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1. Introduction. Let F(z) denote a function regular in a neighborhood of

each of the points of the complex z-plane determined by the X numbers a,-,

j — l, 2, • • • , X, which are not necessarily distinct. By means of interpolation

to F(z) in the points a,-, the coefficients an of the following series are uniquely

determined [20, p. 53]:

do    +    ai(z—<*i)     +<h(z— <*i)(z — ai)+ ■ • ■ +   <Zx_i(z—ai) • • • (z—ax_i)

(1.1)  +  a\w(z) +ax+i(z — aiMzH- -f d2X-i(z-ai) ■ • • (z—ax_i)&i(z)

+a2x(«(z))2+

where co(z) =lTj-i(z—We shall denote the partial sums of this series by

s„(z; F) or 5„(z), w = 0, 1, 2, ■ ■ • , and the Cesäro means of order r by s^'fz; F)

or 5«(z), « = 0,1,2,

Jacobi seems to have been the first to study developments of this

type. He was interested in the problem of finding a formal expansion for F{z)

of the type ^<Tgv(z){u(z))", in which the functions q„(z) are polynomials of

degree less than X. The sum of the first n terms of this original series of Jacobi

is the polynomial of degree at most X« — 1 which interpolates to the function

F(z) in the points a,-, each considered to be of multiplicity n. Thus the wth

partial sum of Jacobi's original series is identical with the Xwth partial sum

of the series (1.1). A change in the order of the points a,- naturally changes

(1.1), but does not change Jacobi's original series. We shall call (1.1) the

Jacobi series for F(z) with respect to the points a,-. The series is a generaliza-

tion of the Taylor series, to which it reduces if the a, all coincide.

The present study of the Jacobi series was undertaken at the suggestion

of Professor J. L. Walsh. The purpose of the paper is to develop two general

methods for studying the Jacobi series on the boundaries of its regions of con-

vergence, and to obtain thereby certain typical results concerning the be-

havior of the series on these boundaries. The first method, in which the basic

idea (§4) is due to Professor Walsh, consists in the study of certain expres-

Presented to the Society in two parts: §§1-5 and 9, December 27, 1934, under the title

The Jacobi interpolation series on the lemniscate of convergence (jointly with Professor J. L.

Walsh); §§10-11, October 30, 1937, under the title Uniform convergence and summability of the

Jacobi series on an unrestricted lemniscate; received by the editors July 15, 1939, and, in revised

form, June 13, 1940. The author is indebted to Professor Walsh not only for the contributions

acknowledged in the text, but also for a number of suggestions concerning the exposition of the

results contained in this paper.

0) See also [20, pp. 54-64]; and [5, 6, 9, 10, 11, 12, 13, 19]. The Jacobi series has been used
by Lebesgue to establish Weierstrass's theorem on approximation to continuous functions by

polynomials; see [2, p. 60].
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sions for the sums of the columns of the array (1.1). This method is developed

in §§4-7, and is applied in §8 to the problem of determining the order of the

coefficients of the series (1.1) under various conditions on the function F(z).

The second method consists in expressing the Xwth partial sum of (1.1) (that

is, the rath partial sum of Jacobi's original series) as a definite integral similar

to Dirichlet's integral (§10). The technique of working with this integral is

illustrated in §11 by the derivation of several convergence tests for the Jacobi

series analogous to the de la Vallee Poussin test and related tests for Fourier

series. Both of the two general methods depend upon a fundamental connec-

tion between the Jacobi series and the Fourier series of the boundary values

of F(z) (Theorem 7.7). The existence of such boundary values is discussed in

some detail in §7, not only because it is an essential step in establishing the

relation between the Jacobi and Fourier series, but also because it is a func-

ion-theoretic problem of some interest in itself.

Many further results concerning the convergence and summability of the

Jacobi series are quite immediate consequences of the work in this paper. It

is perhaps well to mention that one of the chief reasons for undertaking the

present study was the hope that Jacobi series results might be indicative of

those to be expected in the study of certain more general series of interpola-

tion, and that the methods developed here might also be applicable in more

general situations.

2. The regions of convergence. There exists a greatest positive number p

(finite or infinite) with the property that F(z) is single-valued and regular on

the set D: |co(z)| <p [20, p. 58]. This set consists of the finite plane if ju= oo.

If ju< oo, it consists of X' (1 ^X'iSX) mutually exclusive Jordan regions Dk,

k = l, ■ ■ ■ , X', the boundaries of which are contours(2) which we shall denote

respectively by the letters Ck, k = 1, ■ • • , X'. The set Dk-\-Ck will be denoted

by Dk, and the set |w(z)| by D. The set 2\\Zi Ck is the lemniscate(3) T:

\o)(z) \ =)jl, which, for reasons contained in Theorem 2.1 below, is called the

lemniscate of convergence of the series (1.1). In the neighborhood of a point ß

on r at which dw/dz=u'(z) has an (m— l)-fold zero, the locus V consists of m

analytic arcs passing through the point ß, with equally spaced tangents(4).

The point ß is called a multiple point of order m of Y. By the index of a set E

on the lemniscate V, we shall mean the number m(E) such that co'(z) has a

zero of order m(E) — 1 on E but has no zero of higher order on E. We shall

always denote the index of T by m.

The fundamental convergence theorem is as follows [20, pp. 57-60](8):

(2) By a contour, we mean a Jordan curve of the finite plane composed of a finite number of

analytic Jordan arcs.

(3) For a complete discussion of lemniscates, the reader is referred to [20, pp. 54-56], and

[21].
(4) This statement is easily proved by the implicit function theorem.

(6) See also [10] and [ll].
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Theorem 2.1. The series (1.1) converges absolutely for z on D, and uniformly

to F{z) for z on any closed limited subset of D. The series diverges for \ u>{z) \ >/x.

Moreover, we have

lim sup I an |1/n = (l//x)1/x,
n—*»

\F(z) -Sn(z)\ ^ Mtju/nt)*!*,

I u(z) I ^ fll < IX,

where M is independent of n and z but not of fxi and ß2, and where p2>ixi is an

arbitrary positive number less than p.

The coefficients an are given by the formulas(6)

F(z)dz
(2.1) a\,+K

lirt J r2iri J r< (z — ai)(z — a2) • • • (z — aK+i) [«(z)]'

K = 0, 1, • • • , X - 1, v = 0, 1, 2, • • • ,

where V denotes the lemniscate | co(z) | =ßi. It is easily shown that if by any

means whatsoever we can find a series of type (1.1) which converges to F(z)

at every point z for which | w(z) [ <p2, then the coefficients of this series (which

must converge uniformly, |«(z)| ^ßi<ix2) are identical with the coefficients

of (1.1) determined by interpolation. We shall make constant use of this re-

mark in constructing examples, most of which will be derived from the bi-

nomial theorem.

3. Examples. An interesting special case is that in which X = 2, «1=1,

a2 = —1; the series (1.1) then has the form

oo

(3.1) £ Mz2 - 1)" + «2,+i(z - l)(z2 - 1)'J.

We shall frequently have occasion to refer to the following examples in the

sequel.

(a) Let gi(z, q), q real, be an even function which, for cRz>0, coincides

with a branch of the function z~2q chosen so that it is regular for 3\z>0 and

so that gi(l, q) = 1.

In particular,

I    1/z, %z>0,

. gl(z"] = \- i/z, -nz<o.

We may write (7)

(6) Integrals such as this one with complex differentials are to be taken in the Lebesgue-

Stieltjes sense, and those with real differentials are to be taken in the Lebesgue sense. See [16],

especially pp. 64-67, for the theory of such integrals.

(7) With proper interpretation of the second member of the equation.
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^■^[1 + (8!-1)1,-gc--<"-"- I"-•!<•.

where C7q= {-q){-q-1) • • • (-g-y+DAI-OC**-1), Cr«-!.
(b) Let ^2(2, 2), 2 real, be an odd function which, for <Rz >0, coincides with

a branch of the function z1-25 chosen so that it is regular for cRz>0 and so

that        g) = l.
In particular,

We may write (7)

+ 1,     5lz > 0,

<Rz < 0.

1 z - 1

[l + (z2-l)>     [l + (z2-l)]*

00

= £ [Cr9(z2 - 1)" + Cr«(* - l)(z2 - !)"]>        I z2 - 1 I < 1.

#
4. Walsh's representation of 77(z) by columns of (1.1). It was observed

by Professor Walsh(8) that for | z2 — 11 <n, the series (3.1) expresses the gen-

erating function as the sum of two components, the first of which is an

even function, and the second, the product of an even function into (z—1).

He found that if we write V<,(z)=[F(z) +F(-z)}/2+[F(z) - F(-z)]/2z

and ¥i(s) = [F(z) - F(- z)]/2z, then F(z) = V0(z) + (a - l)*i(«) and

*o(z)=Zo"^(z2-l)'. *i(z)=£oM«2»+i(s2-l)^, |z2-ll <M- (Thus in §3(b),

^o=(l+z2-l)-9=^i-)

He further pointed out that an analogous situation exists in the general

case. We may write the following equation for |«(z)| <Mi =

00

*k(z) = X aXv+K[w(z)]"

1 r         f(z')        & r^(2) i'
(4.1) = — -—-E — \dz'

2ttI Jt> (z' — cti) ■ • • (z' — ajt+i)   0 Lw(z')J

1   r f(z')PK(z')
= -, ——-— dz', K = 0, 1, • • • , X - 1,

2iri J t' w(z') — oj(z)

where PK(s') =IB-x+2(*'-«,), 2t=0, 1, • • • , X-2, and Px_i(z') = l. The
equalities in (4.1) are easily established by reference to (2.1) and Theorem 2.1.

We then have

(8) The material of this section was communicated to the author in conversations with

Professor Walsh.
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F(z) = ¥„(*) + (2 - «0*i(2) + ••'
(4.2) .

+ (z — ax)(z — a2) • • • (z — ax-i)^x-i(z), | co(z) | <

The functions SFk(z) are each invariant under the substitutions which

leave co(z) invariant, and in this sense are generalizations of even functions.

Their Jacobi series are the second members of (4.1).

5. Evaluation of the integrals in (4.1). We henceforth shall assume that

ß< cc . Let w=o)(z)/p (it is assumed invariably in the sequel that z and w are

in this relationship) and let functions zp(w), p = l, • • • , X, be defined by the

identity

co(z) — tiw = (z — Zi(w))(z — Zi(w)) ■ ■ ■ (z — z\(w)).

The functions zp(w) will be studied in some detail below; for the moment it

suffices to observe that u(zp(w))=nw, so that if \w\ <1 (which will be the

case if z is in D) then the points zp(w) are all in D.

If we write w(2')-^W=IIj-i(z'_zfW) m (4-1) anc* notice that

u'(zh(w)) =11^=1, j,^a(zä(w) — zp(w)), then we obtain the following equation as

a simple consequence of Cauchy's integral formula:

j  * \     £ F(zp(W))Px(zPW)
(5.1) = Z, -„   , »-■ 7C = 0, • • ■ , X - 1.

p=l        co (zp(w))

If the second members of (5.1) are replaced by their limiting values at points

w for which co'(zp(w)) =0, p = 1, ■ • • , X, then these formulas are valid for all

values of w such that \w\ <1.

Equation (4.2) becomes

F{zp{w)) = $0(w) + (zP(w) — «i)*i(w) + • • •

(0. 2.)

+ (zp(w) — ax){zp{w) — a2) • • ■ (zp(w) — ax_i) *x-i(w),       | w | < 1.

We find, by combining (4.1) and (5.1), that

00

(5.3) $K(w) = Jl aXt+K{uwY, I w\ < 1, K = 0, 1, • • • , X - 1;

which implies that the functions 3?k{iv) are single-valued and regular for

|w| <1, and that the series appearing in (5.3) are the Maclaurin series for

these functions.

It is worth remarking that if F(zp(w)) = F(zp>(w)), for all p and p',

p = 1, • • • , X, p' = 1, • • • , X, and for all w on some point set E having a

limit point in the region \w\ <1, then P(z)=^0(z). For the right member

of (5.2) is formally a polynomial of degree X—1 in the symbol zp(w), and at

all but a finite number of points of E the functions zp(w) will all be distinct

(they obviously fail to be so only at points corresponding to points z such
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that co'(z)=0). At each point of E at which the zp's are distinct, we have

<E>x_i(w) = 0, 3>x-2(w)=0, • • ■ , <f>i(w)=0; and it follows from the nature of E

and the regularity of the functions <&k that these equations must hold identi-

cally for I w\ < 1.
6. The functions zp(w). The functions zp(w) may be defined in such a way

that they are algebraic functions'^) of a familiar type. It seems desirable at

this point to give a somewhat detailed description of a Riemann surface

for the function w=oi(z)/ß which is adapted to our needs, and of certain

properties of the inverse function on this surface.

Let the distinct roots of co'(z) be denoted by ßi, ß2, • ■ ■ , ß\v and their

respective multiplicities by nt\—\, m2 — \, ■ ■ ■ , m\x— 1. Let u>{ßj) / p. = bj,

7 = 1, • • ■ , Xi; these numbers bj are not necessarily distinct. We may assume

that bj^l, j = 1, • • • , Xi, for such a situation can always be brought about

by introducing a rotative factor into the transformation w=io(z)/ß, which

would necessitate only trivial changes in the arguments used in the sequel. We

construct the Riemann surface 7? for this transformation as follows: The

w-plane is replaced by X superimposed planes or sheets, and the points bj,

7 = 1, • • • , Xi, and the circle y: \ w\ =1, are plotted in each plane. We con-

nect points bj for which | bj\ ^ 1 to w by cuts which lie in the domains | w\ s£l

along rays starting at the origin and passing through these points bj. There

exists a number pi, Oj£pi<l, such that the set of superimposed simply con-

ected, annular-shaped regions B bounded by the curves y, \w\ = pu and the

segment pi^w^ 1, have the property that none of the points bj lie in the re-

gions or on their boundaries except possibly on the circle y. The points bj for

which \bj\ <pi are connected by a cut through all the planes, lying along a

Jordan arc which passes through each of these points and through the point

w = pi, and which coincides with the positive real axis from w = p\ to w= oo,

but which does not pass through any point of B.

The function zp(w) is now defined in the usual way to be single-valued

and regular on the pih sheet of 7? except at infinity and possibly at certain

of the points bj on that sheet. The construction of R is then completed by

joining the edges of the planes across the cuts properly.

If wy^bj, J = l, ■ ■ • , Xi, the functions zp(w) have distinct values; but if

w = bj, exactly ntj of these functions assume the common value ßj. All the func-

tions are continuous for w = bj, and the functions zp(w) for which w'(zp(bj)) ^0

are regular for w = bj. The group of nij functions which assume the value ßj

for w = bj forms a single cyclic system with respect to this value of w, because

[d/dw]{co(z)-w)^0 [7, pp. 239-240]. For the moment let b = bit ß = ßjt and

m = nij for a fixed value of j; and let zPl(b)=zP2(b)= ■ • • =zPm(b)=ß. Then

for w in each of a set of m regions Nn: \w — b\ ^5>0, located on the m

sheets numbered ph, h = l, ■ ■ ■ , m, there exists a development of the form

(9) See [l, chaps. 2-4], and [7, pp. 233-244].
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j3+E"=1c„[(w —6)1/m]% Ci^O, which may be made to represent all the roots

zPi(w), ■ ■ ■ , zPm(w), by giving to (w — b)llm all of its m determinations^0).

Thus letting (w — b)l/m denote the determination for zPh, we have

(6.1) zPh(w) = ß + 2>,[f> - &)**]'> Cl^0,w(=Nh.
i

Or again, we may write

(6.2) zPh(w) - ß = (w - b)HmA(Wh), w(=Nh,

where Wh = (w — b)l/m and A(Wh) is a nonvanishing regular function of Wh

for I Wh\ ^ 5- We have the inequalities^1)

I zVh(w) — ß
(6.3) Mi ^ -i-       = M*>        w G Nh, w' G Nh, h = 1, • • • , m,

I w — b \llm

I z»i(w) — zp.(w') I
(6.4) '    * -1 = M*< weNh,w'eNh,h=l,---,m.

(The inequality (6.4) is easily proved by using the Heine-Borel theorem.)

The equation z = zp(w) gives a conformal one-to-one map of the annulus

B in the pth sheet of 7? onto a simply connected region Bp in the z-plane. The

region Bp lies interior to one of the curves Ck and is bounded by an arc of Ck,

an analytic arc of the lemniscate TH: \w(z) \ =pi, and analytic arcs of two

orthogonal trajectories of V (which may coincide) which are images of the

segment pi^w^l. The regions Bp, p = \, ■ ■ ■ , X, have no point in common.

The correspondence of the boundaries of B and of Bp is one-to-one and

continuous. Thus the set of functions w = zp(eie), p = \, ■ • ■ , X, 0^ö^27r,

gives a parametric representation of the lemniscate, and the arcs represented

by the individual functions have no interior points in common.

Let us write zp(eie) =fp(d), and arrange the subscripts of the ß/s so

that the b/s for which |&,| =1 are ö2 = e''f», • • • , ba = eits, where

0<£i^£2iS • • • ^fs<27T. It is obvious that we have constructed 7? so that

the subset of the functions zp(w) assigned to the curve Ck forms a single cyclic

system for \w\ =1. Suppose that the Kk functions zPl, zP2, ■ ■ ■ , zPKIc are as-

signed to Ck, and that f„,.(0)—>£"j.,+1(0), i = l, • • • , (£*—1, and rPlt(0)—"^(O)

as 6—*2ir, 6<2ir. We now extend the range of definition of the functions £Pi(0)

by means of the following conventions:

(10) [l, pp. 32-33], [7, pp. 238-240]. The reason why d^O in our case is brought out in the

latter reference.

(u) Letters M, Mi, Mi, ■ • ■ will always denote finite positive constants which may depend

on T and on F(z), but which will not depend directly upon any other apparent variable or sub-

script, unless the contrary is implied by the use of functional notation, as in the statement of

Lemma 7.1. The significance of these letters will vary with the context.
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tPi(fl ± 2nw) = fPi+„(0), » = 1, • • • , Kk, n = 1, 2, • • • ,

where pw-=pv for v' = v (mod Kk) and 0^6 ^2tt. Then any one of the functions

TpiWi with its range of definition extended in this manner, will give a con-

tinuous parametric representation of the entire curve Ck, if 0 is allowed to

vary through 2irick radians instead of 2tt radians. That is, the function

s = Tj)i(0) now sets up a one-to-one continuous correspondence between the

points of Ck and the points of a circumference on 7?, considered as tw-fold,

closed, and of length 2-KKk. Any interval of values of 0 of length 2uKk may be

used to obtain the representation. Thus fPi(0) is now a periodic function of 0,

the period being 2irnk. The function is an analytic function of 0 for all values

of this variable except possibly at certain values which satisfy the congruences

9 = ^ (mod 2tt), j = l, ■ • • , 5.

Whenever our notation implies that 0 is not restricted to the interval

[0, 2-7t]—as, for instance, in the remainder of this section and in the lemmas

of §11—it is to be understood that we are using the functions £p(6) in the ex-

tended sense.

Suppose now that for a given j we have £„,(£)=£„,(£)= • ■ • = tPmi(Q=ßj,

where (mod 27r). Let ß = ßj and m = nij. For |0 — £| ^7r/4, we write

eie_eif= j 2 sin |(0-£) | where

((3ir + d + t)/2, 0 ^ a,
4/(6) = <

1(tt + 0 + £)/2,  6 > $

There exists a number 5', 0 < 5' fk\ir, and a method of assigning subscripts pi,

p2, ■ ■ ■ , pm to the functions zp(w), such that, by using (6.2), we may write

f»« -ß = (eie ~ e<t)]!mA(Wh)

= j 2 sin |(0 - 0 U/»g«#<*)+«**)/»vj(^Jk)) I 0 - S I ̂

where

WK = (ei9 - e*)T

and A(Wh) is a nonvanishing regular function of Wh for | 0 — £| §'. The fol-

owing inequalities are then true for |ö —£| SsS', \ B'— £| ^5':

(6.6) Jf! ^ ', ,     1  :g Mt, h=l,---,m;
i 0 — £ |1/m

I r?k(0) - r™(0') I
(6.7) TL Jiw *-1.i ö — ö' |i/m

An important consequence of the periodicity of the functions fP(0) is that

with each number we may associate a positive number 5,-, Sj ̂ Jx, with the

following property: If for any p, 1 ^p^\, we have iTP(£) =/3,-, where £ is any
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number such that £ = (mod 2ir), then a representation similar to (6.5) (with

h suitably determined) and inequalities (6.6) and (6.7) hold for £p(9), provided

that \0 — g| ^ 5j. The 5,- is independent of p and g. We shall assume that

ö*,-=5j< if £/=sf/', that £,-+6,-<5,+i if f/^fy+i, and that gs+5s<27T,
gi — Si>0. It follows from these assumptions that £P(9) 9^ß,', j'^j, for

g-53-^0^g+5,-, where g = g,- (mod 2tt).

Suppose now that for a given value of p and of k, the point £"p(0) lies on CV

The length of the arc of Ch described by the point £p(9) when 6 varies from

0i to 02 is given by the formula

(6.8) <f0 =
•/ 9i   I     do J Oi

ef0.

where cop(0) =a)'(ifp(0)). It is well known that V is rectifiable, which implies

that the integrals in (6.8) are convergent for all values of 0i and 02. We shall

need the following more precise result (12):

Lemma 6.1. fl+tn\co„(t) | ~Ht = 0(\t\1/Ä) uniformly for 0 on any closed in-

terval [a, b], where rh is the index of the arc of V whose equation is z = fp(0),

a^d^b.

We shall show that for each number g£ [a, b], there exist positive num-

bers M(g) and 5(g) independent of 0 such that

I
e+t

M I toPW \-Ht £ M(0\t\1'"'

for 0 in the interval 7(g): g-5(g) ^0^g+ 5(g) and for |t| ^5(g). The Heine-

Borel theorem will then establish the lemma for all values of 0 in the interval

[a,b].

The function up(8) =}^$L.1(£ p(9) — ßh)mh~l is a continuous function of 0.

If cop(g)?^0, then |coj,(0)| is bounded from zero in some neighborhood of g,

and Je+'\up(t) \ ~1e7r = 0(| t |) uniformly for 0 in some interval 7(g). On the

other hand, suppose that ^(g) =ßj and g = g, (mod 27r). Then for | 0 — g| 5= 5,-,

f(0) satisfies an inequality similar to (6.6), and 7r'| $P(6) — ßh\mh~1 is bounded

from zero, where 7r'=J7jIli, h^j. We have

/• 6+1 /» 9+ (

\up{r)\-1dT ^ M \       \ Ur) ~ ßl'—dr

(6.9)       Jß J$/•e+t

^ Mi I      \t - ^Yl-m)'mdT = 0{\t\llm),
j e

I 0 - g I ^ 5,v2, M ^ §53,

C12) The letters / and r will always denote real variables. By f(t) =0(\ t\a), we mean that

positive numbers if and T exist such that \f(t) \ -&M\t\a for |i| g 7\
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d6

where ß = ßj and m = mj. Since in is not less than m, the proof is complete(13).

By the measure of a set on a curve Ck, we shall mean its linear Lebesgue

measure. Thus the measure of a set 73' on Ck which corresponds under the

transformation z = £p(d) to a set E of values of 0, is given by the formula

fEfi\o}P(e)\-1de; in particular, if m(E)=0, then m(E')=0 [16, pp. 123-125].
7. The classes 77" and the existence of boundary values. We shall say

that Fiz) belongs to the class Hr, a>0, or more briefly, F(z)^Hr, if(w)

\F(z)\a\dz \ =mE I |      | = ßp I      X r
rp p=l J \w\=p   I Bp  | Jo       p=\   | COp |

^ M(F, D, 0 < p < 1,

where r„ denotes the lemniscate |co(z)l=pp., and where Fp=F(zp(w)),

Up =o)'(Zp(w)), w = peie, and |ciz| and \dw\ denote differentials of arc length

on Tp and on the circle | w\ = p respectively. The classes 77J are analogous to

the well known classes of functions regular for |w| <1 which F. Riesz [14]

called the classes 77". We shall write 77 instead of 77\ and 77r instead of 77-;

and we shall use 77f* to denote the class of functions F(z), each uniformly

bounded in modulus, z£Z).

Theorem 7.1. If F(z)G77?, then F(z)G77?, ß^a.

The theorem is a direct consequence of the definition of the integrals in

(7.1).

Theorem 7.2. If F(z)G77r, then $x(w)G77a', where

(a) a'=afor m = \, 0<a^ oo ,

(b) a' =afor m s: 1, a ^ 1,

(c) a' <ma/[a(m— 1) +1 ] for m > 1, l<a<oo,

(d) a' <in/(m — 1) for m>\, a = oo .

(13) Dr. S. E. Warschawski has pointed out in a communication to the author that the situa-

tion in Lemma 6.1 is typical of a broad class of curves. He formulates a general statement as

follows:

Let the boundary of a simply connected region D contain a free arc C which consists of a finite

number of arcs 71, tt, • • • ,y» with bounded curvature. Let the measure of the corner at the point Zk

where the two arcs yt-i and 74 meet be ir/m*. If z = z(w) maps the region \w\ <1 conformally

onto D, and if the arc 0i^0§02 on \ w\ =1 corresponds to C, then the arc length s(B) of C satisfies

the condition s(B+t) — s(8) =0(\t\llm), m = max mt, uniformly, 8l^$^62.

The result can be derived by reference to the results of Osgood and Taylor, these Transac-

tions, vol. 14 (1913), p. 282, which reduce the problem to a simple computation of the type car-

ried out in the proof of Lemma 6.1. Dr. Warschawski further observes that the condition that

the 7t's have bounded curvature can be replaced by weaker ones; e.g., the conditions required

in Theorem 10 of his thesis (Mathematische Zeitschrift, vol. 35 (1932), p. 433).

Lemma 6.1 can be derived from Warschawski's result by mapping the regions B onto the

unit circle.

(14) The first two integrals are to be taken in the Lebesgue-Stieltjes (or Riemann-Stieltjes)

sense.
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To prove the theorem, we note that the hypothesis, when taken with (7.1),

implies that

(7.2)

Now

(7.3)

r de ̂  m, pi g p < 1, a < oo .

p=\ J 0

is

S-|F„-Mzp(a'))

</0,

de

< 1.

If m = 1 and a < oo, or in any case if a g 1, we may write the inequalities

dd g m3

g m4 r

<"<20

t70 g Pi g P < 1,

because'if m = \, |cüp' | is uniformly bounded from zero in the regions 73 of 7?.

Thus for these values of in and a, we have shown that Jq'\ &k(w) | "dd i£ Af«

for pigp<l, and a similar inequality obviously holds true for 0<p<l(15).

The case a = oo , fn = 1, is easily taken care of by examining the formulas (5.1).

Consider now case (c). Here the proof depends upon a lemma.

Lemma 7.1. There exists a number M(q) such that f$*\<>>p \ ~9d6f£M(q),

p = i, ■ ■ ■ , X, pi^p < 1, where q is any number less than m/(m — \), m S: 1.

The result is immediate if m = \. If in>\, the result is again obvious for

Pi :£ p :£ p2 < 1 if P2 is chosen suitably. In this case we show that for each num-

ber £ in the interval 0^g^27r there exist numbers 5(£)>0, p(£)=^pi, and

M(q, £) = M(£) such that

X
£+«({)

o>p \-"de g M(£)
£-«(«

for p(£) f£p < 1. Suppose first that co'(Zj,(ei£)) 5^0. Then there exists a neighbor-

hood of the point w = eli in which ] cop' | is bounded from zero, and the exist-

ence of M(£), p(£), and 5(£) follows at once. If zv{eli) =j3,-, and ei( = b, = b,

then according to (6.3) there is a neighborhood of the point ei{ in which

I oip \~q^ Mi(£)\w — & I —Cm—i) g/m^ where m = mj. It is quite easily shown by

elementary methods that any branch of the functions (w — e'5)-', rj<l, which

(16) Indeed, it is well known that /„r| &k{v>) \ ad9 increases steadily with p [18, p. 174].
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is regular for \w\ <1, belongs to the class H(16). The existence of M(^), p(£),

and 5(£) is now obvious again, provided that we choose q<m/(m — 1)

^m/(j» — 1). The proof of the lemma is completed by referring to the Heine-

Borel theorem and by observing that /ox|<°p' \~Qd0^fi\o)p \ ~9d6, where I is

any set of overlapping intervals covering the interval [0, 2ir].

To return to the proof of the theorem, we use the Holder inequality to

write

(7.4)

1     \Q\ (a'-a'la)llr2*\fp «'       f2T l \fp \«y''" (I 1 \q)

J 0     \ Up Jo      I I Up I j I I up   I )

\fp \a   \ a'l<*(  n 2w i   1    «   \ («'—«'/«

o    I w„' I     j        Wo     I Wp j

for pi 5=p < 1. In this inequality, we must have a' <a and (a'/ö)+ (a' — a'/a)/q

= 1, or a' =qa/(g+a—T). By referring to (7.2) and the lemma, we see that the

third member of (7.4) is bounded for pi^p<l if q<m/(m— 1); that is, if

a' <ma/[a(m—l) + l]. The proof of this section of the theorem is then com-

pleted by using (7.3).

Case (d) follows immediately from (5.2) and the lemma. The proof of the

theorem is now complete.

It is easily shown that the inequality in (d) cannot be replaced by an

equality. An example is given by the function g2(z, |), which belongs to the

class 77r, where T is now the lemniscate | z2— 11 =1, and for which «^(w) and

and $i(w) obviously belong to the classes H"', a' <2, but not to the class H2.

Similarly, the inequality in (c) cannot be replaced by an equality. An

example to prove this may be constructed as follows: Let F(z) = 0 for 5\z<0,

and let F(z) denote for |z2—1| <1, cR.z>0, a branch of the function z-1'2

• [log(e/z2) ]~3M regular in the simply connected region defined by these in-

equalities. Then F(z)EHr, where Y is again the lemniscate |z2 —l| =1; and

$i(w) G77"', a' <4/3, but $>i(w) doe's not belong to the class 774'3. The reader

will have no difficulty in supplying a proof.

When 77(z)G77r, it does not follow in general that '5fx(z)G77? (an ex-

ample is again given by ^(z, i)), but the following result is an immediate con-

sequence of Theorem 7.2.

Theorem 7.3. If F(z)EHa, then

*k(z) I"' I to'(z) I I dz\ < M, K = 0, 1, • • • , X - 1,

for 0<p<l, where a' is given by the formulas in Theorem 7.2.

(") We have /„r| l+p2-2p cos  (9-£) j -"2rf9S/„2'(2p)-'"2| 1 -cos (0-£) | -"^9 <M(v),

§sp<i.
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The next two theorems are in the nature of converses to Theorems 7.2

and 7.3.

Theorem 7.4. If$K{w)EHa, K = 0, 1,   • • ,X-1, then

F(z) \" \ co'(z) I I dz \ < ML
for 0</><l.

Theorem 7.5. If<PK(z)GHr, K = 0, 1,   • • , X-l, then F(z)EIIT.

The proofs are easily supplied by referring to (4.2) and (5.2). The example

gi(z, I) shows that in general the factor |co'(z)| cannot be omitted from the

integrand in Theorem 7.4.

We now consider the existence of boundary values. We define an 5-path(17)

of a Jordan region T bounded by a contour C to be an analytic Jordan arc

terminating at a point Z of C and lying in a closed triangular subregion of

the closed region T, the boundary of which has a vertex at Z but has no other

point in common with C, and is at no point tangent to C.

Theorem 7.6. If 7<"(z)£77£, there exist finite-valued functions <Fk*(w) and

F*(z) such that

(a) $k(iv)—*$ic*(W), K = 0, 1, • • ■ ,X —1, for almost every point Wfor which

\w\ =1, as w—>W along any S-path of the regions \w\ < 1;

(b) F(z)—+F*(Z) for almost every point Z on T as z-^Z along any S-path

o/Z>(18);

(c) F*(zp(w))=$o*(w) + (zp(w)-a1)$1*(w)+ ■ ■ ■ + (zp{w)-ai)(zp(w)-a2)

• • • (zp(w) — a\_i)$\lLi(w) for almost every point w on the circle y in the pth

sheet of R;

(d) for almost every w for which | w\ = 1

f F*(zp(w))PK(zp(w))
$x(w) = 2, -T.   : TT-' K = 0, 1, • • • , X - 1;

p_l CO (zp(w))

(e) for a' given by the formulas in Theorem 7.2,

j \F*(z) I" I dz \ < oo , j \ $K*(w) |«'| dw \ < co, K = 0,1, • • • ,X - 1.

Part (a) is a consequence of Theorem 7.2 and a theorem of F. Riesz

[14](19).

(17) 5 for Stolz.

(18) The implication here is that F*(z) may be ra-valued at a multiple point of order m,

but is single-valued at all ordinary points of V.

(19) See also [22, p. 162].
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We temporarily define F*(zp(w) for | w\ =1 by the second member of the

equality in (c). Now if the point zp(w) traverses an 5-path in Bp terminating

at zp(W) on r, then the point w traverses an 5-path of the region B on the

pth sheet of R, terminating at the point W on that sheet. (This is an immedi-

ate consequence of the mapping properties of the analytic function w = co(z)//u.)

The set of points on the circle y in the pth sheet of R at which one or more of

the limits in (a) fail to exist is of measure zero, and (as observed at the end

of §6) the corresponding set a on Y is also of measure zero. It is now easily seen

from (5.2) that the statement in (b) is true for all points Z of Y which are not

in cr, which are also boundary points of Bp, and for which co(Z)//ij^l. For

convenience we may add the set of points Z defined by the equation w(Z)/ß = 1

to the set of excepted points in (b), and since the reasoning of this paragraph

applied to 5-paths in all of the regions Bp, p = l, ■ ■ ■ , X, the proof of (b) is

complete.

Part (d) is now a consequence of (5.1).

Part (e) is proved immediately by referring to (7.1), parts (a) and (b) of

the present theorem, and the lemma of Fatou [16, p. 29]. The proof of Theo-

rem 7.6 is complete.

Now that the existence of boundary values and the validity of the limit

in part (b) of Theorem 7.6 has been established, we shall revise the definition

of F*(z) as follows: On each curve Ck, F*(Z) shall be the unique limit ap-

proached by the given function F(z) as z—>Z along any 5-path of Dk, at each

point Z of Ck for which this limit exists and is finite. At all other points of Ck,

we let F*(z)=0. The function F*{z) so defined exists everywhere on Y, is

single-valued except at the multiple points, and coincides with the previously

defined boundary value function wherever the latter exists.

It will be convenient henceforth to use the single symbol F{z) to designate

the complete function consisting of F{z), [co(z)| </i, and F*(z), |w(z)| = it; and

we shall use the symbols <E>Ä(w), 7t" = 0, 1, ■ • • , X —1, in a similarly extended

sense.

The case a = l is of especial importance because of this theorem:

Theorem 7.7. If F(z)EHr, then the series 2\Z?=oai*+K.P"ei"e, K = 0, 1, • ■ • ,

X—1, are the Fourier series respectively of the functions <3?x(ei9), K = 0, 1, • • • ,

X-l.

This result is a consequence of Theorem 7.2, equation (5.3), and a theorem

of F. and M. Riesz [15, p. 42], which states that our conclusion is a necessary

and sufficient condition for ^k(w) £77.

Conversely, if it be known of a series of the form (1.1) that for some num-

ber ß the series y^A\v+Kßveive, K = Q, 1, ■ • ■ , X—1 are all Fourier series, then

there exist functions 4>x(w)G77, K = 0, 1, • • ■ , X — 1 defined by equation (5.3),

with boundary values on the unit circle for which these series are respectively

the Fourier series; and there exists a function F(z) defined by equation (4.2),
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such that F{z)w'{z) £77r (where T is the lemniscate ] co(z)| =/*) and for which

the original series is the Jacobi series with respect to the points a,(20).

Henceforth we shall assume that F{z)GHv, unless a statement is made

to the contrary. We shall also make these abbreviations: F(zp(eie)) =fP(9),

$k(eie) =<pk(6), PK(zP(eie)) - pK,P(6).

Theorem 7.7 and Theorem 7.6, parts (d) and (e) enable us to write(21)

(7.5)

1 r2T

2ir J o

271 «/ u

l * r2*fP(e)pK,P(e)

Z7T p=i j o

ß-   r F(z)dz
= - -j:-r-i   7? = 0, 1, • ■ • , X - 1.

2x7 Jr (z — ax) • ■ • (z — ax+i) [co(z) J"

Equation (7.5) is valid for all integral values of v if the first member is

replaced by zero when v is negative. In particular, if v= — 1 and 7i"=X—1, we

have

l   r i r2T i c
(7.6) -r     TXz)67z = — I     <#>x-i(0)ei9^ = —; I $(w)<7vx> = 0

liripJ v 2it J o 2iriJ y

[15, p. 42]. A function Fi(z) identical with F(z) in 7)^ and identically zero else-

where, will also be of class 77r. We may accordingly apply to Fk{z) the argu-

ment which led to (7.6), and we find that fvFk(z)dz=fckF(z)dz = 0. Also,

by Cauchy's integral theorem, fckSn(z)dz = 0. Combining these remarks, we

have

Theorem 7.8. fckF(z)dz = \im„„„fchSn(z)dz = 0, k = l, ■ ■ ■ , X'.

8. The coefficients. We now present a few typical results concerning the

order of magnitude of the quantities ß"\ ax,+x|, K = 0, • ■ ■ , X—1, v = 0, 1,

2, • • • .
Our first theorem follows immediately from (7.5).

Theorem 8.1. If | F(z) | ^ M(F), zGT, then m"| a^+K\ ^ M(F)Mi(V),
K = 0, X—1, ̂  = 0, 1, 2, • • • , where Mi(T) is independent of F{z).

(20) Strictly speaking, we are using the symbol H\- in a slightly extended sense here, be-

cause in the present instance the lemniscate V need not be the lemniscate of convergence of the

Jacobi series.

(21) See [16, pp. 36-38], for the theorem on change of variables in the Lebesgue-Stieltjes

integral.
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Our second theorem is simply the Riemann-Lebesgue theorem [22, p. 18]

applied to the Fourier coefficients of the functions cj>K(8):

Theorem 8.2. Lim,,J0O n"a\v+K = Q, K = 0, 1, ,X-1.

Suppose now that |F(z)| is uniformly bounded on T. Let Cp(5), 5>0,

denote the modulus of continuity [22, p. 17 ] of the periodic function fv(ß), and

let C(5) denote for each 5 the largest of the numbers Cp{h), p = \, ■ ■ ■ , \.

Theorem 8.3. |/x"ax,+K| <M[C(ir/v) + (ir/vyi^], K = 0, 1, • • • , X-l,

v = 1, 2, • • • .

For the proof, we write

1 r 2t
= —        [c6/c(ö) - 4>k(6 + ir/v)]e-"edd,

2 J o

and by reference to (7.5) we see that it is sufficient to show that the integrals

/► 2x

0

fp(e) fp(e + ,/v)
pK,p{6)-—-— pK,p{6 + t/v) de,

Wp{6 + TV/v)

K - 0, 1, •  • , X - 1, p 1, ,x,

each satisfy an inequality similar to the one in the statement of the theorem.

We have

■2T\pK.P(e)

/I Zf

a

fp{e) - fp(ß + t/v) I de

pK,P(e)   pK,P(e + w/v)

cop(0)        cop(0 + tt/v)
de

= Ji + J*

It is obvious that J^MiCij/v). We shall have shown that Js = 0[(T/v)llm]

if we establish that

(8.1)
0

pK,p(e)   pK,p(e +1)
de = o(| t\1'™),

<->p(e)    wp{e +1)

K = 0, 1, •  • ,X - 1, p - 1, . X;

and the remainder of our proof will be concerned with this relation.

Assuming that 0 g/g 5,/2, j = 1, • • • , j, we write

(8.2)

/ = ZN   +/    )+ Z (f +f )

- Z    + 2* + 2,,
j=i
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where £0+ 60 = 0, £,+i — S,+i = 2ir, and where in £'the index j assumes all val-

ues from zero to j for which £, <£J+i. The function Pk,p(6)/o3p(6) is an analytic

function of 0 for £y+8,^0^8)+i + JS,+i,j = 0, 1, • • • ,5—1, £,<£,+!, and

for $!+8.g0g27r+8i; whence 23 = 0(r). By Lemma 6.1, 22 = 0(/1/s). If

wp(?j)^0, then <r, = o(0- If on the contrary, £P(l-j)=ßj, then it is rather easily

shown by using (6.5) and the identity AB- CD =A (B-D)+D(A - C) that

{;-'       C i i 1+ J J
2sinJ(0 - £,)

Cm,—1) / tnj

1

2 sini(0 + t-$j)

(mj—D/mj

de + CKr1'™') = ofr1'™),

which establishes (8.1) for /^0. The proof of the theorem is now complete.

We note in passing that (8.1) may easily be established for negative values

of / by a slight modification of the above argument.

In certain senses, the estimate of the coefficients given by Theorem 8.3

cannot be improved. For example, the function g2(z; J) (for which the lemnis-

cate of convergence has the index 2) has the property that C(8) = 0, but the

coefficients of its Jacobi series are 0(w~1/2), but not o(w~1/2). Again, by using

certain examples(22) in the theory of trigonometric series, it is easy to con-

struct functions of class 77r, with m = \, for which C(8)^Mo*, 0<n<l, and

for which the quantities p"\ o,\v+k\ are 0(w-') but not o(n~ri).

Theorem 8.4. If F(z) is of bounded variation on T, then

(a) ix*af.,+K = 0{v-li™),m>\,

(b) n*a\,+K = o(i>-1), w = l.

It follows at once from the continuous, one-to-one nature of the corre-

spondence between the boundaries of the regions B and Bp, that under the

present hypothesis on F(z), the functions fp(6) are of bounded variation on

any finite interval, as are also the functions wp(0) and pK,P{0). If m = l, it is

a consequence of the formulas in Theorem 7.6 (d) that the functions <p/c(0)

are of bounded variation. Therefore since they are the boundary values of

functions of class 77, they are absolutely continuous [15; 22, p. 158], and their

Fourier coefficients are o(n~l) [22, p. 18]. This proves part (b) of the theorem.

Turning to part (a), we write

MVe-^de m 2Z' 4>K(6)e-"9de +       I M0)erMd$,
J J £;-«;■ J ij+Sj

= Si +S2,

where £o+8o = 0, £s+i— 8s+i = 27T, and Z' nas the same significance as in

(a) See for instance [22, p. 38, ex. 3] (the conjugate is £ lip a, by the theorem of Privaloff

[22, p. 156]).
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(8.2). The function <px(0) is of bounded variation, £,-+83:S0 5=£,+i — S,+i,

j = 0, 1, • • • , s, £)<£j+i, so by a classical theorem [22, p. 18], S2 = 0(?'~1).

If Wj,(fi)^0, then/p(ö)^x,p(0)/wp(ö) is of bounded variation for 0 in the closed

interval I: [fc-S* and /z[/p(Ö)^,p(ö)e-i"V"p(0)]^ = O(f-1), by the
classical theorem. Suppose now that £Pl(t;) =£Pi(!-) = • • • =fpm(?) =ß, where

£ =    Then by referring to (6.5) we may write, for 0£7,

n-D/mUm    0 _ £ I (m-l)/m

2 sin 1(0 - £) I <*-*>/"

y, /p,(0)xg,p>(0)e2"A/"'l

where Xä,p4(0) is a rational function of fpt(0) with no poles for 0£J. Since

Xx,p4(0)/[^4(^)]m_1 is an absolutely continuous function of 0 for 0£7, and

i/>(0) is a step function, and | 0 —£| /| sin \{B — £)| is an analytic function of 0

for 0£/, it follows that the quantity in brackets in (8.3) is of bounded varia-

tion for 0£7. Let us denote this quantity by Xiß). Another classical theorem

[3, p. 494] now states that

lim *-*/- f X(fl) i-—.-dO = KiX(Z + 0) + KtX(t - 0),
n-» J I j 0 - f I (»-!)/•«

where ifi and K2 are complex constants depending on m. The proof of part (a)

is complete.

We observe that

i- m

(8.4)      X(S ± 0) = •-«(—«'^*<«t«XK.«(0-Ci " Z/p*(€ ± 0)es*"'».

If F(z) is of bounded variation on T, it can have only simple discontinuities

on r. It can be shown that such discontinuities cannot occur on the curves Ck,

which means that we can replace fPk(t;±0) by fPh(!i) in (8.4). If we further

suppose that/P1(i) =/p2(£) = • ■ ■ =/p„(£), then obviously X{£ + 0) = 0. Thus

we have the following theorem:

Theorem 8.5. If F(z) is single-valued and of bounded variation on T, then

The function g2(z; §), which is absolutely continuous on each of the two

contours of its lemniscate of convergence, has coefficients which are 0(n~llm),

but not o{n~1!™); so the estimate in Theorem 8.4(a) cannot be improved. We

cannot replace o(f_1/™) in Theorem 8.5 by 0(i>~(1/m)~e), where e is any fixed

h~X Uph (0) tZi (fM(0) - J8)—1

(8.3)
1

(m-l)/m
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positive number, because the function g2(z; q), q<\, is absolutely continuous

on its entire lemniscate of convergence (for which m = 2), but its Jacobi co-

efficients are 0{nq~l) but not o{nq~l).

We conclude this section with two results analogous respectively to Par-

seval's theorem and to the Riesz-Fisher theorem.

Let Qp denote the series XXoZiV~=o| Pva\v+K\

Theorem 8.6. If F(z) Gfff. 1 <« = 2, then Qß is convergent, where

(a) ß = a/(a— 1) for m = 1,

(b) ß>am/'(a—1) for m>\.

The theorem is an immediate consequence of Theorem 7.2, parts (a) and

(c), and of the Hausdorff-Young theorem [22, p. 190]. The class 772 is of par-

ticular interest because in this case ß = a; but the class H% is of comparable

interest only when M — l. The example g(z; is worth mentioning in this con-

nection. This function is of class 77?, and the wth partial sum of the corre-

sponding series Q2 is twice the Landau upper bound for the modulus of the

wth partial sum of the Taylor series for an arbitrary function of class 77°°,

and is asymptotic to (2 log n)/ir.

Theorem 8.7. Let a<>, oi, • • • be any sequence of numbers such that for some

ju>0, oEx=ö I ß"a\p+K\" is finite, l<a^2. There exists a function F(z) regu-

lar and single-valued for |«(z)| <n such that frp \ F(z) \ ß\ co'(z) | \dz\ <M for

0<p<l, where ß = a/(a—l), and for which the numbers an are the coefficients

of the Jacobi series with respect to the points a,-.

It is easily established by means of the Hausdorff-Young theorem [33, p.

190], and with the aid of the theory of Abel means [33, p. 87], that functions

$k(w) £77" exist for which the numbers ß"a\v+k are the Maclaurin coefficients;

and the remainder of the proof may be supplied by reference to Theorem 7.4

and the remark at the end of §2.

9. Convergence theorems obtained by using the functions <Pk(6)- The work

of §§4-7 allows us to answer many questions concerning the convergence and

summability of the Jacobi series by merely referring directly to the theory of

Fourier series. We shall of course not attempt to give a catalogue of such con-

vergence theorems here, but shall refer briefly to certain results which can

perhaps be considered typical.

The first of these is an analogue of the Fejer-Lebesgue-Hardy theorem

[22, p. 49].

Theorem 9.1. Lim«,» S£'(z) = 7(z), r>0, almost everywhere on T.

The theorems of §7 and the Fejer-Lebesgue-Hardy theorem establish this

result immediately for the functions ^k(z) and their Jacobi series; and the

proof may be completed by using a theorem of the author on the Cesäro

method of summation [4, pp. 707-708], and Theorem 7.6(c).
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We turn next to convergence in the mean. It is well known that if

|</>x(0)| p, p^l, is integrable for 0^6^2w, then the Fourier series for cpK(0)

converges in the mean to </>x(0) with index p', where p' =p if p>l, 0<p' < 1

if p = \ [22, p. 153]. The proof of the following theorem is easily supplied by

using the results of §7 and the Minkowski inequality [18, p. 384].

Theorem 9.2. If F(z)GH", at 1, then

(a)

(b)

/i   I n\*k(z) - 2 a\»+x[«)(z)]" /(*) I I dz \ = 0, K = 0, 1, • • • , X - 1,

lim  f I F(z) - Sn(z) \«' ] to'(g) I I dz I =0.
n—♦» t/ r

77ie number a' is described by the formulas in Theorem 7.2 if a>\. If a = 1,

i/iew 0<a'<l.

Uniform convergence theorems may be obtained by imposing suitable con-

ditions directly on the functions <pK{8). We have, for instance, as an analogue

of Dirichlet's theorem [22, p. 25] the following result:

Theorem 9.3. If the functions 4>k(6), 7£ = 0, 1, ■ • • , X—1, are of bounded

variation for 0       2ir, then lim,,^ S„(z) = T^z) uniformly for z in D.

Obviously there is a theorem of this type for each of the many tests for

convergence of the Fourier series. But it would seem to be of interest to de-

rive such results from conditions imposed directly on the function T'Xz) rather

than on the functions 4>k(6), particularly if m>\. The functions ^x(z) may

behave much less "smoothly" than F(z) in the neighborhood of a multiple

point on T, and the convergence properties of the series Zo°ax»+x W(z) ]" maY

not adequately reflect those of the Jacobi series for the function T^z). For

example, the function g2(z, q), 0 <q <£, is absolutely continuous on its lemnis-

cate of convergence, and its Jacobi series converges uniformly on this lem-

niscate(23); but the corresponding functions Sf^z) and ^i(z) are both infinite

for z = 0 and their Jacobi series are properly divergent at this point.

In the remainder of this paper we shall introduce methods which enable

us to derive convergence theorems without reference to the properties of the

functions ^(z) and their series.

10. The function H(Z, w) and the integral formulas for Sx„+x-i(z; F). Let

F{z) be any analytic function, not necessarily of class 77r, for which V is the

lemniscate of convergence. We define the function H(Z, w; F), or H(Z, w),

for any Z and for \w\ <1, as follows:

(10.1)77(Z,w)=*0(w) + (Z-ai)$i(w)+ ■ ■ ■+{Z-a1) ■ ■ ■ (Z-ax_i)$x_i(w).

(23) See Theorem 11.7.
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The variables Z and w are to be considered as independent here. For a fixed w,

this function is a polynomial in z which coincides with F(z) in the points

z = zp(w), p = l, ■ ■ ■ , X. Therefore for wy^bj, 7 = 1, • • • , Xi, we may use the

Lagrange interpolation formula [20, p. 50 ] to write(24)

JL F(zJw))  w(Z) — w , .
(10.2) h(z, «o = z -^r^ v   ; v l"'l<1-

p-i o) (zp{w)) z — Zp(w)

The quotients in this formula are of course supposed to be defined by their

limiting values for z = zp(w), p = 1, • • • , X. If F(z) = l, then H(z, w) = l, so

for any number/we have

(10.3) H(z, w)-f=Z -7—>
p_l     £0'(2p(w))       Z — ZP(W)

I w I < 1, w 5* bj, j = 1, • • ■ , Xi.

Theorem 10.1. If F(z)GHr, then h(z, w), considered as a function of w,

belongs to the class 72"', where ct' is given by the formulas of Theorem 7.2.

The result is an immediate consequence of (10.1) and Theorem 7.2.

Theorem 10.2. If F(z)(E.HT, there exists a finite-valued function h*{z, w)

defined for each value of z and for almost every w, | w\ = 1, by the equation

H*(z, w) = *o(«0 + (Z - + ■ • • + (Z - «,) • • • (Z - «w0<h_»(w),

and such that

(a) 72"(Z, w)-*H*(Z, W) and H(zp(w), w)-+H*(zp(W), W), p = 1, ■ • • , X,

for almost every point W for which | W\ = 1 as w—>W along any S-path of the

regions \w\ < 1;

(b) 77*(Z, ») - t HZM)  "(Z) ~ »W
p_i w'(zp(w)) z — Zp(w)

for almost every w for which \ w\ = 1;

(c) I  \H{z,w)\a'\dw\<*>,        I  I H(zp(w), w) |" I dw \ < »,

p = l, • • ■ ,x,

where a' is given by the formulas in Theorem 7.2.

The theorem is easily proved by using (10.1), (10.2), and Theorem 7.6. We

shall henceforth use the single symbol 77(Z, w) to designate the complete func-

tion consisting of 77(Z, w), \w\ <1, and 77*(Z, w), \w\ =1. Let hp(6', 6)

(24) The function H(Z, w) is independent of the order of the points otj. Thus in studying

this function, we are turning to Jacobi's original point of view.
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= H(zp(ei6'), eie) and let

1     ^' - v*«      UU.^p (UV ~ f;(0'))
(10.4)   Xp.q(6 , e) =

UP) - f,W     xII^(f«W - ßi)mi~l

Then

X

(10.5) hp(8',6) = D/s(0)xp.e(ö',Ö),
9=1

(10.6) hP(e', e) - f - i; (/,(«> - /)Xp.9(0', 0).
9=1

For a fixed value of 0', formulas (10.5) and (10.6) are true for almost every

value of 0; and if it should happen for a given value of 0 that they are true

for some value of 0', then they are true for all other values of 0'.

The Jacobi series for H(Z, co(z)//u) with respect to the points a,- is the series

00

(10.7) „=o
+ ax„+x_i(Z — ai) • ■ • (Z — ax-i) ) [«(z)]'.

The Taylor series for H(Z, w) about the point w = 0 is obtained from (10.7)

by substituting /iw for co(z).

Theorem 10.3. If F(z) G77"r, the series

oo

Z {«xv + ax,+i(Z - «i) H-+ Ox„+x_i(Z - ot|) • • • (Z - aX-i) \ix"ei"e
►=o

is i/ie Fourier series for the function H(Z, e'e), considered as a function of 0.

The theorem is a consequence of (10.7), Theorem 10.1 and the theorem

of F. and M. Riesz to which allusion has previously been made [15, p. 42].

Henceforth we assume invariably that T^z) £77r.

We write:

■S»(s,(eM)) = *P.»(0)>

Z I a\v + ax,+i(f P(0') —ai)+--*

+ ax,+x_i(rP(0') - «i) • • • (fP(0') - ax-i)}/."^"9

n

= Zcp,r(«0ew = ^,„(0', 0);
»=o

0~p.n(8, 0) = fp,n(0) = Sp,Xn+X-l(0).

Dirichlet's integral formulas [22, pp. 20-21 ] for o-p,„(0', 0) take the follow-

ing forms:
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(10.8) <rp,n(e', e) = — f hp(d', e + t)Kn(r)dr,
TT J-T

(10.9) c7p,n(0', &) ~ f = — f   [hp(6',d + t) + hp(e',9 - t) - 2f]Kn(t)dr,
7T J o

both formulas holding for all 9 and 9'. When 6'=d, these formulas become

useful expressions for the X(«+ l)th partial sum of the series (1.1). We obtain

the following result by referring to Theorem 8.2:

Theorem 10.4. If lim„^M op,n{9) =f{9) uniformly on a set E, then limn-.«,

Sp,n(0) =f(6) uniformly on E.

11. Convergence tests. When m = \, the integrals (10.8) and (10.9) are es-

sentially no more complicated than the ordinary Dirichlet integral in the the-

ory of Fourier series. However, when m > 1 the integrals must be studied by

methods which are modifications or extensions of certain of the methods of

Fourier analysis. Some of the extensions are trivial, some non-trivial and of

interest in themselves.

The methods are perhaps best illustrated by deriving convergence criteria

for the Jacobi series analogous to the de la Vallee Poussin test and to some

of the tests which it includes. Accordingly, we shall devote this final section

to such derivations.

It will be convenient to have formal statements of a few simple results on

functions of bounded variation. If 4>(t) is a complex-valued function of the real

variable t which is of bounded variation on the interval [0, t], we shall denote

the absolute (or total) variation [16, p. 96](26) of <p{t) over the interval [0, t]

by V{<p; t). Obviously V(%{d>); t) ̂  V((f>; t) and F(3(0); /) ̂  V(<p; t).

Lemma 11.1. Letf{t, 6) be a real function of the real variables t and 6, and let

/(0, 6) =0. A necessary and sufficient condition thatf(t, 6) be of bounded variation

in tfor O^t^T and for each 6 on a set of E, and that lim(_o/(£, Ö) =lim(^o V(f; t)

= 0 uniformly for 0£E, is that f(t, 6) may be expressed as the difference of two

non-negative functions of t and 6 which are monotone non-decreasing functions

of tfor any fixed values of OElE, and which approach zero uniformly, 0£E, as

t->0.

The sufficiency is obvious, and the necessity may be proved by simply

writing down the usual expression for f(t, 6) in terms of its upper and lower

variations with respect to t [16, p. 98; 18, p. 356].

Lemma 11.2. Let fit, 9) and g(t, 9) be complex functions of the real variables t

and 9, defined and integrable with respect to t on the closed interval [0, 2"] for each

6 on a set E. If git, 9) and the function

(25) We shall use Saks' terminology in referring to functions of bounded variation.
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d)dr,   t ft 0,
F{t, 6) =

1 c*

1/(0,9),   t = 0,

are of bounded variation in t over the interval [0, T] for each 0£2£, then so is

the function

. gi+ o, e)/(o, e), t = o.

Moreover if

I Fit, 0) I + V(F; t) g M(F),       \ git, 0) \ + K(g; t) g 17(g),

for t on the interval [0, T], 0£7i, then

I Git, 0) I ̂  ^M(F)M(g),      ViG; t) g iljf(«),

/or t on the interval [0, T], 0£7i, where A is an absolute constant. In particular,

if lim,.0 F{t, 0)=lim,.o V(F; t)=0, or if lim,.0 g(2, 0)=lim,.o F(g; 0=0 «»*-
forntly, 0£2£, then lim,_0 Git, 0)=lim,_o V(G; t)=0 uniformly for 0£7i.

It is sufficient to prove the theorem for the case in which T>0 and Fit, 0)

and git, 0) are real, non-negative, non-decreasing functions of t for each 0£7i.

We write

If 1   r ' dF
GH,B) = -     gFdT + —\  g —

t  J 0 t  J 0 OT
rdr = Ii -\- It

A well known theorem [17, p. 100] enables us to assert immediately Ii is non-

decreasing on the interval [0, 2"]; and clearly 7i g MiF)Mi£). We integrate

by parts in It:

r' dF        1 fr r n

Each of these expressions is a non-decreasing function of t, and /0'g [dF/dr ]dr

^ 17(g) 6) - 77(0, 0) ] ̂  717(g) 717(70. We leave the remaining details to the

reader.

Lemma 11.3. Letf{t, 6) be defined as in Lemma 11.2. If lim,.0 /o|/(T. B)\dr

= 0 uniformly, 0£7i, then the function

,        l —  f *)^.    * * 0-
0) =       / ^0<Kt,

0,   / = 0,
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is of bounded variation in t over the interval [0, T] for each 8 EE, and

lim 4>(t, 6) = lim — I   t\ f{r, 6) \ dr = lim V(<t>; t) = 0

uniformly, 8 EE.

A proof may be given by the methods used in the proof of the preceding

lemma; we again leave the details to the reader.

We now let/(0) be an arbitrary complex single-valued function of 8, and

we write

This equation defines a single-valued function of t and 8 for all values of 8

for which f{8) is defined, and for all values of

If a function fit, 6), defined as in Lemma 11.2, is of bounded variation

in t, OSi^r, r>0, for each 8 on a set E, where T is independent of 8, and

if lim(_0/(<, 8) =lim(.0 V(f; t)=0 uniformly, BEE, then we shall say that this

function has property iA uniformly on E. If E consists of a single point, we

shall simply say that f(t, 8) has property sAC*).
The fundamental theorem of this section will now be stated:

Theorem 11.1. (a) If for some number f, Jp{t, 8;f) has property ?A, then

lim,,.«, sp,n{8) =/.

(b) Iff(8) is defined on a set E, if |/(0)| ^M, 8EE, and if Jp(t, 0;/(0))
has property zA uniformly on E, then lim„.„ sp,n{8) =f{8) uniformly on E.

To prove the theorem, we first establish a result of the Riemann-Lebesgue

type.

Lemma 11.4. Assume that <p(t) is a bounded integrable function of t for

a^t^b. Then

HP{8, t;/(*)) hP(8, 6 + t) + hp(6, 6 - t) - 2/(0),

Jp(t,8;f(6)) JP(t) = it J0

[ 0,   / = 0.

f  Hp{e,r;f{e))dr,   t * 0,

dr = 0,

uniformly for all values of 8 and 8'.

For we have

(26) It is perhaps worth while to point out that if/(Z, 6) is of bounded variation in /, 0£/£ T,

T>0, and if lim(-,o/(i, 9) =0, then limi_o V(f; t)=0; but uniformity of the first limit in 8 does not

imply uniformity of the second limit in 8.
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/'6 (sin nr\
hp(6',e + t)4>(t)\ \dr

a Uos nr)

/'b (sin nr) rb (sin nr)
4>o(0 + t)4>{t) { \dr+ (fp(0') - fa(6 + t)4>(t) \ } dT

a .      I cos m) Ja [cos «t)

/'6 f sin tit)
*x-i(* + r)^(r) { \dr,

a \COS flT)

and we may apply a familiar extension of the Riemann-Lebesgue theorem

[22, p. 22] to each of the terms in this sum, which are periodic functions of 9

and 9'.

Thus for any fixed 5, 0 < 5 <tt, we find that

(11.1) lim   f Hp(d, t-,f)Kn(r)dT = 0
n—*« J s

uniformly, 0££. We write

f 5 Bpiß, t; f)Kn(r)dr = f Jp(r)Kn(r)dT+ f J{t^K^t.
J o •/ 0 J 0

We apply Lemma 11.1 to the real and imaginary parts of JP{t); and by pro-

ceeding exactly as in the classical proof of Dirichlet's theorem [22, pp. 25-26;

18, p. 407], we can show that for an arbitrary positive number e, there exists

a number 8' independent of n and 9 such that if 5 < 5'

(11.2) I (* Jp(r)Kn(j)dT I < €,   0 G £, n = 0, 1, 2, • • • .
I J o I

Suppose now that j(t) is one of the monotone components of Jp{t) referred to

in Lemma 11.1. Then there exists a number 5" independent of n and 0 such

that if 8 < 5" then

(11.3) f 8f(t)TKn(t)dT SC f j'{r)dT S Cj{.S) < e, 0 G 73, » = 0, 1, • • • ,

where C is an absolute constant. Inequalities similar to (11.3) may be estab-

lished for each of the other monotone components of Jp(t). The proof is com-

pleted by combining these inequalities with (11.1) and (11.2), and by applying

Theorem 10.4.

The theorems in the remainder of this section contain sufficient conditions

for convergence which are imposed directly upon the function 7^(3) or upon

its transform on the surface 7?.

The first of these theorems is an exact analogue of de la Vallee Poussin's

test.
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Theorem 11.2. If f = fp2(£) = • • • »^»(Di »^L ara<2 if numbers fh,
h=l, ■ ■ • , m, can be chosen so that the functions

f  ifnit + t) + /„(£ - t) - 2/»)«ir, < * 0,
A = 1, • • • , m,

1   r '

I t "o

0, / = 0,

a// /zowe property zA, <Aew limn.w $„!,„(£) =/, where f=ZJ\hlm-

We give the proof by establishing the following lemma:

Lemma U.S. If KPh(f) has property sA, h = l, ■ ■ ■ , m, then JPl(t, £;/) has

the property oA.

We write
m     1    /* '

Jp&, t,J) = Z T       Unit + r)+ /pfc(£ - t) - I + r)<Zr

aj_ r 'fp„(i—r)-fk rx,..w(t, f-t)-xw.w(«!. €+t)-i

£l <  A     C*M({ - T)    L T1"» JWi     o    u„(j — t)

(11.4)
T(m—l)/m

t.

W       1 r» (

+ E-       Cfr - /) [Xp..p»(£, { + r) + Xp.p„(£, f - r)]dr
h=l t  J 0

+ Z'y f ' [if.(i + r)~ fixn.S, £ + 0
+ (/9«~r) -/)x«.9(£,|-T)]iT

A=l A=l A-l

where Z'=Z«-i> Q^Ph Pt, •; • • i pmi21)- If f»>l, then for some subscript j,

we have £-s£,- (mod 27r), ?p1(?)=j8j, and m = mf, and

wu+T,_xn"y+r)-^]-v

whereTp=TJ*_1,w?^1, £2, • • ■ ,pm, andH" =iTn=ii nj*j. Thus the function

Xpi.p»(£i £+t) is a rational function of £^(£+7-) with no poles for — 5,-,

and consequently is an absolutely continuous function of r in this interval.

Applying Lemma 11.2, we find that Ihl) is of bounded variation in an interval

to the right of t = 0, and lim ,.0 4" = 0.

Now

(") We may write I™ = 0 for t = 0.
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I Xpi.p»({, £ - r) - X*t«|({. £ + r) I g M I - r) - fM(£ + r) | g M, | r 11"»

for |t| g 5„ according to (6.7); and, as we have seen in the proof of Lemma

6.1, |c0j,4(£ —t)|/| t| (m_2)/m is uniformly bounded for |t| ^ 53. Therefore, since

lim«.o /o'| ifphik — r)— fk)/o3Ph(£ — t)\<1t = 0, we may apply Lemma 11.3 to Ih2),

and we find that it is of bounded variation for | r| g 5, and limi.o l[2) = 0.

Next we notice that

co(z) - w(j3,-) 1
]im Xn.'n((> £ + 0 = hm ———-—- = — > h = I, ■ • • ,m,
<->o w (z)(z — ßj) m

where z = fPA(£-H). Since Z^-iCft-/) = °> we nnd lrom Lemma 11.2 that 7A3)

is of bounded variation for \ t\ ^8,- and lim(.o 7/A3, = 0.

In connection with 7S4), we shall state for future reference a result which is

rather stronger than the one needed at present (2S).

Lemma 11.6. If <p(0) is a function such that <p(0)/wä(0) is integrable on an

interval [a, b], a<b, and if a number T exists, 0<TS(b — a)/2, such that

I Tp(0) — fa(0+01 is bounded from zero for all 0 on the interval [a+T, b— T],
and for —T^t^T, then the function

*p.«W = **.«(*. 0; *)
(j/ + t)Xp.9(^, 0 + t)c7t, < 5* 0,

10,   < = 0,

is 0/ bounded variation in t for —T^t^T and for each 0 in the interval

[a+T, b — T], and

1 r'
lim *„.„(/) = lim— I    | t>(0 + t)xp.9(0, 0 + t) | c7t
(-k) (-k)   t   J 0

= lim F($PlS; 0=0
i-k)

uniformly for 6 on the interval [a+T, b — T].

The proof of this lemma may be given by referring to Lemma 11.3, in

which we let

<j>(6 + t) 1 peie - pew
f(t, 0) =-

co5(0 + 0 f 9(0) - f 9(0 + /) t

The application of Lemma 11.6 to 7S4) is obvious. The proof of Lemma 11.5

(2S) Lemmas 11.6 and 11.8 are stated in a form in which they are useful in obtaining certain

results concerning the Cesäro means of the Jacobi series which the author intends to publish

elsewhere. Thus the functions Yv,Q(t, 6) and y(t, 6) in Lemma 11.8 and its proof are not needed

in the present discussion.



1941] THE JACOBI SERIES 495

for m > 1 is completed by the observation that the sum of a finite number of

functions which have property zA, itself has property zA; we have shown

The case m = 1 is treated similarly, but the details are simpler, and will

be omitted.

Using the notation of this theorem, we may state a test analogous to

Dini's test:

Theorem 11.3. If the functions

A proof may be given by showing that the conditions in the hypothesis of

Theorem 11.2 are satisfied; this may be conveniently done by using the

method usually employed to show that de la Vallee Poussin's test includes

Dini's test [18, p. 410; 22, p. 36]. The theorem may also be proved by break-

ing up the integral in (10.9) into a number of integrals which correspond to

the functions 7A1]Ih2\ IA3\ 7,4> of the proof of Theorem 11.2, and by showing

that the Riemann-Lebesgue theorem applies to each one.

The following result can easily be established by using Theorem 11.3.

Theorem 11.4. Let ßbea point of T of multiplicity m,m^i, belonging to the m

curves Ckv Ckv • • • , Ckm. If \F(z) — Fh\ SM\z — ß\v, n>0, for almost every

zECkhin some neighborhood of ß, h = 1, • • • , m, then lim„_,„ Sn(ß) —^J^Fh/m.

Another consequence of Theorem 11.2 worth mentioning is the following

theorem.

Theorem 11.5. Let ßbea point of T of multiplicity m, m^l, belonging to the

m curves Ckl, Ckv • • • , Ckm. If F(z) is of bounded variation on some arc of Ckh

containing ß as an interior point and if lim^ F(z) = Fh, z(£-Ckh, h = 1, • • • , m,

then lim«.» Sn(ß) ^fF^m.

The proof may be given by using Lemma 11.2 to show that the conditions

in the hypothesis of Theorem 11.2 are satisfied by the numbers Fh and by the

transforms on R of the function 7"(2).

We turn now to the question of uniform convergence. By an arc of T, we

shall mean a closed arc. A proper subarc of an arc A will be a closed subarc

which contains neither end-point of A.

Our first theorem is the analogue of Jordan's test.

Theorem 11.6. Let ß be a point of T of multiplicity m, m^l, belonging to

the m curves C*t, Cki, ■ • • , Ckm. Let Ah be an arc of Ckh containing ß as an in-

terior point, but containing no point of T of multiplicity greater than one, other

Jpi(1, £;/) to be such a sum.

/«(« + *)+/«(*-0-2/»
h = 1, • • • , m,

t

are integrable in an interval to the right of t = 0, then lim
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than ß. If F(z) is single-valued, continuous(29), and of bounded variation on

the set Z™=il^4>>, ̂ en nmn-oo Sn(z) = F(z) uniformly on any proper subarc of Ah,

h—\, ■ ■ ■ , m. If for any given h, Ah = Ckh, then \\mn^x Sn{z) = F(z) uniformly

on G\.

We base the proof on Theorem 11.1(b) and on certain properties of the

functions Xp,a(0> 0 + O> which we study by means of two lemmas. For future

reference, we state these results in a somewhat more precise form than is

necessary for present purposes.

Let

SaO, 0) = S(t, 0) =

l r* I

t Jo

sin \&

sin §(<? + r)

1,   t = 0,

dr,   0 < a < 1, ti* 0,

( l CI   0 la
— I -\ dr,   0 < a < 1, tj* 0,

<ra(t, 0) = a(t, 0) =     t Jo I 0 + t I

1.

0   I (7 + t

t = 0.

Lemma 11.7. The functions S(t, 0), V(S; t), cr(t, 0), and V(cr; t) are uni-

formly bounded, \d\ ^§7r, |/| S^tt.

For the proof, we observe first that the function

sin |(0)      0 + t

6      sin |(0 + O

and its abolute variation with respect to t are uniformly bounded for | 0| i£ %ir,

\t\ = ^7r, so by Lemma 11.2, it will suffice to establish the desired result for

the function cr(t, 0). The result is trivial for 0 = 0; henceforth we suppose that

0^0.

t Jo  11 + «r      u Jo \ i + u\~

where U=t/6. The function /(U) is continuous for all values of U, and is a

monotone increasing function of U for 77< — 1 and a monotone decreasing

function of U for U> — 1. Thus for any fixed value of 0, F(5; t) is equal

either to \<r(t, 0)-cr(O, 0)| or to <r(-d, 0)-<r(O, 0) + cr(-0, d)-o{t, 0), and

since <r(i, 0) is obviously uniformly bounded for all values of t and 0, so also

is V(S; t). The proof is complete.

Now let

(29) jf ;s 0f bounded variation on an arc of V, it can have only simple discontinuities

on that arc. It can be shown that such discontinuities are impossible on each of the curves Ct;

therefore this condition of continuity may be replaced by the requirement that F(z) be single-

valued for z = ß.
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1
f  Xv.q(9, 0 + r)dr, t * 0

Xp,q(t> 0) —
p = 1, • • • , X, q = 1, • • • , X,

0, t = 0,

and

1 r'
I \xP.q(e,o + T)\dr,t^o,

YP,q{t, e) =
= l X, q = 1, • • ■ , X.

0, / = 0,

Lemma 11.8. If T is any positive number, there exists a number M(T) inde-

pendent of 0 and t such that \ Xp,q(t, 0)| S Yp,q(t, O)SM(T), V(Xp,q; t) S M(T),
p = l, ■ • ■ , X, 2 = 1, ■ • • , X, for 11\ 5= T and for all values of 8.

The functions Xp,q and Yp,q are each periodic functions of 0, so for a given

p and 2 it will suffice to prove the lemma for the values of 0 in a period. Now

the numerator of the third member of (10.4) is a polynomial in £q(d) and

fj'(0')> 7 = 1> " " " . X, jy^p, so this numerator is bounded in modulus for all 0

and 0'. Therefore, since /q| w,(0-|-t) | ~xdr is uniformly bounded for all 0 and

for |/| ^7, so also is /o|xp,<z(0> 0+t)|<7t. Furthermore,

for \t \ ST and for all 0. It follows from these remarks that given any 5,

0 < 5 < T, a positive number M{8) independent of 0 exists such that

1 Xp,t(t, 6) I S Yp,q(t, 0) S M{8),    V{Xp,q; t) S M(S),    8 S \ t \ S T,    all 0.

We now prove that for each real number £, there exist positive num-

bers M(£) and 5(£) independent of / and 0 such that Yv,q{t, 6)SM(£) and

V(Xp,q; t)SM(& for |/| ^5(£) and for 0 in the interval 7(§): £-5(£)^0^£

+ o(§). If Co/ (£) 5^0, then it may easily be shown (compare the proof of Theo-

rem 11.2) that both |xp,«(0> 0 + 01 and F[xP,3; t] are uniformly bounded for /

suitably restricted and for 0 in some interval containing £ in its interior. The

existence of 5(£) and Af(£) then follows from Lemma 11.2.

Suppose instead that £=■£,- (mod 27r) and £qi(£) =£qi($;) = • • ■ =r9„(£) =/3.

Let 5(£) = 8j/2. If p9^qh, h — 1, ■ ■ ■ , m, the existence of A7(£) is again immedi-

ate, this time because of Lemma 11.6 (with c/>(0) = 1). If p =qH, 1 SHSm, and

2 = 2x7 iSKSm, we write

-T

xp.q(e, e + t) =
II*(f«(g + 0 - uffl)

(f9(0 + O -/J)—1
7?(0, 0 + /)
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whereH*' =lT»-i, h^H, and where 7?(0, 9+t) is a rational function of f9(0-N)

with constant coefficients in the denominator, and with numerator coeffi-

cients which are polynomials in certain of the functions fp(0). Moreover

7?(0, 9+t), considered as a function of f?(0+<)> has no poles for \ 9 — £| ^36,-

and \t\ S § 8j- Consequently, | R(0, 9+t) | and V(R; t) are uniformly bounded

for 6 in 7(£) and |/| S 5(£). By reference to Lemma 11.2, it is now seen that

our problem reduces to one of showing that if we let

/ ^ 0,

y(t, 6) =
dr,   t 7± 0,

where in jj/' > the index h assumes a values which are an arbitrary subset

(not containing the integer 77) of the first m positive integers—then y{t, 9)

and V{x; t) are uniformly bounded for 9 in 7(£) and for |/| g5(£).

We use (6.5) to write

(11.5)

x(t, 6)

y{t, e)

1 r'\ sin§(0-£) \°'mr

t j0 I sin§(0 - £ + t) I L

1   r'\    sin!(«-{)1 C ' \ sit

t J 0 I sin J

e(ia/m)(*(«)-*(9+T))

l'k'A(Wh

[A(W)Y

"- \U.i'A(Wk) I J
—i-=r~i-"r>

I A(W) '

J dr,     f # 0,

/ 5^ 0,

where W= (ei(9+T) — ei£)//m, and A is a constant independent of 0 and t. The

quantity in brackets in (11.5) is uniformly bounded in modulus for 0 in 7(£)

and for | r| S 5(£), and so also is its absolute variation with respect to r (com-

pare proof of Theorem 8.4). Lemmas 11.2 and 11.7 therefore permit us to

draw the desired conclusions concerning xit, 9) and y(t, 9).

The proof of the lemma may now be completed by an appeal to the Heine-

Borel theorem.

We now proceed with the proof of Theorem 11.6. Let us suppose (as ob-

viously we may) that the functions zp(w) are numbered in such a way that

z = %h{8),9htk9 S9h ,h = \, ■ ■ •, tn, are the equations respectively of the arcs^4^,

A = l, • • ■ , m. We choose the intervals 7Ä: [9h, 9h' ] so that each contains the

number £ such that {i(£)=U(£)= • ■ • =tm(£)=ß- Since the numbering of

the curves Ckh is quite arbitrary, it will evidently suffice to prove that

lim,,..,, 5i,„(0) =/i(0) uniformly on the closed interval 7(5): [01+5, 0i — 5],

where 5 is any positive number less than the smaller of the two numbers
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(0i —1)/2 and (£ — 00/2. This will be done by proving the following result.

Lemma 11.9. The hypotheses of Theorem 11.6 imply that Jx(t, 0;/i(0)) has

property zA uniformly on 7(5).

As we remarked in the proof of Theorem 8.4, fh(0) is continuous, and of

bounded variation on 0 for 0hS 0 S 0* . We now write Ji(t, 0 ;/i(0)) «2*., (Ph+Qh)

where

[ — f (Me + r) - /i(0))xi,»(0,0 + T)dr, < h o,

[o,   < = 0;

f 1 f
.     —    (Me - t) - fi(e))Xi,k(e, e - r)dr, t * o,

= s   * ^ 0

[ 0,   * = 0.

It follows immediately from Lemmas 11.8 and 11.2 (in which we let g(t, 0)

—/i(0+O —/i(0)) that Pi and Qx are of bounded variation in * for 0 in 7(5), and

for 0 S t S 5, and that limPi = lim(,0 Qi = Hm,-o V(Px; *) = lim 1<0 V(Qx; 0 = 0
uniformly for 0 on 7(5).

Consider now Ph, 2SHSm. Given any e>0, there exists a positive num-

ber 5(«) < 5 independent of 0 and t such that if we write g{t, 0) =fn(0+t) —/i(0)

= [/«(0 + O-/«(£)]+[/«(£)-/i(0)], then |g(*, 0)| <e and V(g; t)<e for
|0-£| ^5(«), |*| S 5(e). We find from Lemma 11.8 (in which we let T= 5) and

Lemma 11.2, that \PS\ SiAeM(b) and V(PH; t) <AAtM(b) for (0-£)^5(e),
|*| On the other hand, if |*| g5(«)/2 and if OxSOS^-d(e), £+5(e)

S0S0{, then the quantity | Th(0+O —fi(0) | is bounded from zero, and also

|/i(0) I is bounded. We then find from Lemma 11.6 (in which we let T= 5(«)/2)

that Ph is of bounded variation in * for these values of * and 0, and that fur-

thermore, there exists a positive number 5'(«) S 5(e)/2 such that | PH\ <e and

V{PH\ *)<« for |*| SS'(e) and for 0i^0^£-5(e), £+ 5(e) SO S0{. We have

proved that Ph has property zA uniformly on 7(5). Moreover, the argument

has been stated so as to show simultaneously that Qh has property zA uni-

formly on 7(5).

Now|fi(0)-f4(0+*)| ^\|r*(0+O-fi(0+O| -|fi(0+O-ri(0)|\.Uh>m,
then there exist positive numbers d and o"S8 independent of 0 and * such

that |M0+O-ri(0+O| >d and | fi(0+O-fi(0) | <d/2 for 0 on 7(5) and
|*| S 5". Therefore, although the point f>,(0) may lie on the curve C*„ never-

theless I Ti(0) — T^(0+O I is uniformly bounded from zero for all such values

of 0 and *. It follows from Lemma 11.6 that Ph and Qh, h>m, have property

uniformly on 7(5).

We have now shown that Jx(t, 0;/i(0)) is the sum of a finite number of

functions, each of which has property zA uniformly on 7(5). It follows at once
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that /i itself has property zA uniformly on 1(5), and the proof of Lemma 11.9

is complete.

It follows immediately from Theorem 11.1(b) that lim,,,«, Sn(z) = F(z)

uniformly on the subarc of A\ which is the transform of 1(8).

If Ai= Ckv we may replace the interval 1(8) by the interval [0i, 6{ ] in the

above argument, where now 61 — d\ = 2-KKkv We then find that lim,,,«, Sa(z)

= F(z) uniformly on C*,. The proof of the theorem is complete.

It is of interest to observe that if lim„,M Sn(z) = F(z) uniformly on Ck, then

the sequence {S„(z)) converges uniformly in the closed limited Jordan region

bounded by Ck, by the principle of the maximum. It follows in this case that

F(z) is uniformly continuous in this closed region (30).

We append two corollaries of Theorem 11.6; the second of these will be

stated in terms of the notation introduced in the proof of that theorem.

Theorem 11.7. If F(z) is continuous (n) and of bounded variation on V, then

limn,M Sn(z) = F(z) uniformly on D.

Theorem 11.8. If (i) m>\, (ii) T^fz) is single valued, continuous^1), and of

bounded variation on A\, (iii) Ph and Qh have property zA uniformly on Ih,

h = 2, ■ ■ ■ , m, then lim„,„ Sn(z) = F(z) uniformly on any proper subarc of A\.

The proof of Theorem 11.6 may also be given by a direct consideration of

the integral in (10.9), but further lemmas of the Riemann-Lebesgue type are

then needed to take care of the terms involving/a(0+t), h>\. Our develop-

ment has indicated that the tests in Theorem 11.1(a) and (b) include all the

other tests of this section. We add the remark that the tests contained in

Theorems 11.3 and 11.5 are not comparable.
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