a cofinal part of the system

of all coverings. In the definitions just given we may therefore always assume

that all coverings are simple.

7.4. Theorem 7.41. Let each of the groups wV(R) and 93v+1(i?) consist of the

zero element only. Let a be a closed set of the space R. Then 2$rv(a) is isomorphic

to the groups

lim [bT(K" - Ko]; n),      lim [B?\k" - K°);

where the complexes K% and K" are defined as in 6.3.

Proof. In the first place, for S = 0 in virtue of 6.32 the groups

lim [B?\k" - Ko); ttJ],      lim [B?\k" - K^); *£]

are isomorphic, and hence it is sufficient to show that 93^04) is isomorphic

to the group

lim [b?\K* - KS);ir%].

But in virtue of Theorem 4.1 this last group is isomorphic to the group

93y(4£)). Thus, everything is reduced to the proof of the following

Lemma 7.411. The group wv(a) is isomorphic to the group $&tv{ao).

We begin the proof of Lemma 7.411 with the consideration of the case

when a consists of a finite number of points.

Consider coverings ß" of the space R satisfying the following conditions:

1°. The covering ß" is a simple covering.

2°. Every element of ß" contains not more than one point of a.

3°. Two different elements of ß" containing points of a do not meet (in

particular, no two elements of ß" contain one and the same point of .4).

It is easily seen that every covering of R has a subdivision satisfying the

conditions l°-3°, so that the system 93 of coverings satisfying these conditions

forms a cofinal part of the system © of all coverings ß". But if ßa satisfies the

conditions l°-3°, then ^4ß" has for its elements the points of a themselves,

and the nerve K% of the covering a ß" is a zero-dimensional complex which

may be identified with the same finite set a. Hence b^K^) =br7{a); in the

spectrum

the projections 7r£ are identical mappings of b'v(a) onto itself and, conse-

quently, the group btv{a£)), being isomorphic to 5^,(^493), is also isomorphic

to5rv(4).
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Let now A be infinite. For S0 = 0 in virtue of 5.611 the groups 33y(^40) and

93v(| A£) \) are isomorphic. Hence it is sufficient to show

7.42. The group WV(A) is isomorphic to the group       A£)\).

This proposition follows in its turn from

7.43. The system of all simple coverings of the space A coincides with the

system | A © |.

To prove 7.43 it is sufficient to show that every simple open covering

12a ={«<}. i = 1, 2, • ■ • , s,

of the set A is an element of the system |4©[. To this end choose for every

Oi e 12 A a set e< open in R such that a,- = A n et. The sets in their sum form a

certain neighbourhood OA of the set A. Choose a neighbourhood O'A such

that O'A c OA and put

c+i = R - wä~.

Denoting by 12 £ © the covering {ei}, i = 1, 2, • • • , s, of the space R, we evi-

dently have
üa = \An\,

which proves 7.43 and, consequently, 7.42 and 7.41.

7.5. Let now R be a locally bicompact normal space, A an infinite closed

subset of the space R. Special subsets of the set R (in particular, of the set A)

shall be as above sets, the closures of which are not bicompact. Let

(7.51) 12 = {elt • v , «,}

be a covering of R. An element d e 12 we shall for a moment call unregular

if li is not bicompact and A n Si is bicompact and non-void.

7.51. Every covering (7.51) has a subdivision not containing any unregular

element.

For the proof it is sufficient to construct for every covering 12 containing

unregular elements such a subdivision 12i that the number of unregular ele-

ments in 12i should be by unity less than the number of unregular elements

in 12.

Let e\ be an unregular element of the covering 12. Since A n e\ is bicompact,

we may, using the local bicompactness of R, construct such a neighbourhood

Uo of A n ei that U0 is bicompact. The bicompact set U0 may be again en-

closed into a neighbourhood U\ with a bicompact closure. Put

en = ei n Ui,      ei2 = ei — Uo,      Qi = {en, e\i, e2, • ■ • , e,\.

Since en and «12 are regular, 12j. is the required subdivision.
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7.52. Let there be given a covering of the space R. As usual denote by K

the nerve of the covering Q,, by K0 the nerve of the covering A fl, and by C and Co

special subcomplexes of the complexes K and K~o. If the covering Q does not con-

tain unregular elements, then Co = Ko n C.

In fact, from 7.51 it follows that the complexes Co and R~o n C have the

same vertices, which correspond in one-to-one manner to special elements of

the covering ft meeting A. Since in Co as well as in K0 n C the vertices

e;„, •   • , eir determine a simplex, if

A n g,0 n • • • n e,r ^ 0,

7.52 is proved.

Definition 7.53. A locally bicompact space R is said to be simply connected

with respect to the dimensionality r, if the group Brv(R) consists of the zero element

only.

Theorem 7.54. Let R be a locally bicompact normal space simply connected

with respect to the dimensionalities r and r+1. Let A be a closed set of the space R.

Then the group BTV(A) is isomorphic to the groups

r     r-L. la a a a -i r    r4- la a a cti

lim [Bv (K - Ko - C );xß],      lim [Sv+ (K - Kt - C ); rfi].

Proof. Let first A consist of an infinite number of points. In virtue of 7.43

the group B'V{A) is isomorphic to the group B\{\ A£) \, So) (where So denotes

the system of special subsets of the set A) and, consequently, on ground of

5.611, to the group

Bv(A£), So) = lim [B^(Ko - Co); xß].

On ground of 7.51 and 7.52 for the cofinal part of the spectrum

r   t       a o        a -.

[B\(Ko — Co) j Xß \

(corresponding to the coverings fl" not containing unregular elements)

a a a a

Ko — Co = Ko — C

so that lim [Brv(K£ — C%); xß] and consequently also BTV{A) are isomorphic to

lim [B^KS — C); Xß]. But this last group is isomorphic in virtue of Theorem

4.1 to the group

lim [Bv(Ka - Kl - C");xß]

and, consequently, on ground of 6.32, also to the group

lim [Bv(K" - Kt - Ca);xa],

q.e.d.
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Let now A be finite. Then Co = 0 and, by Lemma 7.411,

Bv(A) = B?{A) = Brv(AO).

For coverings Q," not containing unregular elements we have

Kg = Ko — C ,

so that the group B{j{A) is isomorphic to the group

lim [bTv(Ko - C");%ß].

The rest of the proof is the same as in the case of an infinite A.

7.6. Theorem 7.6. Let R be a connected bicompact space simply-connected

with respect to the dimensionality 1. For any closed set A cR the group B™(A)

is isomorphic to the groups

lim [b\{K" - Ko); x#],      lim [b\(K" - Ki);ir"fi].

For the proof observe in the first place that from the connectivity of R

follows the connectivity of all complexes K". Noting this, we construct the

proof of Theorem 7.6 precisely on the same lines as the proof of Theorem 7.54

with the only deviation that instead of taking reference to Theorem 4.1 we

now apply Theorem 4.6.

8. The duality law of Kolmogoroff

8.1. By the duality law of Kolmogoroff we mean the set of the two follow-

ing theorems, the proof of which is the object of the present section.

Theorem 8.11. Let r be a natural number, R a locally bicompact normal

space simply connected with respect to the dimensionalities r and r + 1. For any

closed set Ac R the groups BTV(A) and B'f1{R—A) are isomorphic.

Theorem 8.12. Let R be a connected bicompact normal space simply con-

nected with respect to the dimensionality 1. For any closed set A the groups

B™(A) and B\{R—A) are isomorphic.

8.2. Put G = R-A. We begin the proof of Theorems 8.11 and 8.12 by the

consideration of the trivial case when G consists of a finite number of points.

As regards Theorem 8.12 in this case, from the connectivity of R it follows

that the number of (necessarily isolated) points, of which G consists, cannot

exceed 1, so that we have either the case when G consists of one point and A

is void, or the case when G is void and A =R. Since in both these cases Theo-

rem 8.12 is true, it is proved for a finite G.

Let us prove Theorem 8.11 under the assumption of a finite G. In this

case 5v+1(G)=0. But for r>0 the abstraction from the space R of a finite
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number of isolated points does not, as may be easily seen, affect BA(R), so

that the group B^A) = Br7{R — G) is isomorphic to the group B\(R), which,

by our assumptions, consists of the zero element only and hence is isomorphic

to -By+1(G). Thus for a finite G Theorem 8.11 is also true.

Let now G consist of an infinite number of points. In virtue of Theorems

7.54 and 7.6 for the proof of Theorems 8.11 and 8.12 it is sufficient to prove

the following proposition:

8.21. For any natural number r and any locally bicompact normal space R

the groups BTV{G) and lim [BTv{Ka — K? — C"); 7r|] are isomorphic.

8.3. The proof of 8.2.

Definition 8.31. Let

ß «■       • • • , ep, ep+i, • • • , e„}

be a covering of the space R. Denote by <pn the sum of all those sets Si, which are

bicompact and lie in G. The covering ß is called regular with respect to G, if it

satisfies the following two conditions:

1°. No element of the first kind of the covering ß meets <f>a-

2°. The elements of the second kind of the covering ß form a covering of the

space G, which we denote by GO,:

GQ = {ep+i, ■ ■ ■ , es].

8.32. Every covering

ß = {ei, ■ • ■ , ep, • ■ • , e,}

has a subdivision regular with respect to G.

Proof. Denote all non-void sets of the form G fl e,- by

gu • • ■ i gh',

they form a covering T of the set G. Denote by 4>t the sum of those among the

the sets g{cG which are bicompact. After this consider the sets e;— <f>T,

i = l, 2, ■ ■ ■ , p, and denote them by

■ ■ ■ i ep'.

The covering

0' = {e'i, ■ ■ ■ , e'p; gu ■ • • , gh}

of the space R is a subdivision of the covering ß. Since <pr—<t>a', Q' is regular

with respect to G.

8.33. For every covering

r = {gu •••.§*}
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of the set G there is a covering ft of the space R regular with respect to G and such

that

go, = r.

In fact, denote by <j>v the sum of those of the sets which are bicompact

and lie in G. The covering ft consisting of all elements of v and of the set

R—<pr is the required covering.

Remark. Among the elements of the second kind of the covering ft (regular

with respect to G) those and only those are special elements of the covering

Gft which satisfy at least one of the following two conditions:

1°. They are special elements in ft.

2°. Their closure meets A.

8.4. Consider the system Og of all coverings

r" = {gl}, k = 1, 2, • • ■ , ha,

of the set G. Denote by

fi"X = {et) u {gl), i = 1, 2, • • • , pa\, k = 1, 2, • • ■ , ha,

every regular with respect to G covering of the space R having Ta for the set

of its elements of the second kind, i.e., satisfying the condition

For convenience we shall sometimes write instead of g£ also e"x, where

i=pa\-\-k. The nerves of ftaX and Ta we denote respectively by KaX and K";

the special subcomplexes of KaX and K" we denote respectively by C"x and Ca.

By K"x we denote, as usual, the subcomplex of KaX determined by those ver-

tices e°x e KaX for which

Anii  ^ 0.

Let us prove the identity

a ,_ a a\        _ aX _ aX

(8.41) K  - C  = K   - K,  -C .

Let t e Ka — C". The vertices of / are some elements of the second kind

e K" e KaX; suppose they are g", gf, ■ ■ ■ , g". We have

g" " ■ • • " gr ^ 0.

Since / e1 C", among these g£ there is at least one, which is not a special element

of the covering Ta, i.e., has a bicompact closure lying in G; consequently / can

belong neither to Kf nor to Ox, and so t £ KaX-K?-Ca*. Conversely, if

aX aX _ aX

teK   - Kt - C ,
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then among the vertices of t there is at least one belonging neither to Kf1 nor

to CaX, i.e., representing a certain e"x with a bicompact closure lying in G.

In virtue of the regularity of ßaX with respect to G all remaining vertices of t

are elements of the second kind of the covering ß°x, i.e., elements of T", so

that / e K". Since among the vertices of / at least one has a bicompact closure

in G, tfl C", and, consequently, t e K" — Ca.

Since Ka cKaX, from 8.41 follows

(8.42) C°<zK?uCaX

(which, by the way, follows also from the remark made at the end of 8.3).

From (8.41) and (8.42) it follows that the groups Lr(Ka-Ca) and

L'(KaX — K"x — CoX) are isomorphic: a quite definite isomorphism between

these groups is obtained if to every function fr e Lr(KaX — K"x — CaX) is corre-

lated the function Gf e Lr{Ka — Ca), where

Gf(f) = f(f) on all *' e Ka.

It is easily seen that the isomorphism G is commutative with the opera-

tor V:

(8.43) VG/r(/r+1) = G\7/r(r+1)

for any /r+1 e K".

In fact, for any simplex tr+l e Ka we have

vG/'(r+1) =  £ G/r(r) = 2Z /"(*") = v/'(r),
tr+i>e tr+i>tr

Gv/r(r+1) = v/r(/r+l).

From (8.43) it follows that the isomorphism G between the groups

Lr{KaX— K"x — CaX) and Lr(K" — Ca) generates an isomorphic mapping 0"x

of the group B^K^-Kf - CaX) on the group Brv(K" - C").

8.5. Lemma 8.5. Any two coverings

a"X = {ef} u {gl},      üß" = {e^} u {gi}

regular with respect to G have such a common subdivision

^={e7}»{gl}

regular with respect to G that every element of the second kind gjj, of the covering üy°

is contained in at least one element of the second kind of each of the coverings ß"x

and ß*3*.

In fact, let

ß =       ■ ■ ■ , ep, glt ■ ■ ■ , gh}
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be any common subdivision of the coverings Q"x and 12sx regular with respect

to g. Denote all non-void sets of the form g£ n gf n g„ thus:

7 7
gll I gfly

Since

= ugi = wgn = g,

we have also UgJ, = g. Denote by <f>y the sum of all bicompact g7 c g and put

yv t-

e{   = ei — (fry, i = 1, 2, • • • , p.

For the covering

7»        (   y 7»      7 7 )
0 =     {Si     ,    •    •    •     ,    ßp    ,    gl,    ■    ■    ■     , ghy)

not only xJi^nihjgl = g, but also <pa" = <f>71 so that ß7v is regular with respect

to g. Besides, for every g7 there are g%, g^.and g„ such that

and consequently

7 aß

lm = gk^gln gn,

1 a Iß

gmCgk, gmCgi.

The limit group of the spectrum

r   r ,    a\ a\        „a\ a\-,

(8.51) [Bv(K   - Kx  -C );rfr]

will not be changed if in this spectrum we retain only elements corresponding

to coverings £2aX regular with respect to g and put q,ßx > flaX only if fol-

lows after ßaX and every element of the second kind of ft"" is contained in

some element of the second kind of ß"x.

Thus, if BTV{K^-K{'i-C^)>B%{K^-Kt-Cx) in the spectrum (8.51),

then

Bv(Kß - C") > B^K* - C")
in the spectrum

(8.52) [Bv(Ka - C°); ttJ].

Let us, finally, prove that

ßß   a\ a a\

(8.53) <t>g TßßUax = irß<ba ua\

for any element ua\ of the group B^K"*— Kf"— 6>x). To this end denote by

Sfx* some projection of qß» into fi"x transforming every element of the second

kind of ft"" into an element of the second kind of qax. Such a projection S^t

generates a projection Sf of the covering Tß into the covering Ta.
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We denote the homomorphisms of the groups Lr(KaX—K^—CaX) into

L'iK^-K^-C^) and Lr(Ka-C") into L'{K8-C8) generated by the pro-

jections Sfx and Sa respectively by af^ and o%.

For the proof of (8.53) it is sufficient to show that for any element

£x £ Lr(Ka* -K? - C"x) and any simplex f,tl»c K8" we have

(8.54) Gtftf<A.(h) = <rß*Gfa\(h) ■

The last assertion follows from

crX r     r orX r     r r      ßß r

G(Tßßfa\{tß)  = 0-ßßfa\(tß)  = fa\{Sa\tß),

if we take into account that for tß £ X*3

■S= Sa\tß.

Thus the spectra (8.51) and (8.52) satisfy all conditions of 3.61 and there-

fore their limit groups

lim [B[(KaX - K? - C"X); r^J,      Urn [B^K" - C% 4]

are isomorphic. This proves 8.2 and, consequently, also the duality law of

Kolmogoroff.

9. The second definition of betti groups

9.1. Let jO be the system of all simple (open) coverings 0." of a space R.

As always, denote by K" the nerve of the covering = {e"}. Special elements

of the covering 12" we call those sets e", the closure of which is not bicompact.

The nerve of the aggregate of all special elements of the covering 12" we denote

by C" and call it the special subcomplex of K".

The barycentric subdivision of the complex Ka shall be denoted by Kla,

the barycentric subdivision of the complex C"—by Cla.

The vertices of the complex Kla are expressions of the form

la a a a a

C{     = 6iü ' ' '  €if1 €ik £ 12 j

(all e"k entering into e\a are different). An aggregate of certain vertices of the

complex Kla defines a simplex of this complex if and only if for any two

vertices

(9.111) e" = e° • • • e"p,
. „    . „ ■ . la a a

(9.112) Ci  = eh-- ■ eiq

of this aggregate all factors in one of the two expressions (9.111) and (9.112),

for instance, all factors e"0, • • • , e"q entering into the expression (9.112), enter

also in the other expression, i.e., into (9.111).
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It is easily seen that the vertex

la a a

€{ €%b ' ' * ßir

of the complex Kla belongs to the complex C1" (is a special vertex of Kla)

if and only if all elements e"0, • • • , e£ are special elements. We introduce yet

the following notation. For any vertex ej" = e"0 • • • e° e Kla denote by

|e4l£*| = \e"0 - ■ ■ e%\ the set

e"t n ■ • • n e"r c R.

9.11. Every projection 5f of the complex Kß into K" generates a simplicial

mapping 5jf of the complex Klß into the complex Kla; moreover, we have

slßa(Clß)cCla.

We obtain this mapping correlating to the centre of gravity of any simplex

tß £ Kß the centre of gravity of its image S^tß and observing that SßCß c C".

9.2. Definition 9.20. A covering 12" is called multiplicative if the intersec-

tion of any number of elements of 12" is either void or an element of 12".

9.21. Every covering 12" has a subdivision 12s, which is a multiplicative cover-

ing.

For 12" it is sufficient to take the covering consisting of all elements of 12"

and of all non-void sets, which are intersections of several elements of 12".

Definition 9.22. By a barycentric subdivision of the covering 12" we mean

a complex K2a, whose vertices are elements e" of the covering 12" and whose

simplexes are decreasing sequences

a       a a

ei0 3 eix 3 • * • 3^tr, eik 5*^ eik+l,

of elements of the covering 12".

The complex K2a is evidently a subcomplex of the complex K". Put

C2a=R~2a n C"; we call C2" the special subcomplex of the complex K2a.

Let us come to an agreement, which will enable us to consider K2a also

as a subcomplex of the complex Kla. To this end observe in the first place the

following: if for the vertices of the complex Kla

la a a la a a

e%   — e%ü ' ' ' eip,       e,      ej0 • • • e3'fl

we have \e]a\ = | e]a \, then, obviously, for e£* consisting of all different factors

entering into e\a or into e)a we shall have

I    la I I     la I 1    la I

\ ek   I  = I ei    I  — I € j   i.

Therefore, among all expressions
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€i €{g ' ' ' CiT

with one and the same set | e]"\ we shall have one longest, i.e., one consisting

of the maximum number of factors. Correlating to every vertex e2" of the com-

plex K2a the longest expression e}a satisfying the condition | e\a\ = e2a and ob-

serving that from ef" 3 ef" follows that all factors of e)a are contained among

the factors of e\a, we obtain an isomorphic mapping of the complex Kf* into

the complex K\a. If we now identify e2a with e]", then we can consider K2a as a

subcomplex of the complex Kla.

On the other hand, correlating to every vertex ej" of the complex Kla the

vertex \e\a\ of the complex K2a, we obtain a simplicial mapping S\„ of the

complex Kla on K2a, which, if K2a is considered as a subcomplex of the com-

plex Kia, leaves all simplexes of the complex K2a fixed. Besides, S^C1") c C2a

and hence:

9.23. The mapping S^ of the complex Kla on the complex K2a generates an

isomorphic mapping p^ of the group B%(Kla mod Cla) on the group

Brv(K2a mod C2a) and an isomorphic mapping a\„ of the group Brv(K2a — C2a)

on the group B'^K1" - C1").

Correlating to every vertex

la a a la

d   = e,0 ■ ■ • eir e K

one of the vertices of its bearer in the complex Ka (i.e., one of the e"^, we ob-

tain a simplicial mapping Saa of the complex Kla on the complex Ka generat-

ing, as we know, an isomorphic mapping p£* of the group BrA(Kla mod C1")

on the group B\{K" mod C") and, consequently, an isomorphic mapping a"a

of the group BrA(Ka - C") on the group B^K1" - C1").

9.3. Let there be given two multiplicative coverings 12" and 12s of the

space R, of which 12s follows after 12". Construct the projection Sf of the cov-

ering 12s into the covering 12™ in the following way: for every e 12s we take

for .Sfef the smallest e" containing ef, i.e., the intersection of all e" containing

the given ef. The so-constructed projection is called the canonical projection

of the covering 12s into the multiplicative covering 12".

9.31. Under the canonical projection S% of the multiplicative covering 12s into

the multiplicative covering 12" the complex K2ß c Kß is mapped into K2a c K" so

that C2ß is mapped into C2a.

The second assertion follows from the first, since C2a=K2a n C",

C2ß = K2ß n Cß and SaCß c C".

For the proof of the first assertion of 9.31 it is sufficient to show

9.311. If Sf is a canonical projection of 12s into 12" and if ef 3ef, then

S^e8 3   ef.
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In fact,

ß     ß ß        ß    ß   J> ß
€ j C O ofe jj C j C C\ C o aßx*

Since S^e8 is the smallest element of the covering fl" containing ef,

ß ß     ß ß      ß ß

i.e.,

ß ß    ß ß

q.e.d.

Thus every canonical projection Sf generates a homomorphic mapping

of the group Bh(K2ß mod C2ß) into the group B\(K2a mod C2a) and a

homomorphic  mapping tt2^ of  the group BTv(K2a — C2a) into the group

Brv(K2ß-C2ß).

On ground of 9.11 we know, moreover, that 5f generates through the sim-

plicial mapping 5f} a homomorphic mapping wf}of the group 5J,(i?ls mod C1S)

into the group BTA(Kla mod Cla) and a homomorphic mapping 7^ of the

group BTv(Kla — (?a) into the group BTv(Klß-Clß).

Let us now prove the formulae

(9.32)

(9.33)

(9.oZlj Ola = (Pa )    Wap,3 ,

/n   o00v -2S ^v-1
,(9.0^2; 0>ia = P2«C>)la(p20) ,

1 (9.331) 7T10 = O-i^X/sCffla) ,

,(9.332) 7T2|3 = (<Tiß) 7ri(3<7ia.

On ground of Theorem III (see the Addendum) it is sufficient to prove the

formulae (9.32) which may be written in the form

,n )(y-341) PcCOl,, = coap3 ,
(9-34M(9^ -* lß ia-iß

I (9.04^) a!2ap23 = P2aWla.

Observe that the homomorphism paaco\a is generated by the simplicial

mapping S^Sjf of the complex Klß into the complex K"; in the same way the

homomorphism wf pf is generated by the simplicial mapping Sf Sf of the com-

plex Klß into the complex Ka. Hence for the proof of (9.341) it is sufficient

to show the truth of the following assertion:

9.32. For any simplex tlß e Klß the Simplexes S^Slihß and S^Sjfhß are faces

of a certain simplex Ta e Ka; moreover, if hß z Clß, we may take Ta e C".

In the same way (9.342) follows from

9.33. For any simplex hß £ Klß the Simplexes S^S^jtiß and SliSfßhß are faces

of a certain simplex Ta£ K"; moreover, if hß e Clß, we may take Ta e C.
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Proof. Let

,n ,rx If If 18        8 B
(9.35) tIß = «o • • • «r ;       eß  = e^ - ■ ■ eß„

where q = q(n) depends on p.,

(9.36) slßef = e£0,

(9.37) siel, = e.oc^D j ef|,

so that

8   18 18      j    18 i
(9.38) SaSp- e* 3 j     I •

If ef e Cia, then e£0 £ C and e? e C<".
Let

18 18 la a a la la <

Siaeß = e\  = ex0 • • • «x„,      oa ex  = e«

If ef e C1", then eAa £ Cla, ea e C.

Since

we have

a        i    la i i    18 i

ex„ 3   ^    3   e„ |,

la   18 18     I    181
Sa Siae„ 3 e„

whence

8  18 18       la 18 18        _      I   18 I
f \   SaSß e„ n Sa Siaeß 3   M    | eM | 5^ 0,

i.e., all SfSfe^ and S^S&J" are vertices of a certain simplex Ta e K". If all

e^ £ C1", then both SfSf ef and SfSfig are vertices of C" and hence Ta e (X
The assertion 9.32 is thus proved.

The assertion 9.33 is proved in the same way. In fact, in the first place we

have

IS 18       i    18 I 28 _28  28 2a      ,    18 i
028^d = I «d I = Cf ,      i>2ae, = ex 3 I e„ |,

and if e1/ e C1B, then e2" e C2".

Thus

28   18 18     i   18 i
(9.391) S2aS2ße, 3 I e„ |.

Let
18  18 la a a

S\a6ß = 6k ~ eKo • • * eI(l.

Again for ejf e C1S we have e\a £ Cla,



96 PAUL ALEXANDROFF [January

la la 2a       i    la ,        i    10 i

*J2a£»:    =  6jj    = I €K    I   3  I 6fi   I ,

la   10  10      I    10 I

(9.392) StaS^e, 3 | e„ |,

and if ef £ Cls, then e2" e C2".

From the inclusions (9.391) and (9.392) we easily deduce (9.33).

From the formulae (9.32) and (9.33) follow

IS   It 17 2S_2T _2t
(9.393) ÖlaÖi0  = ölia, ä)2oöl20  = ü>2a,

10    la Xa 20   2a 2a

(9.394) 7Tl7Xi0  = 7Ti7, 7T277T20  = T2y.

Thus we have the inverse and the direct spectra:

r   r ,    la la,       10 . r   r ,    2a        .     2a,      20 ,
[BA(K   modC );öia],      [BA(K   mod C );&»«],

r    r ,     la „lo\ r ~f ,    2a „2a^ 2an

[7iv(^   -C );7ri0],       [5V(A-   -C );*v],

the limit groups of which are, on the basis of 3.41 and the formulae (9.32),

(9.33), isomorphic to the groups BA(R) and Brv(R) respectively.

9.4. On the basis of what has been proved we may now formulate the

following new definition of the (inner) Betti groups of a space R.

Consider the system £) of all finite simple multiplicative coverings

ata-,

12    =   { d j, t —  \, 2, ' ' ' t Sat

of the space R, whose elements are open sets. Consider the functions

r r    a a

fa — fa\d0, t CiT)

with values from a given commutative group J defined for all possible de-

creasing sequences

a        a a

dg 3 €>i\ 3  * ' '   3 €ir

consisting of r + 1 elements of the covering 12". By assumption fa(e"0, • ■ • , e£)

may be different from zero only when the sequence

a        a a

e%Q 3 ei, 3        3 e{r

is strictly decreasing (i.e., when e"Ky^e"K^ for k = 0, 1, • • • , r— 1). The functions

fa form the group Lr(12", J). The boundary operators are defined thus:

The lower:

a a k r     a a a     a a

Afa{ei0,       , eir_l) = 2—, (    1) faifiig,       , 6te_u C{, e<K,       i e;r-1)

(where the summation is extended over all e" for which there exists such an e"

that =
jTÄe upper:
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(9.4)     Vja{ßi0j " • ' , e,-r+1) = ^ (— 1) ja\e~iQ, • " • , V(c_4i e»,+1, • ■ ■ , etr+1).

u

(Remark. It is easily seen that applying the operators A and V to functions

satisfying the condition to which the functions fa were just subjected, we ob-

tain functions satisfying the same condition (i.e., vanishing for all sequences

e"03 • ■ • 3e£ containing equal elements). This assertion is obvious for the

operator A. Let us prove it for the operator V. If in the sequence e"0 3 • • ■ 3 e"+1

there is more than one pair of coinciding elements, then in each of the se-

quences e"0 3 ■ • ■ 3 e£_, 3 e£+1 3-D e"+1 there is at least one pair of co-

inciding elements; but then the left-hand side, and consequently the right-

hand side of the equality (9.4) vanishes. If, on the other hand, in the sequence

e"0 3 ■ ■ • 3 e£+1 there is only one pair of coinciding elements, say

a a

then on the right-hand side of the equality (9.4) only two terms can be differ-

ent from zero, namely

1 eir+U >

but these terms differ only in the sign and their sum is zero, so that again both

sides of the equality (9.4) vanish.)

Let, as always, X and S be two groups dual to each other, of which X

is discrete and S bicompact. In the group Lr( Q,a, S) we consider the following

subgroups: The subgroup of relative cycles ZA( ß", S) consisting of all functions

fa satisfying the following condition: if e\ 3 ■ • • 3e£ and A/^(e"0, • • • , e^)^0,

then e£ is not bicompact. In the group ZTA(Q,a, S) we consider the subgroup

HA(Q,a, S) of relative cycles homologous to zero: by definition HA(tia, S) con-

sists of functions /„* satisfying the following condition: there exists such a

function £ Lr+1(ti", S) that the function Afa+1-f„ vanishes for all

e"0 3 ■ • ■ 3 e£ with bicompact e"?r.

In the group L'(Ua, X) we consider the subgroup U0(Qa, X) consisting of

all functions/^ satisfying the following condition: if

a a

e<03  • ■ • 3Ci,

and e"r is not bicompact, then

r    a a

fa(ei0, • • • , eir) = 0.

Further we consider the group ZTv(Qa, X) of all V-cycles contained in

LT0(tta, X), i.e., of all functions/« £ LT0(Q,a, X) satisfying the condition V/^ = 0.

In the group Zy(ß", X) we consider in its turn the subgroup Hy(S2", X) of

(       1) /a(^»o' ' e«'«-l> e'n+l> e<«+2!

(_ l)"4W . . .   e"     ea ea
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cycles homologous to zero, i.e., the subgroup consisting of functions f* for

which there exist such functions/^-1 e Lr0(tta, X) that AfTa~l =/«.

(Remark. In the case of a bicompact R all these definitions may be simpli-

fied: ZA(ß", 2) becomes the group of all cycles, i.e., functions fa e Lr(Q.a, 2)

satisfying the condition Afc = 0; HrA( ß", X) becomes the subgroup of all cycles

homologous to zero, i.e., the subgroup of those functions f„ e Lr(ßa, 2) for

which there exist fra+l with A/^+1=/^; the group LTQ(Q,a, X) coincides with

LT(Q", X); the group Zy(ß<*, X) is the group of all V-cycles, i.e., of all functions

fa with V/« = 0; H^(ü", X) is the group of all V-cycles homologous to zero,

i.e., of those functions/^ for which there exist fa~l with Afa_1

The factor groups

BA(ü", J) = Zl(ü, J) - Hl(Qa, J),

Brv(Q, J) = Zv(0\ J) - Hv(Qa , J)

are called, respectively, the Betti A- and V-groups of the covering ß".

For a bicompact R and r = 0 we define, besides, the groups ZA®( ßa, J) and

Zv(ß", J). The group Z^°(ßa, J) is the group of all functions fa, the sum of

values of which is equal to zero; the group Z*(ßa, J) is the group of all con-

stant functions (observe that the group Zy(ß", J) is the group of all functions

constant on every component of the covering ß").

The groups BA(tia, J) and B™(Q", J) we define by the equalities

00,   a      . 00,   a       , 0 , a

BA (Q , /) = ZA (0 , J) - HA(Q , J),
00 ,   a       . 0 ,   a 00 , a

Bv (0 , /) = zv(a , 7) - Zv (Q , /).

If the covering ß" is a subdivision of the covering ß", then we make corre-

spond to every element of the covering ß" the smallest element of the cover-

ing ß" containing it. The so-obtained mappings of the covering ß" into the

covering ß" we denote by S8, and call them canonical projections. To a decreas-

ing sequence of elements of the covering ß" under a canonical projection cor-

responds a decreasing sequence of elements of the covering ß" and we have

the following homomorphisms:

1°. The homomorphic mapping p£ of the group Z/(ß", 2) into the group

Lr(Q,a, 2) defined by the formula

ß   r     a a -r-y     r    ß ß

Pafß(eio, ■ ■ ■ , eir)  =  2^fß(eW • ■ '  ' e3r)'

where the sum is extended over all ef0 o ■ ■ ■ z> e?Jr such that       = e"k.

2°. The homomorphic mapping 0% of the group Lr( ß", X) into the group

Lr(üa, X) defined by the formula

a T     ß ß r      ß  ß ß ß

aßfa(ej0, • ■ ■ , 6/,) = fa(Saej(l, ■ ■ • , Säe;,).

The homomorphisms pa and Cß preserve respectively the lower and the



1941] COMBINATORIAL TOPOLOGY 99

upper boundary operators and generate, correspondingly, the homomorphism

ü>£ of the group BA(£lß, 2) into the group BA(Q,a, 2) and the homomorphism

tt| of the group B^ü", X) into the group Brv(tts, X).

If 2 is, as always, a bicompact topological group, then the groups

BTA(      2) are also bicompact and we have the inverse spectrum

[BTA(Qa, 'S); da]

with a bicompact limit group B'A(R, 2) called the r-dimensional A-group of

the space R to the field of coefficients 2.

Let X be a discrete group; the limit group of the direct spectrum(10)

[Bv(Qa, X);Tß]

is called the r-dimensional V-group of the space R to the field of coefficients X

and is denoted by B'^R, X).

9.41. If X and 2 are dual groups and X is discrete and 2 bicompact, then

the groups Brv(R, X) and BTA(R, 2) are also dual.

9.42. In the case of a normal R the just-defined Betti groups remain the same

up to an isomorphism, if instead of the system of all open coverings of the space R

we consider the system of all closed coverings.

The proposition 9.41 follows from Theorem 6.1 of Steenrod's paper cited

in footnote 4.

The proposition 9.42 may be deduced by the following considerations. The

equivalence of the two definitions of Betti groups, namely of the definition

given in the present paragraph and the definition given in §7, is proved in

the case of open coverings precisely in the same way as in the case of closed

coverings; indeed, in the present paragraph we made nowhere use of the fact

that the coverings consist of open sets. But as regards the equivalence of

the definition given in §7 with the analogous definition based on closed cover-

ings, it was proved by Cech(7).

Remark. If the multiplicative coverings Q1', Qs, Qa follow one after an-

other,

a? > na > a*,

and S}, 5f, S£ denote the corresponding canonical projections, then the equal-

ity

(9.4) SßaS 3 = Si

may not be true in spite of the fact that (9.393) and (9.394) always hold.

(10) Here again the definition of the limit-group can be given in a simplified form analogous

to that of 4.8.
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However, it may be easily shown that the equality (9.4) always holds, if

is a so-called exact subdivision of ß" and &y is an exact subdivision of QB.

We say that a subdivision QB of the covering 12" is an exact subdivision if

it satisfies the following condition: for any e" e fl", ef e £lB, the set e" n    is an

element of the covering QB.

In the first place it is easy to prove that if S27 is an exact subdivision of QB

and £lB is an exact subdivision of fl", then is an exact subdivision of fl".

In fact, let e" e fi" and e7 e £ly be chosen arbitrarily. Take any ef 3 el. Then

«T «07 0       7 7
n    = gj n e,- n et = «Ä n ^ =

For the proof of the equality (9.4) in the case of exact subdivisions consider

some ey e tiy and put

„7 7_0 J ß _    a r.77_a
00 e& — £?,      oaej — et',      Jq^ä — en.

Evidently e£ c e" and hence it is sufficient to show that e" c e". To this end

consider the set ef n e%. Since &B is an exact subdivision of fi", we have

and (since S}ey = e8, el c ef)

i.e.,

On the other hand

hence

e;- n eh = eiEÜ

ß    ß ß

ß ß
CjC ei.

ß ß        a       ß        a ß

et = e,- n eA c e, n gf = e,-;

e,- = e; c eh,

and consequently e" c e", q.e.d.

Observe that any two multiplicative coverings Q," and Q,B have a common

exact subdivision Q,y. In fact, it is sufficient to take for Q,y the covering con-

sisting of all sets of the form e" n ef, where e" e Q." and ef £ QB.

10. The connectivity ring

10.1. The definition of the Betti groups given in the preceding paragraph

enables us to transfer to these groups the operation of multiplication defined

by Alexander(6). The advantage of the so-obtained theory in comparison with

Alexander's theory consists in the independence of our constructions from any

arbitrary ordering of the vertices.
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Let then be given a commutative ring J (the ring of coefficients), a multi-

plicative covering

ü = \ei}, i = 1, 2, • • • , s,

of the space R and two functions fp(ei0, • • , e,p) and /3(e,0, • • • , eiq) satisfying

the conditions of 9.4. Construct the function fp+q= [fp-fq] putting for any

decreasing sequence

of p4-0+1 elements of the covering ß

In the same way as Alexander we deduce by means of simple computation

that this multiplication is associative and distributive with respect to addition

and that it possesses the following fundamental property:

10.11. v [/»•/«] = [vfp-fq]+(-i)p[fp-vfq].

From 10.11 immediately follows

10.12. The product of two cycles is a cycle.

10.13. The product of any cycle with a cycle homologous to zero is equal to

zero.

Hence in its turn it follows that the operation of multiplication of func-

tions generates the operation of multiplication of elements of Betti groups:

if zp e BPV(Q, J), zq e B%(Q, J), then by [z"-z«] we denote the class of

homologieszp+9E5p+*(n, J) containing the cycle/p+a= [fp /3], where/p and/3

are arbitrary cycles belonging respectively to the homological classes zp and zq.

10.2. Let now be given two elements of the groups B^(R, J) and B%(R, J),

i.e., two bundles up and uq of the spectra

[Bl{ü,J);4l       [B$(Q~, /);*■;].

Choose in every bundle an element, uva e uv,ua e uq (with the same a in both

cases) and denote by [mp-m?] the bundle up+q £ B^iR, J) containing the

element

Let us prove that the so-defined product [up ■ uq ] does not depend on the

choice of the elements u' e up and ua £ uq. To this end we prove in the first

place

10.21. If QB> £2a and a% is a mapping of the group Lr(Q") into the group

L'(Q,B) generated by some projection S8 of the covering £lB into the covering fi",

then

O-ßifa-fa]  = [o-ßfl-O-ßfl].
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In fact,

aß \f"'ff ](g Jo ' ' ' eip+o) =  \ja'fa\(ßaeja ■ ■ ■ Saejp+q)

P.ßß 0 8.9.  8 8 8 8.
fa(Saßj'0j i Sa6jp)fa\Sci^jp} , Sjp+q)

V/ 8 8 \ "V5/ 3 8 ->
— o-ßja{ej0, ■ ■ ■ , ejp)(Tßja{eiP, ■ • • , e,-p+j

= [o-8j^-o-0/!](eyo ■ • ■ <4+s).

From 10.21 follows immediately

10.22. rf[ua-ul]= [ttX ^X]-

Let now beside e up and e w9 be chosen Uß e mp, u\ e m9. We shall prove

that [ua ■ ua ] and \uvß ■ u"e ] belong to one and the same bundle.

From our assumptions follows the existence of such a covering that

fi7>fl», ß7>fl3and

a  p ß   V «9 89
iryua = Vyllß,       iryiia = iryiiß.

Hence, on ground of 10.22,

a r  P     ?i rap     a   9-1 r0J>39i 8rP9-i

iry[ua-ua\ = \Tryua-iryUß\ = \TryUß-iryUß\ = Ty[Uß-Uß\,

whence indeed it follows that \uva ■ ua ] and [u% ■ u"ß ] belong to one and the same

bundle.

Definition 10.23. The direct sum of the groups Brv(R, J), r = 0, 1, 2, • ■ • ,

is denoted by B'V(R, J) and is called the complete Betti V-group of the space R.

From what has,been proved it follows that the established operation of

multiplication of elements of the group BV(R, J) transforms this group into a

commutative ring. This ring is called the connectivity ring of the space R.

Addendum. On certain propositions of the theory of groups

1. The theory of characters of commutative groups is taken for granted

in the present paper.

If of two groups X and S, of which X is discrete and S is bicompact, one

is the group of characters of the other, then the groups X and S are called

dual or conjugated. For any x e X, £ e S we have in this case that

£(*) = *(8
is en element of the group k denoted by £x=xi;. The group of characters ot a

group G we denote by aG.

2. Let there be given two groups Aa and A8 both discrete and both bi-

compact; their groups of characters we denote by X" and X8. Let there be

given a homomorphic mapping <j>8 of the group A8 into the group A". To
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every element xa z X" we correlate in the following manner an element

Xß=fßXa of the group XB: by definition, the character x« £ Xs of the group

AB maps every element a$ z AB on the element xa<f>aaß of the group k. In

other words, the character Xß=fßXa of the group A3 is determined by the

equation

aß

(1) fßXadß = xa<j>aaß.

The mapping <pa of the group A B into the group A" and the mapping fg

of the group X" into the group XB are called conjugated mappings. The rela-

tion of conjugateness of two mappings is a symmetrical relation.

Theorem I. Let there be given two isomorphic groups A" and AB; denote

by (pa any isomorphic mapping of AB on A". Then the homomorphism fß con-

jugated to the isomorphism <pa is an isomorphic mapping of the group Xa = xA"

on the group XB = %A B.

Proof. The mapping fß is defined by the formula (1); in order to prove

that fß is an isomorphic mapping it is sufficient to show that for xa z X",

Xa^O, we have also/^x^O, i.e., that at least for one a« e Ab

a

fßXaßß 7^ 0.

Since xa9^0, there exists such an aa z A" that xaaa?±0. Since </>£ is an isomor-

phism, there exists such an ap^O (and, moreover, a unique one) that <pß.aß = aa.

Then

a ß

fßXaaß = xa(baaß = xaaa 0,

and our assertion is proved.

Thus/p* is an isomorphism. Let us prove that/£ maps X" on XB. Let there

be given Xß z XB, XßT^Q. We have to find an xa z X" such that for any aßZ AB

t" J
tßXaaß = xaq>aaß = Xßaß.

Since $£ is an isomorphism on A", for every aa z A" there exists a unique

aßZ AB such that (pfaß = aa. Putting

xaaa = Xßßß,

we determine the required xa.

Theorem I is thus proved.

Theorem II. Let there be given two groups A" and AB respectively dual to the

groups X" and XB, an isomorphism $£ of the group AB on A" and the isomor-

phism <pß of the group Aa on AB dual to the isomorphism 0f:

a     . s.-i
<t>ß =  (<t>a) ■
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Denote by f% and /f the isomorphisms conjugated to the isomorphisms <pa and

Then

A = (/£>"*•
Proof. The isomorphisms fß and f£ are determined by the equations

a ß 8 a

fßXaaß = xa<t>aaß,      faXßaa = Xß<pßaa.

Let
a ,   0.-1 a

aß = (bßaa = (<ba)   aa,      Xß = fßXa.

For any a„ £ Aa and any Xß EfßXa £ X3 we have

8 a aß

faXßaa — Xß4>ßüa = xßaß = fßXaaß = xa<j>aaß = xaaa,

(fß)   Xßßß = (fß)  fßXaaa = xaaa,

i.e.,

faXßda = (fß) Xßaa,

q.e.d.

Theorem III. Let the groups

Xa, XB, X1",

be dual respectively to the groups

A", AB, A1", A1B.

Let there be given isomorphic mappings paa and pf of Ala and A1B on A"

and AB respectively. The conjugated isomorphisms we denote by o"a and a^ß. Let

there be given, besides, homomorphic mappings üf and wjf correspondingly of

AB into A" and A1B into Ala, and the conjugated homomorphisms irß and ttJ^.

Let it be known that

(2) 03la =  (pa )    W*P8 ■

Then
la ß    a    a —1

Tlß = <rißTrß((Tla)

Proof. For the proof it suffices to show that

(TlßTß (ala)

satisfies the functional equation

la _is
TTlßXlaaiß = XlaS>laaiß
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determining ir{%, i.e., it is sufficient to prove that for any Xia and o,\ß we have

(3.) O-lßTTß {Via)     Xlaßlß = XlaC0laa!ß.

Let us prove this. To this end, replacing (cr"„)-1xi„ by xa and w|f by its

expression (2), we write (3) in the form

(4; 0-!ßirßXaaiß =  Xla{pa )    COapß Giß.

But (paa)~x and (er",»)-1 are conjugated isomorphisms and hence

Thus

m -i i« -l
(Clo.;     Xlaff« =  Xla{pa ) da.

i loS_1        t * \_1
X\a\pa )   aa = (<rla)   Xiaaa = xaaa.

Substituting this into (4), we obtain as the equality to be proved the fol-

lowing:
ß    a _ß lß

(5) (TlßTßXadlß =  Xaü)apß d\ß.

But
a ß a ß ß

■KßXadß = Xaö>adß, 7TßXa = XaÜa £ X

and erifl and p^ are conjugated isomorphisms. Therefore the left-hand side of

the equality (5) may be transformed to the form

ß      _S .ß IS
aißXamaa\ß = xao)apß d\ß,

i.e., may be brought to coincidence with the right-hand side of the same equal-

ity. The equality (5) and Theorem III are thus proved.

Moscow, U.S.S.R.


