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1. Introduction. One of the most fundamental formulas in the theory of

functions of one complex variable is the Cauchy integral formula. It is of par-

ticular value in the Weierstrass-Hadamard approach, i.e., in obtaining prop-

erties of a function from the coefficients of its power series expansion. A

similar formula cannot be obtained for functions of two complex variables

for an arbitrary four-dimensional domain, as is obtained, for instance, for the

bicylinder, where the integration is taken over a two-dimensional surface on

the boundary. Bergman(1) has shown, however, that for certain domains far

more general than those previously considered, i.e., domains bounded by a

finite number of analytic hypersurfaces, an analogous formula does exist, the

double integral being taken essentially over the two-dimensional surface com-

mon to two or more of the analytic bounding hypersurfaces(2).

In this paper we shall obtain growth properties in terms of the coefficients

of the power series expansion of a function /(zi, z2) of two complex variables

analytic in special domains of the type mentioned above; first, with the aid

of Bergman's integral formula, along the two-dimensional surfaces common to

the bounding hypersurfaces, and then, along a class of two-dimensional sur-

faces lying in only one of the bounding hypersurfaces and having a line of

contact with another bounding hypersurface. We also obtain a mapping theo-

rem which determines from the coefficients a convex region in the /1/2-plane,

f(zi, z2) =fi-\-ifi, which must be contained in the smallest convex region of the

mapping on the/1/2-plane of the surfaces considered.

2. Properties of / associated with G2(r). Let us consider a finite four-di-

mensional domain 3)?4 which is bounded by the hypersurfaces

s\(r) = E[z2 = re&\ 0 ^ Xi ^ 2tt],

(2 1) x
s2(r) = E[zi = re * + p(\2)z2 = h(\2, zi), 0 g X2 ^ 2ir],

and which depends on a positive parameter r; p(X2) is assumed merely to have

Presented to the Society in two parts: October 28, 1939, under the title On functions of

two complex variables given by power series expansion, and December 27, 1939, under the title

On the growth of a function of two complex variables given by its power series expansion on certain

hypersurfaces; received by the editors May 28, 1940.

(1) Bergman [2, 3]. See the bibliography at the end of this paper.

(2) Bergman calls such surfaces "distinguished boundary surfaces."
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a first derivative. Let G2(r) be the two-dimensional sürface on the boundary

of 9w4 which is the common part of the bounding hypersurfaces, i.e.,

(2.2) G (r) = Si-s2.

Theorem I. Given a Junction f(zu z2) =S,n=os»2I'z2 regular in the domain

Tl*(r); if M(r) is the maximum-modulus off(zu z2) on G2(r), then

rm+n I amn i
(2.3) M(r) ^ max

,» G(m, n; p)B(p)

where m and n range over all non-negative integral values, B{p) is a constant

depending upon p, and G(m, n; p) is a function of m, n, and p, given by

/. n+i /         i _|_ logt»\m m m
( 1 + x-) max I p(\2) \ xdx —

o    \ m/ log p      1 + log m

when max \p \ < l,fü ä 1,

(2.4)

/' «+Y          1 + log m\m       , ,
I 1 + x-) max I p(\2) \ xdx,

o    \ ml

when max | p \ Si 1, m ^ 1,

1 - max I p(\2) \ n+1

1 — max I ̂ >(X2)
when m = 0 for all p.

Proof of Theorem I. Keeping z2 constant, say equal to t2, we obtain for a

particular value of Zi, say t\,

1   f2*f[h(\2, t2),t2][ire*> +p'(\2)t2]d\2
(2.5) f(tl, t2) — - I-;- "

2t» J0 [(re** + p(\2)t2) - h]

Since the numerator of the integrand is an analytic function of t2, we again ap-

ply the Cauchy integral formula and obtain

/[ä(X2, reix0, re*i]J r* 2t     /» 2jr

{2ti)1Jo Jo(2.6)     J {liriyJa    Jo     [(re** + p(\2)t2) - h}[re*i - t2]

■ [ire** + p're*i]ire*id\id\2.

For the rath derivative o{f(tJt t2) with respect to h, we obtain

dmf(h,h)       m\ C1* f[h(\2, re*>), re*i]W/'(2.7)        a/f (2«)2Jo    Jo    [(re** + p(\2)h) - /1]-+1[rea« - *,]

• [iYeix* + />'(X2)reai]ireiX26fXic/X2.

Let

= (reix° + p(\2)t2) - h,      H2 m reiX> - t2.
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For the nth derivative of 1 /H™+1H2 with respect to h, we obtain by Leibnitz'

rule

»  (m + v)\/H2       VI »!
(2.8) 1 + E I-#(X,)) -

L       tfi     m\v\    \H1        ) AH">+h+lff»+l

Hence we obtain for dm+nf(h, ti)/dtmdtn the expression

m\n\   r2T  r2T      f[h, Xi][jVeix* + £'(X2)reix>]ireiXiv.n\ r" r2

irt)2 J o Jo(liriyJo    Jo    [(re** + p(\2)t2) - h}™+'[re*i - /2]"+1

r       A (m + v)\/Ht VI
•  1+ E , ,    (-— P) d\id\2.
L       r-i m\v\    \E-i   / J

Now
a*»+n/(o, o)

m\n\dtmdtn2

Hence

1     ^.2t f[k,\i][ire** + p're*>]irec/» 2ir 2

' J 0      «/ 0(2iri)2J o    J o    r-"+"+2 exp { j(mX2 + »Xi + X2 + Xi)!
(2.10)

fi+ E
(m + v)!

mW

Taking the absolute value of amn we get

.      ,       1   M(r) max0Sx!S2x [l + | p'fa) \ ]
amn =-

4ir2 rm+n

(2.11)
(w -f- v)!r       A (m + v)\ ,   , 1

1+ E-TT^(max I* I') \A*2-
L       r_i    m\v\ J

Now for m^l, it can be shown that

» r(m + v)l       . .-\
1 + E        ,, maxU(X2)H

,=iL   mw\ J
(2.12)

A / 1 + log m\
^ i + E(i +"-—

When I p I < 1 we have

A (m + v)\ i
1 + 2 -——max I £(X2) I'

(2.13)
f T         1 + log mlm      . .

^ 1 + J    |^1 + x-J max I p\xdx -

and when \p\ St 1,

log p     1 + log w
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"   (m + v)\        .   .       pn+ir l+logm~\m      . .
(2.14) 1 + 22 -max | p \' ^ I        1 + x- max | p \ xdx.

_i     mlvl J0     L m j

When m = 0, (1 — max| p\ "+1)/(1 — max| p \) is the exact value of the left-hand

side of (2.14) for all p.

Therefore for all differentiable £(A2) and non-negative integral values of m

and n we have

M(r)B(p)
(2.15) \am„\ik--G(m,n;p),

where B{p) =max0i>!S!t (1 + |p'\), or

rm+n I a™„I
(2.16) M(r) St

B(p)Gim, »;

To find those values of w and w, say yu(r) and v(r), for which the right-hand

expression in (2.16) is maximum for a given r, we take the logarithm of the

expression, letting — log|am„[ =gmn and employ a generalized Newton poly-

gon method. Then

(2 17) gm" ~ (m ^ n} loS r    loS B + loS G(w> w)

^ &.» - (yu + v) log r + log B + log Giß, v) = C.

We choose m, n, and gOT„ as the x-, y-, and z-axes, respectively, and plot the

points im, n, gmn)- Then the m and n of the first point which lies in the surface

z = x log r+y log r — log Gix, y) —log B-\-k as this surface is translated along

the z-axis from — <x> by varying k, i.e., until k = C, are the /i and r which give

the right-hand side of (2.16) a maximum. If there is more than one point lying

on the surface, the one with the smaller m is chosen; if the m's are the same,

the one with the smaller n is chosen, ß and v are obviously functions of r.

We then have

f+' I a„„ I
(2.18) Mir) St

BGiß, v)

This gives a lower bound for the growth of/(zi, z2) along the hypersurface

g3 = S^LroG2{r), where r varies continuously.

3. The mapping of the surface G\r). Let us introduce the function

(3.1) a) = e =2^ ^rsziz2,
r,«=0

where 0^a^27r and / is defined as in the previous sections. The coefficients

{Ars} are functions of a and a combination of the am„'s such that m^r and

n^s. We define the region 7?2(r) as the product of the half-planes
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(3.2) /i cos a + f2 sin a ^ Q(a, r), 0 ^ a < 2x,

where /i and f2 are cartesian coordinates in the /1/2-plane, and

(3.3) Q(a, r) m log | A,r(a, «) | + (M + „) log r - log G(jt, v) - log B.

Theorem II. Letf(zi, z2) =/i+i/2. PAew /Ae smallest convex domain enclosing

the mapping of G2(r) on the f\f2-plane contains the closed convex region R2(r)

which depends only on the coefficients of the expansion of f(zu z2) and the surface

GKr).

This gives a lower bound, so to speak, of the mapping of G2(r) on the

/1/2-plane.

Proof of Theorem II. Let

(3.4) P(r) = max \e \

on the surface G2(r); then from (3.4) and (2.18)

log P(r) = log I exp {e-iaf*(zu z2) \ \

(3.5) = log I exp {(/1* cos a + f* sin a) ) \

■ I exp { — i(f* sin a — f2* cos a)} \

= /* cos a + f2* sin a

S: log I Aßt{a, a)\ + (n + v) log f - logGGu, v) - log 5 = ö(a, r),

where the * indicates that value of / which gives \P\ its maximum, for a

given a. Now, for each a, Q(ct, r) has a fixed value (depending on r). It is

clear from (3.6) that at least one point of the mapping, namely, (/*,/2*), will

lie in the half-plane

(3.7) fi cos a + f2 sin a St Q(a, r).

The region R2(r) will therefore be contained in the smallest convex domain

containing the mapping of G2(r) on the/1/2-plane. Theorem II is then proved.

It is clear that a similar theorem will hold for any surface for which we

have a lower bound for the maximum of the function /(zi, z2) on the surface.

For example, we can state similar theorems for the surfaces considered in

§§4 and 5.

4. Further properties of the function on other surfaces of the type G2(r).

Let us consider the finite four-dimensional region ^(r) bounded by the three

infinite hypersurfaces:

s*(f) = E[z2 = reA\ 0 ^ Xi g 2tt],

(4.1) s2(r) = E[Zl = re,hl + C2z2, 0 ^ X2 ^ 2v],

sl(r) = E[zi = re%X> — Csz2, 0 ^ X3 ±2 2ir],
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where, as above, r is a parameter and C2 and Cz are positive constants less

than unity. This restriction on Ci and C3 is necessary in order that the hyper-

surfaces of (3.1) form the boundary of a finite closed domain. Let G\\{r) be

that part of s\(r) -s]ir) which belongs to the boundary of SDc4. Now let

(4.2) G\r) - c!,(r) + Gn(r) + c4(r).

Let also g3 = S'LriG2(r), and gL^S^G^r), where r varies continuously and

T\ < °c.

Let/(zi, z2), as before, be an analytic function regular in 3K4. We now ap-

ply Bergman's integral formula(3) for functions of two complex variables

which states that at a point (ti, h) in ÜDc"4,

f(h, h) = — iZ'MUh, h)
2 k.s

f(<t>ks , 4>ks )Bks(tl, h, \k, \s)d\kd\s

2(27rt)2 k,s J JbI.       $k(tu h, Xt)*.(*i, h, X.)

Zks{h, t2, Xfc, X,)
Bks(h, h, \k, X8) =-—-—i k 5^ s,

(+& - own - Q

Zk.(h, h, \k, Xs) = [*.(»!, /i, X.)0(1), X,)
D(\k, Xs)

- X*) *.(»!, 0(2\ X.)],

where B\^ is the surface range of integration. We have in our case

$i = z2 — re* i,

(4.3) $2 = si — reix* — C2z2,

$3 = 2! — re*s + C3z2;

.      M      a* . ~ »i
zi = ^12 = re    + Cite ,jzi - 0

\z2 = 0

(4.4)

(2) tX,
i2 = re ,

.CD        *i     _ fti
(zi = 0i3 = re    — C3re ,
I . (2) «x,
(z2 = 0i3 ■ re ,

zi =

z2 =

CM  _ _1
>23 = -

Ci+Cz

,(2) 1 r     lX, A

c2+c3

[C2re ' + Czre ' ],

[»X i iX 2 -Ire    — re J;

(3) Bergman [2, p. 97] and [3, p. 861 ].
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and consequently,

(4.5)     /(%, ft) = Mitih, ft) + Mu(tu ft) + M23(h, ft)

/(0i2 , c>i2 ){r e )dXidX2

(4.6)

i   r r /(0i2

(2«)2JJB22 (re*>

(2t»0*JX*

(2ttj)2 J Jb2 (reix

(2t»)

+

*2)(reix* + C2fc - /i)

+

/(0i3 i 0i3 ){r e )d\id\3

(reiXi - t2)(re*> - C3k - ft)

/(023 , 023 ){r e )d\2d\3

{re** + C2t2 - h)(re*° - C3t2 - ft)

As in §2 we have that

6"»+"/(0, 0)     d-+»[Af«(#i, ft) + ilf „(<i, ft) + Af,,(ft, ft)']
(4.7) amn =

m\n\dt™dq m\n\dt™dtl

dm+»M12(h, ft)

(4.8)
(2tti)iyJJß2 dtA(re*i

/(0i2 , 0i2 )(r e )

ft)(reix' + c2ft - ft)*"+1J

-1 iXi<^X2

/(0i2 , 0i2 ){r e )d\id\2

so that

(4.9)

m\m r r   /(0i2,

" (2«)2J JB\2  [- $i(ft)]"+1[- **(ft, ft)]m+1

•»+» , ,   (1)      (2). , 2 i(x,+\jV

d    M12(0, 0) f f   /(0i2 , 0i2 )(r e 2)

dtmdq (2«)

A (m + v)!
E       , / (c2ei<x1-x=))"tfXl(iX2.

This yields, by a process analogous to that used in §2,

(4.10)
1

r,!«,!

öm+nMi2(0, 0)

<
Bu(gu)M(r)G12(m, n)

where M(r) is the maximum-modulus of / on G2(r), B(gl2) is a constant de-

pending on the hypersurface gf2 = STrlT}G22(r) and G\%{m, n) is a function of w

and n, also depending on g\2 and is denned in a way similar to G(m, n) of §2.

In the same way we obtain

(4.11)
m\n\

am+BAfi3(o, o) 5ii(Gi3)M(r)Gi3(«, n)

rm+n
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From (4.3), we have

(4.12) *,(/lf t2) = (h - re** - Gjfe), 4>»(tu h) = {h - re** + Cafe).

Hence

sm r i "i a

52,"
(4.13)

and

m r  1 "I

<f L*»*d
I)"1»?! 2~L

„=o ^+1$3"-"+1

(4.14)

(4.15)

Then

dm r l I

6V" L*2*3J

m n (w + n — v — ß)lC2C3
(—l)m+nm\n\ YJ Y)

„=0 „=0 (m — v)\{n — /*)!$£+f+1$f+"-"-f+i

{-\)m+nm\n\  "       1     /C2 $3V

<J>m+n+2 2 r-S(P 9'„_o (w — /i)! \C3 $2/

mini

d    M23(0, 0)

(W + » — V — ß) l /«f;

(m — v) I

(1)    , (2),

<j_rr  I /(c623,023) I a i

= 4tt2J Jb\3        r™+»        „=0  (« -

™   (m + n — v — ß)l
■ 2-i-:-~-d\2d\3

-i-y

(4.16)
(m — v)

< B23{G\3)M(r) ^

rm+"      „=o (« - m) ! \C3

+ W — y — y)!

—(-)"

(m — v)

The constant ^23(^23) is given by (1 /'47r2) JJBl3dK2d\3, where the precise limits of

integration are obtained by a tedious process and can be omitted here since

they are not necessary for our purpose; it may be noted, however, that

0<-B23<l. We shall denote by G23(m, n) the expression

(4.17)

This gives

1

„=0    (W — m) ! \C3/ v=0

C2y a^ [m + n — v — ß) I

(m — v) I

(4.18)

I        1 /
dmn I  — -— (

\dm+nM12(0, 0)

+

dm+nM13(0, 0)

+

dm+nM23(0, 0)1

M{r)   1    3 3
^-2J Bks{gks)Gk,{m, n).

rm+n   2 M=1
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Therefore

(4.19) Af(r)St —-
h>Z'UB{gks)Gk,{m,n)

Those values of p and v which make the right-hand side of (4.19) a maximum

can be obtained by a process similar to that employed in §2. Hence

(4.20) M(r) St
a?.

lI'ts,,^*.(sL)ct,(M, «0

We can then state

Theorem III. Given a function

00

/(Zl, Z2)  =   X) a">nZlZ2
m,n=0

regular in the closed domain 9W4(r); then along

M(r) St

SG (r) =  S (G«(r) +G„(r) +G„(r)),

I £ \«-lBks(gL)Gks(ß, v)

5. Properties for the function on certain classes of surfaces lying in the

boundary and different from G2(r). We next wish to consider the growth of

the function f(zi, z2) over a special class of surfaces H2(r) belonging to the

boundary of W. Let

(5.1) H\r) m E[Zl = f(r, \h a), z2 = re*1, \™ ^ Xi ^ xf, a ^ <r £ <r2]

where for all cr satisfying cTi5S<r<cr2, and for any fixed Xi in the range consid-

ered,

r(r, Kb a) G 3i(r, Xi),
2 2 2

3i(r, Xi) a /4i(r, \i)-A2(r, Xx);

j4i(r, Xi) = E[ \ zi — C2z2| g r, z2 = re '],
(5*2) 2 r - i t'x11

At(r, Xi) = £[ I Zi + C3z21 ̂  r, z2 = re \;

and for er=o-2, with Xi again fixed,

Kb cr2) G ä*(l», Xi),

where si is the boundary of 3,(r, Xi). It will be assumed that the set of all

points of H2{r) for which Xi has an arbitrary fixed value in the range consid-



208 ABE GELBART [March

ered is a continuous curve hl(r)(*) with an initial point Zi = f(V, Xi, <ri(Xi)), and

a terminal point on s\(r, Xi). The surface H2{r) lies completely in that part of

sl(r) which belongs to the boundary of the 3)?4(r) of the previous section. A

portion of the boundary of H2(r) lies on G2(r) of (4.2).

Let the maximum-modulus of /(zi, z2) on H2(r) be y(r). We now map

(using for simplicity the same notation for the mapped region) 3? into the

unit circle so that Zi = 0 goes into itself and the direction of the real axis,

1\[(zi) =0, at the point Zi = 0, remains unchanged. The curve hx(r) maps into a

segment of a continuous curve, its initial point determined by a = cri(Xi) and its

terminal point lies on the unit circle. Now let 6= \zi\ = | f(r, Xi, <ji(Xi))| for

X(L1} =Xi^X(2). The quantities 6 and a=X(f—X(J' were introduced by Bergman

and are the characteristic numbers of the surface(6).

One form of the Milloux theorem is(6): Let / be a continuous finite arc

lying in the unit circle | z\ ^ 1 joining a point z0 within the circle to a point on

the boundary. Let W(z) be regular, single-valued, and | W(z) | <1 inside the

unit circle, and let | W{z) | ^co on /. Then

(5.3) I W(0) I < to"''*sin~' ci-«')/d+9'),

where 6' = | z0|.

Using this theorem for the mapped region 32 with

/(*», Z2*)(5.4) WM.-!±JL±l,
M(r)

we have

(5.5) \w(z1)\=—-^-^-^^<1,
11 M(r) M(r)

and get, letting 6 = (2/V) sin _1(1 —0)/(l +Ö),

(5.6) |/(0, z2) I < M'-Qy®,

where M{r) is the maximum-modulus of f(zh z2) in SDJ4, Xi* is an arbitrarily

chosen value of Xi in the range considered, and z2=z2* = rea*.

Now

1" /(0, reix>)           r\?> /(0, re<x0
a0n = -A -—— c^Xi + I -TT— d\i

1   i fxS1> 1(0, reix>) f>
On = - <    I -TT-        ttXl + I

2TTt{J0        rne,nXi Jxf

(5.7)
r2x /(0, reiX>)

JXi2'        rnem\1 )

(4) The restriction that hl(r) be continuous is not essential since theorems of the Milloux

type hold for more general one-dimensional sets.

(6) Bergman [l, pp. 347-348, Corollary]; and [4, pp. 200-201].
(6) R. Nevanlinna [S].
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,      1 f f»P  1/(0, r^O I   _        pi<2)   I /(0, re^O |
2tt{Jo rn Jxi"

(5.8)

and

+

v

r" 1/(0, fi*Q I \
Jxi2' r" T

(5.9) \a0n\ <
1

(2tt - a)M +
2irrn

where M = max |/(0, z2) | =max |E»"oao»zj|. Then

2tt f i don i rn    Ml     M     / y \«
(5.10) — -!-+ — ^ ( — ) .

«L   I       MAM \M/

Let A be denned by the equation

(5.11) A=l_^_,
M

H being that n which maximizes | aon \ f*, and fj. depends on r. Then A is posi-

tive.

If a > 2tA, we have that

rl/      2x x-ie-'w
(5.12) 7w^wL-(i--a)J ,

where the right-hand side is positive.

From these results we can state

Theorem IV. Given the function

oO

/(Zl, Zi)  =   2~1  QmnZl Zi,
m,n=0

regular in Wl4{r).Let max \ f(zh z2) | ^ y(r) on the surfaceH2(r) of (5.1) having the

characteristic numbers d(r) and a, a =X(f — X^ > 2xA, where A m 1 — | a0ß \ r"/M;

then

VM(r) / 2xA\-l«"1(«'

(5..3J ^^fel'-T)] '
w&ere Af =max |/(zi, z2) | awt^    = max |/(0, z2) |.

Since
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a lower bound for y(r) can be obtained in terms of the coefficients of/(zi, z2)

by replacing in (5.12) M{r) by the right-hand side of (4.20), M(r) by \aop\r",

and the M(r) in A by
I M'+l

a0ll' I pi

Pi — r

where

(5.16) I a0><'I Pi  =   1-u.b.   [max | a0n \ p ],
i+e<P<« n

for an arbitrary positive e. p\ is a function of r and of the coefficients {oon},

and can be determined by a process similar to the Newton polygon method.
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