
ON THE CLASSIFICATION OF THE MAPPINGS
OF A 2-COMPLEX

BY

HERBERT ROBBINS

1. Introduction. The continuous mappings of one complex into another

may be classified in two essentially different ways. Two mappings are called

homotopic if one may be deformed into the other, and the relation of homo-

topy partitions the set of all mappings of a complex K into a complex T into

disjoint subsets of homotopic mappings. This classification is possible for the

most general spaces, irrespective of their combinatorial structure. The other

way of classifying mappings is according to their homology behavior. Any

mapping/of K into T may be deformed into a simplicial mapping, assigning

to the vertices of each simplex of K the vertices of a simplex of T of the same

or lower dimension, and affine in each simplex^). Such a mapping induces a

homomorphism of the homology groups of K into those of T, and of the

cohomology groups of T into those of K, for each dimension r and coefficient

group G. Two mappings which induce the same homomorphisms for each r

and G may be called homologous, and the set of mappings of K into T may be

classified by this relation. It is easy to show that if two mappings are homo-

topic they are homologous. The converse is not true in general, but holds if K

is an M-complex and T an w-sphere. This theorem is due to H. Hopf, and has

been generalized by W. Hurewicz to the case where T is one of a more general

class of spaces whose rth homotopy groups vanish for r<n(2).

Mappings may also be classified according to the homomorphisms they

induce of the fundamental group of K into that of T. Again, homotopic

mappings induce the same homomorphisms. Under certain conditions, when

T is an "aspherical" space, whose rth homotopy groups vanish for r> 1, these

classifications coincide, as shown by Brouwer and Hurewicz (3).

Although in general homotopy provides a more finely graduated classifica-

tion of mappings than combinatorial and group-theoretical methods, it is one
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of the objects of combinatorial topology to give combinatorial conditions

which will be sufficiently strong to ensure homotopy. In all cases where

such conditions have been given heretofore, with the exception of some re-

cent work by H. Whitney(4), the space T is assumed to be simply-connected,

or the higher dimensional homotopy groups are assumed to vanish. It is the

object of this paper to give combinatorial methods which shall be adequate to

classify the mappings of a 2-complex K = K2 into a perfectly general space T.

The results of the present paper give necessary and sufficient conditions for

the homotopy of two mappings of a 2-complex into a space T\ these involve

the use of chains in K with coefficients from the fundamental group and

2-dim. homotopy group of T, and are given in Theorem 4.

The author wishes to express his deep indebtedness to the work of Whit-

ney mentioned above for the stimulation of his interest in this subject. With-

out the help of Professor Whitney's many suggestions and constant counsel

and encouragement this paper could not have been written.

2. Coboundary and product of chains. By the coboundary 5<rn of an «-sim-

plex an = XoX\ ■ ■ ■ xn we mean the set of all (» + l)-simplexes which have it

as an «-face, with orientations determined by oxax\ ■••»„** ?f xx0xi ■ ■ ■ xn

where the summation is over all vertices x of K such that xxoXi • ■ • x„ is an

+ -simplex of i?(5). A chain is a cocycle if its coboundary vanishes, and

two cocycles are cohomologous if their difference is a coboundary.

Let the vertices of the complex K be given in a definite order, and

suppose that x,Xj ■ ■ ■ Xi is positively oriented when i<j< ■ ■ ■ <l. Let

AT =Yai<> - ■ -irxn ' ' ' **, and Bs =Y,ßh - ■ isxh ' ' ' xh De r- and s-chains re-

spectively. Then by their product Ar\JBs we mean the (V-|-s)-chain(6)

A'VJ B° = X«i,-A...irtA' • • *<,+,

The coefficients a and ß may be from a group or from any system for which

an operation aß is defined.

3. The space T and its covering space. Let P be a fixed point of the space

r(7). The paths Pp from P to the points p of T define the points of the cover-

ing space T. Two paths are equivalent if they have the same endpoint and

if one may be deformed into the other leaving the endpoints fixed; equivalent

paths define the same point of T, which is topologized in the usual way, by

letting a neighborhood of a path consist of all paths which are continuations

(4) Unpublished; classifying mappings into projective spaces. Many of the methods used

in this paper have been used in the present work. See also S. Eilenberg, Annals of Mathematics,

vol. 41 (l°4f)i, pp. 231-251, for references to work of Pontrjagin and Freudenthal.

(6) See Whitney, three papers in Duke Mathematical Journal, vol. 3 (1937); especially

pp. 51-55.
(6) See Whitney, Proceedings of the National Academy of Sciences, vol. 23 (1937), pp. 285-

291; especially p. 286.

(7) It is usual to assume that T is connected and locally 0- and 1-connected.
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of it within a given neighborhood of its endpoint. We shall denote by 4> the

function which assigns to each point of T the endpoint of a path which defines

it; then $ maps T onto T. A path (or rather, a class of equivalent paths) with

endpoint p will be said to lie over the point p, and may be denoted by pi,

the subscript denoting the particular path from P to p which defines it. We

denote the "point-path" which lies over P by P.

Let 5 be a simply-connected space (that is, one whose fundamental group

vanishes) with a fixed point s, and let/map S into T with/(s) =P. Then there

is a mapping / of 5 into T with f(s) = P, defined as follows: choose a path sx

in 5 from 5 to x, and letf(x) be the path in T (i.e., point of T) defined by/(sac).

Since S is simply-connected, this is independent of the particular path chosen.

We call / the mapping induced by /. Clearly, $/ =/. Conversely, let F be a

mapping of 5 into T with F(s) = P; then /= $F is a mapping of S into T with

f(s)=P such that f==F. Let /i and /2 be two mappings of 5 into T, with

fi(s) =/2(s) =P; then /i and /2 may be deformed into each other, keepings

at P, if and only if /i and /2 may be deformed into each other, keeping s at P.

Thus the homotopy-classes of the mappings of 5 into T are put into one-to-

one correspondence with those of S into T, with s at P or P respectively.

Let So be the unit 2-sphere in Euclidean 3-space, with a south pole iV

The homotopy-classes of Sq into T with P0 going into P are the elements of

the 2-dimensional homotopy group 7r2(7")(8). By pushing away from Po it is

clear that each element of 7^(7") may be represented by a mapping in which

each point of S2, goes into P, with the exception of a small 2-cell whose bound-

ary goes into P and whose interior is mapped into T as though it were a

2-sphere corresponding to S2,. Clearly, this patch may be pushed over S% into

any position. If the element h of ^(T) is defined by the mapping/, we write

h = h/. The sum hfl-\-hfi of two elements of 7r2(T) is defined by a mapping of S2,

into T which carries each point of 5q into P, except for two disjoint patches,

one of which is mapped by /i and the other by /2. Since the position of the

patches is of no consequence, ir2{T) is seen to be an abelian group. By the

preceding paragraph, 7r2(7") «7r2(r), where the isomorphism is defined by

letting each mapping/ correspond to its induced mapping/.

Let G be the fundamental group of T, with unit element 1. We shall define

an operation gh, where g is any element of G and h is in 7r2(7"), such that gh

is in 7r2(7") and the laws

(3.1)

(3.2)

(3.3) g(hi + h2)

gi(g2h)

Ih

ghi + gh2

(gig2)A,

h

(8) For homotopy groups, see Hurewicz, loc. cit. Si may be replaced by any homeomorphic

set, with a fixed point and a chosen orientation.
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hold. The definition of ghf is as follows: let a circle rise from P0 to the equator

as t goes from 0 to 1; map this 1-cell of circles into the points of a path T

in T defining g, each circle Ct going into the corresponding point r( of T, and

map the upper hemisphere of S2, into T by /. The resulting mapping defines

ghf, and the three properties stated are easily verified.

If a fixed mapping / defining hf of x2(r) carries another point P* into P

also, we may regard P* as the fixed point of S2, and get another element hf.

More precisely, we may consider the mapping/* of S2, into T obtained by first

rotating S2, to bring P* to Po and then mapping by/. Suppose / maps a path

P0P* into g of G. Then

(3.4) kf = r1*/-

This is clear if we consider the induced mappings/and/* into T. For under/,

a point x of S2, is mapped into a path f(Pox), while under /* it is mapped into

a path which is equivalent to the path g~1f(Pt>x). This fact may be used to

give a simple geometrical proof of (3.3).

Suppose/maps S2, into T, defining the element h of 7r2(r), in the following

manner: a small 2-cell a goes into P, and a path P0P* from P0 to the boundary

of <r goes into the element g of G. Then if we replace the mapping of a by one

which (regarding <r as a 2-sphere) defines the element h' of tti{T), the resulting

mapping of the whole of S2, defines an element H of 7r2(r), and

(3.5) H = h + gh'.

For regarding P* as the fixed point of S2, shows that g~iH=g~lh-\-h' by defini-

tion of the sum of two elements of 7r2(P), and going back to Po (i-e-, applying

g) gives the desired equality.

We shall have occasion to regard the boundary dE3 of a 3-cell E3 as a

2-sphere, and a mapping of dE3 as defining an element of tt^T). This is com-

pletely specified as soon as we have chosen a particular point of dEs as the

fixed point; the particular homeomorphism of dE3 with S2, which defines the

element of 7r2(r) may be set up by placing the 3-cell inside S2, and projecting

from the center of Sf, so that the point chosen as the fixed point of dE3 goes

into Po- The precise manner in which this is done is immaterial, since we are

concerned only with homotopy invariants.

Suppose El = XoXiXiXs and E\ = yay\y2y3 are two 3-cells whose boundaries

are regarded as 2-spheres with fixed points x0 and yo respectively, and suppose

/i and/2 map Ef and E\ into T with/i(x0) =/2(yo) =P. Then two elements hSl

and h/2 of tt2(P) are defined. Now suppose that the 2-celIs x0Xj.x2 and ynyxyi.

are congruent, with Xi corresponding to y,-, and that/i on x§X\Xi coincides with

/2 on yoyryä under this congruence. Then we may form a 2-sphere with fixed

point Xo by placing E\ and E% together, bringing xt- into coincidence with yt

(t = 0, 1, 2) and dropping out the 2-cells x0XjX2 and yoyiy2- Denoting the ele-

ment of 7t2(P) thus defined by h, we have(9)
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(3.6) h=hfl+hf!.

For hf1+hf2 is defined by a mapping homotopic to that defined by h, except

that there are two 2-cells adjacent along an edge, and such that the mapping

of one is the reflection of the mapping of the other in this edge. This patch

may be eliminated by a simple deformation, which proves the above relation.

(3.6) also holds if the 3-simplexes E\ are replaced by 3-cells, with mappings

coinciding along congruent 2-faces.

Let G be a group (not necessarily abelian) with elements g and operation

gigi = gi. By the group ring G we mean the set of linear forms £a;g,-, where the

a* are integers, and only a finite number of terms appear. We assume the laws

(3.7) (a + b)g = ag + bg,

(3.8) a(bg) = (ab)g.

Then G is a ring, where + is defined as formal addition, and • by the law(10)

(3.9) £ digi • £ big? = £ (dibjgigj*.

We now assume that G operates on the abelian group H, i.e., that a multiplica-

tion gh is defined, where gh is in 77, and the laws (3.1) to (3.3) are satisfied.

If we now define

(3.10) (£ a.**)* = £ *k<*).

then G will be a ring of operators on 77, the laws (3.1) to (3.3) remaining valid.

In future applications, G will be the fundamental group of T and 77 will

be iriiT).
Let the fundamental group G of T be given by a set of generators gi, g2, ■ • ■

and a set of relations 7?i, 7?2, • ■ • . Any product of elements of G may be called

a word, and any word may be written as a product g"'gf ■ ■ ■ g%v of the genera-

tors. For each element g of G we choose a fixed representation as a product

of the gi, and call this the normal form for g. Any product of the gi which

equals 1 may be shown to do so by using a succession of the relations 7?,,

together with the trivial relations gigTl = gT1gi=f \ for each product we choose

a definite manner of doing so. For each generator g< we choose a definite path

d in T determining it; if g = gT ■ ■ ■ g%p in normal form, we choose as the defi-

nite path determining it the path of ■ ■ ■ o^. Then each relation says that a

certain path may be shrunk to a point. If the path is 6 = <r? ■ ■ ■ aavv, then if

the 1-sphere S' is mapped over 8, this mapping may be extended throughout

the interior R2 — S' of S'. We choose a definite manner of doing this; then to

each 7?,- corresponds a mapping 4>iOI 7?2 into T, defining the (singular) 2-chain

(9) We suppose the 2-spheres are oriented like d{xaXiXiX^), —diyajiyiys), and 3(3Co*i»2^3

(10) See K. Reidemeister, Mathematische Annalen, vol. 112 (1936) for a similar use of G.
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Cj = <pj(R2) of T, with boundary £a,(j;. Likewise there exist the induced

mappings    of R2 into T, and the chains Cj = <f>i(R2).

4. The complex K; standard mappings. Let K be a connected, simplicial

complex with vertices x< which are ordered in a definite manner according to

their subscripts: Xi<x2<x3< • • • . We assume that the simplexes x,x,- • • • xt

are positively oriented if i <j < ■ ■ ■ <l.

Let / map K into T. We call / normal over K1—the 1-dim. part of K—if

it maps each vertex Xi of K into the fixed point P of T, and each 1-cell x,x,

into an element a"' ■ ■ ■ aar' of G in normal form, with the convention that the

normal form for the path defining the unit element of G is the "point-path" P.

Lemma 1. Any mapping f of K into T may be deformed into a mapping nor-

mal over K1.

The required deformation is obtained by first bringing all the vertices to

P, then extending the deformation through the rest of K, then deforming the

mapping so that all the 1-cells are in normal form and extending the deforma-

tion through K, using a simple lemma on such extensions(u).

Let / be a mapping of K into T, normal over Kl. Then we may define a

mapping /° of K"(12) into T, coinciding with /on Kl, and defined in the 2-cells

of K as follows: running around the boundary of a 2-cell a2 of K defines three

elements of G, each in normal form; there is a corresponding definite deforma-

tion of their product to P (since this is equivalent to the existence of an ex-

tension of the mapping defined on the boundary of a2 throughout its interior)

using the i?,-, and corresponding mappings into T. Thus we define/0 through-

out the interior of a2, giving/°(o-2) =£aiCt\ A mapping/which coincides with

the mapping/0 thus determined throughout a 2-cell a2 we shall call standard

over a2; a mapping which is standard over each 2-cell of K we shall call stand-

ard (note that if a i<j<k, the three elements of g are, in order,

g{xiXj), g(xjxk), and g-1 (*<**)•)

5. An example. In this section we shall illustrate the concepts defined in

the preceding pages by choosing a particular space T= "torus with patch,"

defined as follows: choose a definite simplicial subdivision of the torus, and

adjoin to it another 2-simplex A whose boundary only is identified with that

of a congruent 2-simplex of the torus. Intuitively, this space corresponds to

an inflated inner tube with a small patch cemented to the tube around its

edge. The fundamental group G of this space has two generators, gi and g2,

with the single relation

(R) gigi = gsgi-

The elements of G may be represented by ordered pairs of integers (cti, cu2),

with the law of addition given by (on, a2) = (ßi, <32) = (ax + ßu a2 + ß2).

(u) See Whitney, loc. cit., in note S, pp. 52-53.

(12) K" is the 2-dim. part of K.
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We choose paths <r< defining the g,- as two circles on the torus; then correspond-

ing to the relation (R) we have the fact that if the boundary of a 2-cell a2

be mapped into the path o-i-f-<r2—<ri—o-2, this mapping may be extended

throughout the interior of a2. It is natural to choose as the corresponding

definite mapping of the interior of the 2-cell into T the mapping into all of T

except the patch; i.e., into T — A, as though T were simply a torus.

Each element of G is of the form (ai, a2), where the a< are positive, nega-

tive, or zero; we choose as the normal form for such an element the path which

Fig. 1

first runs around <j\Oi\ times, then around <r2a2 times (in the positive or negative

senses, according to the signs of the ai).

If/ is a normal mapping of the boundary of a 2-cell X(XjXk into T for which

g(xiXj) =       at),      g(xjxk) = (ßi, ß2),      g(xiXk) = (ti» T2)

are the elements of G into which the 1-cells of XiXjXk are mapped by/, then

the necessary and sufficient condition that / may be extended throughout the

interior of XiXjXk is that

«i + ßi = Ti.       «2 + ßt = 72-

(This will be the case if / is derived from any mapping of K into T normal

over Kl, and XiXjXk is a 2-cell of K.) As our definite manner of deforming the

boundary of X&jXk to P, we choose the following sequence of equalities in G,

using the trivial relations and (R):

aid + at<Tt + ßiffi + ß2<T2 = ai<7i + (a2 — 1)^2 + <r2 + o"i + (ßi — l)o"i + ßi<rt

—> aio-x + (at — l)o-2 + o"i + o"2 + (ßi — l)o~i + ßtcrt

—>•••—♦ («l + ßi)<ri + (at + ßi)ot = 7i<ti + 72ff2.

In Figure 1 we indicate the corresponding mappings of the interior of XiXjXk

into T for two cases:

(ai, at) = (1, 3),   (ßu ßt) = (2, 2);   (au a2) = (2, 1),   (ßu ßt) - (-!,- 2).

The general situation is then clear. Note that in the resulting subdivision of

XiXjXk, each small 2-cell is mapped either into ±<r, or into T—A, but in no
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case rjoes a point of XiXjXk lie in A. This gives the definition of standard map-

ping for this example.

The covering space T of 7" is the plane, ruled off into congruent rectangles

as in the case of the torus alone, except that here each rectangle has a small

patch like that of T. We may number each rectangle with a double subscript,

and denote the parts of each rectangle by the symbol denoting the correspond-

ing part of T, with a bar above and a double subscript:

Tij   > T,      Aij   > A,      Pij   > _*P(13).

The nature of 7r2(r) follows from the

Lemma 2. Let W be a simply-connected space with fixed point P, and let S2

be a 2-sphere. By W-\-S2 we mean the space obtained by identifying a single

point of S2 with P. Then ■wi(W-srS2) is isomorphic with 7r2(W) +io, where Iq is

the additive group of integers.

Proof. Let / be a mapping of the 2-sphere S2, subdivided simplicially into

W-\-S2 with f(Po) =P- The subdivision may be chosen so that each 2-celI a\

of S\ is mapped into either W or S2 but not both. We may deform / so that

all vertices of Sf, lie at P, and since W+S2 is simply-connected, we may further

deform/so that all the 1-cells of S2, lie at P. A further deformation will now

be made. Consider any 2-cell a2 of S2,; its boundary is mapped into P. We

deform / in o2 by shrinking a2 into a smaller 2-cell lying within the original a2,

mapping this small 2-cell just as/ mapped tr2, and mapping the region between

the original boundary of cr2 and the new 2-cell into P. Clearly, this may be

done by a deformation of / in tr2. Proceeding in this way we deform / in all

the 2-cells of Si, so that all of Si is mapped into P, except for a number of

small islands, each of which is mapped either into W or into S2. We may now

push all the islands which go into W around Si so that they lie in one hemi-

sphere, and all those which go into S2 so that they lie in the other, and so that

the equatorial circle which separates the two classes goes through Pa and is

mapped into P. The resulting mapping defines an element of tt^W) and one

of x2(S2), which is isomorphic with Iq. Thus, to each mapping / defining an

element of ■^(T/F-f-.S2) corresponds a pair of mappings /i, /2 of 7r2(TF) and

7T2(52) respectively, and this correspondence is the desired isomorphism. This

completes the proof.

Now consider a mapping/ of Si into 7 = torus with patch, and the corre-

sponding induced mapping / of Si into J = the covering space of T. Since Si

is compact, we can drop all but a finite block of fundamental regions fy from

T without affecting/. The remaining space may be constructed by the addi-

tion of fundamental regions to each other a finite number of times, and the

lemma gives the result expressed in

(i3) we remark that irt(T) and irz(T) are not altered if we pull the boundary of the patches

to single points, so that each becomes a 2-sphere touching the rest of the space at a single point.
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Theorem 1. The 2-dim. homotopy group 7r2(7"), where T = torus with patch,

is isomorphic with the direct sum £°°io, where the elements o/£°°7o are infinite

sequences of integers, only a finite number of which differ from 0.

To bring out clearly the effect of G operating on iri(T) we may represent

the elements of G by ordered pairs of integers g = («i, «2), and the elements of

7r2(r) by matrices A = ||a,-,-||; then gh is the matrix obtained from A by a shift

of <x.i places horizontally and a2 places vertically.

An intuitive interpretation of the element a,,- in the matrix of the element

h of 7r2(7) corresponding to the mapping /of S2, into T may be given as fol-

lows: only a finite number of fundamental regions Ti,- will contain images of

points of S2.. Cut T along a rectangle containing all of these, and draw rays

from the center of the patch A,,-. By pushing along these rays we may alter

/ so that all points of S% go into points of the little 2-sphere formed by the

patch A a and its underlying simplex, while all points which were originally

mapped into points of this 2-sphere remain fixed. (For this purpose we may

identify all patches other than A a with their underlying simplexes.) Then we

have a mapping of 5^ into a 2-sphere, and its degree in the ordinary sense will

be precisely an. This may be interpreted roughly as the number of times S\

covers the small 2-sphere, or, equivalently, as the number of times the patch

Atj is covered by the mapping / of 5^.

The reader may find it profitable to consider the details, similar to those

we have given, for the case where T is the topological product of three circles,

or where the fundamental group of T is isomorphic with the additive group

of integers modulo n.

6. Normal mappings; the degree of a mapping. We return to the case of

an arbitrary space T.

The first vertex of a cell of a complex whose vertices are ordered as in §4

will be called its leading vertex. It is not true that any mapping of a complex K

into T may be deformed into a standard mapping. But we may alter standard

mappings on each 2-cell near its leading vertex so that the resulting class of

mappings is perfectly general in the sense of homotopy. We do this as follows:

let/0 be a standard mapping of XiXjXk into T. Deform/0, keeping the boundary

fixed, so that a small 2-cell inside XiXjXk and touching the boundary only at Xi

goes into P. Now replace/0 on this 2-cell by a mapping which defines an arbi-

trary element of iri(T). The resulting mapping of XiXjXk into T will be called

normal over XiXjXk. If a mapping is normal over all the 2-cells of K it will be

called normal. The following lemma holds:

Lemma 3. Any mapping f of K into T may be deformed into a normal map-

ping.

Proof. First we may deform / into a mapping normal over Kl, by Lemma

1. Now consider any 2-cell <r2 of K. Make another copy of a2 and define on it
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the standard mapping /° which coincides with / along the boundary of a2,

altered so that a small 2-cell near i,- goes into P, as above. Join the two 2-cells

along their boundaries, and consider the resulting mapping d> of the 2-sphere

thus formed into T. The boundary of the small 2-cell divides the 2-sphere

into two parts, and itself goes into P, so that the element of tt^T) thus de-

fined, taking Xias the fixed point of the 2-sphere, is the sum of two elements,

one of which may be chosen at pleasure. By choosing it properly, we can

make the resulting mapping homotopic to 0. This is equivalent to saying that

4> may be extended throughout the interior of the 2-sphere, or that the map-

ping/ may be deformed into a mapping normal on a2, leaving the boundary

of o2 fixed. Thus we may deform / over each 2-cell of K until it is normal.

The element of 7r2(7") by which the standard mapping/0 must be altered

to give a mapping deformable into / on xiXjXk will be called the degree of / on

XiXjXk, and denoted by df(xiXjXk). This is simply the negative of the element

of 7r2(r) defined by/0 unchanged and /when the boundaries are identified as

above. Clearly, if / is already standard on XiXjXk, then d/(xiXjXk) = 0, so that

the degree of a mapping on a 2-cell is a measure of its deviation from the cor-

responding standard mapping.

Let E3 = XiXjXkXi be a three-cell of K, and let / map the boundary

dxiXjXkXi of E3 into T, with the leading vertex Xi going into P. Then/defines

an element of 7^(7") if we regard dE3 as a 2-sphere with fixed point x». We

shall denote this element of 7T2(r) by Df(dE3) and call it the degree off on dE3.

Suppose / is normal over dE3 and/0 is the corresponding standard mapping.

We wish to find a relation between D;"(dE3) and Df(dE3). The mapping / is

obtained from/0 by replacing in each 2-cell of dE3 a small piece going into P

by one which defines an element of TTi(T). The following theorem is an im-

mediate consequence of (3.5):

Theorem 2. If E3 = x,XjXkXi is a 3-cell of K, and f is a normal mapping

of dE3 into T, then

Df(dE3) = Df(dE3) — df(xiX,Xk) + df(xiXjXi)

(6.1)
— df(xiXkxi) + g(xiX,)df(xjXkXi),

where g(xt-x,) is the element of G into which f maps XiXj.

7. An extension theorem. Let / be a normal mapping of the subcomplex

K* of a simplicial 3-complex K into T; that is, all vertices *< go into P, all

1-cells x,Xj into elements of G in normal form, and all 2-cells of K* are mapped

normally. We wish to find conditions that / may be extended throughout all

of K. First, when may/be extended throughout all the 1- and 2-cells of K?

Let a2 = XiXjXk be a 2-cell of K; then if XiXj, XjXk, and XiXk are mapped into the

elements g(x,x,),etc., of G, the necessary and sufficient condition that this map-

ping may be extended throughout the interior of a2 is that g(x,x,-)-g(xjXk)
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■g~1(xiXk) = 1, or in other words, that running around the boundary of cr2 de-

fines the unit element of G. It is easily seen that neither the sense nor the ini-

tial point of the circuit matters for this purpose. Thus, if we define the

coboundary 8 A1 of the 1-G-chain

(7.1) A1 = 22 g(xiXj)XiXj

to be the 2-G-chain

(7.2) A2 = £ g(xiXjXk) XiXjXu,

where

(7.3) g(xiXjXh) = g{xiX^-g(xjXk)-g~l{xiXk),

then the necessary and sufficient condition that / defined on K* may be ex-

tended throughout all the 2-cells of K is that a 1-G-chain A\ of K of the form

(7.1) exist such that 8A{ is a 2-G-chain each of whose coefficients is 1, where

g(xiXj) is defined by/on those 1-cells XiXj which belong to K*. A 1-G-chain of

K whose coboundary vanishes in this sense will be called a cocycle; then our

condition is that the 1-G-chain

(7.4) A0 = £ g(xiXj)xiXj

summed over all x%ocj in K* be part of a cocycle A\; i.e., that elements g(xiX,)

may be assigned to the 1-cells x,Xj in K — K* so that the chain (7.4) then be-

comes a cocycle. We shall return to this matter of chains with coefficients from

a non-abelian group in §9.

Now we assume that / has been defined throughout all the 2-cells of K;

when may it be extended throughout all the 3-cells? Let E3 = XiXjxkXi be such

a 3-cell; regard its boundary as a 2-sphere with fixed point Xt. Then / may be

extended throughout the interior of E3 if and only if

(7.5) Ds{dE3) = 0,

and / may be extended throughout all the 3-cells of K if and only if C3 =

£ Df(dE3)E3 = 0, where the summation is over all 3-cells XiXjXkXi of K. By

equation (6.1) we have

C3 = £ Df(dXiXjXkxi)XiXjXkxi + £ [— df(xiXjXk) + df(xiXjxi)

(7.6)
— df{xiXkXi) + g(xiXj)df(xjXkXi)\xiXjXkxi.

We shall now consider the meaning of the first term on the right side of this

equation.

As usual, let G be the fundamental group of T and irz(T) the 2-dim.

homotopy group. We shall define a new sort of operation gi o g2 on the ele-

ments of G giving standard mappings of 2-cells into T, and an operation

gi o g2 o gz giving elements of w2(T):
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(a) gi ° g2 is the standard mapping of a 2-cell X{XjXk into T defined as fol-

lows : map XiXj into gi and x,xk into g2; then the uniquely determined standard

mapping of X{XjXk into T will be denoted by gi o g2.

(b) Let <p=giOg2 be a standard mapping of XiXjXk into T; then by

0 ° g3= (gi o gi) o gs we mean the standard mapping of dxiXjXkXi into T de-

termined by mapping x&jXt into 7" by (/> and xkxi by g3- We may omit paren-

theses and define gi o g2 o g3 to be the standard mapping of dXiXjXkXi into 7"

defined by mapping x,Xj, XjXk, and xkXi into gi, g2, and g3 respectively. This

mapping is uniquely determined. For knowing g(xiXj) and g(xjXk) gives

g(xiXk), defining uniquely the standard mapping on x&jXk, and likewise for

the other faces of XiXjXkxi. Since each standard mapping of 8xiXjXkXi into T

determines uniquely an element of Trt(T) we may regard the operation o when

applied to three elements of G as giving an element of 7r2(r)(14).

Now let us return to (7.6). As before, let

(7.7) a\ = £ g(xiX,)xiXj,

summed over all       of K be the cocycle of which A\ is a part; then

(7.8) £ Df(dXiXjXkxi)XiXjXkxi = iiU a\\J a\,

where the multiplication of elements of G is understood in the sense just de-

fined.

It remains to investigate the second sum of (7.6). We may write

— df{xiXjXk) + df(xiXjXi) — df(xiXkXi) + g(xiX,)df{xjXkXi)

(7.9) = — df{xiXjXk) + df(xiXjXi) — df(xiXkxi) + df(xjXkxi)

+ (g(xiXj) — l)df(xjXkXi),

where (g(xix/) — 1) is an element of G. Let

(7.10) Ai  - £ d/(xiXjXk)xiXjXk,

(7.11) a] = £ (g(xiXj) — \)xiXj,

where the summation is over all 2- and 1-cells of K, respectively. Then from

(7.6), (7.8), and (7.9) we have

(7.12) C3 = a\\J ä\\J ä\ + bA\ + a\\J a\.

This proves

Theorem 3. Let K* be a subcomplex ofK = K~3 and let f be a normal mapping

(u) Perhaps the main difficulty of the classification problem is that of determining this

multiplication in any concrete case.
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of K* into T. Necessary and sufficient conditions that f may be extended through-

out K are

(i) that A\ be part of a cocycle A\,

(ii) that the 2-chain A\ with coefficients from 7r2(r) exist such that A\\JA\\JA\

+ bA\+A\\JA\ = 0,
where

Afs — g(XiXj)XiXj

summed over all XiXj of K*,

A\-Z diikxiXixk

summed over all XiXjXk of K and such that dijk = dj(xiXjXk) whenever XiXjXk is in

K*, and

A3 = £ (g(xiXj) — Y)XiXj = a \ — I%

where 71 =£l ■ x,Xj summed over all XiX, of K.

Note that in Ä[\JA\\JA\ the "product" of elements of G is either a stand-

ard mapping or an element of iti(T), while in A\\JA\ the elements of G are

operators on ir^T).

8. The classification. Let if be a 2-complex and let fl and /2 be normal

mappings of K into the space T. Let KXI be the product-complex of K with

the unit interval; then/1 and/2 are homotopic if and only if there exists a

mapping F of KXI into T such that F(x, 0)=ß(x) and F{x, l)=f2(x). In

this section we shall specialize the result of §7 to the case where K3 = K2y.I,

and where 7^ is defined on KXO+KX 1 by/1 and/2 respectively.

We may subdivide KXI into cells of the form OjXI, where the o) are the

cells of K. If in particular K is of the form considered in §4, we shall orient

KXI as follows: the orientation of K X 0 and KXI shall be as in K, with cor-

responding vertices y,- and zt-. The l-cells y<z< shall be positively oriented in

that form. Orientation of the 2-cells XiXjXl shall be such as to put ysy,- on

the boundary of XiXjXl m the positive sense, and the oriented 3-cell XiX,xkXl

shall have y%yiyk on its boundary in the positive sense. Of course, KXI as

defined is not a simplicial complex; it may be simplicially subdivided, and we

shall do this later.

When may F as defined above be extended throughout all the 2-cells of

KXI? The remaining 2-cells are of the form XiXjXl. Clearly, the necessary

and sufficient condition is that elements a,- of G exist such that

(8.1) /W/SrW1-*
for all i <j such that a 1-cell of K, and where/y and ffj are respectively

the elements of G into which/1 and/2 map XiXj. We may write this in the form
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1 2 _1

(8.2) fij = aifija,- .

We shall call two 1-G-chains C1 = /.g l jX ̂X y cohomologous if

elements a,- of G exist such that

(8.3) gij - otihijaf1,

and write C^C2; this reduces to the ordinary definition if G isabelian. It is

natural to write a\/a\= 5^40 if a\ and a\ are so related, where

(8.4) a°=*£aiXi.

The O-G-chain a" is uniquely determined, if K is connected, when the coeffi-

cient of any vertex is assigned.

We may now assert that F as defined may be extended throughout all the

2-cells of KXI if and only if

(8.5) a\^a\   or   a\/a\ = 5a°

where

(8.6) a\ = ^fljXiXj,      ä\= ^fijXiXj,      a° = Ea**<-

Let us now suppose the extension throughout the 2-cells x(XjXI made in

a normal manner; when may we extend the resulting mapping throughout the

3-cells XiXjXkXI? The boundary of the 3-cell E3 = XiXjXkXl may be regarded

as a 2-sphere with fixed point yt, and the normal mapping of it defines an ele-

ment DF(dE3). The necessary and sufficient condition that this mapping may

be extended throughout the interior of E3 is that DF(dE3) = 0, from which it

follows that the n. and s. condition that this be possible for all the 3-cells of

KXI is that

(8.7) £ DF(dE3)E3 = £ DF{dxiXjxk X I)xiXjxk X 7 = 0.

It follows from (3.5) that

DF(dE3) = DF'(dE3) + d?(xiXjXk) - iP(XiXi X 7)
(8.8) i

+ dF(xiXk XI)— fndF{xjXk XI)— a.idf{xiXjXk).

Now let

Vau = dMxiXiXk) — aidf(xiXjXk),      £ijk = DF°d(xiXjXk X I),

(8.9)
bijk = dF{xiXj X 7).

Then

(8.10)    DF(dxiXjXk X I) = tut + vnk — [bu — bik + bjk\ — (/<,■ —

so that
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£ DF(dEi)Ei = Yl tükXiXjXic x / + Z VijkXiXjXk x 7

(8.11) — Z [^»j —      + *■/*]***/** x 7

~ Z ifii — VjbjkXiXjXk x 7.

Now let

(8.12)
B =

c2 =

^ ' tijkXiXjXki B ^ ^ bijXiXj,

2 n*ikXi*iX*,    a\ = Z (/>l) — i)*<*/-

Then (8.7) becomes

(8.13) 5* + c2 = 551 + Ji w b\

We shall now find a simple expression for the term B2.

Fig. 2

We subdivide XiXjXkXl simplicially, as shown in Figure 2. (This subdivi-

sion is easy to define combinatorially.) Then

a\KJ a\w a° = Z (/<j° //* ° <»*)*<*/**.

(8.14) yli W ̂ 4° W ̂ 2 = E (/i) ° a; °

a" V) ä\\J a\ = Z (<hO    o fjk)xiXjXk,

and from (3.6) it follows, taking account of orientation, that

(8.15) B2 = - a\\J a\kJ a° + a\vJ a°\J a\-a*\J a\\J a\.

Thus (8.13) becomes

(8.16)

We may now state

c2 - a\kj a\\j a* + a\kj a"\j a\ - a"\j a\\j a\

= &b1 + a\\j bx.
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Theorem 4. A necessary and sufficient condition that the normal mappings

fl and f2 of K = K2 into T be homotopic is that a O-G-chain A" and a l-7r2(r)-

chain b1 of K exist, satisfying

(i) A\/A\ = 8A\
(H) (8.16),

where

ai = y * fnXjXj,   a2 = y' faXiXi,   a\ — y \ (/;/  i)xiXj — a\  7,

C = y. dMxjXiXk) — aidf(xiXjXk)XiXjXk,

and where .40=Za;x«'-

In certain cases, (8.16) becomes simplified, since the chain 7?2 is automati-

cally 0; this is so when T = torus with patch, for the standard mappings of BE3

into T cover no patches, and are therefore of degree 0, since the 2-dim.

homotopy group of the plane vanishes. For this case, (8.16) becomes simply

(8.17) C2 = 8b1 + ä\\J b\

This is also the case for any space with the fundamental group of the torus;

of course the interpretation of the elements of tt^T) as matrices of integers

will in general require modification, the integers being replaced by the ele-

ments of 7r2(r).

9. 1-Chains with coefficients from a non-abelian group. We shall conclude

with a brief account of 1-G-chains, where G is a non-abelian group, in exten-

sion of the remarks in the preceding two sections. These results were found

independently by H. Whitney.

Let K be a complex as in §4. By a 1-G-chain we mean a function f(p, q)

defined for all ordered pairs of integers (p, q) for which xpxq is a 1-cell of K,

with values in G, and such that/(£, q) =f~*(q, p)- We may denote such a chain

by the symbol C=^lgijXiXj, where gu=f{i, j). C is a cocycle if running around

the boundary of each 2-cell of K defines the unit element of G. The chain C

is a coboundary if there exist hi in G such that

(9.1) g„ - Ar1*/

for all i, j such that XiXj is a 1-cell of K. If C is a coboundary it is a cocycle.

Let C=^2gijXiXj be a chain, and D =^_,hiXi be a 0-G-chain; then by Co fl we

mean the chain

(9.2) ~Yj {h-ilgijhj)XiXj.

If C is a cocycle, so is C o D; if C is a coboundary, so is C o D. The operation o

is associative, there is a unit, and inverses exist. If Ci and Ci are cocycles,

and C\ = C2 o D for some 0-G-chain D, we say that Ci and C2 are cohomologous;

in symbols, Ci-"C2 or Ci/C2 = 8D. If G is abelian, this reduces to the ordinary

notion of cohomology. The preceding remarks show that the set of 0-G-chains
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form a group of transformations acting on the set of 1-g-cocycles. We shall

call the class of all cocycles which are homologous to C the coset of C, and

denote it by [C]. Two cosets are identical or disjoint. A chain will be called

part of a cocycle if some or all of its coefficients which are l's may be replaced

by other elements of g so that the resulting chain is a cocycle.

Let/1 and/2 be two mappings of a complex K into an aspherical(15) space

T with fundamental group G. They are homotopic if and only if the mapping

F defined on KX0-\-KX^ by them may be extended throughout the 2-cells

XkX,X 1 of KX 1; for since T is aspherical, it may then be extended throughout

all the 3-, 4-, ■ ■ • cells. This is possible if and only if the 1-g-chain Cß,/2 with

coefficients/y on y^y, and/y on z,z3- is part of a cocycle. But this is so if and

only if the 1-g-cocycles C/i =£/«£<* j ar>d C/2=Z/üx»xj 01 K are cohomolo-

gous. Thus we have

Theorem 5. The classes of mappings of K into the aspherical space T are in

one-to-one correspondence with the cosets [C], where the C are the l-G-cocycles

of K, and G is the fundamental group of T.

This theorem is equivalent to the well known theorem of Brouwer and

Hurewicz which states that the classes of mappings of K into T are in one-to-

one correspondence with the homomorphism-classes of H= fundamental group

of K into G = fundamental group of T, since the correspondence ^/«-»[C/L

where \pf denotes the class of homomorphisms derived from that induced by

the mapping / under the set of inner automorphisms of g, and Cf=y*Jfi,XjXj,

where/,-,- is the element of g into which XiXj is mapped by/, is easily seen to be

one-to-one. (We assume / to be normal; see §6.)

Proof. We must show that (a) if C/^Cg then 1/7 = ^„, (b) if ^f = ^g then

Cf^Cg.
We shall use the vertex Xo as a fixed point in defining the fundamental

group.

Ad (a): Run around any circuit in K by/, getting /01/12 ■ ■ ■ /Po of g. Then

run around the circuit by g, getting, since gij = hT1fi,hj,

(Äö"1/oiÄi)(Är1/i2/f2) • • • (hfifpoho) = Äo_1(/oi/i2 • • • fpo)h0.

Ad (b): Say a closed path C from Xo in K mapped by g into the element

ß(C) of g is mapped by / into a~~1ß(C)a. Join each vertex Xi to Xo by a path

Ci, and let hi =g-I(Ci)a/(Ci). Then f(Ci)fijf-1(Cj) =a~1g{Ci)gi]g-1{C])a for all
i, j such that l-cell of K. It follows that

so that C/^Cg.

(16) See Hurewicz, loc. cit., in note 3.
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