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Introduction. An exactly 2-to-l transformation is one for which every in-

verse image set consists of exactly 2 points. This notion was introduced by

O. G. Harrold(1), who showed that no such continuous transformation could

be defined over an arc. This result has been extended (2) to the case of the

closed 2-cell. Further results concerning these transformations have been ob-

tained by Harrold and by P. W. Gilbert(3). The present paper is concerned

with continuous 2-to-l transformations defined on a compact 2-manifold,

with or without bounding curves. The problem of the existence of such a

transformation is solved, and the collection of all image spaces is determined.

A precise statement of the main results is given below.

Throughout this paper the letter M will be used to denote a compact

2-manifold (absolute), or else a compact 2-manifold with boundary, the

boundary consisting of a finite number of mutually exclusive simple closed

curves. The set M will be considered as the whole space. T will denote some

exactly 2-to-l continuous transformation defined over M. The set of inverse

images under T is(4) an upper semi-continuous collection G filling M, and

every element of G is a pair of points. For each x z M let s(x) be the point

such that the pair x, s(x) is an element of the collection G. Letf(x) = p(x, s(x)),

where p is the metric on M. Let K denote the set of all points x £ M at

which / is continuous, and let L denote the subset of K consisting of those

points x such that/ is continuous both at x and at s(x). If x is a point, then x'

will denote s(x); and if C is any point set, then C' will denote s(C). A point

set C will be called integral if C' = C.

The term n-cell (re = 0, 1, 2) will denote a closed re-cell except where the

context indicates the contrary. If ß denotes a closed re-cell, then ß° will denote

the open re-cell whose closure is ß. If A denotes a complex, then A* denotes
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0) The non-existence of a certain type of continuous transformation, Duke Mathematical

Journal, vol. 5 (1939), pp. 789-793. See also abstracts by Harrold in the Bulletin of the Ameri-

can Mathematical Society, vol. 46 (1940), pp. 43, 44.

(2) J. H. Roberts, Two-to-one transformations, Duke Mathematical Journal, vol. 6 (1940),

pp. 256-262. This paper will be referred to hereafter as Transformations.

(3) See abstracts in the Bulletin of the American Mathematical Society, vol. 45 (1939),

p. 835, and vol. 46 (1940), pp. 42, 43.
(4) This follows readily from the compactness of M. However, the corresponding statement

in Transformations does not follow from the continuity of T, and must be taken as an extra

hypothesis in those theorems of that paper where M was not assumed to be compact. This

does not affect the main result of that paper.
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the point set covered by the complex A. If A is a complex, then x(A) will

denote —a0+ai—«2, where a,- is the number of 2-cells in A. This is the nega-

tive of the Euler characteristic as given by Alexandroff-Hopf(5). We assume

a metric p on M having the following property: If a and b are points of M,

then for any e>0 there is an arc ab whose diameter is less than p(a, b)-\-t.

If a is any metric on M, then a metric p with the above property can be ob-

tained by taking p(a, b) equal to the g.l.b. of the diameters of arcs joining a

and b in M.

The principal results of the paper are as follows:

A necessary and sufficient condition that there be a T defined over M is that

x(Af) be even. If T(M)=B, then x(M)=2x(B). Let Bk denote a space

which can be obtained from a compact manifold with k bounding curves

(k = 0, 1, 2, • • • ), by the identification by pairs of a finite number of interior

points of the manifold. A compact manifold M with n bounding curves

(w = 0, 1, 2, • • ■ ), and a space Bk are said to be properly related if (1) x(M)

= 2x(Bk) and (2) \ntkklkn. Given a manifold M and a space Bk, a necessary

and sufficient condition that there be a T defined over M such that T(M) =Bk

is that M and Bkbe properly related.

These results are obtained in Part II. In order to obtain these results,

it is essential to determine the nature of the discontinuities of/and the topo-

logical character of the set M—K. This is done in Part I.

Part I

Lemma 1. If the point p is not on the boundary of M {i.e., if p has a 2-cell

neighborhood), then p is in L if it is in K.

Proof. If p is in K, then a sufficiently small open 2-cell containing p is

mapped topologically by 5 into an open 2-cell containing s(p). Since an open

2-cell in M is necessarily open in M, and since s has period 2, it follows that

s(p) is also in K, whence p is in L.

Theorem 1. The set L is dense and open in M.

Proof. Since K is dense and open (see Transformations), it follows from

Lemma 1 that L is dense. If p is in L, then p and s(p) are in the open set K.

In view of the upper semi-continuity of the collection G it follows that if x

is sufficiently close to p or to s(p), then x and s(x) are in K, and therefore in L.

Thus L is open.

Lemma 2. If a simple closed curve J bounds an open 2-cell U, and R is any

region which contains all of J except possibly one point, then R - U is connected.

Proof. Let x and y be any two points of R ■ U and let xy be an arc joining x

and y in R. If xy-J = 0, then the arc xy lies in R U. If xy-J^O, then let z

(6) Topologie I, Berlin, 1935, p. 214.
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and w be points on J and on the arc xy in the order xzwy (possibly z = w) such

that no point of / precedes z or follows w on the arc xzwy. In view of the hy-

pothesis on / there is an arc zvw belonging to /■ R. Since finally R is open and

contains zvw, there are points %\ and W\ on the arc xy in the order xz\zwwiy

and an arc Z\W\ lying in R - U. Then the arc xzi+ZiWi+wry joins x and y and

lies in R ■ U. Since each pair x, y of R ■ U lies on an arc in R ■ U, this set is con-

nected.

Lemma 3. If H is a closed 2-cell in M, then H does not contain 5 arcs adia'

(i=l, ■ ■ • , 5) such that (1) each 2 of these arcs have only their end-points a

and a' in common, (2) ^adta' is in L except for the points d3, di, and d5, which

are not in K, (3) ds = d( and s{ad\a')=a'dsa, and (4) for i = 3, 4, and 5,

s{adi—di) =a'di — di.

Proof. Suppose the lemma is false and there exist five arcs adia' in a closed

2-cell H and properties (1), (2), (3) and (4) of the lemma hold. Now for

i = 3, 4, or 5, as x—>di on the arc ad, the point s(x)—on the arc a'd,. Let J

denote the simple closed curve adia'dsa, and let U denote its interior with

respect to H. Let R be the component of L containing J. We consider three

cases.

Case 1. At least two of the points d3, di, d$ are in U. Suppose that d3 and di

are in U. Then the arc ad3a' lies in U-\-a+a', and U=Ui+U2+ad3a' — a — a',

where Ui and Uz are open 2-cells bounded by ad\a'd%a and adza'd%a, respec-

tively. We suppose, without loss of generality, that d4 is in Ui. Now let R0, Ri,

and i?2 denote respectively R-U, R - U\, and R - Ui. By Lemma 2 the sets

i?o, Ri, and i?2 are connected. Furthermore, they are open subsets of the open

2-cell U. Hence s(Ro), s(Ri), and s(i?2) are connected open sets, since s is

topological over R, and an open 2-cell in M is necessarily open in M. Since

s(J) = J, and s{adta' —di) =a'dia — di (i = 3, 4, 5), it follows that s(R0), s(Ri),

and s(R2), respectively do not intersect the boundary of U, Ui and t/2. That

is, either s(Ro) c U or else s(R0) is in M— U. But the second possibility is

ruled out since s{adna' — di) =ad\a'—d^, and this set is in R0. Therefore

s(R0) c U. Likewise s(Rz) c Z72, for di is in Ui. But now let xi, x2, ■ ■ ■ be

points in Ri such that xK—>rf2. Since rf2 is in L and s(di)—di, s(xn)-^di. But

s(xn) £ Z72 and d\ is not in Us. This is a contradiction.

Case 2. Exactly one of the points dz, di, df, is in U. Suppose that d$ £ U

and d3 and di are not in U. The sum of ad3a' and one of the two arcs ad\a',

adsa' is a simple closed curve bounding a 2-cell CA which lies in H and con-

tains the other of these arcs, except for end-points. We suppose that the

boundary of Ui is ad3a'dsa, and let Us be the 2-cell in H bounded by ad3a'd\a.

To summarize, Ho Ui, and U\= U-\- Us+adia' — a — a'. Let R0, Ri, and Rs

denote respectively R-U, R- Ui, and R - Us. Then it follows that 5(i?0) c U

and s(Ri) c U\, since both U and U\ contain the set ad^a' — a — a', and

s{ad;,a'—ds) =ad$a' — d5. Now let X\, Xs, ■ ■ ■ be points in Rs converging to d\.
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Then s(xi), s(x2), • • • are points in Ui (for i?2 c Ri) converging to d2. But for n

sufficiently large s(xn) is in U, hence in R0. But s(R0) c U, and s(s(xn)) =xn.

Thus xn is in both U and t/2 and we have a contradiction.

Case 3. iVowe of the points d3, di, d$ is in U. Then there is a 2-cell in H

bounded by the sum of one arc from the set [adia'\ (i—1, 2) and one arc

from the set {adiO,'} (i = 3, 4, 5), and containing one of di, di, and one of

d3, di, d^ For definiteness we may suppose there are 2-cells U, Ui, and Ui

bounded respectively by curves adia'dia, ad3a'dia, and ad3a'd\a, such that di

is in Ui and Ui= U+Ui+adia' — a — a'. Let R2 = R- Ui. Since di is in Ui, it

follows by earlier arguments that s(R2) c U2. Let Xi, x2, • • • be points in R2

converging to di. Then s(x„)—>d2. But d2 is not in U2 while s(xn) c J72. This

contradiction completes the proof of the lemma

Lemma 4. Suppose q is a point, H is a closed 2-cell, V is an open set, and e

is a positive number, and the following properties hold:

(1) H contains a neighborhood of q;

(2) VDq; _
(3) q is a limit point of M—K, and

(4) if p £ K- V, f(p) < e, and pt is any arc in V and in K+t, where t is not

in K, then f(x)—>0 as x—on the arc pt.

Then it follows that there exists an ei >0 such that no arc cc' lies in K-S(q, ei).

Proof. Suppose the lemma is false. Then for each positive integer n there

is an arc c„cn' which is a subset of each of the sets H, K, V, and S(q, l/n),

and for n sufficiently large the arc s(c„c„') is in H-K ■ V. The set c„c„' +s(c„c„')

contains(6) a simple closed curve /, the sum of two arcs utu' and u't'u such

that s(utu') = u't'u. Then / bounds an open 2-cell Hi which is a subset of H.

Let R be the component of K which contains /. Then by Lemma 2 R Hi

is connected. We want to get a simple closed curve ad^a'dia lying in R Hi

and such that s{ad\a') =a'a'2a. This will follow readily if we prove that

s(R Hi) =R-Hi, for then any point p in this set can be joined to p' by an arc

pp' in this set, and some subset of pp'-\-s(pp') will be the desired curve. If

there is no point of M—K in Hi, then s is topological over Hi, and s(Hi) is a

closed 2-cell with J for boundary. Either s(.ffi) cHi or s(Hi) cM—Hi. But

the first possibility is ruled out, because under it s is a topological mapping

of the closed 2-cell Hi into itself which has no fixed point: Under the second

possibility Hi+s(Hi) is a sphere, hence is M. But Hi-\-s(Hi) is in K, contrary

to the fact that there are points in M — K (e.g., the point q). Thus there is

some point of M — K in Hi. Join a point p of R ■ H\ to a point t of M—K in Hi

by an arc pt lying in Hi. Then/(x)—K) as x—>t on the arc pt, and therefore for x

near enough to t, s(x) is also in Hi. Hence s(R ■ Hi) c Hi.

Now by Lemma 1, s(R Hi) cK. It follows that s(R Hi) =R HU and the

desired simple closed curve exists. That is, there is a simple closed curve

(6) See Transformations, §8, for a proof.
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adia'dza lying in Hi and in K, and such that s(adia') = a'a\a. By Lemma 1,

this curve lies in L, There is an arc joining a to some point of M — K, such

that this arc is in H- V, has only the point a on the simple closed curve

adia'did, and has no point, except possibly an end-point, on the boundary

of M. On this arc let d3 be the first point of M — L. Then d3 is in M—K. For

if d3 is the other end-point it is by definition in M—K. In the other case d3

is not on a bounding curve of M and hence by Lemma 1 is in M — K if it is

in M—L. Then/(x)—+0 as x—yd3 on the arc ad3. It follows from Theorem 3 of

Transformations C) that ad3+s(ad3 — d3) contains two arcs, atd3 and a't'd3

which have only d3 in common and such that s(atd3 — d3) =a't'd3 — d3. Denote

the sum atd3+d3t'a' by ad3a'.

In a similar way we obtain successively arcs ad^a' and ad^a' such that for

x = 4, 5, di is in M — K but adja'' — dj is in L, adja' has only a and a' in common

with the sum of the other four arcs ad ja', and s(adj-di) =a'di — di. But then

the five arcs ad ja' (« = 1, • • • ,5) have the properties stated in Lemma 3, and

we have reached a contradiction.

Lemma 5. Suppose H is a closed 2-cell which contains a neighborhood V of a

point q, pq is an arc in V and in L-\-q such that /(#)—>0 as x—>g on the arc pq.

Let R be the component of L-V which contains p, and suppose R s(R) ■ V=0.

Let e be any positive number. Then there exists in V an open set W with boundary

J such that

(1) Wo q and W-\-J is of diameter less than e, and W is a closed 2-cell;

(2) if q is on a bounding curve of M, then J is an arc xax', where x and x'

are on a bounding curve of M, a is in M—K, xa — a is in R, and s(xa — a)

= x'a — a;

(3) if q is not on a bounding curve of M, then J is a simple closed curve

axbx'a, where a and b are in M — K, axb — a — b is in R, and s(axb-a-b)

= ax'b — a — b.

Proof. The proof given for Theorem 5 of Transformations requires only

a trivial change in order to apply here.

Lemma 6. Suppose qi is a point, H is a closed 2-cell, V is an open set and cqi

is an arc, and the following properties hold:

(1) Ho Vocqi;

(2) if x e H, then either f(x) < e or f(x) > 3e, where 4e =f{qi);

(3) c e L andf(c) <«;

(4) there is no arc connecting any point d to d' and lying in V K; and

(5) if ef is any arc lying in V-L+f, where f(e) <e and f is not in K, then

f(x)—>0 as x—*/ on the arc ef.

Then there exists an arc from c to qi and lying in V-L-\-qi.

(7) Theorem 3 of Transformations is false as stated. The proof given is based on the as-

sumption that K is an integral set, i.e., that s(K)=K. Now L is an integral set, and the argu-

ment given suffices to prove the theorem as stated if K is replaced by L. In our application the

the arc ad3 lies in L -f d3, hence the modified theorem applies.
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Proof. Let Rx be the component ofL- Fthat contains c. ThenRi-s(Ri) = 0.

Let E denote the set of all x in i?i+s(i?i) for which/(x) <e. Let / be the last

point of E on the arc cq\.

Suppose that t is not accessible from R\ by an arc ct such that/(x)—>0

as x—H on ct. Then t is not accessible by any arc ut lying in Ri+s(Ri) -\-t and

containing a point of E. Then we will show that there is an infinite sequence

Ci, c2, c3, ■ ■ • such that (1) c„ e Ri and f(cn) <e, (2) c„—H as n-+<x>, and

(3) there is a fixed positive 5 such that every arc joining c,- and Cj (ip^j) in Ri

has diameter greater than 8. To prove this assertion consider the following

hypothesis:

Given any positive number ß and any component Rß of Ri ■ S(t, ß) having t

on its boundary, it is true that for every k there is some component of Rß ■ S(t, 1 fk)

which has t on its boundary. If this is true, then it follows that t is accessible

from Ri by an arc ct such that/(x)—>0 as x—H along ct. But this contradicts a

supposition made above. Hence the above hypothesis is false. This means that

there is a positive number ß such that there is an infinite set R\, R\, R\, ■ ■ ■

of components of Ri ■ S(t, ß) such that, for every i, t is not a limit point of

R\, but t is a limit point of 2Zi=iP{. And this implies that the sequence

Cti C2, Cz, ■ ■ ■ exists.

There exist three open sets Wi, Wi, and Wz containing t and bounded re-

spectively by Pi, Pi, and Pz, these being simple closed curves or arcs(8), and

there is an integer N, such that

(1) Vz>W1andWioWi+1(i=l,2);

(2) if n > N, there is an arc c„dnen in Pi and in Wi, where en and dn are

on the boundaries of W\ and H^, respectively, and cn is in W3; and

(3) if n>N, m>N, and n^m, then no component of R\ W\ contains

both cn and cm.

Suppose n>N. Let x„ and y„ be the first points of the boundary of Ri

on the circle P2 starting from dn in the two senses, and let xndnyn denote the

indicated arc of the circle P2. Then s(xndnyn — xn — yn) -\-xn-\-yn is an arc

xnd„yn in s(Pi)+x„+y„. Since xnd„'yn does not intersect cndnen (because

Pvi-s(Pi) =0), there is a positive y independent of n such that d(xndlyn) >y.

But d(xndnyn)^0 as w—>=o. If we drop to a subsequence, we may suppose

lim sup„^w xndnyn is a point r. Then lim sup«^«, x„d^y» is contained in r-\-s(r).

But this is clearly impossible, and we have thus proved that t is accessible

by an arc ct lying in Ri+t, and therefore in V L+t. It follows that/(x)—K)

as x—H on the arc ct.

Suppose now that t^qi. Choose t1<p(i, gi). Let Wand / be sets given by

Lemma 5, where t and the arc ct replace q and the arc pq, and ei replaces e.

Then the arc tq must contain a point r {r^t) on /. But J lies in E, and / is the

last point of E on the arc cq\. This contradiction proves Lemma 6.

(8) If l is on a bounding curve of M, then P; is an arc with end-points on this bounding

curve.
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Theorem 2. If q is a point in M — K and pq is an arc in K-\-q, then

/(x)—>0 as x—>g on the arc pq.

Proof. We suppose the theorem is false. Then there is an arc pq lying in

K+q, q not in K, such that/(x)—►/(<?) as x—>q on the arc pq. Then by Theorem

4 of Transformations there is an open set U, an arc piqi, and a positive e, such

that

(1) Uoqü _

(2) piqi — qi is in K, but q\ is not in K;

(3) /(x)—>/(gi) =4e as x-^gx on the arc piqi;

(4) if xe £/, then either/(x) <e or/(x) >3e;

(5) if £2g2 is any arc in U- (K+q2), and g2 is not in K, and if /(£«) <e,

then/(x)—K) as x—»g2 on the arc £2g2.

Let fi- be a closed 2-cell such that Uo Hoqi, and H contains a neighbor-

hood of 0i. By Lemma 4 there exists an «i>0 such that if c is a point and

p(c, öi) <€i, then there does not exist an arc of diameter less than ei lying in K

and joining c to s(c). Let F denote an open set containing qi and lying in

H-S(qi, €i). Since / is not continuous at qi, there is a point ein L - V such that

/(c) < e. There is an arc cq\ in V. Then all the hypotheses of Lemma 6 are

satisfied. Hence there is an arc cgi lying in F-L-j-gi. Then on this arc/(x)—>0

as x—>gi (since/(c) <«).

Let e2 be the smaller of p(pi, qi) and p(c, gi). Let H, V, qi, cqi, and e2, re-

spectively, play the roles of H, V, pi, epi, and e in Lemma 5, and let / be

the corresponding arc or simple closed curve having properties (2) and (3)

of Lemma 5. Then J separates pi and qi and also c and gi. Then for x e J,

x £ K we have/(x) <e. But for x on £igi we have/(x) >3e. This is a contra-

diction, and the theorem is proved.

Theorem 3. If q is a limit point of M — K, then there is a positive number «i

such that there does not exist, for any point c, an arc joining c to s(c) lying in K

and in S(q, ei).

Proof. Let H denote a closed 2-cell in M which contains a neighborhood

of q. Let V be any open set containing q and let e be any positive number.

Then with the help of Theorem 2 it follows immediately that q, H, V, and e

have the properties stated in the hypothesis of Lemma 4. The number ei

given in the conclusion of Lemma 4 has the required property.

Theorem 4. If R is a component of K and q is on the boundary of R, then q

is arc-wise accessible from R.

Proof. If q is not a limit point of M— K, the result is obvious. If q is a

limit point of M — K, then it is possible, with the help of Theorems 2 and 3,

to define H, V, cq, having properties as stated in the hypothesis of Lemma 6,

with the additional hypothesis that c t R. Then the arc eg given by Lemma 6

will lie in i?+g.
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Theorem 5. The set L is identical with K.

Proof. It is sufficient to show that if p is in K, then s(p) is in K. This re-

sult was shown in Lemma 1 except for the case where p is on a bounding

curve of M. Suppose then that p is in K and on a bounding curve of M. There

is a simple closed curve J bounding an open 2-cell H, such that (1) J is the

sum of an arc apb on that bounding curve of M which contains p, and an arc

aqb having only a and b on the boundary of M, and (2) H ■ s{H) = 0. Then the

transformation s is topological over H, whence s(H) is a closed 2-cell having

s(q) on its boundary. Let cp be an arc in H-\-p. Then s(cp) is an arc c'p' in

s(H)-\-p' and by Lemma 1, s(H) is in L, hence in K. Suppose that p' is not

in K. Then, by Theorem 2,/(x)—>0 as x—>p' on the arc c'p'. But/(x) =f(s(x)),

and as x—*p' on the arc c'p' the point s{x)-^p on the arc cp, and f{s{x))—+f(p)

5^0. This contradiction shows that p' is in K.

Lemma 7. If an integral subset of K is the sum of two mutually separated

connected sets Ri and R2, then either s(Ri) = R2 or else s(Ri) — Ri.

This lemma follows immediately from the facts that the continuous image

of a connected set is connected, and that s is of period 2; i.e., that s(s(.4)) — A.

Theorem 6. The set K has at most two components. If it has two components

Ri and R2, then s(R{) =R2, and Ri and R2 have the same boundary.

Proof. Let Ri be a component of K. Then s(i?i) is also a component of K.

If q is on the boundary of Rit then there is an arc pq in Ri+q. On this arc

f(x)—>0 as x-^q (Theorem 2). Hence s(pq — q)-\-q is an arc p'q in s(Ri)-\-q,

and therefore q is on the boundary of s(Ri). Similarly, every boundary point

of s(Ri) is on the boundary of Ri. The proof will be completed by showing

that Hx+s(Ri) = M.
Let N= Ri+s(Ri), and suppose that there exists a point t in M—N. There

is an arc tq having only q in the closed point set N. Clearly q is on the bound-

ary of Ri. Furthermore, q is a limit point of M—K, for if it were an isolated

point in this set then some point of R\ could be joined to t by an arc not hitting

the boundary of Ri. Then we can apply Lemmas 4 and 5 and get a closed

point set / which separates t from q, and such that J is a subset of Ri + s(Ri),

except possibly for one or two points on the boundary of Ri. Then J tq — 0,

since q is the only point of N on tq. This contradicts the fact that J separates

/ and q.

Lemma 8. If p is any point of M — K, then for every e>0 there is an open

set Wop such that

(1) W is a closed 2-cell of diameter less than e;

(2) J, the boundary of W with respect to M, is a simple closed curve or an arc

with both end-points on a single bounding curve of M; and

(3) J-(M-K) consists of 0, 1, or 2 points.
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If p is not a limit point of M—K, then the result is obvious. If p is a limit

point of M—K, then the proof results from an application of Lemmas 4 and 5.

The sets W and J given by Lemma 5 have the desired properties.

Theorem 7 Let N be a component of M — K. Then N is a point, an arc,

or a simple closed curve, and no point of N is a limit point of M—K — N.

Proof. It follows from Lemma 8 that every point of the closed and com-

pact set M—K is of Menger order 0, 1, or 2 with respect to this set. Hence

each component of M—K is a point, an arc, or a simple closed curve. Let q

be a point of a component N of M—K, and suppose that q is a limit point of

M—K — N. We can apply Lemma 5 and get an open set W, with boundary /,

having properties (1), (2), and (3) of Lemma 5, and the property that no arc

cc' exists in K-W, for any point c. We suppose that the set W-(M-K)

= T\-\-Ti, mutually separated sets. Then there exists a point u such that u

and u' are in K and in W° (the open 2-cell whose closure is W). Then there

exist two arcs aub and au'b such that (1) a and b are in T\ and Ti, respectively,

(2) s(aub — a — b) =au'b — a — b, and (3) (aub+au'b) —a — b is in K- W°. Then

aub+au'b is a simple closed curve Ji bounding an open 2-cell W\. Neither of

the mutually exclusive closed sets TV W\ and T2 - W\ separates u from u' in

Wi, but their sum does. But this is impossible. Hence (M — K) - W is con-

nected. Since it contains q it is in N. Then q is not a limit point of M — K — N.

Theorem 8. If a component N of M—Kis an arc, then each of its end-points,

but no other point, is on a boundary curve of M; if N is a point or a simple

closed curve, then no point of N is on any boundary curve of M.

Proof. If p is an end-point of an arc N which is a component of M— K,

then by Lemma 4 M—K locally separates M at p, and hence by Theorem 7

N locally separates M at p. But this is impossible if p has an open 2-cell

neighborhood in M. Hence p is on a bounding curve of M.

Let p be a point of order 2 on some component N of M — K, and let apb

be an arc which is a subset of N. There is an arc aqb having only a and b in

M — K and such that the simple closed curve aqb+apb bounds an open 2-cell

U which is in K. Then it follows that U+s( U) -\-apb contains an open 2-cell

containing p.

In a similar way it can be shown that if the point p is a component of

M — K, then it lies in an open 2-cell.

Part II

Lemma 1. If lim sup An — A, then lim sup s(An) cA+s(A).

Proof. Let p be a point of lim sup s(An). Then there exists a sequence of

points {pn}, p„ £ s(An) (re = 1, 2, • • • ) such that p is a sequential limit point

of {pn} ■ Since G is upper semi-continuous, the sequence {s(pn) \, or some sub-
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quence, has as limit point either p or s(p). But clearly s(pn) £ An, since

pn £ s(An). Hence if p is a limit point of {s(pn)}, then p e lim sup An. If

s(p) is a limit point of {s(p„)}, s(p) £ lim sup An = A and p e s(A). In either

case the lemma is proved.

Lemma 2. Given e>0, there exists ö>0 such that if A is a point set of di-

ameter less than 5, then s(A) is the sum of two sets, each of diameter less than e.

Proof. Suppose the lemma is false. Then there exists an e>0 and a se-

quence of sets, {^4„}, such that d(An) <l/n, but for no n can s(An) be ex-

pressed as the sum of two sets, each of diameter less than e. Let {^4«, } be a

subsequence of {A n} such that lim sup A „t. = lim inf A n{ = p, a point. Then by

Lemma 1, lim sup s(Ani) <zp+s(p). But then clearly, for nt large enough,

s(An,) cs(p, e/2)+s(s(p), e/2), and thus s(A„t) is the sum of two sets, each

of diameter less than e. This contradiction proves the lemma.

We now have as a corollary of Lemma 2 the following:

Lemma 3. Given e>0, there exists 5>0 such that if d(A) <5 and s(A) is

connected, then d(s(A)) <e.

Lemma 4. If p is a point of M — K and if qip, q2p, q3p and q^p are arcs in

K-\-p with only the point p in common and such that s(qip—p) = q2p — p and

s(iiP~P) =üip — p< then these arcs have the cyclic order qip, qsp, q2p, q4p about p.

Proof. Suppose the lemma is false. Choose e>0 so that the sphere S(p, 4e)

is an open 2-cell which contains no g< (i=l, 2, 3, 4) and intersects no compo-

nent of M—K other than the one to which p belongs. Then for every n we

can find a point bn of qip and an arc bnbn' in K such that p(bn, p) <min (l/n, e)

and d(bnbn) <l/n and £■„&„' ■^,t.i<lip = bn+bn ■

Now blbn +s(b„bn') is a connected integral set, and hence by Lemma 3,

for n>nu, d(b„bn +s(bnbn)) <e. Now bnbl +s(bnbn) contains a simple closed

curve /„, which is an integral subset of K(9). But since, for n>n0, Jn c S(p, 4e)

and /»'Zti0 c bn+bn , it follows that Jn contains neither p nor any other

point of M—K in its interior. Now let R be the component of K which con-

tains /„, and let I„ be the interior of Since s(R) ■ R^O, it follows from

Theorem 6 of Part I that s(R) =R. For n sufficiently large, it is easy to see

that R— {Jn + In) is connected. Now we cannot have s(Jn+In) =Jn + In, for

that would contradict the principal theorem of Transformations. Hence by

Lemma 7 of Part I, s(In) =R — (Jn+In). But there is a positive number ei

such that, for w>«i, d(R — (/„+/„))>ei, and hence, by Lemma 3, a corre-

sponding positive number 8 exists such that d(/„)>5, for every n>n\. But

Iim d{Jn) =0, and since M is compact it follows that lim d(In) =0. This con-

tradiction proves the lemma.

We are now in a position to prove

(9) See the argument early in §8 of Transformations proving the existence of a simple

closed curve.
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Theorem 1. If T is a 2-to-l transformation defined over M, then M can be

so triangulated that the image under s of every n-cell a of the triangulation is an

n-cell of the triangulation different from a (n = 0, 1, 2). Hence x(M) *s even, and

x(T(M))=x(M)/2.

Proof. It follows from Theorem 5 of Part I that M— K is an integral set.

Also, M — K is a compact metric space, and consists of a finite number of

simple closed curves J\, J2, ■ ■ ■ , Jnv of isolated points pi, p2, ■ ■ ■ , p„2, and

of arcs Vi, v2, ■ ■ ■ , vns whose end-points lie on the bounding curves of M; and

each bounding curve of M contains either two or no points of M — K. (This

follows easily from Theorems 7 and 8 of Part I.) Moreover, from Theorem 5 of

Part I, if p is an isolated point of M — K, then s(p) is also an isolated point of

M — K. Hence T is a 2-to-l transformation defined over M — K, and the point

set Ki, over which s is continuous relative to M — K, is open and dense in

M-K. In view of this it can be shown(10) that Ki :>X^i£;+X?=i1';, and that

Ji contains either no point or exactly two points, Un and u2i, of M — K — Ki.

Now let mbea positive number such that the distance between any two

components of M — K is greater than m, and the distance between any two

points of M—K — Ki is greater than m. We now choose four positive numbers

«i > «2 > «3 > «4 with the following properties:

(1) 4ei<w;

(2) if B and s(B) are connected sets and if d(B) <e2, then d(s(B)) <ei (see

Lemma 3);

(3) any simple closed curve of M of diameter less than e3 bounds a 2-celI

of M of diameter less than e2(n); and

(4) if A and s(A) are connected sets, and if d(A) <e4, then d(s(A)) <e3

(see Lemma 3).

Now consider an isolated point pj of M — K. Let gi be a point of K such

that p(qi, pj) <€4 and let 71 be an arc of diameter less than e4 from qi to pj.

Let 72 be the arc pj+s(yi — pj). Let q3 be a point of K such that p(pj, q3) <«4,

and q3 £ 71+72. Let 73 be an arc of diameter less than e4 from q3 to pj such

that 73- (7i+72) — pj. Let 74 be the arc pj+s(y3 — pj). Now by Lemma 4 these

arcs have the cyclic order, 71, 73, 72, 74, about p. We now find two points,

ri e 71 and r3 e 73, and two arcs, ßi from rx to r3, and ß2 from r3 to r{ with the

following properties:

(1) (XXi7i)(0i+Ä+0i' +ßi)->n+n+ri +r3'; and
(2) if r{ =r2 and r{ =r4, and if 8f denotes the subarc of 7,- from pj to r{

(i=l, 2, 3, 4), then d(ßi+öi+53) <e4 and d(ß3 + 53+ 52) < e4. It follows from

the definition of e3 and the fact that e4<€3, that /3i+5i+ö3 and ß3 + 83 +52

are simple closed curves which are the boundaries of closed 2-cells, Xi and X3,

(10) K\ will be used to denote this set throughout the rest of the paper. The proofs of the

statements of this sentence, while not trivial, are sufficiently straightforward to be omitted.

(u) It is easy to see that, since M is compact, «3 can be chosen to satisfy this property.
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respectively. It is easy to see that s(ßi) is an arc ß2 from r2 to r4, and s(ß3)

is an arc ßi from r4 to f\\ and further, that s(\\) is an open 2-cell \2 bounded

by ß2+S2+8i, and s(\l) is an open 2-cell X4 bounded by /34+54+5i. Thus the

neighborhood of pj has been triangulated in accordance with the theorem.

We suppose that this has been done for every pj (j = 1, 2, • ■ ■ , In a

similar manner we triangulate the neighborhood of each of the simple closed

curves J\, Jt, • • • , /„, and each of the arcs Vi, v2, ■ ■ ■ , v„3 in such a way that

these simple closed curves and arcs appear in the triangulation as sums of

1-cells and vertices of the triangulation which map under s into 1-cells and

vertices of the triangulation. We take care, also, to make every point of

M — K — K\ a vertex of the triangulation.

We now let A\ denote the complex which is composed of all these neigh-

borhoods of the components of M — K so triangulated, and let H = M — A*.

Then H is a closed and compact point set over which/is continuous and posi-

tive. Hence there is a positive number \p such that f(x) > 2\p if x £ H. Now

we choose three positive numbers \f/\, \p2, and \[/3 as follows: (1) if 7 is a simple

closed curve of diameter less than 4\pi, then 7 bounds a 2-cell of diameter

less than \p (this implies 4\pi<\p); and (2) if B and s(B) are connected sets,

then if d{B) <\p2, it follows that d(s(B)) <fa; and if d(B) <\p3, it follows that

d(s(B)) <\}/2. (See Lemma 3. These conditions imply \pi>\p2>^3-) If Ai con-

tains a 1-cell a such that d(a) ^\f/3, let A2 be a subdivision of Ai containing no

such 1-cell but still having the property that the image under s of an «-cell

of A2 is an w-cell of A2 (re = 0, 1, 2). If Ai contains no such 1-cell, A2=AX.

Now it may be possible to find either one, two, or three arcs whose end-

points are vertices of A2 but which otherwise lie in M — A* and which, to-

gether with two, one, or no arcs, respectively, of A*, bound a 2-cell 4> of

diameter less than ^ whose interior lies in M — A2*, but not in 5(^2*, ^3). If

such a possibility exists, we add to A2 this 2-cell 4> and also s(<p). Since

d(<j>)<^p, <t> -s(<p)=0. After extending A2 in this manner as many times as

possible, successively, we call the extended complex A3.

If M—A* contains an open 2-cell a0 such that the boundary of a" con-

sists of three vertices and three 1-cells of A3 and s(a°) •a° = 0, then we add a0

and s(a°) to A3. After adding all such 2-cells to A3, we call the new complex

A4. We then obtain At, from Ai by subdivision, in the same way that we ob-

tained A2 from Ai.

Now let fi, r2, ■ ■ ■ , rk denote the vertices of Ab which are on the boundary

of M — Af. Let rk+i be a point of M — A<* for which \j/3<p(rk+u A£) <yJ/2. Join

rk+i to two points, r<2 and r,v which are end-points of the same 1-cell ot\ of Af,

by arcs a2 and a3 in such a way that (1) a2 a3 = rk+i, (2) a2-A* = r;2 and

a3-A* = ri„ and (3) d(a,-) <2\{/i (i= 1, 2). To see that this is possible, we draw

an arc ß of diameter less than \p2(u), from rk+\ to some point p in the interior

(12) This is possible since the metric p which we are using has the property that if H is

closed and p(x, H) < e, then there exists an arc from x to a point of    of diameter less than t.
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of a 1-cell ai on the boundary of Ag. Since no 1-cell of As has diameter as

great as ^3, we can draw an arc in M—A* from rk+i, running along very

close to ß and then running along close to otj until we get near an end-point r<2

of «i. Then we run our arc into fj, and call the arc 0:2. Similarly, on the other

side of ß, we draw a3 from rk+i to fiv If in drawing these arcs we stay close

enough to ß and then to on, neither a2 nor a3 can have diameter greater than

'r'2+^'3, which is less than lypx. Moreover, 0:1+0:2+0:3 is a simple closed curve

of diameter less than 4^i, and hence by definition of 1^1 bounds a 2-cell r\ of

diameter less than \p. It follows that s(-n) is a 2-cell such that rj -s(r)) = 0 and

s(t]) ■As = s(ai). We add tj and s(-n) to A$ and call the resulting complex At.

We now begin over again, obtaining At from At in the same way that we

obtained A2 from A\, etc. It is clear that the method of extension from A&

to A 6 can be carried out only a finite number of times. For otherwise M would

contain an infinite point set with no limit point, since we require that the

new vertex have a distance greater than \p3 from the point set covered by the

complex. But when this method of extension cannot be repeated that means

that the complex we have, A„, has the property that there is no point of

M—A* which has a distance greater than \j/3 from A*. When this is the case,

it is easy to see that a finite number of applications of the methods of exten-

sion from Ai to A3 and from A3 to A4 will give a complex which covers M.

Hence the theorem is proved.

Lemma 5. Let p be an interior point of M. If p is neither an isolated point

of M — K, nor a point of M — K — Ki, then T{p) has a 2-cell neighborhood in

T(M). Otherwise T(p) has a neighborhood in T(M) which is homeomorphic to

a neighborhood of the vertex of the double cone x2 = ;y2+z2.

Hereafter when we speak of a manifold with identifications we shall al-

ways mean by "identifications" a finite number of points with neighborhoods

homeomorphic to a neighborhood of the vertex of the double cone.

Proof. If p belongs to K, the result follows immediately; for s is locally a

homeomorphism at every point of K, and if U is an open subset of K such

that U-s(U) =0, then s( U) and T( U) are homeomorphic. But this means that

T(U) contains an open set which is an open 2-cell containing T(p).

If p belongs to {M — K) K\, but is not an isolated point of M — K, then p

belongs to an arc or a simple closed curve of M—K. Let c denote the arc or

the simple closed curve. By triangulating the neighborhood of p and of s(p)

in the same way in which they were triangulated in the proof of Theorem 1,

and taking care to have neither p nor s(p) be a vertex in this triangulation,

we obtain mutually exclusive open 2-cells V and W containing p and s(p),

respectively, and having the following properties:

(1) V—c= Vi+ F2, mutually separated open 2-cells such that s( Vi) = F2;

(2) V-c is an open 1-cell lying in Ki;

(3) V-(M-K)=V-c;
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(4) W-s(V-c) = W(M-K);
(5) W—s(V-c) = Wi+Wz, mutually separated open 2-cells such that

s(W0 = W2.

It follows that s(V-c) is an open 1-cell, and that T(V-c) = T(s(V-c)) is

an open 1-cell. Likewise, each of the sets T(V) and T(W) is homeomorphic

to the intersection of the interior of the unit sphere in the Euclidean plane

with the half-plane xSiO. Moreover, T(V) ■ T(W) = T(V-c), an open 1-cell.

Hence T(V+W) is an open 2-cell containing T(p). Furthermore, it is clear

that T(V-\-W) is an open set in T(M), since V+W is an integral open set

in M.

If p is an isolated point of M — K, then, as we remarked in the proof of

Theorem 1, s(p) is also. We triangulate the neighborhood of p and of s(p)

as we did in the proof of Theorem 1. From the description of that triangu-

lation, it is easy to verify that if ir(p) denotes the open 2-cell contain-

ing p whose closure is X1+X2+X3+X4 (see the proof of Theorem 1 for the

meaning of X,), then T(ir(p)) is an open 2-cell. Similarly for ir(p'). But

T(ir{p)) ■ T(ir(p')) = T{p). Hence T(ir(p) +ir(p')) is homeomorphic to a neigh-

borhood of the vertex of the double cone x2 = y2+z2, and since Tr(p)+ir(p')

is an integral open set in M, T(iv(p) -\-ir(p')) is open in T(M), and the lemma

follows for this case.

The case in which p belongs to M—K — K\ is handled in a somewhat simi-

lar manner.

Lemma 6. Let p be on one of the boundary curves of M. Then T(p) has a

neighborhood in T(M) which is homeomorphic to a neighborhood of p in M.

The proof follows in much the same way that the proof of the preceding

lemma followed.

Theorem 2. If M is a compact manifold, then T(M) is a compact manifold

or can be obtained from a compact manifold by the identification by pairs of a

finite number of points. If M is a compact manifold with boundary, then T(M)

is a compact manifold with.boundary or can be obtained from a compact manifold

with boundary by the identification by pairs of a finite number of interior points.

Proof. The first statement follows as a corollary of Lemma 5. To prove

the second statement, we first show that if c is a boundary curve of M, then

T(c) is a simple closed curve. For suppose first that K$c. Then by Theo-

rem 8 of Part I, c-K^O. Let p be a point of c ■ K, and let pq be a subarc of c

which lies in K+q but not in K. Then p'q = s(pq — p)+q is a subarc of c, by

virtue of Theorem 2 of Part I and the fact that the image under s of a bound-

ary point of M is a boundary point of M. Let pr be a subarc of c such that

pr pq = p and K+ropr but K$pr. (It is easy to see that there must be

a point r¥^q such that r £ c- (M—K). For otherwise, as a variable point x
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moved continuously along c — pq — p'q+p from p, s(x) would move continu-

ously along c — pq — p'q+p' and a two-to-one transformation would be de-

fined on the arc c — pq — p'q+p+p', in contradiction to the result of O. G.

Harrold(1).) Then as above, p'r = s(pr— r)+r is a subarc of c. Then clearly

c = pq+p'q+pr+p'r, and a direct argument shows that s(q)=r. Hence in

this case T(c) is a simple closed curve.

Now suppose that Koc. Then s(c) is a simple closed curve which is a

boundary curve of M, and hence either s(c) = c or else s(c)c = 0. In either

case T(c) is a simple closed curve.

Now by combining the fact that T(c) is a simple closed curve with Lemma

5 and Lemma 6, we see that the second statement of our theorem is proved.

Moreover, it is easy to see that we have also proved

Lemma 7. If M has n boundary curves, then T(M) has k boundary curves,

where n/2^k^n.

We now prove

Theorem 3. Given a space M and a space Bk, a necessary and sufficient

condition that there exist a 2-to-\ transformation T such that T{M) =Bhis that M

and Bube properly related. (See the introduction.)

Proof. The necessity follows immediately from Theorems 1 and 2 and

Lemmas 5, 6, and 7. The sufficiency will be proved by actually constructing

the transformation T.

Let M be an orientable manifold, and let M be embedded in Euclidean

3-space in such a way that M is symmetric with respect to the xy-plane,

and the common part of M and the xy-plane consists of h simple closed curves

Gii Gg, • • • , C), if x(M) = 2(Ä —2). If £ is a point of M not in the xy-plane, we

define s(p) as the reflection of p in the xy-plane. If Bk is an orientable mani-

fold, then h is even and we let s map C\ into c2, c$ into d, ■ ■ ■ , ch-i into Ch

topologically. When s is defined, T is determined, and the theorem is proved

for this case. If Bh is a non-orientable manifold, we define 5 exactly as before

except that s maps ck into itself by identifying diametrically opposite points,

in case h is odd, and it maps both c/, and Ch-\ into themselves in this manner

if h is even. If Bk is an orientable manifold with b identifications, then h — b

is even and non-negative. For if a manifold N has x(^0 = v> and if Ni is ob-

tained from N by identifying b pairs of points, then x(Ni) =v + b. Hence we

define s(p) as before for a point p not in the xy-plane, and we let x map Gj

(i = 1, 2, • • • , b) into itself by a reflection in a diameter and the identification

of the two points of c; which lie on the diameter. And we let s map Cb+i into

Cb+i, Cb+3 into Ci,+4, • • • , Ch-i into Ch, topologically. If Bk is a non-orientable

manifold with b identifications, s is defined as in the preceding case except

that if h — b is odd, then s maps     into itself by identifying diametrically
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opposite points, and if h — b is even then 5 maps both Ch-i and Ch into them-

selves in that manner. This completes the cases in which M is an orientable

manifold.

If M is a non-orientable manifold, and x(M) is even, then either Mis a

Klein's bottle, in which case x{M) = 0, or else M can be obtained from a

Klein's bottle by inserting h handles, in which case x(-^)=2Ä. If M is a

Klein's bottle, let M be triangulated as in the figure. The numbers in this

figure refer to the vertices by which they are placed and the letters denote the

5 6 1

15 6 1

2-cells in which they are placed. The top edge of the figure is identificed with

the bottom edge, and the points of the left edge reading up are identified with

those of the right edge reading down, as the numbers indicate. Let s map the

2-cells above the horizontal bisector 373 into those below 373 by reflection in

373, as the primes indicate. This defines s for every point except those points

of the horizontal bisector 373 and of the edge 1561; we call these two simple

closed curves Cj and c2. If Bk is a torus, we let s map a into c2 topologically;

if Bk is a projective plane with one identification we let s map c% into itself by

identifying diametrically opposite points and c2 into itself by identifying

points by reflection in a diameter and identifying the points of c2 on the di-

ameter; if Bk is a Klein's bottle, we let s map d into itself by identification

of diametrically opposite points (*= 1, 2); if Bk is a sphere with two identifica-

tions, we let s map c< into itself by reflection in a diameter and identification

of the points of c< on the diameter (i= 1, 2).

If M is non-orientable and x(M) =2h>0, then M can be constructed as

follows: Let Ni be the manifold with boundary obtained from the figure by

deleting the open 2-cells w and w', and let s map Nx — (ci+c2) into itself in the

manner described above. Let N2 be an orientable manifold for which
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x(N2) =2h — 4. Let N2 be embedded in Euclidean 3 -space so that it is sym-

metric with respect to the xy-plane and the common part of N2 and the

ry-plane consists of h simple closed curves. Let s map the points of N2 above

the xy-plane into those below the xj-plane by reflection in that plane. Let a

be an open 2-cell in N2 lying above the xy-plane and having a simple closed

curve as boundary, and leta' = s(a). Delete a and a', and identify the bounda-

ries of a and a' with the boundaries of w and w', respectively. Then we have

defined s over M except for h + 2 simple closed curves. We define s over these

simple closed curves, using one of, or a combination of, the three methods

already described for defining s over simple closed curves, depending on the

character of the image space Bk.

The definition of T in the cases in which if is a manifold with bounding

curves is analogous to its definition in the cases already treated.

Conclusion. It is known that in some cases a space M may be mapped into

a space B in a continuous, exactly 2-to-l fashion, in at least two essentially

different ways. For example, a sphere may be mapped into a projective plane

(1) by identifying diametrically opposite points, or (2) by identifying point

pairs which are symmetrical with respect to the equatorial plane, and then

identifying diametrically opposite points on the equator. It is easy to show

that the two mappings so defined are not topologically equivalent(13). The

following problem naturally arises: For a given M and B how many topologi-

cally different 2-to-l continuous mappings of M into B are there? It seems very

likely that this number is finite.

(u) For a definition of this term see G. T. Whyburn, Interior transformations on compact

sets, Duke Mathematical Journal, vol. 3 (1937), p. 373, footnote 8.
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