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1. Introduction. Given a closed bounded point set C of the z-plane whose

complement K is connected and possesses a Green's function G(x, y) with pole

at infinity; denote generically by Cp the locus G(x, y) = log p, 1 <p, in K. By

Problem ß we understand the following problem: If a function/(z) is assumed

analytic interior to a particular Cp, and possesses given continuity properties

on or in the neighborhood of Cp, to study the degree of approximation by poly-

nomials to/(z) on C in the sense of Tchebycheff.

This problem has reached a fairly satisfactory solution in case/(z) has gen-

eralized derivatives of various orders on Cp(1), and in case/(z) is continuous

on and within Cp, and its pth derivative satisfies a Lipschitz condition of order

a. on CD(2); in the latter case, if C is bounded by a finite number of smooth

mutually exterior Jordan curves, it follows (loc. cit.) that polynomials pn{z)

of respective degrees n exist such that

(1) I /(z) - p„(z) I ^ M/pn-nv+a, z on C,

where M is a constant depending on C and p but independent of n and z.

However, if /(z) is not assumed continuous on Cp but merely to become

infinite (if at all) sufficiently slowly, a result closely analogous to (1) exists:

(2) I /(z) - pn{z) I ^ MnP+a/pn, z on C,

where p+a is again positive and is a measure of the rapidity with which/(z)

becomes infinite. Such a result has already been considered by S. Bernstein

[1926] and de la Vallee Poussin [1919] for the case that C is a segment of the

axis of reals, and provided/(z) has only isolated singularities on Cp. The primary

object of the present paper is to establish (2) for more general point sets C

(especially when C is the closed interior of an analytic Jordan curve) and for

functions /(z) not required to have only isolated singularities on C„.

To be more explicit, we define (§2) a hierarchy of functions, thanks to

certain theorems due to Hardy and Littlewood [1932], which includes both

functions whose derivatives satisfy Lipschitz conditions of various orders and

functions satisfying asymptotic inequalities in the neighborhood of Cp. This

classification of functions is highly appropriate for our present discussion, for
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it is primarily based on (i) Lipschitz or asymptotic conditions for the func-

tions, but is so constituted that (ii) integrals and derivatives of functions of a

class belong automatically in specified new classes, likewise defined in terms

of Lipschitz or asymptotic conditions; also (iii) each class implies a specific

degree of approximation (Problem ß), and conversely (iv) certain definite de-

grees of approximation imply that the function belongs to a uniquely deter-

mined class; in each case under (i) to (iv) the results are in a sense the best

possible.

We study these questions of approximation (§§3, 4, 5) for the unit circle,

(§8) for the line segment, annulus, and real axis, and (§7) for point sets which

are the closed interiors of analytic Jordan curves. In §6 we consider approxi-

mation to functions with isolated singularities. We indicate (§9) the method of

extending the above results on Tchebycheff approximation to approximation

measured by a line integral. In §10 we consider the relation between inte-

grated Lipschitz conditions and integral asymptotic conditions on the one

hand and degree of approximation on the other hand. Finally in §11 we pre-

sent more immediate but less thoroughgoing methods for obtaining portions

of our results.

The methods and results here set forth have application to the study of

approximation of harmonic functions by harmonic polynomials, an applica-

tion which the writers plan to make on another occasion.

Henceforth in the present paper the degree of a polynomial is indicated

consistently by its subscript; moreover the letter M with or without sub-

scripts when used in an inequality of type (1) or (2) shall always represent a

constant which may vary from inequality to inequality and depends on C

and p but which is always independent of n and z.

2. A classification of functions. In the present section, the unit circle

|z| =1 is denoted by y. If the function/(z) is analytic interior to y, con-

tinuous in the corresponding closed region, and if /(p)(z), where pStO is an

integer, satisfies a Lipschitz condition on y of order a, 0<ai= 1, we say that

/(z) is of class L(p, a) on y. It is immaterial here whether we require that

/(p)(z) and the Lipschitz condition should be one-dimensional or two-dimen-

sional ; compare Hardy and Littlewood [1932], Walsh and Sewell [1940]. It

obviously follows that if /(z) is of class L(p, a) on y then the indefinite integral

of/(z) is of class L{p-\-\, a) ony and (provided p>0) the derivative/'(z) is of

class L(p — l, a) on y. In this connection it is appropriate to consider the fol-

lowing theorem due to Hardy and Littlewood [1932]:

Theorem 2.1. A necessary and sufficient condition that /(z), analytic for

|z| <1, should belong to class L(0, a), 0<a^l, is that

(2.1) \f'{rei9) \ S M{\ - r)"-\ r < I,

where z = reie and where M is independent of r and 8.
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This theorem suggests a new definition: If the function/(z) is analytic for

I z\ < 1 and if we have

(2.2) \f(reie)\ ^ M(l - r)°+», r < 1, 0 < a ^ 1,

where p < 0 is an integer, where z = re'6, and where M is independent of r and 6,

then /(z) is said to be of class L(p, a) on y. With this terminology we prove

Theorem 2.2. If the function f(z) is of class L(p, a) on y, 0<a^l, then

the indefinite integral of f(z) is of class L(p + l, a) on y unless oc-\-p= — I, and

the derivative f (z) is of class L(p — l, a) ony.

We set

(2.3) F(z) - f f(z)dz;
•J 0

our conclusion concerning F(z) for p = 0 has already been mentioned, and

for p = — 1 follows from Theorem 2.1. For p < — 1 we take the path of integra-

tion in (2.3) a radius, which involves no loss of generality:

F(reie) = f f{reie)dr,
J o

where 6 is fixed. We have by (2.2)

(2.4) \F(reie) \ ^ M f  (1 - r)a+Hr ^ M'[(l - r)a+<"+1> - lj,
J o

from which our conclusion on F(z) (and on any indefinite integral of /(z))

follows.

In the case p>0 the conclusion of Theorem 2.2 concerning/'(z) has al-

ready been mentioned, and this conclusion for p = 0 follows from Theorem 2.1.

Suppose now p<0, so that p-\-a^0. Let z be fixed interior to y. We choose

p = s(l —|z| ) and study the integral

(2.5) /'(*)=— 7T-^dt-
2-KtJ \ t-z\=„ (t — z)2

On the path of integration we have (2.2) satisfied, whence

.     2M[\ - I si - p}"+" ,
(2.6) \f'(z)\=-'   ' , -= Afi(l — I z I )a+p-\

1 — I z I

as we were to prove. Theorem 2.2 is established.

It will be noticed that the proof of (2.4) fails in the case ct+p= —1, that

is to say, in the case p= — 2, a=l. In this connection it is useful to introduce

a new definition, namely that/(z) shall be of class L'(p, 1), p^ —1, provided

/(z) is analytic interior to y, and provided ßv+v(z) is of class L( — 2, 1).
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We make the following observation:

Theorem 2.3. If f(z) is analytic and uniformly bounded interior to y, then

/(z) is of class L'( — l, 1).

As above we use equation (2.5), where p = (l —|z|)/2; then we have

M 2rp
I/'(*)| s» —— -2Jf(l- 4)-»j

It pz

thus/'(z) is of class L{ — 2, 1), so the theorem follows.

We shall now establish

Theorem 2.4. If /(z) is of class L'(p, 1), p> — 1, then /'(z) is of class

L'(p — 1, 1); moreover /(j,+2+*>(z), where k is a positive integer, is of class

L(-l-k, 1).

Also, if f{z) is of class L'(p, 1) then for r near unity we have

(2.7) I/<*>+!>(/-ei(>) I ^ M \ log (1 - r) |,

arad on the radii /(p) (z) satisfies the pseudo-Lipschitz condition for r near unity

(2.8) I /<*>>(«") - /<p>(re«) | ^ Af'(l - r) | log (1 - r) |,

where M' is independent of 6; under these conditions the qth integral of f(z) is of

class L'(p+q, I), q>0.

If/(z) is of class L'(p, 1), with p> — 1, we have by definition |/(p+2)(z)|

iSAf(l— r)-1; but/(p+2)(z) is the derivative of order p + l of/'(z) and hence

also by the definition of class L'(p, 1), the function/'(z) is of class L'(p — 1, 1).

Furthermore it is clear from the proof of (2.6) that |/("+2+*;)(z) | ^ Af(l -r)-1-*,

k a positive integer, and hence/<j>+2+*>(z) is of class L( — 2— k, l)by definition.

If/(z) is of class L'(p, 1), an inequality on/(p+1)(reie) follows directly from

the inequality on fip+2)(reie):

fp+i)(rei>) _/(p+d(o)| =   f fp+^(reie)dr
I J o

/■r di

o 1 -
= M log (1 - r)

and since /(p+1)(0) is a constant we have the inequality of the theorem. The

function/(p)(z) can be defined on the boundary as the integral of its derivative

and the pseudo-Lipschitz condition (2.8) is an immediate consequence of the

integration of (2.7) from r to 1 along an arbitrary radius. The remark about

the qth integral follows from the definition and the fact that the derivative

of an indefinite integral is the function itself under the above conditions.

The uniform pseudo-Lipschitz condition (2.8) on the radii, for functions

of class Z/(0, 1), implies a similar condition on the circumference:
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Corollary. Iff(z) is of class L'(0, 1), then f{z) is continuous in the two-

dimensional sense on | z | = 1, and satisfies on that circumference a uniform

pseudo-Lipschitz condition of the form

(2.9) I f(eie) - f(eie') \ ^ M, | log | 8 - 8' | | • | 8 - 8' \,

where \9 — 9'\ is sufficiently small.

Let 9 and 9' be given, \9-9'\ <1. By (2.8) we have

I f(eie) ~ f(reie) j ^ M'(l - r) | log (1 - r) \,

I f(eie') - f(reie') | ^ M'(l - r) | log (1 - r) \.

Also by (2.7) we have |/'(rei9)| log (1 — r) |,

I f(rei9) - f(reie') \ ^ M | log (1 - r) \ ■ \ 8 - 8' \.

The choice \ —r=\8 — 6'\ now yields (2.9).

3. Degree of approximation, unit circle. We now present a proof of the

following theorem, which connects the class L(p, a) whether p is positive,

negative, or zero with degree of approximation:

Theorem 3.1. If f(z) belongs to class L(p, a), 0<a^l, on y: \z\ =1, then

there exist polynomials pn(z) such that we have on the circle \z\ =l/p<l

(3.1) I f(t) - !*»(*) I £ M/p*-«>+*.

For the case p^O, Theorem 3.1 has already been established [Walsh and

Sewell, 1940]; a new proof is given below, Theorem 10.5, second proof. For

the case p<0 we proceed as follows. The formula

f(z) - 2Z a,**™ = -~-.f */*
m=0 2wt J \t\-r<l tn+1(t —

where f(z) =2Zm=oamZm, \z\ <1, is well known. Thus we obtain

n+i     _ r)p+«2Trr

1/(0    A, \.\>dt, \ z \ < r,

< M (1Y= 2TW
r»+!(r - 1/p)

If we let r„= 1 — 1/w, we have for n sufficiently large

Afi(l/«)"+" M2

^ 1/p < r.

/(z) - yz a« <
pn+i(i - i/»)n+i

<--i z \ = 1/p,

since (1 — l/w)n approaches l/e as n becomes infinite. For a suitably chosen

constant Af2 this inequality is valid for all n, n = 1, 2, • • • , and the proof of

the theorem is complete.

By way of complement to Theorem 3.1 we state the following theorem,

whose proof is postponed until §4:
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Theorem 3.2. If f(z) belongs to class L'(p, 1), p^ — 1, then there exist poly-

nomials pn(z) such that we have on the circle \z\ = 1/p < 1

(3.2) |/(2) - pn{z)\ g M/Pn-nP+K

Of course the hypothesis of Theorem 3.2 is less restrictive than that of

Theorem 3.1 in the case a = l, p^—1.

4. Operations with approximating sequences. It is our object in the pres-

ent section to show how certain assumptions on a function imply immediate

results on degree of approximation by polynomials to the various derivatives

and integrals of that function.

Theorem 4.1. Letf'iz) be of class L(p, a), p^ -1, 0<a^ 1. Let pn' (z) de-

note the sum of the first w + 1 terms of the Taylor development of /'(z). Then we

have for \ z\ = 1/p < 1

I/,\j'(z) - p:(Z)]dz
0

^ Af/p"-tt"+a+1.

We have the usual formula

zn+lf'(t)1   r zn+1f'(t
f'(z) - pi (z) = — -—
1 W     V W     27riJli|=r /»+'(/ -

<ft, I z| ^ 1/p < r < 1,
2)

and hence

f 2 r n If /'(<) f 2 3"+1
[/'(z) - fc' (z) & = — J—- dt-dz,

J o 2x* J |(|=r /"+l       ^ 0   / — Z

where for simplicity the path of integration is chosen along a radius. But for

I /1 > I z I we have

c zn+i        l r sn+2      2"+3 1
I -dz = — -+-h • • • ;

Jo t - z t \_n + 2     (n + 3)t J

for M=»' and Izl ^1/p the modulus of this function is dominated by

i~r—*—n.
P"l_l - 1/rpJ«p

Thus by the method employed in the proof of Theorem 3.1 with r„ = 1 — 1/w,

we obtain the inequality

("[/'(*) - p:(z)]dZ
J 0

S Mi/pnn"+a+1, I 2 I =S 1/p,

and the proof of the theorem is complete.

Theorem 4.1 is stated merely for the first integral of a function of class
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L(p, a), but obviously extends to the iterated indefinite integrals of every

order. Theorem 4.1 thus yields a new proof of Theorem 3.1 for the case p = 0,

and furnishes a proof of Theorem 3.2, which was not proved previously.

Another theorem relating to integration of approximating sequences (and

which extends to iterated integrals of arbitrary order) is

Theorem 4.2. Let f(z) be analytic interior to y and continuous on y. Let

there exist polynomials P„(z) such that we have

I /(z) — P„(z) I £ e», s on y.

Let p„{z) denote the sum of the first « +1 terms of the Taylor development of f(z).

Then for | z| = l/p < 1 we have

J a
^ Men/n-p"

Theorem 4.2 admits of a relatively simple proof, but is to be reconsidered

later (§7), and hence is not established in detail here. It may be noted that

Theorem 4.2 with its extension to higher integrals yields by a transformation

z' = az a. new proof of Theorem 3.1 for the case p>0 by virtue of Theorem 3.1

itself for the case p = 0.

In connection with the differentiation of approximating sequences we also

have two results analogous to Theorems 4.1 and 4.2:

Theorem 4.3. Letf(z) be of class L(p, a), p^—l, 0<a^ 1. Let pn{z) denote

the sum of the first n +1 terms of the Taylor development of f{z). Then we have

for \z\ = l/p<l

|/'(z) - p:(z)\ ^ M/p»-nP+°-K

Theorem 4.3 can be proved by the method used for Theorem 4.1, and is

in a sense to be generalized later as well (Theorem 7.9).

Theorem 4.4. Letf(z) be analytic interior to y: \z\ <1, and continuous on y.

Let there exist polynomials Pn(z) such that we have

I /(z) - Pn(z) l = u, * on 7.

Let pn(z) denote the sum of the first w + 1 terms of the Taylor development of f(z).

Then for \ z\ = l/p < 1 we have

I f(%) - pi (a) I ^ Mmn/p\

The proof of Theorem 4.4 is likewise postponed (compare Theorem 7.10

below). Both Theorem 4.3 and Theorem 4.4 extend at once to higher deriva-

tives.

5. Inverse problem. Examples. In the direction of a converse to Theorem

3.1 we establish
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Theorem 5.1. Let there exist polynomials pn(z) such that we have

(5.1) |/(z) - pn(z) \ =g M/p"-«"+«+\ I 3 I = i/p < 1,

where p is integral and 0 <a 5= 1. Thenf(z), if properly extended analytically from

the circle \ z\ = 1/p, belongs to class L(p, a) on \ z\ = 1 if p+a+\ is not a posi-

tive integer, and to class L'(p, a) if p+a+l is a positive integer.

Theorem 5.1 has already been established for the case p^O, a<l (Walsh

and Sewell [1940]). From (5.1) we may now write

I f(z) - pn+1(z) I ^ jtf/p"+1- (n + iy+"+\ | *| = 1/p,

whence also by (5.1) we have, whether p+a + l is positive or nonpositive,

(5.2) I pn+1(z) - pn(z) I ^ 2M0/p"-w»+"+\ I'cj = 1/p.

The extended Bernstein Lemma (e.g. Walsh [1935, p. 77]) then yields

(5.3) I pn+l(z) - pn(z) I ^ 2MoPrn+1/n"+"+\ \ z \ = r > 1/p.

We define/(z) in the region l/p< |z| <1 by means of the convergent se-

quence pn{z), so from (5.1) we see that/(z) is analytic throughout the region

|z| <1. On the circle |z| =r<\, r>l/p, we can write

f(z) = fx(») + [p2(z) - Pi(s)] + [p3(z) - p,(z)] + ■ ■■ ,

CO

(5.4) I /(z) I g Jkfi£ rV»"+a+1.
n= 1

If p-\-a <0 we write q = p-\-a-\-\,

CO ^»00 /»CO

£ rn/n" ^ I   rxx~qdx = I   ex log rx~"dx

n=2 J 0 0

= T(l - g)(- log r)o~l ^ Ms(l - f>«-»;

thus we have for |z| = r<l

j /(z) I = M(l - ry+",

so the conclusion follows unless p+a+l is a positive integer.

If now p+a + l is a positive integer, we write from (5.1) by the least-

square property of the Taylor development of /(z) =2Zk=oakZk,

M2

1/(3)  - Pn{z)\2\dz\
Lit J \,\=i/0

2tt J ij I=i/p

[2

/(«) - \dz\= Z| a*|2/p";
t—0 n+l

it follows that we have for every n
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I an I ^ M1/n"+tt+1,       I nP+a+1an \ g Mx,

I (n + p + a)(n + p + a — 1) • ■ • (n + \)nan | ^ M2.

As in the use of (5.4) for p+a<0 it follows now that/(p+a+1) (z) is of class

L( — 2, 1), hence that/(z) is of class L'(p, a); Theorem 5.1 is established.

It will be noticed that there is a discrepancy of unity in the exponents of n

in Theorems 3.1 and 5.1, in such a way that those theorems are not exact

converses of each other. This discrepancy is inherent in the nature of the prob-

lem, as we shall show by examples. Such examples have already been pro-

vided [Walsh and Sewell, 1940] for the case p ^ 0: we consider now the case

p<0.
Let p<0 be given, and also a, 0<a<l. If for every function of class

L(p, a) we could establish the existence of polynomials pn(z) with

(5-5) 1/00 - #•(*)) £ <*, |z| = l/P<l,

where

(5.6) lim pnnp+aen = 0,
n—*«

we should have by virtue of the least-square property of the Taylor develop-

ment

— Ü f       I /(*) - Pn(z)\2-\dz\^ f       I /(z) - ».(*)\2-\dz\

where s„(z) is the sum of the first m + I terms of the Taylor development

/(z) =2~ln~o^nZn■ Let F(p)(z) denote the (—p)th indefinite integral of/(z), where

the constants of integration at the origin are chosen to vanish:

F<*»(z) = £
„_o (n + \){n + 2) ■••(»- p)

Thus we have

y k—p

A=Vt>

»A a*z
F^{z) - £

k=0 (k + l)(k + 2) • • • (* - p)

I a* I2

dz\

P P2k~2p(k + l)2(k + 2)2 ■ ■ ■ (k - py

. 2tM    »    I ak\2

2
M   r 2wMen

'/(a) - sn(z)\2- I dz\ ^
M r

n-2"J\ 2/.
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The extreme members of (5.7) form an inequality valid for an arbitrary func-

tion F-p)(z) of class L(0, a), an inequality which taken together with (5.6)

has already been shown (loc. cit.) to be impossible.

The reasoning just given does not apply to the case a=l, but for this

case we can establish a less precise result. We shall show that it is not possible

to prove for every function of class L(p, 1) the existence of polynomials pn{z)

such that we have (5.5) valid with

(5.8) e„ ^ M/Pn-nP+1+s, 8 > 0.

If (5.8) could be proved for every function/(z) of class L(p, 1), inequality

(5.8) could be proved for every function of class L(p-\-i, 5i), 0<5i<6\ which

is necessarily also of class L(p, 1); but we have just proved that (5.5) and

(5.8) cannot be established for all functions of the class L{p-\-\, 5i); this re-

mark completes our proof that Theorem 3.1 cannot be essentially improved,

in the sense that for arbitrary p and a the exponent of n in the second member

of (3.1) can be replaced by no larger number.

We show now that Theorem 5.1 cannot be improved, in the sense that

in (5.1) the exponent of n in the second member can be replaced by no smaller

number. Let p and a be given, 0<a<l. We choose the function

/(z) = (1 - zY+" = £ tws*

from which there follows (e.g., de la Vallee Poussin [1914, §399])

(5.9) I an \ ^ M/nP+"+\

Thus we have

/(*) - £ akz ^ £ M/pk-k"+"+\ I z| = 1/p.
fc=n+1

Since pw ■ kp+a+l increases with k, for k sufficiently large, we find for the last

sum the bound
00

Mp-nl2.n-p-a~l p~k'2 = Ml/pn-n"+a+1.

k=n+l

That is to say, we have exhibited a function /(z) of class L(p, a) and of no

higher class for which (5.1) holds; thus for arbitrary p and 0<a<l the ex-

ponent of n in (5.1) cannot be decreased without altering the conclusion of

Theorem 5.1; this conclusion applies, by supplementary reasoning similar to

that used in connection with (5.8), also for arbitrary p with a=l.

6. Degree of approximation—isolated singularities. In the preceding sec-

tion (§5) it was shown that if/(z) = (1 -z)f+"=£^_0amzm then

(6.1) /(z) - £ amzm \ ^ M/p" ■ np+a+1, \ z\ ^ 1/p,
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a higher degree of approximation than is asserted in Theorem 3.1; for /(z)

is of class L(p, a), unless p+a is a non-negative integer, and is of no higher

class. Functions with isolated singularities are thus of particular interest in

the study of the degree of approximation; this section is devoted to an in-

vestigation of such functions.

We state a generalization of the above conclusion:

Theorem 6.1. Let

/(z) = FiQs) + F2(z) + • • ■ + F.(z)

+ ki(z — Zi)hl + ■ ■ ■ + k„(z — zß)hf, I z,-| = 1, /= 1, • • • , Mi

where Fi(z), i = l, ■ ■ • , <r,is of class L(pi, a.) or L'(pi, on). Let Hi = pi-\-on and

h = m'm (hj—1, Hi). Then there exist polynomials pn(z) such that

I f(z) - pn(z) I ̂  M/p*-n\ I z I = 1/p.

The proof simply consists in applying Theorem 3.1 and the conclusion

(6.1), and is left to the reader. If here/(z) =£a„z", we have \ an\ = M\/nh.

In a similar way we obtain for the special function/(z) =log (1 — z), which

is of class L'( — 1, 1), a stronger result than that of Theorem 3.2 :

Theorem 6.2. Letf(z) =log (1 —z) =£m_iZmAw- Then we have

f(z) — £ zmlm ^ M/pn-n, I z I = 1/p < 1.

These theorems can be extended to somewhat more general functions by

means of certain inequalities concerning multiplication of series. [See, e.g.,

Hardy and Littlewood, 1935.] If /(*) =2ZZ-0a»,z™, g(z) =2ZZ=obms™, f(z)g(z)

=2ZZ-oCmzm, and if |am| ^Mx/rm■ mh, \bm\-=Mi/pm, \^r<p, then \cm\

^ M/rmmh. Thus we have

Theorem 6.3. Under the hypothesis of Theorem 6.1 or 6.2, the conclusion

is valid if the function f(z) is replaced by the product f(z)g(z), where g(z) is ana-

lytic in j z I ;£ 1.

We also have in the above notation as a consequence of the inequalities

\am\ ^Mi/mh, \ bm\ tkMi/m1, the following inequalities:

\cm\ = M3/mh+l-\ 1 > h ^ I,

I Cm I ^ Ms/m\ I ^ h > 1, / > h 5; 1,

I cm I ^ M3 log m/mh+'-1,       1 = h ^ t

Thus we have

Theorem 6.4. Let f(z) = (z-z^-^z-z^)"^ =XX0amzm, \z1\=\z2\=l,

Zi9*Zi. Then we have
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n

where

en = M/pn-nh\

en = M log n/pn-nhl+h2~l,

1 > hi It h2;

h2 = h\>\, mkt > hi tt 1;

1 - Ai =:

The extension of Theorem 6.4 to functions of the type Ijjt=i(z — z*)'1*-1 is

immediate; details can be supplied by the reader. Also, Theorems 6.1-6.4 ex-

tend with identical conclusions to approximation on an arbitrary analytic

Jordan curve, by replacing the Taylor development by the Faber [1920 ] de-

velopment of the function.

7. Extensions to more general regions. It is obvious that much of the

preceding discussion can be applied to the study of approximation on point

sets more general than circles; we proceed to discuss some of the details of

this extension. Broadly considered, the extension (for instance Theorems 7.5

7.9) applies to Jordan curves which are required to be smooth but not neces-

sarily analytic; however, some of the following methods of proof (Theorems

7.7 and 7.8) apply only to analytic Jordan curves, so for simplicity we restrict

ourselves to that case.

The reader may notice that some of the following treatment (e.g., Theo-

rems 7.5, 7.9, 7.10, 7.11) applies also to approximation on point sets which

are not connected but are bounded by disjoint analytic Jordan curves, pro-

vided C„ has no multiple points.

Definition. Let T be an analytic Jordan curve in the z-plane. Let the in-

terior of r be mapped conformally onto the interior of y: \w\ = 1, by the trans-

formation w = $(z), z=Sf/(w). The function f(z) analytic interior to F is said to

be of class L(p, a) on V if the function f'[SI/(w)] (suitably defined on y if neces-

sary) is of class L(p, a) on y, where 0 <a ^ 1 and p is an integer, positive, nega-

tive, or zero.

Thanks to the analyticity of the Jordan curves considered, and of the con-

sequent continuity of the derivatives of the mapping functions in the closed

regions, the following theorems are immediate consequences of the discussion

Theorem 7.1. If the function f(z) is continuous on and within the analytic

Jordan curve Y, then a necessary and sufficient condition that f(z) be of class

L(p,a) on r with p~=0 is that/(p)(z) satisfy on V a Lipschitz condition of order a.

Theorem 7.2. Let T be an analytic Jordan curve, and let T(p) be a sequence

of analytic Jordan curves interior to T defined for all values of p in an interval

Po=P<Piby an equation of the form

of §2:
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(7.1) T{p): \F(z)\=p,

where Fiz) is analytic on T, with F'(z) different from zero on T, and with the

property | F(z)\ =pxon T. Then a necessary and sufficient condition that a func-

tion f(z) be of class Lip, a) on T with p<0 is

where N is independent of z and p.

The property expressed by (7.1) and (7.2) is independent of the particular

analytic function Fiz) considered.

Theorem 7.3. If the function fiz) is of class Lip, a) on the analytic Jordan

curve r, 0<a<l, then the indefinite integral of fiz) is of class Lip-\-\, a) on T,

and the derivative f (z) is of class L(p — 1, a) on T.

The proof is easy and is left to the reader.

The class L'ip, 1), £2t —1 on T is defined as the transform of the class

L'ip, 1) on y. Analogous to Theorem 7.3 we have

Theorem 7.4. If the function fiz) is analytic and bounded interior to T, it

is of class L'i — 1, 1) on T.

Iff(z) is of class L'ip, 1), p> —1, on T, then fiz) is of class L'ip—1, 1)
on T; moreover fip+2+k) (z), k > 0, is of class Li — 2 — k, 1) on Y;theqth integral of

fiz) is of class L'ip + g, 1).

Theorems 7.3 and 7.4 are the respective extensions of Theorems 2.2 and

2.3 together with 2.4. Likewise the study of degree of approximation for V can

be treated precisely like the study for the unit circle (§3). We leave to the

reader the proof of the extension of Theorem 3.1, already established [Walsh

and Sewell, 1940] for p = 0, and to which the method of Theorem 3.1 applies

for p<0 with the interpolation formula for equidistributed points:

Theorem 7.5. Let C be an analytic Jordan curve, and let the function fiz)

analytic interior to C9 be of class Lip, a) on Ca. Then there exist polynomials

pniz) such that we have on C

We shall indicate the proof of the extension of Theorem 3.2:

Theorem 7.6. Let C be an analytic Jordan curve, and let the function fiz)

analytic interior to C0 be of class L'ip, 1) on Cp, p= — 1. Then there exist poly-

nomials p„(z) such that we have (7.3) valid on C.

Theorem 3.2 follows from Theorem 4.1 precisely as Theorem 7.6 follows

from a general result of which Theorem 4.1 is a limiting case:

(7.2) fiz) I ̂  n(p! - Py+", z on Tip),

. (7.3) fiz) - Pniz) I ^ M/pn-n"+a.
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Theorem 7.7(3). Let C be an analytic Jordan curve and let f(z) be analytic

in the interior of C0. Let f'{z) be of class L(p, a), p S —L 0<a=l on C„, and

let pi (z) denote the polynomial of degree n defined by interpolation to f (z) in

points uniformly distributed on a suitable level curve Cis interior to C belonging

to the analytic family of curves C„. Then we have for z on C

I fVw
v a

pl(z)\dz ^ M/p"n"+a+1,

where a is an arbitrary point interior to Ci_s, and where the path of integration

contains no point exterior to C.

Theorem 7.7 is stated merely for the first integral, but extends at once

to an arbitrary integral.

We use the well known Lagrange-Hermite interpolation formula for z in-

terior to Cr
1   r co„(z)/'(0

/'(z)-^'(z)=— \ dt, Kf<P,
2-KtJ cr <>>n{t)(t — Z)

where w„(z) = (z — Zi)(z — z2) • ■ • (z —zn+i), the points z,- lying interior to the

curve Cr. Then we have for z interior to CT

r2 r 1       1  r f'(.t)dt c2 <On(z)<fcI [/(«)->.'(*)]&-—!
J a J Cr  0>n(t)  Ja     t — Z

Let w = <p(z) map the exterior of C onto Iw\ > 1 with </>(<»)= «=, and let

8 > 0 be chosen so small that the locus G_s: | <p(z) | = 1 — S is an analytic Jor-

dan curve interior to C, with <p(z) analytic (except at infinity) and Univalent

throughout the closed exterior of C1-5. We set e°= (1 — S)/| <p'{ =0) | =(1 —5)A.

We make use of the inequality [Curtiss, 1935 or Walsh and Sewell, 1940]

-M < »n(z)

e("+«'(»»+1 - 1)
g eM, z on or exterior to Ci_8,

where the points z, are chosen as equally distributed points on Cis, and where

w now and henceforth represents the function w=<p(z)/(l — 5) which maps the

exterior of Ci_j onto | w\ > 1. Thus we have for z on Cis

I w„(z) I ^ M1A"+1(1 - S)"+1.

The function con(z)/wn+1 is analytic for z in the closed exterior of Cis even

at infinity, and w has the modulus unity for z on Cis; so we may write for z

on and exterior to Cis

(7.4) I ton(z) I ^ Af2A"+1(l - 5)n+1|

(3) Some of the details of the present proof are due to the referee, replacing incorrect de-

tails of our original draft.
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We integrate from an arbitrary Zo on Ci_j to z on C, choosing as path the

image ("Radiusbild") in the z-plane of a radius of the unit circle in the plane

of w = 0(z)/(l — 5); for all t on Cr, where r is sufficiently near p, we have

I r wn{z)dz   ^ ^ r A„+i| ^ |„+i| dz| ^ Mt f A"+1| </>(z) |n+I| 4>'{z)dz\

= M4A"+1[ I 0(z) |"+2 - I <t>(z0) \n+2]/(n + 2) ^ MBA"+2/(w + 2).

Here Mb is independent of n, t, z0, and z. If a is a fixed point interior to C\_j,

further use of (7.4) yields for z on C

<an(z)dz /,2° u»(z)dz I I r -

a       i       Z   [       [ J z0

mn{z)dz

1 - z
^ M6A"+2/(« + 2).

Also for / on or exterior to C we have |w„(/)| = M7An+1\<r.(t)\ n+1>0; hence

for z on C we have

f*[f(z) -p:(z)]dz ^ M8max [ |/'(/) I, /onCr]/r"-«.

From Theorem 7.2 it follows that \f'(t)\ = N(p-r)"+a on Cr; if we put

r = p(l —1/w) we obtain the conclusion of the theorem.

This reasoning cannot be carried through if the points of interpolation are

chosen equidistributed on C itself. Let C be the unit circle |z| =1, whence

co„(z) =zn+1 — 1; then for z on C we have

»n+2

(z"-t \)dz
+ 2

— z,

so no additional factor n appears in the denominator due to the integration.

For the particular function/'(z) = (/—z)_1, 11\ =p > 1, of class L( — 2,1) on C„,

with C the circle |z| =1 and w„(z) =zn+1 —1, the conclusion of Theorem 7.7

is false.

An extension of Theorem 4.2, which likewise extends to higher integrals, is-.

Theorem 7.8. Let C be an analytic Jordan curve. Let /(z) be analytic in-

terior to CD, continuous in the corresponding closed region, and let polynomials:

P„(z) exist such that we have on Cp

I m - PrXz) i ^ e„.

Let pn{z) denote the polynomial which interpolates to /(z) in «4-1 points equally

distributed on C\s, 5>0, where 1 — 5 is sufficiently small. Then we have

f   [f(z) - pn(z)]dz
J a

S Men/np", z on C,
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where a is an arbitrary point interior to Cis, and the integral is taken along an

arbitrary path containing no point exterior to C.

The proof here is similar to that of the preceding theorem. Instead of the

Lagrange-Hermite interpolation formula we use the following form employed

by the authors [1940]

(7.5) /(z) - pn(z) = — -—-dt, zonC,
ITTI J cp Un(t)(t — Z)

where P„(z) is the polynomial mentioned above and pn(z) is the polynomial

of degree n which interpolates to/(z) in the roots of co„(z), namely, the points

z, on Cis used in the proof of Theorem 7.7. The procedure goes through with

only obvious modifications^).

An analogue of Theorem 4.3 is

Theorem 7.9. Let C be an analytic Jordan curve; letf(z) be of class L(p, a),

Pli —1, 0 <a^ 1, on Cp. Let pn(z) denote the polynomial of degree n which in-

terpolates to f(z) in «+l points equally distributed on C. Then we have

I f'(z) - pi (z) I ^ M/p"-np+"-\ z on C.

In the formula

1   r oj„(z)/(0
/(z) — pn{z) =-        I -dt, z on or within C, 1 < r < p,

2iri J Cr o)n(t)(t — z)

let us differentiate with respect to z:

m

But |w„(z)| =MAn+l, z on C, and hence by an extension of Bernstein's theo-

i r  fit) rit -       + «„(*)1
pi (z) = -        I - - ,

2iriJCr   unit) I it - z)2 J

(4) We mention here the following theorem, analogous to Theorem 7.8:

Let C be an analytic Jordan curve, let f(z) be analytic interior to C and continuous in the corre-

sponding closed region, and let there exist polynomials P„(z) such that we have for z on Cp

\f{z) - P„(z)| g e„.
Then we have

\f(z) — a0pt,(z) — aipi(z) — ■ ■ ■ — Onpn{£) | ä Men/pn, z on C,

where 2~2akpk(z) is the expansion of f(z) in Faber polynomials belonging to C.

This theorem follows from the formulas (in the notation of Faber [1920])

~^+~idt = T~- ) -—k>n'

normals is unique,for the expansion of Pn(z) in Faber polynomials is unique, whence
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rem [Sewell, 1937] it follows that |w„'(z)| g¥A«+1(» + l), z on C. Thus we

have for z on C

I /'(z) - pi (z) I g M^-max [ | f(t) |, / on Cr]/r"+l;

by using Theorem 7.2 and putting r = p(l —1/re) we obtain the inequality of

the theorem; the proof is complete.

A direct analogue of Theorem 4.4 is

Theorem 7.10. Let f(z) be analytic interior to the analytic Jordan curve C,

continuous in the corresponding closed region. Let there exist polynomials Pn(z)

such that we have on C„

I f(z) - P„(z) I = en.

Let pn{z) denote the polynomial of degree n which interpolates to /(z) in w + 1

points equally distributed on C. Then we have

I f(z) - pi (z) I ^ Mnejp", z on C.

The proof here is similar to that of the preceding theorem except that we

use the formula (7.5). The details are left to the reader.

Theorem 7.10 includes the conclusion of Theorem 7.9 with the restriction

/> = 0, 01; in the boundary case p+a = 0 we set e„ = M0.

The theorems just established are the analogues of those of §§3 and 4;

the latter are limiting cases but not properly special cases of the former. In

the converse direction we have the following analogue of Theorem 5.1:

Theorem 7.11. Let C be an analytic Jordan curve and letf(z) be defined on C.

For each n, n = \, 2, ■ ■ ■ , let a polynomial pn{z) exist such that

I /(z) - pn(z) I g M/pn-n'>+a+1, zonC, p > 1.

Thenf(z), when suitably defined, is analytic interior to C„ and is of class L(p, a)

on Cp if p-\-a+l is not a positive integer, and of class L'(p, a) if p+a+1 is a

positive integer.

The extension of Bernstein's lemma [Walsh, 1935, p. 77] applies here and

there are no essential changes necessary in the proof of Theorem 5.1 as given,

except that in the case where p-\-<x-\-\ is a positive integer we now use the

polynomials qn{z) normal and orthogonal on C. The function /(z) is analytic

throughout the interior of Cp [Walsh, 1935, p. 78], and we have /(z)

=£"-oafc2*(z) throughout the interior of Cp, uniformly on any closed set

interior to Cp. By virtue of the given pn{z) and the least-square property

of the 5„(z) we have

I an I = M1/pn-nP+a+1.

The polynomials qn(z) are uniformly bounded on C [Szegö, 1939, p. 365], so
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by Bernstein's inequality in an extended form we have

I ?»        (2) I ^ M2n       , z on C,

00

I /<ih-«+i>(z) I g £ M3-rk/pk, z on Cr;

the reasoning used in connection with (5.4) now applies.

A consequence of such theorems as 7.5-7.10 is inequalities on degree of

approximation of polynomials of best approximation in the sense of Tchebycheff.

For such polynomials and others (e.g., as in Theorem 7.11), Problem 7,

namely, the study of degree of convergence on C„, 1 <<r<p, can be treated

by the methods that we have already developed.

It is to be observed that the methods we use in §7 apply to much more

general measures of degree of convergence and asymptotic conditions than

those exhibited by functions of class L(p, a). In fact we have the following

theorems:

Theorem 7.12. Let C be an analytic Jordan curve and suppose on each C,

for which r lies in an interval r0<r<p we have |/(z) | ^<p(p — r), where the func-

tion <p(x) is defined in some interval 0<x<x0. Then there exist polynomials

pr. (z) such that we have

, M-<p(p/n)
f{z) ~ Pn{z)     = -T^L±, z on C.

p"

The usual results hold also for approximation to integrals and derivatives

of /(z) ; additional factors n appear on the right in denominator or numerator.

Theorem 7.13. Letf(z) be defined on C and polynomials pn(z) exist such that

. <p(l/n)
f(z) - pn{z)   S -> 2 on C,

p»

where <p(x) is defined and monotonic throughout some interval 0 <x <xo= 1. Then

we have
00

I f{z) I ^ ME*(1/»)'"/p*, z on Cr, r < p,
71=1

provided this series converges.

8. Approximation on a line segment. Trigonometric approximation. Ap-

proximation on a finite line segment is analogous to approximation on an

analytic Jordan curve, provided the approximated function is analytic on the

given segment. In §7 we studied approximation on Jordan curves by inter-

polation in equally distributed points; these same points serve in the study

of approximation on a line segment.
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The roots of the polynomial Tn(z) =2~n+1 cos (n cos-1 z) are equally dis-

tributed on the segment C: — 1 ̂ z^ 1. The inequality

Tn{z)

Tn(t)

M
^ — > z on C, t on Cp,

is known [for instance Walsh and Sewell, 1940]. We may choose M independ-

ent of p, for p>p0>l. Consequently the discussion of §7 concerning direct

approximation on C is valid in the present case; we state

Theorem 8.1. // C is the segment — l^z^l and /(z) is analytic interior

to CP and of class L(p, a) or L'(p, a) on Cp, then there exist polynomials p„(z)

such that we have on C

I /(z) — pn(z) I  ^ M/p" •«"+«.

For the case p^O, Theorem 8.1 has already been established [Walsh and

Sewell, 1940]; for the case p<0, the proof follows that of Theorem 3.1. The

polynomials pn(z) are chosen as the polynomials interpolating to /(z) in the

zeros of Tn+i(z). For the class L'(p, a), compare the remarks on integration

below.

In the direction of a converse we have

Theorem 8.2. Let C be the segment — l^z^l and let f{z) be defined on C.

For each «,« = 1,2, ■ ■ ■ , let a polynomial p„(z) exist such that

I f(z) - pn{z) I ^ M/pn-n?+a+\ zonC, p> 1.

Then f(z) when suitably defined, is of class L(p, a) on Cr if p-\-a-\-\ is not a

positive integer, and of class L'{p, a) if p-\-a-\-l is a positive integer.

The proof of Theorem 8.2 is essentially the same as that of Theorem 5.1

for ^>+a + l not a positive integer; for p+a + l a positive integer we proceed

as in Theorem 7.11, using polynomials normal and orthogonal on a particular

Cc, 1 <cr<p, and the inequality

I /(z) - pn(z) I g Mion/pnnp+a+1, z on C„.

The entire discussion of §7 concerning differentiation and integration of

sequences remains essentially valid, except that in differentiation the ad-

ditional factor n is to be replaced by n2; on the segment — 1 ̂ z= 1, we have

I 2V (*)| Zn*/!—1.
In the study of integration of sequences (compare Theorems 7.7 and 7.8)

we use the following evaluation. From the interpolation formula

i c T^z) /(0 - JW*)
/(z) - pns(z) = —    -zr^ —t-dt, -lS.si,

2ltl J c,  I n{t) t — Z

we have by integration
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Thus we have to consider merely

/'z cos (» cos-1 z)dz         1     r T
-=- I cos (n cos-1 z)dz

o          t — z             t — z J Jo

— r r rcos(wcos-1z)d%\—
JolJ J(t-z)

for all / on Cr and z on C we have

'z cos (n cos-1 z)ir dz   ^ Mi/n.

Consequently we obtain the same inequalities for integration of sequences in

the case of a line segment C as for C an analytic Jordan curve.

This completes our study of the line segment. It is of interest to note that

Theorems 8.1 and 8.2 might have been proved by mapping the complement

of C conformally on the exterior of the unit circle y: \w\ =1, and applying

the results already obtained (Theorems 3.1, 3.2, 5.1) for the unit circle. How-

ever the above method is more direct.

We now consider the unit circle and functions analytic in the annulus yp:

p>\z\ >l/p<l. Suppose/(z) =2~lm~ -«c„,zm is analytic in yp; it is well known

that we may write /(z) =/i(z) 4-/2(z), where

co —oO

/i(z) = £ c».zm,       I z I < p, /2(z) = £ cmz", I z I > 1/p.
m=0 m=— 1

If/i(z) and/2(l/z) belong to the class L(p, a) or L'(p, a) on |z| =p we say

that/(z) belongs to the class L(p, a) or L'(p, a) on y„. With this definition it

is easy to establish theorems analogous to Theorems 3.1, 3.2, and 5.1.

Theorem 8.3. Let f(z) belong to the class L(p, a) or L'(p, a) in the annular

region p>|z|>l/p<l, and let f(z) =£^= -*,cmzm. Then with the notation

am = cm-\-C-m, bm = i(cm—c_m) we have the relation

f(eie) — P*0- + £ (amcosmd + bmsmmd) \   ^ M/pn-np+a

L 2      m_i J I

In the converse direction we are concerned with a polynomial pn{z, 1/z)

of degree n in z and 1 /z, namely a function of the form

pn(z, 1/z) = a_„z-" + «■•• + «6 +• v + anzn.

Theorem 8.4. Letf(z) be defined on \ z\ =1 and let polynomials p„(z, 1/z)

exist such that
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I /(z) - pn(z, 1/z) I ^ MIp* ■ n*+a+\ I z I = 1, p > 1.

rAe« /(z), if properly extended from the unit circle, belongs to the class L{p, a)

in the annulus p>|z| > 1/p if p+a + l is not a positive integer, and to the class

L'(p, a) if p-\-a-\-l is a positive integer.

For p = 0, «<1 Theorems 8.3 and 8.4 have already been proved [Walsh

and Sewell, 1938]; for p <0, 0<a^ 1, and for p^O, a=l the methods for the

unit circle may be applied to /i(z) and /2(z); in the latter case we make use

of S. Bernstein's theorem concerning the derivative of a trigonometric poly-

nomial of order n. Theorems 8.3 and 8.4 may be interpreted as results on

trigonometric approximation (loc. cit.); in fact the transformation w = eiz sug-

gests directly the definitions involved in the following theorems; formal defini-

tions and proofs may be easily supplied by the reader:

Theorem 8.5. Let the function f(z) be periodic with period 2w and of class

L(p, a) or L'(p, a) in the band \ y\ <log p>0, z = x+iy. Then there exist trigo-

nometric polynomials tn(z) such that we have for all real z

I /(z) — tn(z) I $ M/pn-nv+a,

Theorem 8.6. Let the function f(z) be defined for all real z and periodic with

period 2ir. Let trigonometric polynomials tn(z) exist such that for all real z = x+iy

I /(z) - tn(z) I ^ M/pn-nP+"+l.

Thenf(z) belongs to the class L(p, a) on \y\ <log p if p+a+l is not a positive

integer, and to the class L'(p, a) if £+a+l is a positive integer.

Results analogous to those of the present section have already been estab-

lished by de la Vallee Poussin [1919] and S. Bernstein [1926], who study

approximation by trigonometric polynomials and approximation on the seg-

ment ( — 1, 1), for the case that the function/(z) has only isolated singularities.

9. Approximation measured by an integral. Well known methods apply

to our results of §§3-8 on approximation, and give us theorems on approxima-

tion by polynomials as measured by line integrals. For instance under the hy-

pothesis of Theorem 7.5 or 8.1 there exist polynomials pn{z) such that we have

(9.1) I   |/(z) - pn{z) \ m-\dz\ ^ M/pm"nm<-»+a\ m > 0.
j c

Conversely an inequality of form (9.1) implies that/(z) is of class L(p — 1, a)

on C„ if p+ct is not a positive integer and of class L'{p — \, a) on C0 if p-\-a

is a positive integer; but of course when (9.1) is given, the function /(z) ap-

pears in our hypothesis merely almost everywhere, and the characterization

of /(z) just given contemplates a revision of the definition of /(z) on a set of

measure zero.
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The statements just made have already been established [Walsh and

Sewell, 1940, 1940a] for the case p+a — 1>0, p+a not a positive integer,

and can be established for the remaining case by standard methods [Walsh,

1935, p. 92]; compare the proof of Theorem 8.2.

These remarks on approximation as measured by an integral apply like-

wise if a suitably restricted norm function is introduced.

10. Integrated Lipschitz conditions and integral asymptotic conditions. We

described in §2 a classification of functions based on results of Hardy and

Littlewood, a classification which we have seen (§§3-5) to be highly appro-

priate in the study of both direct and indirect theorems under Problem ß.

Still another classification, likewise based on results of Hardy and Littlewood,

is of interest and also appropriate in the study of Problem ß. But this new

classification is far less elementary and intuitive than the former one, and

also has been far less used; for this reason we have emphasized the one rather

than the other. Nevertheless the more sophisticated classification deserves

some treatment, which we proceed to develop in the special case of the circle,

and to apply in the study of approximation.

If the function/(z) is analytic for | z| < 1, we use the definition (| z| =r < 1)

this has a meaning for every m > 0, but is to be used below primarily for m = 2.

We shall say that the function /(z) analytic for | z| < 1 is of class L2(p, a),

where p is a negative integer and 0 <a ^ 1, provided we have

We shall say that the function/(z) analytic for ] z| < 1 and with boundary

values almost everywhere on |z| =1 is of class L2(0, a), 0<a^l provided

there is satisfied the integrated Lipschitz condition of order a:

With these definitions, Hardy and Littlewood [1932] prove three important

theorems:

Theorem 10.1. 1/ p+a = 0 and if f(z) is of class L2(p, a), thenfik)(z) is of

class L2(p — k, a).

Theorem 10.2. If p+a<0, p — k+a<0,and if f{z) is of class L2{p — k,a),

then the kth integral off{z) is of class L2(p, a).

Theorem 10.3. A necessary and sufficient condition that f(z) be of class

L2(0, a), 0<a^l, is thatf'(z) be of class L2( — l, a).

(10.1) M2{f) = M(l - r)p+«.

(10.2)
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It is now natural to say that /(z) is of class L2(p, a), where p is a non-

negative integer and 0<ai=l provided/(p+1) (z) is of class L2{ — 1, a). With

this understanding we have at once for every p and k

Theorem 10.4. If f(z) is of class L2(p, a), then the function fk) (z) is of class

L2(p — k, a) and if (p+ct)(p + k-\-a+1) is not a negative integer the kth integral

off(z) is of class L2(p-\-k, a).

As in §2, there is here an exception if a= 1. We define the class L2 (— 1, 1)

as the class of integrals of functions of class L2( — 2, 1), and the class L2 (p, 1)

as the class of (p + 2)th iterated integrals of functions of the class L2( — 2, 1),

where p>—2. It follows that if /(z) is of class L2 (p, 1), with p>—2, then

fw(z), 0<k<p + 2, is of class U(p-k, 1); also fw(z), k^p + 2, is of class

L2(p-k, l);if/(z) is of classL2(p, l),p<-2, then/<«(z) is of class L2(p-k, 1)

and the kth iterated integral of/(z) is of class L2(p-\-k, 1) or L2 (p-\-k, 1) ac-

cording as p-\-kS —2 or p-\-k> —2.

These preliminaries completed we are in position to study approximation:

Theorem 10.5. If f(z) is of class L2(p, a) or of class L2 (p, a), there exist

polynomials pn(z) such that we have for \z\ = 1/p < 1

(10.3) I f(z) - pn(z) I ^ Af/p" •«"+».

In the case p+aiSO, the method previously given (§3) is applicable; we

employ (10.1) and the Schwarz inequality; in the case p-\-a>Q, we use that

same method but applied now to the function /(p+1)(z), and integrate p-\-\

times under the integral sign in the interpolation formula.

We present an alternative proof of Theorem 10.5 for the class L2(p, a),

pz^O. If /(z) =£a„zn is of class L2(0, a) we may write [this method is well

known ]

1   r     f(z) 1 r ^ /(e«)
an =-       I - dz = — I     —— do

2wi J U1=i zn+1 27rJ0 ein9

_ l     p 2ir  jieHe+Tln)\ 1 piT

= - dd = - - /(««"-"•>) ] —-,
2tt Jo e'n$ AttJo e'"e

whence by Schwarz's inequality and the fundamental definition of class

L2(0, a), we have | a„\ :£ M0/n". If /(z) =£a„z" is of class L2(p, a), p>0, we

have by p-io\d differentiation and use of the preceding relation, \an\

= M'/np+a(6). Consequently on the circle |z| =l/p<l we have

n

/(z) - £
,-0

which establishes (10.3) for the case p = 0.

(6) This last inequality is readily proved for functions of class L(p, a), L'(p, a), L%{p, a),

and Lt (p, a), for every p and 0 <a S 1.

* ,      ,         A     1         M' A i
= £  avz>   ^ M'E -^-£ — ^

n+l n+1   PVV*+a nV+«n+1 n"
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The indirect approximation problem is similarly handled:

Theorem 10.6. Let there exist polynomials pn(z) such that

(10.4) I /(z) - pn(z) I ^ M/pn-n*+"+w

is valid for \ z\ = 1 /p < 1; then f(z) is of class Li{p, a) if p+a+l is not a positive

integer and is of class Li (p, a) if p+a+1 is a positive integer.

Our proof of Theorem 10.6 uses not (10.4) directly, but the inequality

00 00

(10.5) £ I a„|2/p2* = Mx/p*»nW+\      f(z) = £ a*',
v=n+l v=0

which is a direct consequence of (10.4) by virtue of the least-square property

of the polynomials s„(z) =£",0a,z" on the circle | z| = 1/p:

£ |0,|yP" = ^- f        \f{z) -sn(z)\*\dz\
t—n+1 2ir J i/p

S^-f 1/0)  - Pn(z)\*\dz\.
lir J 1.1=1/,,

An inequality which follows from (10.5) is

(10.6) I a„|2 ^ M2/«2f+2°+1.

Let us now choose the non-negative integer k in such a manner that we have

2k>2p + 2a + l; we have from (10.6)

CO

/w(z) = £ b,z\      by = (* + k){v + k - 1) • • • (v + 1)«,+*,

(10.7) "=° . .

A consequence of (10.7) is (see below)

I /* OO 00

— I       I /(i)(z) H    I = £ I b„ |2r2» ̂ Ms £ w2*-2p-2«-V
7Tr j |z|=r „=0 n=0(10.8) 2xr

g M4(l - r2)2<p+«-'=),

whence/(Ä)(z) is of class L2(p — k, a). By Theorem 10.4 the &th integral of

/(*°(z) is of class Li(p, a) if £+a+l is not a positive integer; and the kth in-

tegral of/(i)(z) is of class Z,2 (P, «) if £+a+l is a positive integer, so Theorem

10.6 is established.

It remains to justify the last inequality in (10.8); this is accomplished by

the method used in the treatment of inequality (5.4).

It has been noted that our proof of Theorem 10.6 uses not (10.4) as hy-
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pothesis, but rather (10.5). It is of interest to remark that the hypothesis may

be taken as

(10.9) /\f(z) — pn{z) \ m\dz\ g M/pmnnm<-p+a+li2\

where m is an arbitrary positive number. For (10.9) implies by standard alge-

braic inequalities (e.g., Walsh [1935, p. 93])

/J |z|-l

pn+\(z) — pn(z) \ m\dz \ ^ Mi/pmnnm(p+a+1'2\

which in turn yields (Walsh [1935, p. 92])

(10.10) I pn+1(z) - pn(z) I ^ M2/pnin^a+Vi

on the circle \z\ = l/pi, with \<px<p. Inequality (10.10) implies by the

method of proof of (10.5)

I av I /pi S M3/pi n ,

which is precisely of form (10.5) with p replaced by pi, and which suffices to

prove the conclusion of Theorem 10.6.

We mention the following beautiful result, stated without proof by Hardy

and Littlewood [1928]: The class of functions f (6) satisfying an integrated Lip-

schitz condition of order a is identical with the class of functions which can be

approximated in the mean by trigonometric polynomials of degree n with error

not greater than M/n". It is to be noted that Theorems 10.5 and 10.6 have been

proved without the help of this result. Nevertheless this result can readily

be used to give a new proof of Theorem 10.5 for the case p ^ 0, by the methods

already developed by the authors [1940 ].

Theorems 10.5 and 10.6 are obviously to be compared with Theorems 3.1

and 5.1. The discrepancy between the exponents of n in (10.3) and (10.4) is

only 5, whereas that between the exponents of n in (3.1) and (5.1) is unity,

so in this respect Theorems 10.5 and 10.6 are an improvement over Theorems

3.1 and 5.1. It may be remarked, however, that the proof of Theorem 10.6

as given does not admit of direct extension to an arbitrary analytic Jordan

curve C.

Theorems 10.5 and 10.6 are in a sense the best possible results, namely

in the sense that we cannot replace p+a in (10.3) by any a'>p-\-a, and that

we cannot replace p+a in (10.4) by any a" <p+a; we proceed to illustrate

this fact by specific examples.

For an example in connection with Theorem 10.5 we set

f(z) = £ 2^z2, ß>0;
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we have for z = r

CO y» 00

X)2^z2"  ^ I   (2*yr2Xdx ̂  M(l - r)-*,
n=l •/ 1

and hence a fortiori /(z) is of class L2(p, a) where 0<a^l, p is a negative

integer, and — ß=p+a. Also it follows by the method used in §5 that there

exist no polynomials pn(z) such that for every n we have

I /(z) - Pn(z) I ^ M/pnnP+«+s, 5 > 0, I z [ = 1/p < 1.

Thus we see that in the sense mentioned, Theorem 10.5 cannot be improved

for p+a^O; by integration and Theorems 10.2 and 10.3 the conclusion ex-

tends to non-integral positive p-\-a. The case of integral non-negative p-\-a

can be treated as in §5.

For an example in connection with Theorem 10.6 we choose

CO

f(z) = (1 - z)^'2 = £ aMz», ß 0,
m=0

where [e.g., de la Vallee Poussin, 1914, §399]

Mi Mi
(10.11) -^ \am £-, M2 > C.

In §5 we have seen that

n

\f(z)  —   £ «mZ = Ms/nP+Wp", I z| = 1/p.

But we have

i   r * °°
- I    I 1 - z\^-xdO = 2U| ßm\2r2m, I z I = r,
2-zrf J _T m=o

and hence by inequality (10.11) we see that /(z) is of class L2(p, a), if

ß = p-\-a<0, and of class Li (p, a) if /3=£4-o: = 0; in each case/(z) is of no

higher class. The same method as above serves to extend the scope of the

example to all values of p-\-a. Consequently Theorems 10.5 and 10.6 are the

best possible in the sense mentioned.

It may be observed that for 5>1 the Holder inequality

and for 5 = 1 more elementary inequalities establish the conclusion of Theo-

rem 10.5, where now/(z) is an arbitrary function of class Ls(p, a) or LI (p, a);
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suitable definitions of these classes are fairly obvious from our previous defini-

tions. We remark that 1, 1) is identical with the class of functions Hs

studied by F. Riesz [1923], namely functions/(s) analytic for |z| <1 such

that

is uniformly bounded for all r<\.

Theorems 10.5 and 10.6 extend at once to the situations of §8. Theorem

10.5 extends also to the case that C is an arbitrary analytic Jordan curve;

but the writers have not as yet extended Theorem 10.6 to this more general

case. We have in the present paper insisted on ordinary Lipschitz conditions

and asymptotic conditions rather than on integrated Lipschitz conditions

and mean asymptotic conditions because the theory of the latter concepts is

not as yet widely developed, and because the former concepts are relatively

simple and more direct.

11. Direct methods on Problems a and ß. In the above sections we have

established various results on Problem ß, results which are as favorable in

many respects as can be obtained. On the other hand, our methods have been

in part relatively high-powered, for instance in our proofs of Theorems 7.7

and 7.8. However, some results only slightly less favorable than those ob-

tained above and elsewhere can be established by thoroughly immediate and

elementary methods, with a minimum of machinery, as we now proceed to

indicate for both Problem a(8) and Problem ß. For the present we restrict

ourselves to the case of functions analytic in the unit circle y: \z\ =1.

If /(z) is of class L(p, a), p+a^0, our results as already established

(Theorem 3.1) for approximation on \z\ =1 are obtained by elementary meth-

ods; these results refer to Problem ß, and Problem a does not properly pre-

sent itself.

If /(z) is assumed to satisfy a uniform radial Lipschitz condition we can

also proceed by elementary methods:

Theorem 11.1. Let f(z) be analytic and bounded for \z\ <1 and satisfy a

uniform radial Lipschitz condition, in the sense

where M is independent of r and 6. Then there exist polynomials p„(z) such that

we have for all 6

(11.1) f(eie) - f{rei9) \ = M(l - r)«, 0 < r < 1,

(11.2) f(eie) — pn(eie) I S Af'(k>g n)"/na;

(6) For the set C: |z| gl, Problem a. is the study of degree of approximation on C of a

function analytic in |z| <1 satisfying given conditions of continuity on or in the neighborhood

of 7: 121 = 1.
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indeed, the pn(z) may be defined as sn(rnz), where sn(z) is the sum of the first n-\-1

terms of the Taylor development off(z) and rn = 1 — (2 log n)/n.

We set f(z) =2~lk~oakZk, sn(z) =2Zk-oahZk, and by the boundedness of f(z)

f(reie) - sn(reie) | = -       : f

\ 2iriJ i d=i

1   r     (reiS)n+l f(t)

<n+1    (t - z)

<
Mir n+2

1
r < 1,

for z = rei>, where Mi is a constant depending only on /(z). We have from

(11.1) by addition

M>"+2
I f{eie) - sn(rei$) | ^-h M(l - r)a.

1 — r

Corresponding to each n we choose

r = r„ = 1 — 2 log n/n,

whence by writing

2 log n\ n'2 log "~|2 log "/    2 log «y rv    2 log »y2 lo« nj2

which is asymptotic to n~2, we obtain the inequality (11.2).

Theorem 11.1 is a result on Problem a; the corresponding result on Prob-

lem ß is

Theorem 11.2. Let f(z) satisfy the hypothesis of Theorem 11.1. Then there

exist polynomials pn(z) such that we have

I /(z) - Pn(z) I ^ Jlf"(log n)"/pn-na,        I z I = 1/p < 1.

We write

l r zn+i/(/)

lirl J i ,i=1

_i_ r     g"+1/(r<) ^ i 1 f   2"+1^ ~/(f<)]

27Tt J *"+1(/ - s) 27TtJm„l /»+>(*-(I-*)

0 < r < 1.

For each » we choose r = rn = 1 — log n/n, whence by the method used in Theo-

rem 11.1 we have the inequality of the theorem.

The method of Theorem 11.2 extends in an elementary way to yield re-

sults on approximation to integrals and derivatives of /(z); compare §4.
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