
FAMILIES OF CURVES CONFORMALLY EQUIVALENT
TO CIRCLES

BY

EDWARD KASNER AND JOHN DE CICCO

1. Introduction. In this paper, we shall study three-parameter families of

curves conformally equivalent to the totality of circles. We obtain the ana-

lytic form and several complete geometric characterizations of any such fam-

ily, which we shall call an ß family.

In minimal coordinates (w, v) the differential equation of such a family

is of the form

Our fundamental result is that any Q, family may be characterized among

all three-parameter families of curves by the following three properties: Prop-

erty I. The locus of the foci of the osculating parabolas of the w 1 curves which

contain a given lineal element £ is a lemniscate L with E as one of the two

orthogonal tangent elements at the node of L. Property II. As the direction

of E is rotated about its point P, the locus of the centers of the orthogonal

pairs of circles defining the <x>1 focal lemniscates is an equilateral hyperbola H

with the center of H at P. Property III. The foci of the equilateral hyperbolas

are connected to the point P by a direct conformal transformation.

Another complete geometric characterization of an Q, family of curves is

the following. Property I'. The envelope of the directrices of the osculating

parabolas of the »1 curves which contain a given lineal element E is an

equilateral hyperbola H with the point of E as the center of H and the line

of E as one of the asymptotes of H. Property IV. The locus of the foci of

the directorial equilateral hyperbolas is an equilateral hyperbola H' with its

center at P. Property III'. The four foci of the equilateral hyperbola H' of

Property II' are related to the point P by a direct conformal transformation.

A reciprocity relation appears in these two sets of geometric characteriza-

tions. But this reciprocal relation is by no means self-evident. For although

the two characterizations are roughly dual, separate proofs are required. The

lemniscate and the equilateral hyperbola of Properties I and I' are equiva-

lent under inversion, whereas the equilateral hyperbolas of Properties II and

II' are equivalent under a similitude.

In connection with this duality, the following results may be noted. The

oo1 focal lemniscates of Property I, constructed at the point P, all pass
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through the vertices of a minimal quadrilateral with center at P. The °° 1 di-

rectorial equilateral hyperbolas of Property I', constructed at P, are tangent

to the sides of a quadrilateral whose diagonals are the minimal lines through P.

In the latter part of our paper, we shall give other geometric properties

of an £2 family of curves. The rate k' of variation of the curvature with respect

to the arc length is the same for all the curves of our family which contain a

lineal element E. The resulting =o 1 rates of variation of curvature at a point P

are connected by an analogue of Meusnier's theorem. We note that our prob-

lem may be considered to be a generalization of the family of curves con-

formally equivalent to the »2 straight lines. This simple type has been con-

sidered elsewhere. Relations to dynamical and natural families are of interest.

2. The differential equation of any ti family. For the analytic work, we

shall find it convenient to use the minimal coordinates (u, v) instead of the

ordinary rectangular cartesian coordinates (x, y). These are connected by the

relations

(1) u — x + iy,      v = x — iy.

An Q. family of curves consists of a three-parameter set which is equiva-

lent to the °°3 circles under a given conformal transformation. We proceed

to derive the differential equation of any such family. However, before this

can be accomplished, it is necessary to discuss some preliminary material.

In minimal coordinates (u, v), any direct conformal transformation is

where the functions are of course analytic. A reverse conformal transforma-

tion may be expressed as the product of a direct conformal transformation

by the reflection through the x-axis: U = v, V = u. Upon extending this con-

formal transformation three times, we find

(2) U = 4>{u)

(3)

P" = — p"

P' = -

where p = dv/du and P = dV/dU.

The co3 circles of the plane are represented in minimal coordinates by the

oo 3 conies which pass through the two fixed points at infinity, given in homo-
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geneous minimal coordinates by (0, 1, 0) and (1, 0, 0). Therefore the equation

of any circle is

(4) auv + bu + cv + d = 0.

From this, the differential equation of all °° 3 circles is found to be

(5) 2pp" - 3p'2 = 0.

The Moebius group of the complex plane is the group of all point trans-

formations which preserve the entire family of °o 3 circles. In minimal coordi-

nates, any direct Moebius transformation may be written as

au + b a'v + b'
(6) U =-,       V =-

cu -\- d c'v + d'

A reverse Moebius transformation is the product of a direct Moebius trans-

formation by the reflection through the x-axis. A Moebius transformation is

said to be real if the coefficients of one of the above equations are the respec-

tive conjugates of those of the other. In the complex cartesian plane, there are

2 *6 Moebius transformations, of which 2 oo3 are real.

Upon applying the conformal transformation (2) to the circles of the (u, v)

plane, the differential equation (5) expressed in capital letters is carried into

the differential equation

(7) 2pp" - 3p'2 = 2p2(A - Bp2)

where
2 2

,  . 2<l>u4>uuu — 3<t>uu 2Tpv1pvvv — 3lpvv

(8) A=-,       B =-— •
2*1 2*1

From this, it is found that A may be any function of u only and B may be any

function of v only. (All our functions in this paper are assumed to be analytic.)

Theorem 1. A differential equation of the third order represents an ß family

of curves if and only if it is of the form (where p = v' — dv/du)

(9) 2pp" - 3p'2 = 2p\A - Bp2),

where A is an arbitrary function of u and B is an arbitrary function of v.

By the preceding differential equation, we observe that any ß family is

uniquely determined by the functions A and B. Therefore ß is a function of A

and B only and we write ß = ß(^4, B).

If <p{u) and \p(v) are any two functions which satisfy (8), then the integral

curves of (9) are the transforms under the conformal transformation (2) of the

003 circles of the (U, V) plane. Therefore the curves of our ß family are

(10) a4>i + b<p + ex// + d = 0.
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Any £2 family of curves is thus a special type of linear families of curves. Of

course, the differential equation (9) could have been obtained as a result of

eliminating the arbitrary constants from the above equation by differentia-

tion.

By (10), it is obvious that under a conformal transformation any £2 family

is converted in general into some other £2 family. The group of transforma-

tions which preserve a given ti(A, B) family of curves is a mixed six-parameter

group Gl [Sl{A, B)] isomorphic with the Moebius group of circular trans-

formations. Any transformation 2 of this group is of the form TMT~X where

T is a definite conformal transformation which converts the °o3 circles into

our £2-family and M is any Moebius transformation. This group is generated

by conformal symmetries (Schwarzian reflections) with respect to the curves

of the £2 family.

Because of this isomorphism with the Moebius group, we may make the

following observations^).

Theorem 2. A nonconformal transformation converts at most 2<*>2 curves of

the given £2 family into curves of the same family. A conformal transformation,

not of the group Gl [&(A, B)], converts at most 2 °o 1 curves of the given £2 family

into curves of the same family.

From this theorem, we may conclude that a point transformation which

converts 3 »2 curves of a given £2 family into curves of the same family must

belong to the group Gl [£2(^4, B)\. Similarly any conformal transformation

which carries 3 °° 1 curves of a given £2 family into curves of the same family

must belong to the group Gl [&{A, B)].

Let T and R be respectively a definite conformal transformation and any

other transformation both of which carry the °o3 circles into a given £2(y4, B)

family of curves. Then obviously R = TM, where M is a Moebius transforma-

tion.

Theorem 1 gives us an analytic characterization of any £2 family. In the

remainder of our work, we shall give geometric characterizations of any such

family. For this, we shall suppose that A and B of our family are each not

identically zero. Any such family may be obtained by applying to the <=o3

circles any conformal transformation written in the form (2) where <f> is not a

linear fractional function of u only and ip is not a linear fractional function

of v only.

3. The osculating parabolas of any three-parameter family of curves. Just

as a set of values for [u, v, p, p'), that is, a differential element of the second

order, is pictured most simply by means of the corresponding circle of curva-

ture, so a differential element of the third order, defined by {u, v, p, p', p"),

0) Kasner and De Cicco, Characterization of the Moebius group of circular transformations,

Proceedings of the National Academy of Sciences, vol. 25 (1939), pp. 209-213.
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may be pictured by the unique osculating parabola. We shall collect here the

general formulas to be used in the subsequent discussion (2).

The equation of any parabola in minimal coordinates is

(11) {ku - IvY + 2*0» + 2lB)u + 2l(m + 2ka)v + {m? - iklaß) = 0,

where (a, ß) are the minimal coordinates of the focus and ku+lv+m = Q is

the equation of the directrix. The unique osculating parabola of the differ-

ential element of the third order (u, v, p, p', p") must have the parameters

k = pp" - 3pn,      I = p",      m = - 3pp' - ku - Iv,

(12) 3p' spy
a = u -\-;       ß = ii +

2p" 2{pp" - 3p'2)

Solving the last two equations for p' and p", we find

(120 ,_!fJ-£_T   r-!L_[-J-*_].
2 \_a — u    ß — vj 4(a — u)\_a — u     ß — vj

Consider now any triply infinite system of curves, defined by a differential

equation of third order

(13) p" = f(u, v, p, p').

Through a given point in a given direction there pass a>1 curves of the system.

Each of these has a definite osculating parabola at the given point. The locus

of the foci of these parabolas is termed the focal curve and the envelope of the

directrices is called the directorial curve. Thus to each lineal element E(u, v, p)

of the plane there corresponds a definite focal curve and a definite directorial

curve.

The form of the focal curve depends, of course, upon the form of the differ-

ential equation. Since (u, v, p) are fixed, p" is a certain function of p'. Sub-

stituting this in (12) and eliminating p', we obtain the finite equation of the

required locus.

To obtain the finite form of the directorial curve, we proceed as follows.

Upon writing the equation of the directrices of the osculating parabolas and

differentiating it partially with respect to p', we obtain

• (pf - 3p'*)(a -u)+ f(ß -v) = 3pp',

(Pfv ~ 6p')(a -u)+ fAß ~ v) = 3p.

Solving these for a and ß, we find

(2) Kasner, The trajectories of dynamics, these Transactions, vol. 7 (1906), pp. 401-424.

Also see the Colloquium volume by Kasner, Differential-Geometric Aspects of Dynamics, 1913;

second edition, 1924. Recent discussion and extensions have been given by Moissiev, Fialkow,

and MacColl.
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,    P(P'U'-f) 0      , P(- PP'Sv + PS + 3P'2)
a = u H-■->      a = v H-■-—■ >

(15) P'(- P'/p' + 2/) P'(-P%' + 2f)

»     „2,        „ 6pK-p%'+f+3P'y2p)
(p — v)2 — *2(a — tt)2 = —:-■-—■-■ •

(-#'/,' + 2/)2

The third of these is written for later purposes. The elimination of p' from the

first two of these equations gives the implicit form of our directorial curve.

4. Characterization by focal curves. We wish to consider the three-pa-

rameter families of curves such that the corresponding focal curve of any lineal

element E(u, v, p) of the plane is a lemniscate L with E as one of the two

orthogonal tangent elements at the node of L. Before proceeding with this

discussion, it is advisable to give a geometric construction of any lemniscate.

Let C and C be any two equal circles which are orthogonal at a point 0. Draw

any line I through O and let / intersect C and C in the two points Q and Q'

respectively. Let P be any point on I such that the distance OP is the mean

proportion between the distances OQ and OQ'. (We note that the square of

OP can have two values, one the negative of the other. But if we are careful

to choose the signs of OP and OQ (OQ') such that the product of OP by QP

(Q'P) is equal to the square of the tangent from P to C (C), then the square

of OP can have only one value.) The set of all such points P forms the lemnis-

cate of Bernoulli.

Let the minimal coordinates of the point 0 and the centers of C and C

be respectively (u,v), (a, b), [u +t(a — u), v — i(b — v) ]. The equations of Cand

C are respectively

C:    (a - u)(ß - v) = (a - u)(ß - v) + (b - v)(a - u),
(16)

C.   (a — u)(ß — v) = i(a — u)(ß — v) — i(b — v)(a — u),

where (a, ß) are the running minimal coordinates of the points of C or C.

The equation of our lemniscate L is

(17) (a - u)2(ß - v)2 = i(a - u)2{ß - v)2 - i(b - v)2(a - u)2.

There are °°4 lemniscates in the complex plane. The node of our lemniscate L

consists of the two orthogonal tangent elements of C and C at the point 0.

Note that there are four pairs of orthogonal circles which define the same

lemniscate L.

Upon substituting the values of a and ß as given by (12) into (17) and

noting that

(18) (b - v)2/(a - u)2 = p2,

we obtain the following proposition.

Theorem 3. Property I. A three-parameter family of curves possesses the
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property that the corresponding focal curve of any lineal element E is a lemniscate

L with E as one of the two orthogonal tangent elements at the node of L if and

only if its differential equation is of the form

(19) 2pp" - 3p'2 = X(«, v, p).

The lemniscates of our family of curves (19) are given by the equation

(20) 4X(a - u)2(ß - v)2 = 3p2[(ß -v)2 - p2(a - u)2].

From the above equation, we find that, if (a, b) is the center of any one

circle of the four orthogonal pairs of circles which define any one of the lem-

niscates (20) then

(21) i(a - w)2 = 3/>2/4X,      i(b - i')2 = 3/>4/4X.

Let us now consider a three-parameter family of curves with the Property

I. Of course any such family is given by a differential equation of the form

(19). The focal curve associated to any lineal element E of the plane is a lem-

niscate. If we keep the point P of E fixed and vary the direction of E, the

centers of the orthogonal pairs of circles defining these lemniscates will de-

scribe a locus. We shall call this locus the central curve of the focal lemniscates

associated with the point P. By (19) and (21), we obtain the following result.

Theorem 4. Property II. A three-parameter family of curves with the Prop-

erty I will possess the property that the central curve of the focal lemniscates asso-

ciated with any point P of the plane is an equilateral hyperbola (eccentricity

e = ± 21'2) with its center at P if and only if its differential equation is of the form

(22) 2pp" - 3p'2 = 2p\A - Bp2),

where A and B are arbitrary functions of u and v only.

The equilateral hyperbolas of our family of curves (22) are

(23) iA(a - u)2 - iB(b - v)2 = §.

The four foci of this equilateral hyperbola are

/ 3i \1/2 / 3iy'2
(24) a = u ± i(-)   ,      ß = v +-) .

\8A/ \8bJ

This immediately yields the following proposition.

Theorem 5. Property III. A three-parameter family of curves is an 12 family

of curves if it possesses the Properties I, II, and the Property III described as

follows. To any point P of the plane, there is associated by Property II an equi-

lateral hyperbola H. The four foci of H are related to the point P by a direct con-

formal transformation.
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Thus an ß family of curves has been completely characterized geometri-

cally by the Properties I, II, and III. In the next section, we shall give an

alternate characterization by the means of the focal lemniscates.

5. Alternate characterization by focal lemniscates. Next we shall discuss

two Properties, Hi and IIIi, which are respectively equivalent to Properties

II and III. First let us note that a minimal quadrilateral R is any quadrilateral

whose sides are minimal lines. The center of R is the intersection of its diago-

nals. By (19) and (20), we discover the following result.

Theorem 6. Property Hi. A three-parameter family of curves with the Prop-

erty I will possess the property that the °o1 focal lemniscates associated with any

point P of the plane all pass through the vertices of a minimal quadrilateral R

with center at P if and only if its differential equation is of the form (22).

The four vertices of the minimal quadrilateral of our family of curves (22)

are

From this, we find

Theorem 7. Property IIIi. A three-parameter family of curves is an ß fam-

ily of curves if it possesses the Properties I, Hi and the Property IIIi described

as follows. To any point P of the plane, there is associated a minimal quadrilat-

eral R. The four vertices of R are related to the point P by a direct conformal

transformation.

In the above work, we have completely characterized an ß family of

curves by means of the focal lemniscates. That is, we have given two equiva-

lent sets of geometric characterizations by means of focal lemniscates. In the

next section, we shall characterize any such family by means of directorial

equilateral hyperbolas.

6. Characterization by directorial curves. In this section, we wish to con-

sider three-parameter families of curves such that the corresponding direc-

torial curve of any lineal element E(u, v, p) of the plane is an equilateral

hyperbola H with the point of E as the center of H and the line of E as one

of the asymptotes of H. The equation of H must be of the form

where g is an arbitrary function of (u, v, p) only. Substituting (15) into (26),

we find

(25)

(26) (ß - v)2 - p*(a - uY = 3p*/g\

(27)
- P'U'+ f + 3p'2/2p

(- P%> + 2/)2 2g2

1
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This is a partial differential equation in the unknown function / whose form

is to be determined.

Upon making the transformation

3p'2

(28) /--^-+ Kg2 - F2),
2p

where F is our new unknown function, the differential equation (27) becomes

(29) F2[p'Vp. - 2p'FFv. + F2 - g2] = 0.

The solution of this yields

(30) F » 0,   or  F = + g + p'h,

where g and h are functions of (u, v, p) only. This shows that our differential

equation (13) must be either one of the two types

3p'2

A:   ^" = ~ + g2/2;

(31) *
3p'2 h2

B:   p" = -j— ± ghp' — — p'2.
Ip 1

The second type B is any three-parameter family of curves whose differ-

ential equation is of the form

(32; p" = Gp' + Hp'2,

where G and H are arbitrary functions of (u, v, p) only. Any such family may

be characterized by the property that the focal curve at any element E is a

circle passing through the point of E. This type has been considered exten-

sively by Kasner in connection with his geometry of dynamical trajectories

(first of Kasner's five dynamical properties(2)).

Upon substituting the second of equations (31) into (14) and (15), we dis-

cover that the directrices of the °o 1 osculating parabolas form a pencil of

straight lines with the vertex

, 3 - h2p (3+h2p)p
(33) a = u + ->      ß = v ±-

2gh 2gh

Thus for this second type B our equilateral hyperbola is degenerate. As a mat-

ter of fact, it may be proved(2) that any three-parameter family of curves for

which the °°1 directrices of the osculating parabolas at any element of the plane

form a pencil of straight lines is given by a differential equation of the form (32).

The first type (A) of (31) is any three-parameter family of curves whose

differential equation is of the form (19). Any such family is characterized by
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the Property I. Upon substituting the first of equations (31) into (14) and

(15), we find that our directorial curve is a nondegenerate equilateral hyper-

bola as given by (26). By comparing the second of equations (31) with (19),

we find i\=pgi. Our equilateral hyperbola (26) then becomes

(34) 03 - v)2 - p2(ct - uY = 3/>4/X.

Theorem 8. Property I'. A three-parameter family of curves for which the

directorial curve at any element Eis a nondegenerate equilateral hyperbola H with

the point of E as the center of H and the line of E as one of the asymptotes of H

is given by a differential equation of the form (19). Thus Property V is equivalent

to Property I.

From (34), we find that if (a, ß) denotes any focus of our equilateral hyper-

bola H, then

(a - uY = - 3p2/\,        (ß-vY = 3pi/X,
(35)

A(a - uY + B(ß - vY = - 3p2(A - Bp2)/\,

where A and B depend only on (w, v). From the above equations, we deduce

the following result.

Theorem 9. Property II'. A three-parameter family of curves with the Prop-

erty I' will possess the property that the curve of foci of the directorial equilateral

hyperbolas associated with any point P of the plane is an equilateral hyperbola

H' with center at P if and only if its differential equation is of the form (22). Thus

Property II' is equivalent to Property II.

The equilateral hyperbolas of Theorem 9 are

3(36) A(a - uY + B(ß-v) =

Next if (a, ß) denotes the center of any one of the four pairs of orthogonal

circles which define any one of the above lemniscates, then

(37)
/ 3 Y'2 / 3 \1/2

a = u ± i (-)    ,       ß = v ± i I-) .
\2A/ \2B/

Theorem 10. Property III'. A three-parameter family of curves is an fam-

ily of curves if it possesses the Properties I', II', and the Property III' described

as follows. To any point P of the plane, there is associated by Property II' aw

equilateral hyperbola H'. The four foci of H' are related to the point P by a di-

rect conformal transformation. Thus Property III' is equivalent to Property III.

In this section, we have completely characterized an Q family of curves

with a third set of geometric properties. This set depends essentially on the

directorial equilateral hyperbolas. In the next section, we shall give some ad-

ditional geometric properties of such a family.
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7. Additional geometric properties of an Q family. Upon replacing X by

the value 2p2(A —Bp2) in (34), we find that the envelope of the »1 equilateral

hyperbolas (34) is

From this, we derive the following result.

Theorem 11. A n family of curves possesses the following additional prop-

erty. The envelope of the °o1 directorial equilateral hyperbolas of the lineal ele-

ments through a fixed point P consists of the four sides of a rectangle R whose

diagonals are the minimal lines through P. Moreover, the vertices of this rectangle

R are connected to P by a direct conformal transformation.

Next we note that the two sets of geometric characterizations (I, II, III)

and (I', II', III') give rise to a reciprocity relation. Let us consider as recipro-

cal elements: the focus and directrix of our osculating parabola; a lemniscate

L and an equilateral hyperbola H with the node of L and the center of H co-

incident; the tangent lines of the node of L and the asymptotes of H. Of

course, the centers of the orthogonal pairs of circles defining L and the foci of

.ffboth describe equilateral hyperbolas, which are equivalent by a similitude.

Then we observe that the two sets of geometric characterizations (I, II, III)

and (I', II', III') are reciprocal. This reciprocity is brought to light more by

the following two results.

Theorem 12. The focal lemniscate L (20) of Property I and the directorial

equilateral hyperbola H (34) of Property V are equivalent under the Moebius

inversion with respect to the circle with center at the point P and with radius

R2 = 3pi/2\.

Theorem 13. The equilateral hyperbolas H (23) of Property II and H' (36)

of Property II' are equivalent under the similitude

This similitude can be factored into the product of the rotation about the

point P through the angle ir/4+*7r/2 by the magnification through P of

ratio + 2 or + 2i according as k is odd or even.

In the next section, we shall give a fourth and final geometric character-

ization of an family of curves by means of the rate of variation of curvature

with respect to the arc length.

8. Characterization by the rate of variation of curvature. The curvature n

and the rate dn/ds of variation of the curvature with respect to the arc length

s are given in minimal coordinates by

(38) [A(a - u)2 + B(ß - v)2 + |]2 = 4AB(a - u)2(ß - v)2.

(39) «'-«= + 2i3'2(a - u),   ß' - v = ± 2;1'203 - v).

(40) 2h - 2i— =
.da     2pp" - 3p','2

ds 2p3
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From these, we derive the following.

Theorem 14. Property I". A three-parameter family of curves for which the

rate dn/ds = k' of variation of the curvature per unit length of arc is the same for

the oo1 curves of the family at any lineal element E must have its differential equa-

tion of the form (19). Thus the Properties I, I', I" are all equivalent.

Let a three-parameter family of curves possess the Property I". Then to

each lineal element of the plane, there is associated a definite rate of variation

of curvature. That is, k' = k'(E).

Theorem 15. Property II". Consider any three-parameter family of curves

with the Property I". Let there exist an orthogonal net of curves N with the fol-

lowing property. At any point P of the plane, construct the two orthogonal lineal

elements E, (j= 1, 2) which belong to N. The rate k'(E) of variation of curvature

of any element E through P is proportional to the cosine of twice the angle between

E and E,. Any three-parameter family with this additional property must be

given by a differential equation of the form (22).

The Property II" of the preceding theorem is an analogue of the Meusnier

theorem for curves on a surface in three-space. This property may be written

in the form

(41) k' = k- cos 26,

where 6 is the angle between the two lineal elements E and E, at the point

P and k' and k/ are the rates of variation of curvature at E and E, respec-

tively.

The differential equation of the net N and the value of Kj are respectively

1/2,    */ = + (AByi\

By this, we may state simply

Theorem 16. Property III". A three-parameter family of curves is an ß

family if and only if it possesses the Properties I', II', and the Property III'

described as follows. The function k/ pj depends on u only and the function Kj /pj

depends on v only.

This completes our list of geometric characterizations of an ß family. We

have completely listed four such sets of characterizations, namely: Properties

(I, II, III); (I, IL, HL); d', II', HI'); and (I", II", III").
9. The hyperosculated isothermal net of an ß family. From Theorem 16,

we deduce that the orthogonal net N of Theorem 15 is an isothermal net. But

this property is not sufficient to characterize an ß family of curves. Next we

make the following observation.

(42)
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Theorem 17. All the curves of an ß family which are hyperosculated by their

osculating circles form an isothermal net. This net cuts the isothermal net N of

Theorems 15 and 16 at an angle of it/A radians (45°).

This last theorem is of significant interest for the following reasons. Let

us define a conformal transformation, not of the Moebius group, which pre-

serves the maximum number of circles to be a conformal near-Moebius trans-

formation^). Under any such transformation 2, it results that the only

possible circles that are preserved must form the hyperosculated isothermal

net of the ß family into which the w3 circles are converted by 2. It is known

that the only isothermal circular nets are two orthogonal pencils of circles.

The conformal near-Moebius transformations are deducible from this result.

These are of the form 2 = M2TMi where Mi and M% are Moebius transforma-

tions and T is one of the three transformations

(43) U = un,   V = vn;      U = eu,   V = ev;      U = log u,   V = log v.

As a corollary of this work, we may state

Theorem 18. The only ß family of curves (not circles) of the (u, v) plane

which contain circles as the hyperosculated isothermal net are

aUnVn + bUn + cVn + d = 0,

(44) aeu+v + beu + cev + d = 0,

a log U log V + b log U + c log V + d = 0,

where (U, V) are Moebius functions of (u, v).

In the present paper, we have completely characterized the ß families of

curves. One analytic and four geometric characterizations, each consisting of

three independent properties, have been given. In later work, we shall study

certain subfamilies (4) of any ß family and then develop the geometry of these

families with respect to Schwarzian reflection (conformal symmetry) (6). We

state in conclusion

Theorem 19. Every horn angle contained in an ß family is conformally

equivalent to a circular horn angle, and therefore its measure is M= <».

This property belongs to a much larger category of families. The conform-

al measure of a horn angle is defined as

(3) Kasner and De Cicco, The conformal near-Moebius transformations, Bulletin of the

American Mathematical Society, vol. 46 (1940), pp. 784-793.

(4) This is related to the theory of natural families. See papers by Kasner (1909), Lipke

(1912), Douglas (1924), Fialkow (1939), and Struik's recent treatise on differential geometry

(1938) where other references can be found.

(5) Kasner, Annals of Mathematics, (2), vol. 38 (1937), pp. 873-877.
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where 7 denotes curvature. If we demand that this shall be constant, a very

extensive type of triple family is obtained.
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