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Introduction^^ The present paper deals with a number of diverse topics,

ranging from purely topological considerations, through a general theory of

possible distributions of values of an analytic function, to more special theo-

rems on simultaneous expansions of an infinity of analytic functions. No

unifying principle is presented as an excuse for treating such a variety of

subjects; but there is a slight sequence of argument running throughout. The

parts of the paper were actually written in reverse order. The initial investiga-

tion (Part III) was started as an attempt to generalize, from n to infinity, a

known theorem(2) on simultaneous expansions of n analytic functions. This

generalization was found to depend on an affirmative answer to the following

question on level curves of an analytic function : Given any sequence of points

öi, Sj, • • • , in the complex plane, which has the point at infinity as its only

limit point, does there exist an analytic function with a level curve Csuch that

C contains a distinct branch about each given point which separates that

point from all the other points? This was, in turn, made to depend on a certain

problem relative to the possible rate of growth of an integral function.

It was shown long ago by Poincare('), Borel(4), and others that an integral

function may be made to grow arbitrarily fast along the real axis or along

other lines or curves extending to infinity. Our problem was to obtain an

affirmative answer to the following related question: Does there exist a se-

quence of regions Si, 52, • • • , with at- interior to Si, such that, no matter how

fast the sequence of numbers nil, m-i, ■ ■ ■ increases there will be an integral

function/(z) for which

I f(t) I £ m   in Si?

In Part II we have shown that this is actually the case; but our construction

will ordinarily give a function /(z) with may zeros. This makes our desired
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level curve C have not only the required branches, but many extraneous ones

in addition. Whether or not there exists a nonvanishing function/(z) with the

stated properties, so that the corresponding level curve C has exactly the

required branches and no more, is a question that we have been unable to

settle.

On investigating what sort of regions Si, S2, ■ ■ ■ may be used to obtain

the required properties, certain questions concerning the topology on a sphere

arose; these are considered in Part I. In so doing, it was found expedient to

make certain restatements of Hilbert's theorem on the approximation of

Jordan curves by lemniscates.

Part I

1. Preliminary definitions. By a ring on the extended complex plane or

the Riemann sphere, we mean an open or closed region bounded by two

Jordan curves that have no point in common. The point at infinity may be

interior to, exterior to, or on the boundary of the ring.

The only sets or sequences of rings considered in this paper are those in

which the rings are mutually non-intersecting; that is, no two of the rings have

closures with points in common. For this reason we shall usually not bother

to state explicitly the non-intersecting character of the rings, but this condi-

tion is always to be understood.

Topologically, there is no distinction between a given ring on a sphere and

any other ring on a sphere. Likewise every pair of rings is equivalent to every

other pair; the complementary regions into which the rings divide the plane

necessarily consist of two simply connected regions A and B and a third ring

R which separates A from B. For three or more rings, on the other hand, we

may distinguish relative positions according to the arrangement and connec-

tivity of the complementary regions. If there are n given rings, the connectiv-

ity k of the complementary region of maximum connectivity may vary from

2 to n. We distinguish the two extreme cases by names: if k is 2 we call the

rings nested, if k = n the rings are mutually exterior. (This must not be con-

fused with mutually exterior in the point-set-theoretic sense, which means

non-intersecting in our terminology.)

The multiply connected region which is complementary to a set of n mu-

tually exterior rings will be called the R-exterior of the rings; the other com-

plementary regions, all simply connected and n in number, the R-interiors.

The same definitions of nested, mutually exterior, i?-exterior, and R-'m-

terior will evidently apply as well to finite sets of non-intersecting Jordan

curves on the sphere.

2. Generalizations of Hilbert's theorem. According to Walsh and Rus-

sell's^) generalization of a theorem due to Hilbert, a finite number of mu-

(6) These Transactions, vol. 36 (1934), pp. 13-28.
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tually exterior Jordan curves whose i?-exterior contains the point at infinity

can be uniformly approximated by means of lemniscates.

As thus stated, Hilbert's theorem imposes a special role on the point at

infinity. To avoid this, we generalize the notion of lemniscate as follows: A

lemniscate with poles at b\, ■ ■ ■ , bn and zeros at Oi, • ■ ■ , am is a level curve

of a rational function whose poles are at b\, ■ ■ ■ , bn and whose zeros are at

Oil ■ • • , am.

By imposing the transformation z = \/(z' — b) in Hilbert's theorem, we get

the following more symmetrical statement: Any set of mutually exterior

Jordan curves can be uniformly approximated by a lemniscate with pole at b

and zeros at oi, • • • , am, where b is a preassigned point in the i?-exterior and

the a's are somewhere in the i?-interiors of the given curves.

This statement suggests a dual theorem in which the roles of pole and

zeros are interchanged. To get such a dual theorem we may first consider the

reciprocal of the rational function yielding the lemniscate in the last state-

ment. It follows that the given Jordan curves can be approximated by a

lemniscate with zero at b and poles at a\, ■ ■ ■ , am. Now, applying Runge's

method of moving of poles, we may approximate our rational function uni-

formly in the i?-exterior of the curves by another rational function with poles

at given points bi, ■ ■ ■ , bn, one in each of the i?-interiors of the curves. The

degree of approximation being arbitrary, one may also choose this new func-

tion so that its zeros lie as close as one pleases to b. Repeating this process,

we obtain the following four theorems, of which Theorem I is a sharpening

of Hilbert's theorem.

Theorem I [Theorem I' ]. Let Ru ■ ■ ■ , Rnbe given mutually exterior rings

on the extended complex plane, and let b be a given point in the R-exterior of

the rings and a\, • ■ ■ , an given points such that a, is in the R-interior of Ri. Then

there is a lemniscate, whose only pole [zero] is at b, which consists of n Jordan

curves, Ci, ■ ■ ■ , C„, with C, interior to Ri (in the point-set-theoretic sense) and

with d separating the R-interior of Ri from its R-exterior. Furthermore, the

zeros [poles] of the lemniscate may be taken at a set of points d,f, i = 1, • ■ • , n,

j=l, • ■ ■ , h, such that the distance from any a,j to ai is less than e, where e is

an arbitrarily small positive number.

Theorem II [Theorem II']. Under the same hypotheses as in Theorem I,

there is a lemniscate with poles [zeros] at a\, • • • , an which consists of n Jordan

curves &, • • • , Cn with the same properties as in Theorem I. Furthermore, the

zeros [poles] of the lemniscate can be taken at points Ci, • • •, ct, where each c<

is at distance less than efrom b.

3. Further definitions. A point b will be called a sequential limit point of a

sequence of rings Ri, R2, ■ ■ • if there is a sequence of points ßi, ß2, ■ • ■ , with

ßi on Ri, which has b as a limit point.
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More generally, if {S„} is an infinite collection of mutually disjunct sets,

either denumerable or nondenumerable in number, then a point b will be

called a sequential limit point of the collection if there is a sequence of points

ßi, ß2, ■ ■ ■ such that (i) every ß, is in some S„, (ii) no two of the ß's are in the

same S„, (iii) the sequence of ß's has b as a limit point.

It can be shown that the rings Ri, R2, ■ ■ ■ , Rn are nested if and only if

they can be ordered in such a way that Ri separates Rj from Rk whenever i is

between j and k.

An infinite sequence of rings will be called nested if it can be arranged in

an order Ri, R2, ■ ■ ■ such that Ri separates Rj from Rk whenever i is between

j and k. An equivalent definition is that, when properly ordered, Rj separates

Rk from the set of sequential limit points whenever,; is greater than k.

We shall denote the boundary of a set A by F(A) and its complement by

C(A).
An interior sequential limit point of a sequence of rings is a sequential limit

point of a nested subsequence of the rings.

Every closed set B, not the null set or the whole plane, divides the plane

into a finite number or denumerable infinity of domains <sx, o2, ■ ■ ■ namely,

the components of C{B). A closed set B will be said to be encased in a sequence

of rings in C(B) if, for each i, those rings which are in o\- form a subsequence

with the following two properties:

(a) The set of sequential limit points, the interior sequential limit points,

and F(oi) are three identical sets."

(b) If F(<Tj) has more than one component, then for every ring there are

points of F(<Ti) in both of the two regions complimentary to the ring. If F(ffi)

has only one component, then the rings are nested.

4. A theorem of plane topology.

Theorem III. Let B be any closed set, not the null set or the whole plane, and

let S be a set in C(B) whose components {Sy} are closed and have sequential limit

points only in B. Then there exists a sequence of rings in C(B-\-S) which encases

B. The boundary curves of these rings may be taken to be lemniscates.

Proof. We assume a metric for the entire extended plane, as, for instance,

distances on the Riemann sphere.

For the proof it will be sufficient to show that if <r; is any component of

C(B), then there exists in <r; —5cr,- a sequence of rings which satisfies the above

condition (b) and whose sequential limit points and interior sequential limit

points are both identical with F(<Ti).

If z is a point in a non-null set A with a non-null boundary, we shall call

its distance from F(A) the depth of z in A. In any non-null set A there will be

one or more points which have maximum depth poS:0 in A. In particular,

if A is open, then there will be a point having maximum depth po>0. The

number p0 will be called the maximum depth of the set A. Since our metric is
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bounded, every set has finite maximum depth. If p0 is the maximum depth

of A, then for every number p, O^p^po there are points in A with depth p.

If B is a closed set in A, we shall call the greatest depth of any point of B

in A the maximum depth of B in A and the smallest depth of any point of

B in A the minimum depth of B in A.

The components of 5 which have points in common with (T, are entirely

in <Ti. Let K(p) be the sum of the components of S whose minimum depth

in er; is larger than p, where p is any positive number less than the maximum

depth po of <T;. There will be at most a finite number of components of 5 in

K{p): otherwise there would be a sequential limit point of the components

at a positive depth in <Ji, which is contrary to hypothesis. Let k{p) be the sum

of the components of S whose minimum depth in <r< is not greater than p.

Let A(p) be the set of all points whose depth in o\- is greater than p. The

boundary F(A(p)) is non-vacuous. Let a{p) be the set of all points whose

depth in a, is not greater than p.

We will now show that if 0<pi<po then there is a number p2, 0<p2<pi,

such that a(p2) -\-k{p2) is at a positive distance, say 5, from A{pi)-{-K(p2). Ob-

viously a(p2) is at a positive distance from A(pi) and from K{p2), and k(p2)

from K(p2). Suppose no number p2 exists such that k(p2) is at a positive dis-

tance from A (p{). No fixed component of 5 can be in k(p2) for every p2; hence

there must exist a sequence of components Si, S2, • • • such that the distance

from 5,- to A(pi) approaches zero with j. But this would imply a sequential

limit point of the Sj at positive depth in <ii, which is contrary to hypothesis.

Cover the closure of a(p2) -\-k(p2) by a finite number of circular closed re-

gions with centers on this set and radius rj < 5. The number rj can be chosen

so that no two of the circular boundaries of these regions will be tangent to

each other, and no three intersect at a single point. Let L(r)) be the sum of

these circular regions.

If we start at any point on the boundary of L(r]) and proceed along the

boundary, we will arrive back at the starting point after traversing a finite

number of arcs of circles and an equal number of points where two circles

intersect. The boundary of L(ij) consists of a finite number of Jordan curves.

Furthermore, it is possible to increase the radius of each circle in L(y) slightly

without changing the connections between the circular arcs forming the

boundary of L(r]). Otherwise, the connections would change in a discontinu-

ous manner; but this can happen only when two arcs are tangent or when

more than two arcs intersect at a point. Hence there is an rj' between n and 8

such that [L(r]') — L(rj) consists of a finite number of rings Ru R2, ■ ■ ■ , Rk-

By their construction, these rings have a minimum depth in a\ greater than p2,

a maximum depth less than pi, and are at a positive distance from S.

A ring R will be said to bound a set A, AR^O, if one of the Jordan curves

forming the boundary of R is contained in F(A). A collection of rings

Ri, R2, ■ ■ ■ , Rp will be said to completely bound A if each of the rings bounds
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A and if F(A) is contained in the closure of the rings. A set of rings which

completely bounds a connected set will be mutually exterior and will separate

A from C(A+zZRj)-
The rings Rlt R2, ■ ■ ■ , Rk will completely bound ai—L{i)')<ji. Let M be

a component of ai — L(r]')(Xi which contains a point x0 of maximum depth p0

in <Ti. There will be a subset of the rings, Ri, R2, • • • , Rp, which completely

bound M. These rings will be mutually exterior and will separateMfrom F(cri).

If x is any point in <n, it can be joined to x0 by a Jordan arc in «r«. This arc

will have a positive distance X from F(<Ti), that is, it will have positive mini-

mum depth X in tr*. Hence there exists a pi so small that the corresponding set

M will contain x, and the corresponding rings Rx, ■ ■ ■ , Rp will separate x from

F(<Ti). If F((Ti) is connected, then M will be simply connected for every pi.

On the other hand, if F(crt) is not connected, then M will be multiply con-

nected for every sufficiently small pi.

Let €1 be less than p0 and also so small that if F{<Ti) is not connected then

the set M corresponding to any pi^iei will be multiply connected. Starting

with €1 we form any sequence t\, €2, ■ • • of positive numbers with zero as a

limit and such that if is taken to be pi in the above, then p2 may be taken

equal to e,+i. That is, a(e,-+i)+&(e,-+i) is at a positive distance from A(<6j)

+K(ej+i). Corresponding to each pair of values tjt e,-+i there will be a set of

rings Ri \ ■   ■ , Rp}) constructed as above on taking pi = e,- and p2 = e,-+i.

It will now be shown that the totality of these rings is a sequence which

encases F(<Ti).

(i) That condition (b) will be satisfied is a consequence of the fact that

the rings R[J\ ■ ■ ■ , RPJ) completely bound a set M,- which is simply connected

if F(<Ti) has only one component and multiply connected otherwise.

(ii) Every sequential limit point of the rings is on F(<n) because R'k}) has

maximum depth less than ty and e,—►().

(iii) Every point of F(at) is a sequential limit point of the rings. If not,

then there exists a point x in F(<ji) and a circular neighborhood Nx such that

Nx is free of points of the rings. But Nx contains at least one point y in o-;.

For j sufficiently great, Rkj) separates y from x. This can happen only if 2qf'

has points in Nx, which is a contradiction.

(iv) It remains to show that every point of F(ffi) is an interior sequential

limit point of the rings; that is, for every x in F{<Ti) there is a nested subse-

quence of the rings which has x as a sequential limit point. Since the rings

Ri \ • • • , Rp^ separate Xo from F(di), there will be a particular ring, say Rj£,

which separates Xo from x. The sequence of rings {R^} will have x as a se-

quential limit point and will be nested.

That the boundary curves of the rings can be taken to be lemniscates fol-

lows immediately from Theorem II and the fact that the rings Ri \ ■ ■ ■ , R^

are mutually exterior. In fact, the poles of the lemniscate may be taken on

F(ffi), since if p>l each ring contains a point of F(<7i) in its i?-interior.
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Part II

5. Construction of functions with very rapid growth.

Theorem IV. Let G(z) St 0 be a given function defined for every point z in

the extended complex plane. Let B be the set consisting of all points in every neigh-

borhood of which G{z) is unbounded. We suppose that B is neither the null set

nor the whole extended plane. Let Ri, R2, • ■ ■ be any sequence of mutually non-

intersecting rings which encases B. Then there exists a function f{z) which is

analytic except possibly at points of B and which satisfies the inequality

(1) I /(*) I St GO)

for every z not in one of the rings.

Corollary. Let G(z) and B be given as in Theorem IV. Let S be any set in

C(B) whose components are closed and whose sequential limit points are all on B.

Then there is a function f(z) which is analytic except on B and which satisfies

the inequality (I) at all points of S.

By Theorem III, this corollary is an immediate consequence of Theorem

IV.
In this section and throughout the paper, all functions are assumed to be

single valued.

In case G(z) is bounded in the whole plane (B is the null set), the problem

is trivial; since one can then satisfy (1) everywhere by taking/(z) to be a

sufficiently large constant.

Proof of Theorem IV. We confine our attention to one of the domains

crfc into which B divides the plane, and to those rings which lie in ak. Let P

be any point in crk and not in any of the rings. Then we distinguish the two

parts of the plane exterior to any ring Rj by the inside and outside of Rj ac-

cording to whether it does or does not contain P, respectively. Having chosen

P, every ring has an inside and outside, but different choices of P may inter-

change the inside and outside of a given ring. We suppose that P is now

chosen once for all, subject only to the condition that if the complement 5 of

the rings in ak has a simply connected component S0 (which can happen only

if F(crk) is connected), then P is in 50.

If a nested subsequence of the rings in crk has a point x on F(ak) as a se-

quential limit point, then any point y in ak will be separated from x by all

but a finite number of this subsequence of rings. For, let y be a point in ak

which is not separated from x by an infinity of rings. Let z be a point in ak

which is separated from x by the first of the rings. Join z to y by a Jordan

arc in ak. Every ring separates z from x. There must be an infinite number of

rings which separate y fromz. These rings will all intersect the Jordan arc yz;

therefore, there will be a sequential limit point of the rings on the arc, and

hence in ak; which is a contradiction.



218 P. W. KETCHUM [March

Let 5 be the set consisting of all points in au which are not in any ring.

Each component Sj of 5 is completely bounded by a finite number of the

rings. For, if an infinite number of rings bound 5„ then there will be a se-

quential limit point x of the rings in the closure of Sj. This point x will also

be on F(<Tk) and hence will be a sequential limit point of a nested subsequence

of the rings. Any point y of Sj is in crA. We have just seen that y is separated

from x by all but a finite number of rings. But this is a contradiction since

Sj-\-x is a connected set, in the complement of the rings, which contains x

and y.

Denote the component of 5 which contains P by So- There will be only a

finite number of rings which separate any component from P, and only a finite

number of components, Sn, • • • , S<i,-, each of which is separated from P by

exactly i rings. We now rename the rings by using a double subscript Rijt

.7=1, 2, • • • , k, so that Sij is outside of and bounded by 2?«,-. Let lij be the

inside of R,j. Put

= la-la ■ ■ ■ Im* = S(1 + Sa + ■ ■ ■ + SiU.

The rings Ra, • ■ • , Riu are mutually exterior, since they completely bound

the connected set 7(i); and there will be points of F{ak) outside each of these

rings.

Let Mo be the upper bound of G(z) in So and Mi the upper bound in 5(i).

Let ei, €2, • • ■ be any set of positive numbers such that 2~l€i converges to

a given sum e.

Let Ni be the positive constant M0 + e. By Theorem II there is a rational

function F\(z), analytic except at points of B, such that the lemniscate

I Fi(z) I = 1 consists of h contours Cn, • • • , Cav where &j is interior to

and separates Sij from P, j—t, 2, • • ■ , l{. Then there will exist a positive

integer pi so large that

I Fi(z) \n<H in   So =

> Mi + Ni + e   in S(1>.

Let N2 be the upper bound of \ Ni+[Fi(z)]pi\ in Sw.

Similarly, there is a rational function F2(s), whose only poles are on B, such

that the lemniscate | ^2(2) | = 1 consists of h contours C21, • • • , Cn2, where Cij

is interior to R*j and separates S2y from P. Then there will be a positive integer

pi so large that

I Ff(lf) ip2 < 62 in 7<2),

> M2 + N2 + e   in Sm.

Continuing this process, we suppose that ^3(2), ■ • • , jF<_i(z) have been

constructed. Let

V,-+i fc I #i + [FiOO]" + [Fjfz)]"" + • • • + iFt-fäp-* I
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in 5(i). There is a rational function Fi(z), whose only poles are on B, such that

the lemniscate | Fi(z) \ = 1 will consist of U contours Cn, Ca, • • • , Cu(, where

dj is interior to Ra and separates Si, from P. Then there will be a positive

integer p{ so large that

I Fi(z) I*"' < e, in f«

> Mi + Ni + e   in S<*>.

Now consider the function

(2) /(«) = N1+2Z [P'i(z)\pi-

Let S be any closed region exterior to B, and let z be a point of S. From the

manner in which the terms of (2) were constructed, it is clear that one can

find an integer q so large that

Fit» < u for z in 2 and i > q.

Since X€» converges, this shows that the series (2) converges uniformly in 2.

Hence /(z) is analytic everywhere except for the points of B.

Moreover, for z in one of the regions Sgi, Sqi, ■ ■ ■ , Sqi , one can write

/(z)i ^ K(z)h-
9-1

t-i

£ \Fi(z)\n
»-9+1

= (Mq +Nq + f) — Nq — 2Z u
•-9+1

^ Mq ^ G(z),

and the theorem follows.

6. Best possible character of Theorem IV. In Theorem IV the rings

Ri, R2, ■ ■ ■ present a sort of barrier between the set B, where G{z) is un-

bounded, and the set S, where (1) holds. It is true that points of B may be

limit points of 5, but no point of B can be a limit point of points in any'single

region in 5. Thus, collectively the regions of 5 are close to B, but individually

they are not.

The question arises as to whether some such barrier is necessary. We an-

swer this question in the affirmative in the following theorem, which states

that no theorem like Theorem IV can be true in case a region in 5 has a limit

point on B.

Theorem V. Let B be any closed set, not the null set or the whole plane, and

let S be an open region which has at least one point of B on its boundary, but has

no points in common with B. Then there exists a function G(z) such that B con-

sists of precisely those points in every neighborhood of which G{z) is unbounded,
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and such that no function f(z) exists which is meromorphic in S and satisfies (1)

in S.

Proof. Let C\, C2, ■ • ■ be a nested sequence of analytic Jordan curves in S,

having a point b of B as an interior sequential limit point, and such that the

open regions Si, S2, • ■ ■ in 5 bounded by these contours all have an interior

point in common, say S%. Then there exists a sequence of mapping functions

which will map Si, S2, • • • conformally onto the interior of the unit circle in

such a way that the origin is the image of S\. The sequence of one-to-one

transformations thus defined will transform any function/(z), meromorphic

in S, into a sequence of functions [fi(z)} which are meromorphic in and on

the unit circle.

Let 0i, 62, ■ ■ ■ be a sequence of arcs on the unit circle such that the corre-

sponding sequence of arcs 6{, Q{, ■ ■ ■ on the curves C\, C2, ■ • • will have b as

its only sequential limit point. For brevity, we also denote by 0i, 62, ■ ■ ■ the

lengths of the arcs 0i, 62, ■ ■ ■ . Let Mi, M2, • • • be any sequence of positive

constants such that 0; log M —> °° as i—> 00 .

Let G(z) be defined as equal to unity in 5 except on the arcs 0(, 6% , • • • ;

where we take G(z) = Mi, M2, • • • , respectively. Outside S, G(z) is given any

values such that G(z)—* °° if and only if z tends to a point of B. The points B

will be precisely those in every neighborhood of which this function G(z) is

unbounded.

We now show that no function /(z) can exist which is meromorphic in 5

and satisfies (1) in 5. Suppose, on the contrary, that such a function did exist.

Then the transformed functions /,(z) would be meromorphic in and on the

unit circle and |/i(z) | 2: G,(z) for | z| £ 1, where the G,-(z) are the transforms of

G(z). Hence, by Jensen's theorem, since \fi(z)\ £1 for |>| £1,

log I mo) I = — f    log I /<(«'») I d-d + £ log j-^j .
27T J 0 PI "ip \

where the biP are the poles of/,(z) in the unit circle. The last term is not nega-

tive, and the integral is larger than 0,- log M,; so that

1
log I /i(0) I = log j /(Sl) I £-0, log Mi.

2t

The right-hand member of this equation tends to infinity as i becomes infinite,

while the left-hand member is fixed, independent of *. We thus have a contra-

diction, and the theorem is proved.

7. Generalizations of Theorems IV and V. The last two theorems may

be generalized by replacing the inequality (1) by other relationships. We may,

for instance, let g(z) be a given analytic function and require that

(!')
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This problem is one of approximation to analytic functions by means of ana-

lytic functions, the degree of approximation to be predetermined by the given

function G(z). We thus have

Theorem TV'. Let G{z) be a given function which is defined and positive in

the entire complex plane. Let B be the set of points in every neighborhood of which

G(z) has zero as a greatest lower bound. We assume that B is neither the null

set nor the whole extended plane. Let Ri, i?2, ■ ■ ■ be any sequence of rings which

encases B, and g(z) any function which is analytic for all z not in B. Then there

is a function f(z) ^g(z) which is meromorphic except at points of B and which

satisfies (1') for every z not in one of the rings.

Theorem V. Let B be a given closed set, not the null set or the whole ex-

tended plane, and let S be an open region which has at least one point of B on

its boundary, but has no points in common with B. Let g{z) be a given function

which is analytic for every z not in B. Then there exists a function G(z)>0 such

that B consists of precisely those points in every neighborhood of which G{z) has

zero as a greatest lower bound, and such that no function f{z) exists which is

meromorphic in S and satisfies (1') in S.

These two theorems are obtained immediately when one applies Theorems

IV and V, respectively, to the reciprocals of h(z) and G{z).

8. An improvement of Theorem IV in a special case. In the next theorem

we present an example of a situation intermediate between Theorems IV and

V. The theorem involves a certain kind of set 5 which resembles a cartwheel

and which is described as follows: (a) The set S includes all points in an

infinite sequence of concentric, circular rings with centers at the origin, which

has infinity as its only sequential limit point, (b) Let cti, <x2, ■ ■ • be a sequence

of rays from the origin whose angles with the real axis are rational multiples

of 27T, and let ri, r2, ■ • • be positive numbers with r<—* °° ; then 5 includes all

those points on on where |z| Sir,-, i=l, 2, ■ ■ ■ .

Theorem VI. Let S be a given set of points of the sort just described. Let G(z)

be any given positive valued function which is bounded in every bounded region

of the plane. Then there exists an integral function f(z) such that (I) is satisfied

everywhere on S.

Proof. Denote the rings of S by Ri, J?2, ■ ■ . Without loss of generality

we may assume that the r's are non-decreasing. Denote by 1, the last value of j

such that z = rj is inside Ri. (This use of "inside" agrees with our previous

use of the term if we take P to be the origin.) Let So consist of those points of

the rays ai, as, • • • which are inside Ri. Let Si consist of the points of Ri to-

gether with the points of the rays which are outside Ri and inside R2; and Sk

the points of Rk together with those of the rays which are between Rk and

Rk+i. Let €i, e2, • • •  be a sequence of positive numbers such that 2~2e> con"
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verges to a given value e. Let Mi be the upper bound of GO) in Si. Let o< be

the radius of the smaller of the two circles bounding Ri.

Put No = Mo + e, 7Vi = Afi + iVo + e. For brevity, we also denote by ai, a2, • • •

the fractional multiplies of 2t that the rays a.\, a2, ■ ■ • make with the axis of

reals. We choose pi to be a positive integer such that pia, is an integer for

j=l, 2, •   • ,h. Let

iN2 = l.u.b. ■{ Mi + e +
Z in St {

No + Ni OT
We choose p2 to be a positive integer such that (a) p2a,- is an integer for

j = \, 2, • • • , h, and (b) | N2(z/a2)p,\ is less than e2 inside and on Ri.

Continuing this process, at the typical stage we let

Ni = l.u.b. {Mi + e +  N0 + NA—}   + • • • + Ni-i(-)    * 1 .
z in Si   (, \ a,/ \ai-i/ )

Then we take pi to be a positive integer so large that (a) piOCj is an integer for

j = l, 2, • • ■ , h+i, and (b) | Ni(z/ai)Pi\ is less than e{ inside and on

Now consider the function

(3) f(z) = N0 + t »<(-)"■

Let S be any finite closed region, and z a point of S. Then there is a g so large

that

< e. for z in S and i > q.

Since 2e; converges, this means that (3) converges uniformly in 2, and f(z)

is an integral function.

Moreover, if z is in one of the rings Rq, we can write

/(*) I ̂ N - No + Z Nil-)     -   £ ^(-)

^ M9 ^ GO).

If z is on one of the rays and in Sq, then

^ Mq^ GO).

This concludes the proof of the theorem.

9. An unsolved problem. As mentioned in the Introduction, a problem,

intermediate between Theorems IV and V, which the writer has been unable

to answer, but whose solution could be used to advantage in the subsequent
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part of this paper, is the following: Let Si, S2, ■ ■ ■ be a given infinite sequence

of simply connected regions whose closures are non-intersecting and whose

only sequential limit point is the point at infinity. Let Mi, M2, • • ■ be a given

sequence of positive numbers. Then, does there exist a nonvanishing integral

function, or even a nonvanishing meromorphic function,/(z), such that

I /(*) I ̂  Mi
for z in S,? The available evidence leads to the conjecture that for every se-

quence of regions there will correspond M's for which no such integral func-

tion exists.

10. A theorem on level curves. The zeros of an analytic function are iso-

lated. Conversely, according to Mittag-LefHer's theorem, given any isolated

set /, there is a function which has a zero at each point of I and none else-

where and which is analytic except at limit points of I.

The singularities of an analytic function form a closed set. For any given

closed set B there exists an isolated set /, in the complement of B, whose de-

rived set I' is the boundary of B. It follows that corresponding to every closed

set B there is an analytic function whose singularities are precisely the points

of B and whose zeros have every point of the boundary of B as a limit point.

The Mittag-LefHer theorem gives a complete characterization of the pos-

sible distribution of zeros of an analytic function, but it gives no information

about the possible behavior of the function away from those zeros. The fol-

lowing theorem goes further, by preassigning not only the position of the

zeros but something about the level curves as well.

Theorem VII. Let B be a given closed set and 1(ZC(B) be an isolated set such

that I' is the boundary of B. Let ai, a2, ■ ■ ■ be the points of I, and yi, y%, • • • be

a given sequence of mutually exterior circles, with the center of yi at at, such that

no point of B is inside or on any yi. Then there exists a function f{z) which is

analytic except on B, which has a simple zero at each point of I, and whose level

curve C: |/(s) | = 1 is such that the part of C which is inside yi is a Jordan curve

separating aifrom "yj, t=l, 2, ■ • • .

Here "inside 7<" is used in the sense of being on the same side of 7, as ai.

Proof. Let h{z) be any function with simple zeros at ax, a2, ■ ■ and no

other zeros, and analytic except on B. Let Mi, M2, • • ■ be the greatest lower

bounds of | h(z) | on 71, y2, ■ ■ ■ , respectively. Let g(z) be a function (whose

existence is asserted by the corollary to Theorem IV) which is analytic except

on B and which is such that |g(z)| >l/Mi on 7,. Then the product /(z)

= h{z)g(z) will be analytic inside and on 7,- and |/(z) | > 1 on 7,. Hence there

will be a part of the level curve C which is inside 7, and which separates a,-

from 7i. Thus/(z) has the properties stated in the theorem.

Theorem VII is unsatisfactory in that it makes no assertion about the

zeros of f(z) other than those on I.
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Part III

11. Statement of the problem. A known expansion theorem(6) asserts that

for any set of n points oi, a2, ■ • ■ , <x„ there exists a sequence of functions

<p,{z), s=l, 2, ■ ■ ■ , satisfying the following two conditions:

(A) Each function <ps{z) is analytic in a region including all the a's.

(B) Corresponding to any function f(z) which is analytic at all the a's

(but not necessarily analytic in any region containing more than one of the

a's), there is a sequence of constants cx, c2, • • • such that

00

/(z) = zZ eW>*(z)-
«=1

This series converges absolutely and uniformly in some neighborhood of each

point

The case of chief interest is that in which f(z) cannot be continued ana-

lytically from a,- to ak, i^k. (For example,/(z) might be e* near ax, sin z near

a2, z2 near a3, etc.)

We wish now to generalize this theorem by allowing n to become infinite,

so that ai, a2, • • • will form an arbitrary isolated set I. In doing this, certain

characteristic differences with the finite case arise:

(1) The set of limit points B of I will be non-vacuous. One would expect

the functions #«(z) to be badly behaved on B, particularly if B divides the

plane. We, therefore, replace condition (A) by the condition that <f>,(z) be

analytic everywhere except on B.

(2) One might also expect that for a fixed set of functions {<j>e(z)} any

corresponding /(z) would of necessity satisfy certain uniformity conditions

with respect to the points a,-. Such uniformity conditions are embodied in the

following:

Definition. A function f(z) will be said to belong to the class G {di, ai},

where B\, Bt, • • • is a sequence of positive numbers, provided fiz) is analytic and

uniformly bounded in a set of closed circular regions with centers at ai, a2, • • •

and radii 8X, 52, • • • , where for someX

ofii ^ X > 0, i = 1, 2, • ■ • .

We propose to prove the following theorem:

Theorem VIII. Let {a,-} be any isolated set of points with derived set B,

and let {di} be any sequence of positive numbers. Then there is a sequence of

functions \<t>,(z)}, each of which is analytic everywhere except on B, such that

for any function f(z) of class G{di, ai} there are numbers cj, c2, • • • for which

oo

/(z) = zZ c«0s(z)-

(6) Töhoku Mathematical Journal, vol. 43 (1937), pp. 246-251.
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The series will converge absolutely and uniformly in some point set which con-

tains a neighborhood of each point a,-.

For the above case in which n is finite, the functions {<ps(z)} depend only

on the points ai, a2, • • • , a„, and not at all on/(z). In Theorem VIII the func-

tions {<p„(z) } depend on 0\, 62, • • • as well as upon the points {a,-} ; but they

are otherwise independent of/(z).

The proof of Theorem VIII will be carried out in steps. It will be shown

first that there exists a particular sequence of points #1, a2, • • ■ for which the

theorem holds. A transformation will then be performed which will send this

particular set of a's into an arbitrary sequence.

12. Proof of the expansion theorem for a particular sequence of points.

The particular set of points ah a2, ■ • • to be considered in this section will be

a certain set of integers kx, k2, • ■ ■ , where ki = 0 and ki+1>ki. It is desired to

expand a function /(z) of class G {9it }. Let 71, 72, • • • be a sequence of mu-

tually exterior circles with centers at k%, k*, ■ ■ ■ ; with radii ßi, /32, ■ • • , where

the ß's have a finite upper bound ß, and 1/0»; and in which/(z) is analytic

and uniformly bounded. According to Theorem VII there exists an integral

function \p(z) which has a simple zero at each point and whose level curve

Cv: I ip(z) I = 77, 77^ 1, is such that the part of C, which is inside 7,- is a Jordan

curve separating k( from 7,. Denote by Cf this Jordan curve inside 7,, and

by Sf the closed region containing which is bounded by Cf. Let Zi be any

point in 5^', and z,- the point (there is one and just one) in Sf where

^(z,)=^<Zi).

Consider the infinite system of linear equations

00

(4) E «/(«<)*,(«0 = /(*<), * = 1, 2, • • • ,
M

where the g,(z) are integral functions and the hj(zi) are regarded as unknowns.

We wish to define the gj(z) so that the determinant of the equations will be

normal and different from zero(7). Let

where «i, a2, ■ ■ • are positive numbers such thatXa? converges. For the de-

terminant A = I gj(zi) I to be normal it is sufficient that (a) the product of the

diagonal terms converge absolutely and (b) the sum of the non-diagonal terms

converge absolutely.

For (a) the product of the diagonal terms is

00 /     00 \

II gi(*i) = exp <^ £ - af(jSj - k,)2> .
;=i v i=i ;

(7) For a discussion of normal determinants with applications to infinite systems of linear

equations see F. Riesz, Les Systemes a"Equations Lineaires, 1913, §§20-30.
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Since |z,- — kj\ ^ßj^ß, this product converges absolutely. The convergence is,

moreover, uniform with respect to Z\ in      and uniform for all sets of integers

{kj}. The value of the product is uniformly bounded away from zero for all Zi

in      and all sequences of integers {kj}.

For (b) we have the double series

00 00

(5) £' gj(zd = E' exp { - - kj + \iT-},
i.i— 1

where we have put z,- = &,+Xt', |X»| ^ßi^ß. The prime indicates omission of

terms for i =j.

Let 6 be any positive number, and let {M,-,-}, iy^j, be any set of positive

numbers such that XAfi, = e. We wish to show that the k's can be chosen so

that the absolute value of the ijth term of (5) will be less than Mjj.

We have

I gjß„ I < exp j - aj[(ki - kj)2 - 2ß I ki - kj I - ß*]} m Kij.

The k's will now be chosen successively as follows: Let ki be so large that

max (Kxi, Ku) < min (Af«, M2i).

Then k3 can be chosen so that

max (Kj3, K3]) < min (Mj3, M3}).

In general, having already chosen k2, k3, ■ ■ ■ , ks~i, we then make ks so

large that

max (Kj„ KSj) < min (Af,-„ M3j).

Hence the terms of the series (5) are dominated by the numbers Ma, where

the latter may be preassigned arbitrarily. By proper choice of the &'s the

series will converge absolutely; hence A is normal. Moreover, the &'s can be

chosen so that the value of A differs from the value of the diagonal term by

less than e. Hence, for suitable &'s, Aj^O. From this point on, we assume that

the &'s are such that A is normal and nonvanishing.

Since /(z) is bounded in the regions Sf by a constant independent of i,

the system of equations (4) will have one and just one solution \h„{zi)} such

that |A,(zi)| is bounded for Zi in by a constant independent of 5. Since

the convergence of the determinant is uniform, and since /(z) is analytic in

5^, 5®, • • ■ , then the functions hs{zi) will each be analytic in 5™. Put

hs(zj) = h,(zi).

Then h,(z) will be defined and analytic in each region     . Hence
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00

)=i

for every z in , 5®, • • • . The series on the right converges absolutely and

uniformly on the same set of values of z.

Since hj(z) is analytic in S*,1', it may be expanded in an absolutely and

uniformly convergent series of powers of ^(z):

**« = [*(*)]-
m—0

But, since hj(z) and each term of its expansion is unchanged if zi is replaced

by Zj, the expansion is equally valid for z in Sf \ Sf\ • • • . Hence

/(«) = Er«*(«-*f>'2fi»[^)]-
j—1 m— 0

for z in <><'>, Sf,
Let ilf be the upper bound of hj(z) in Then, by an analogue of

Cauchy's inequalities,

I Cm I ^ M/r,m.

Hence, if z is in SJ?, tj'<rj,

00                        *  M M

Z\ cim[Mz)]m\ ^ £ -v'm = --— •

We have already shown that £g,(z) converges absolutely. It follows that the

double series in

00

/(z) =  X cime-*^-^\\,(z)Y
/=l,m=0

converges absolutely and uniformly to/(z) in the regions {Sf, }. Finally, /(z)

can be represented by any simple series that can be formed by rearrangement

of the terms of this double series. This completes the proof of Theorem VIII

in the special case of a particular function/(z) of class G [di} ki}. If /(z) is any

other function of this same class, there will be a positive number X ̂  1 such

that

8i ^ X/0; ^ \ßi.

Since \p(z) has a simple zero at z = ki, it follows from Schwarz' lemma on lower

bounds that C® will be inside the circle |z — &,-| =X/3,-. Hence /(z) will be ana-

lytic and uniformly bounded in the regions S^v and will have an expansion

in terms of the same set of functions as/(z).
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13. Proof of the expansion theorem for an arbitrary isolated set. Consider

any isolated set of points {a»} in an extended complex plane of the variable x.

There exists a function T{x) = z which is analytic except on B and which has

the values

T(a{) = hi,      T'(ai) = en, i = 1, 2, • ■ • ,

where oi, a%, ■ ■ ■ is a given sequence of complex numbers whose absolute

values have a positive lower bound a.

To construct such a function, we may first use the Weierstrass factor

theorem to build a function 7\(x) with a second order zero at each point

a\, a2, • ■ • . Let

Ti(x) = (x - a,-)2 [aa + (Xa(x — «<) + •••],

where aa^O. Next, by the Mittag-LefHer theorem, we form a function T2(x)

with principal part at a, as follows:

ki 1 cr,a;i — kiotit 1

an (x — a,)2 a2a        x — a{

Then the product T(x) = Ti(x)T2(x) will have the desired properties.

There exists an inverse function x = T~l(z) which is analytic at each point

ki, and

T~\kt) = ai,      r-»'(**) = I/o-,.

Hence, for every e, 0<e<<r, there exist positive numbers tt, so small that in

the regions \ z — ki\ ^tt,-, T~l{z) is analytic and

I T-'O) - r-«(*<)| ^\z- ki\/{a- e).

We suppose that/(x) is of class G{rf, a, }. Then F(z) =f(T~l(z)) will be ana-

lytic and uniformly bounded if

I z — ki I g X((t — e)/ri   and    5= ?r,-.

Hence, F(z) will belong to the class G{di, ki} where 0, = max (t,-, l/ir,).

By the special case of Theorem VIII in the previous section, there exists

a sequence of integral functions <j>s(z) such that any function of class G {6i, ki}

can be expanded in the form F(z) =£c„oi8(z) for some set of neighborhoods of

ki, ki, ■ ■ ■ . Hence f(x) =X/Scis(7\x)) for some set of neighborhoods of

au di, ■ ■ ■ . The functions <j>s(T(z)) will be analytic except for limit points

of the as and will depend only on the class G{n, ai} to which f(x) belongs.

This completes the proof of Theorem VIII.

University of Illinois,

Urbana, III.


