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Introduction

Consider the function

(1) w = /(z) = Xi(u, v) + ix2(u, v), z = u + iv,

defined and continuous in a simply connected domain D(2). A necessary and

sufficient condition that f(z) be analytic in D is that the Cauchy-Riemann

equations be satisfied there:

(2) \w = 0,

where
a a

\ = —h * —
du dv

is a differential operator. From (2) we obtain

o) i: (x*,-)2 = o.
3-1

According to the Cauchy and Morera theorems, a necessary and suffi-

cient condition that the continuous function (1) be analytic in the simply con-

nected domain D is that for each closed rectifiable Jordan curve y lying in

the domain D,

(4) J /(*)<& «0.

Now (4) may be considered to be an integral analogue of the differential con-

dition (2); it implies

(5) Z [ j x,(u, v)dz~J= 0,

which is analogous to (3).

Presented to the Society April 14, 1939, under the title A characterization of plane isothermic

maps; received by the editors March 4, 1940.

(') Some of the results of this paper have been summarized in the authors' note of the same

title in the Proceedings of National Academy of Sciences, vol. 25 (1939), pp. 92-97.

(2) It is to be understood throughout this paper that the domains under consideration are

finite.
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If (3) holds, then either X\-\-ixi or Xz+ixi is an analytic function of

z = u-\-iv, and X\(u, v) and x2(u, v) are said to form a couple of conjugate har-

monic functions. We note that (5) is a necessary and sufficient condition that

the continuous functions xx{u, v) and x2(u, v) form a couple of conjugate har-

monic functions.

The real functions

(6) Xj = Xj(u, v), j = 1, 2, 3,

defined and continuous in a simply connected domain D, will be said to define

a surface S. If the first partial derivatives of the functions (6) are continuous

and satisfy

(7) E(u, v) -       v),     F(u, v) = 0,

in D, where

JL/dxA2 JL dxj dxs JL /
(8)    E(u,v) m £(~),    F(u,v) =- S —i —'-,    G(u,v) = ^

J=1 \du / ,_i dz) j=i \

are the coefficients of the first fundamental differential quadratic form of the

surface 5, then the parameters m, v are said to be isothermic parameters, and 5

is said to be given in isothermic representation. The map of D on S is con-

formal except where E = G = 0. From (8) it follows that (7), which is a gen-

eralization to space of (3), can be written in the form

(9) i: (\Xjy = o.
i-l

An analogous generalization to space of (5) is

(10) ^ [ / Xi(-U' v)dz~\ = °'

where 7 is a closed rectifiable Jordan curve lying in D. In this paper we shall

study (10) and

12

where Cr is the circle in D with center at the arbitrary point (wo, va) of D

and of radius r, and where o(r") denotes a quantity (not always the same

quantity) such that

o(ra)

lim —-= 0.
r-o ra

If the functions (6) are harmonic and satisfy (9) in a simply connected
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domain D, they have been called a triple of conjugate harmonic functions(3).

In terms of this definition, a theorem of Weierstrass may be stated as follows.

A necessary and sufficient condition that the functions (6), defined in a simply

connected domain, be the coordinate functions of a minimal surface given in iso-

thermic representation is that they form a triple of conjugate harmonic functions.

We shall have use for the following direct computation. Let the functions

(6) have continuous partial derivatives of the mth order in a simply connected

domain D; then about each point (uo, v0) of D we have a finite Taylor expan-

sion for each function:

•   f»r/        d d\n "
11)     Xj(u, v) = 2L, —   I cos 0-h sin 6 —Ax,   + o

n-a n\ LA        du dvj
(1

where

?(/"»),        j = 1, 2, 3,

d d
cos 6-h sin 6 —

du dv

is a differential operator, where the partial derivatives are evaluated at the

point (tto, v0), and where u — u0 = r cos 6, v — v0 = r sin 6. Then, for the circle Cr

in D with center at (u0, v0) and radius r, the left-hand member of (10) assumes the

form

3   r   /» -12 [(m-l)/2] k

(12)       X     I    Xj(u, v)dz   = - TT2    £      £ r*k+*Bp,k + o
3=1 L J CT J *_0 p=0

(rm+3),

where

where

„        ■A Ck+i,p+iCk+i,p _

JX 2»<[(k+ l)!]2

d2 d'
A = XX =-1-;      A°Xxj = X*,-,

d«2 dv2

where the Ck.s are binomial coefficients, Ck,s = kl/s\(k—s)l, C*,o = l, and where

\(m —1)/2] is /Ae greatest integer not greater than (m — \)/2.

For m = l, 3, 5, (12) is displayed in (14), (48) and (35) respectively.

1. Characterization of isothermic maps

Theorem 1. // the functions (6) have continuous partial derivatives of the

first order in a simply connected domain D, then a necessary and sufficient condi-

tion that they map D is other mically on a surface S is that for each point (w0, Vo)

QfD,

(3) E. F. Beckenbach and T. Rado, Subharmonic functions and minimal surfaces, these

Transactions, vol. 35 (1933), pp. 648-661.
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(i3) i: [ j *,(»■ o(r4),

where CT is the circle in D with center at (wo, vo) and radius r.

Proof. If the first partial derivatives of the functions (6) are continuous

in D, then we obtain a finite Taylor expansion for each function about an

arbitrary point (u0, Vo) of D by setting m = l in (11). If Cr is the circle in D

with center at (uq, v0) and radius r, then upon setting m = 1 in (12) we obtain

04).

From (14) it follows that a necessary and sufficient condition that the relation

(9) hold is that (13) hold.

2. Characterization of those isothermic spherical maps that

do not map circles on circles

Lemma 1. // the functions (6) are defined, but not identically constant, in a

simply connected domain D, and if they map D isothermically on a surface S

that lies on a sphere S of finite radius r, then a necessary and sufficient condition

that they map circles on circles is that the first quadratic form of S have the repre-

sentation

cHdu2 + aV)
(15) ds* = —-, a > 0, c > 0.

[(« - «o)2 + (» - vo)2 + a2]2

Necessity. Let the coordinates of the center of S be denoted by (ai, a2, a3),

and let an s, 7-plane be so placed that the positive s- and 7-axes coincide with

the positive Xi- and x2-axes respectively. LetS be projected stereographically

on the s, 7-plane, the coordinates of the pole of projection being (ai, a2, k),

where k=a3 + r and \k\ is the maximum of the two quantities |cr3-f-rj and

I a3 — r \. We have

2r I k I (s — ai)
Xi = a\ +

(16) x2 = a2 +

(s - ai)2 +(t- a2)2 + k2

2r I k I (t - a2)

x3

(s - ßl)2 + (t - a2)2 + k2

f 2r\k\ "I

L1 ~ (5 - ai)2 + (t - a2)2 + k2l

Let the map of 5 on the s, /-plane be D'. The product of the transformation

(6) and the stereographic projection maps D on D', and carries circles in D

into circles in D'. It follows that this isothermic map of D on D' is equivalent
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to a single linear transformation:

a'z + ß'
(17a) F(z) =s+it =

y'z + 5'

or

a'z + ß'
(17b) F(z) = s + it =-(«'5' - ß'y') * 0,

y z + 8

where (a) holds if the map of D on D' is directly conformal, and where (b)

holds if the map is inversely conformal. From (16) and (17) it follows that

the functions (6) have the form

2r\k\%f(z) 2r\k\?>f{z)
Xl = üy -\-; X2 = «2 +

(18)
/(*)/(*) + k* /(»)/(«) + k*

r 2r\k\ "I
Xi =   k I   1-=- ,

f(z)f(z) + k

where

(19) /(a) = F(z) - (oi + fa,),

and where 'BJiz) is the real part, and 3/(z) the imaginary part, of f(z).

There are two possible representations for the functions (6) as determined

by (17), (18) and (19). It is now an easy matter to compute E, F and G and

to show that the first quadratic form of 5 has the representation (15) (4).

We note that if it is given only that one non-null circle in D is mapped on

a circle on S by the isothermic functions (6), then, as in the above discussion,

D is mapped isothermically on D' such that one non-null circle in D is mapped

on a circle in D'. Therefore the function mapping D isothermically on D' is

linear; and hence it follows that the functions (6) have the form (18) and map

all circles in D on circles on S.

Sufficiency. Let the stereographic projection of D on the sphere S' be S',

where S' is the sphere with center at (u0, v0, a—c/2a) and radius c/2a, and

where the pole of projection is at (w0, v0,a). This projection is given by (18),

where

öl = Mo,      a2 = vo,      k = a,      r = c/2a,      f(z) = (m + iv) — (m0 + iv0).

The first quadratic form of S' is found to be identical with that of S; hence S'

and S are applicable. Therefore S' and 5 are either congruent or symmetric;

(4) We find dsi = E<,dut-\-dv1)^ci(dui+diP)/[(u-u0y-sr(v-v^i+7l]i. But then a computa-

tion shows that the Gaussian curvature, given by the formula in (47), which is positive on S,

has the value iv/c2, so that Jj = a2, where a>0.
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in either case since circles in D are mapped on circles on S', it follows that

circles in D are mapped on circles on S.

Theorem 2. If the functions (6) are defined, but not identically constant, in

a simply connected domain D, and if they have continuous partial derivatives of

the third order in D, then a necessary and sufficient condition that they map D

isothermically on a surface S that lies on a sphere of finite radius, such that circles

are not mapped on circles, is that

(20) T,[fc Xi(",v)dzJ= o(r«)

hold for all points (tt0, v0) in D, while

(21) £ [ / X,(-U' V)d*\ * °(r8)

hold for some points (u0, v0) in D, where Cr is the circle in D with center at (u0, v0)

and radius r.

Necessity. Under the hypotheses, the functions (6) map D isothermically

on a surface that lies on a sphere of finite non-null radius. Hence (9) holds,

and there exists a constant a such that

(22) e = aE,      f = aF,      g = aG, a ^ 0,

where e,/and g are the coefficients of the second fundamental quadratic form

of 5(5).

For the present representation of S, the formulas of Gauss(6) become

%j,VV  ' Ru%j,U ~\~ I^-V%j,V ~t~ C^ j, J 1, 2, 3,

where

R = I log E,

and where f,-, j=l, 2, 3, are the direction cosines of the normal to S.

We shall need the following relations:

3

(24) X) X*,A2Xx3- = - 4a2£X2£,

3

(25) £ (AX*,)2 = 4a2(X£)2.
_ 3=1

(6) For information concerning the second fundamental differential quadratic form of a

surface, see W. C. Graustein, Differential Geometry; in particular, we have referred to pages 93-

94 and pages 97-98.

(6) Graustein, op. cit., pp. 135-137.
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To obtain (24) and (25), we shall use a method which depends upon the exist-

ence and continuity of partial derivatives of order higher than three of the

functions (6). These functions map D isothermically on a spherical surface.

Therefore, as in the proof of Lemma 1, we can consider an intermediate stere-

ographic projection to show that the functions (6) have the representation

(18), where either/(z) or /(z) is analytic in D. From this representation, it

follows that the functions (6) have continuous partial derivatives of all orders.

To obtain (24) and (25) we shall need the following equalities:

(26) A\Xj = 2(eXf3 + f,Xe), j = 1, 2, 3,

2(eAXf3- + ftflAft + 2AeXf,- + XeX2f3 + X2eXf3 + f ,-AXe),

; = l, 2, 3,
3

X T/X^j = o,
3=1

3

X XXyXf, = 0,
1-1

3

3=1

3

X tefAti = 0,
3=1

3

X Xx/AXfo = 0.
3=1

It follows from (23) that

AXx3 = 2X(ef3), 7=1,2.3,

and hence (26) holds. Operating on (26) with the operator X, and then operat-

ing on this result with X, we obtain (27).

The formulas of Olinde Rodriguez (7) may be written together in the fol-

lowing form :

(33) *fr = - a\xh a ^ 0, j = 1, 2, 3.

From (33) we obtain

3 3

X XXjXf= — a X (XXj)2,
3=1 3=1

which, with (9), yields (29).

From (29) we obtain

(27)

(28)

(29)

(30)

(31)

(32)

A2Xx3

i" Graustein, op. cit., p. 121.
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3 3 3

XX Ki**i =      \*{jkXi + X XfA2^/ = o.
3=1 3=1 3=1

which, with (33), establishes (30).

. From (29) we obtain

3 3 3

X~X HfrXj = X AftX*, + X KA*i = 0,
3=1 3=1 j=l

which, with (33), establishes (31).

From (26), (28) and (29) we obtain

3

X \XjA\xj = 0,
J-l

which, with (33), yields (32).

From (27)-(32), inclusive, it follows that

3 3

(34) X Xx,A2\x3- = 2X2e X X*iXf/.
3=1 3=1

From (8), (9), (22), (33) and (34) we obtain (24).

From (9) and (33) we obtain

X (Xf3)2 = 0,
3 = 1

which combines with (22), (26) and (33) to yield (25).

Since the functions (6) have continuous partial derivatives of all orders

in D, the following expression, obtained from (12) by setting m = 5, is valid:

3 f r              I2              3               ti-V6 3
X     I    Xj(u, v)dz   = — :rV4X (Xx,)2-X Xx,-AXa:,-

(35) ~UC' J W 4 S
_2„8 3

X [ZKxjA^KXi + 3(AXx,)2] + o(r8).
192 H

Here the partial derivatives are evaluated at the point (u0, v0) which is the

center of the arbitrary circle CT in D. Applying (9) and the above relation

Xj-iXx,AXxj = 0, to (35), we obtain

(36)

3    r- ~l 2 2 8 3

X f x,{u, v)dz = - — — X [2Xx,A2Xx,- + 3(AXx,)2] + o(r8).
j=i L J cr J 192 j=i

Therefore (20) holds.

Let us suppose that (21) does not hold, i.e., that for each point (u0, v0)

in D
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(37) S[/e X'<U' V)d*\ = °(rS)'

where C, is the circle in D with center at (u0, *>o) and radius r. From (36) and

(37) it follows that

3

(38) X [2XxJA2XxJ- + 3(AXx,)2] = 0.

From (24), (25) and (38) we obtain

(39) a2[2£X2£ - 3(X£)2] = 0.

But, by (22), a^O, and therefore (39) yields

(40) 2EXIE - 3(X£)2 = 0.

From (40) we obtain

2X log (X£) = 3X(log E);

therefore

(41) \E = E'/^c«),

where

(42) X<2(z) = 0.

From the imaginary part of (40) we obtain

Euv Ev Euv Eu
2-dv = 3-dv,       2-du = 3-du,

Eu E Ev E

which imply

(43) Eu m £»/»«»»(«)       Ev = £s/2e*t(")

where $i(w) is a function of u alone and $i(v) is a function of v alone. From

(41), (42) and (43) it follows that the function

(44) eQiz) m e*i(«> -+-

is an analytic function of z = u+iv. From the Cauchy-Riemann equations for

the function (44) it follows that

e*1^ m 2a0u + ah      e*2"0 = 2aQv + a*,

where ao, ai and a2 are real constants, and hence that (41) yields

(45) -du = (2a0u + a{)du, -dv = (2a0v + a2)dv.
v     ' £3/2 * £3/2
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From (45) we obtain

4
(46) E = ~r-5T'

[ao(w2 + v2) + aiU + a2v + a3J2

where a3 is another real constant.

The Gaussian curvature of 5 is given by

(47) K= --i-Alog^CO.
zii

From (46) and (47) it follows that

2 2

4oo«3 — öl — 02
if =-'-)

4

which implies that ao^O, since 5 is on a sphere of finite non-null radius. Since

(9) holds, it follows from (7) and (46) that the first quadratic form of 5 may

be written as follows:

olHcLu2 + dv2)
ds2 = —-——-,

where

t(      2a0) "   \      2ao)     ^ J

I 2 1/2
a = I 2/ao|,       ß = (K/ao) .

Therefore the first quadratic form of 5 has the representation (15); hence it

follows from Lemma 1 that all circles in D are mapped on circles on 5 by

the functions (6). This is a contradiction of the hypothesis. Hence (21) holds

for some points («o, i>o) in D.

Sufficiency. By setting m = 3 in (12), we obtain

(48)
3   r   /» -12 3 t2r6 3

X    I   *i(u, v)dz   = - ttV* E (X*y)2-Z X*,-AX*,- + o(r6),
j-i L^c, J 3-1 4 )=i

where CV is the circle in D with center at («0, v0) and radius f, and where the

partial derivatives are evaluated at (m0, w0). From (20) and (48) it follows that

(9) and

3

(49) X \xsA\Xj = 0
3=1

hold. Operating on (9) with the operator X we obtain

(8) E. F. Beckenbach and T. Rad6, Subharmonic functions and surfaces of negative curvature,

these Transactions, vol. 35 (1933), pp. 662-674.
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(50) y, \XjAXj = 0.
J=l

Operating on (50) with X, and applying (49) to the result, we obtain

3

(51) X Xs*/A*j = 0.
i-i

The four real linear homogeneous equations in Ax,-, j = l, 2, 3, implied by

(50) and (51) are

(52)

^ j (x j, u

One solution of (52) is

(53)

% j ,vv) ^00 j — 0

Ax,- = 0,

,=i
3

X (x,-,ul.)Ax,- = 0.

j = 1. 2, 3,

which, by (9) and the theorem of Weierstrass, implies that the functions (6)

map d isothermically on a minimal surface. From (9), (12) and (53) it follows

that

(54) X   J* Xj(u, zi)rfzj = 0

for all circles c in d. Therefore (37) holds. This leads to a contradiction of

(21); hence the functions (6) do not satisfy (53). It follows that the given

functions, which satisfy (52) and do not satisfy (53), must be functions for

which the rank of the matrix

Xl,u

Xi,„

Xl.uu

x2,«

X2.r

%2,uv

%3,u

00z,v

0Cs,uv

is less than three; hence, from the definitions of e, f, g, we obtain e = g,f = Q,

which, with (9), imply that the functions (6) are the coordinate functions of

a surface 5 that lies on a sphere S (9) of finite (10) non-null radius.

(9) It is easily seen that the hypothesis of Theorem 3 on page 98, Graustein, op. cit., is

satisfied.

(10) If the surface 5 were a plane surface, then the functions (6) would be the isothermic

coordinate functions of a minimal surface. We have already considered functions (6) that satisfy

(9) and (53).
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Suppose that the functions (6) map D isothermically on the spherical sur-

face 5 such that circles are mapped on circles (u). Then the map of an arbi-

trary fixed circle C in D is a circle, C*, on S. Project S stereographically on

the plane p of C* and let the map of 5 on p be D*. It follows that D has been

mapped isothermically on the plane surface D*. By the theorem of Weier-

strass, the mapping functions form a triple of conjugate harmonic functions,

ti =     p)t j = 1,2,3,

where (9) and Ay, = 0, j= 1, 2, 3, hold. Just as for (54) it follows that

(55) ^ [ /c yi(U' v)dZ1 = °

for the arbitrary fixed circle C in D. But, for (u, v) on C,

Xj{u, v) = yj(u, v), j = 1, 2, 3,

which, with (55) implies that (54) holds. But this leads to a contradiction of

(21). Therefore the functions (6) map D isothermically on the spherical sur-

face 5 such that no non-null circle in D is mapped on a circle on S.

3. Characterization of minimal surfaces in isothermic

representation and of those isothermic spherical

maps that map circles on circles

Theorem 3. // the functions (6) have continuous partial derivatives of the

third order in a simply connected domain D, then a necessary and sufficient con-

dition that they either (1) be the coordinate functions of a minimal surface in

isothermic representation, or (2) map D isothermically on a surface S that lies

on a sphere of finite non-null radius such that circles are mapped on circles, is

that for each circle C in D

(56) X £ J" xi(u' v)dz\^ = 0.

Necessity. We have already shown that if the functions (6) are the coordi-

nate functions of a minimal surface in isothermic representation, then (56),

i.e., (54) holds. We have also shown that if the functions (6) map D isothermi-

cally on a surface S that lies on a sphere with finite non-null radius such that

circles are mapped on circles, then (56) holds(12).

Sufficiency. If (56) holds, then (37) holds. It follows that (9) and (49)
hold; therefore, as in the proof of Theorem 2, we obtain the system of equa-

(u) We have already indicated that if one non-null circle in D is mapped on a circle on S,

then all circles in D are mapped on circles on S. See the last paragraph of the first part of the

proof of Lemma 1.

C12) See the latter half of the proof of Theorem 2.



366 MAXWELL READE AND E. F. BECKENBACH [May

tions (52). Then, as before, it follows that the functions (6) either are the

coordinate functions of a minimal surface in isothermic representation or they

map D isothermically on a surface 5 that lies on a sphere with finite non-null

radius(18). Here we have made use of the results of the second part of the

proof of Theorem 2. But in the first part of the proof of Theorem 2 we have

shown that if 5 lies on a sphere of finite non-null radius, (37) implies that the

first quadratic form of 5 has the representation (15); hence, by Lemma 1,

all circles in D are mapped on circles on 5.

Corollary 1. If the functions (6) have continuous partial derivatives of the

third order in a simply connected domain D, then a necessary and sufficient con-

dition that

hold for each circle C in D is that for each point (w0, v0) in D,

hold, where CT is the circle in D with center (m0, v0) and radius r.

Corollary 2. If the functions (6) have continuous partial derivatives of the

third order in a simply connected domain D, then a necessary and sufficient con-

dition that the functions (6) either map D isothermically on a minimal surface,

or map D isothermically on a surface S that lies on a sphere with finite non-null

radius such that circles are mapped on circles, is that for each point (wo, Vo) in D,

X £ J  xi(u> v)dz^ = o(rs)

hold, where Cr is the circle in D with center at (wo, v0) and radius r.

4. Characterization of isothermic plane maps

Lemma 2. Let the function gi(z) be schlicht^1*), and the function g2{z) ana-

lytic, in the circle \z\ <p. If 5 is an arbitrary positive number, 0<8<p, then

there exists a positive number e = e(5) such that the function

(57) f{z) m gl(z) + r,g2(z)

is schlicht in the circle \z\ fsp — 8, for each rj such that \tj\ <e.

Proof. If the lemma does not hold, then there exists a positive number do,

(13) If the sphere were either a point-sphere or a plane, then the functions (6) would form a

triple of conjugate harmonic functions.

(") The analytic function gi(z) is said to be schlicht in D if gi(zi) =gi(z2) implies Zi = Z2,

where Zi and Zi are points of D.
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two points, Zq and z0", and a triple of sequences

Vi, ' ' " j

Zi,z2, ■ ■ • ,      Zi , z2 , • • • , zn     z„ , w = 1, 2,

with the properties

lim r/„ - 0,

lim zn' = zo ,       I zn' I ^ p — 50,       n = 0, 1, 2,
n—»«o

lim z„" = zo",    I zn" I g p - 50,       w = 0, 1, 2,
n—»00

/»(«») = /»(*»"), »=1, 2,

where

fn(z) =• gl(z) + JJB/j2(z), » =  1, 2, • • • .

It follows immediately that

«»(*') = *(%")•

But since gi(z) is schlicht in the circle |z| <p, it follows that z0' =Zo" =Zo-

Moreover, we obtain

(58) lim M*\-f-f)=*M m 0(u).
n-»=o Zn   — Zn dz

Since |z0| ^=p —50, (58) implies that gi(z) is not schlicht in the circle |z| <p.

From this contradiction of the hypothesis, it follows that there exists an e0>0

such that the function (57) is schlicht, for each 77 satisfying \v\ <e0, in

|z| ^p —So-

Theorem 4. If the functions (6) have continuous partial derivatives of the

third order in a simply connected domain D, then a necessary and sufficient con-

dition that they map D isothermically on a plane surface is that for all closed

rectifiable Jordan curves y lying in D

(59) £ [ J* = 0.

(I6) Since gi(z) is analytic in the closed region denned by | z | g p — So, for any arbitrary posi-

tive number S' there exists a positive number e', which is independent of z in the region

|z| gp — So, for which

for all z', z" and z in the region |z| £ p — 50 that satisfy the inequalities |s—s'| <e', |z— z"| <e',

zVz".
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Necessity. If the functions (6) map D isothermically on a surface 5 that

lies on a plane p, we make a rigid transformation in the x\, x2, ^-space such

that p coincides with the plane Xz = 0 and the positive normal at the image

of an arbitrary fixed point («o, z>o) of D coincides with the positive a^'-axis.

Let this rigid transformation have the representation

3

(60) */ = X X*,-** + %, j = 1, 2, 3,
fc=l

where
3

. X X.*Xj* = 0, j,
(61) k=i

=1,5= j, s, j = 1, 2, 3,

and where the a,; j — l, 2, 3, are real constants. Therefore the functions

3

xj(u, v) = X X*y[*»(*, v) — xk(u0, v0)], j = 1, 2, 3,
(62) k-i

x( (», f) = 0,

map Z? isothermically on a plane surface, and hence, by the theorem of Weier-

strass, they form a triple of conjugate harmonic functions. Since it follows

from (8), (9), (61) and (62) that (3) holds for the functions x{ (u, v) and

x2 (u, v), the functions x{ (u, v) and xi (u, v) are a couple of conjugate harmonic

functions. Hence by Cauchy's theorem, analogous to (5), and (62), it follows

that

t['Sxj (u, v)dz 0,

which, with (4), (60) and (61), yields (59).
Sufficiency. If (59) holds for all closed rectifiable Jordan curves y lying

in D, then, by Theorem 3, the functions (6) either are the coordinate functions

of a minimal surface in isothermic representation, or map D isothermically

on a surface 51 that lies on a sphere of finite non-null radius such that circles

are mapped on circles.

Part I. We first consider the case when the functions (6) are the coordinate

functions of a minimal surface in isothermic representation. Let (uo, v0) be

an arbitrary point in D and let the arbitrary fixed circle Co in D have its

center at (m0, v0). If y is an arbitrary closed rectifiable Jordan curve lying in

Co, which contains (uq, vq) in its interior, then the interior of y can be mapped

conformally on the interior of the circle C: s2-\-t2 — p2 in the s, /-plane such that

the image of (m0, fo) is the center of C. The expansion of the inverse of this

mapping function has the representation
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00

(63) z = k(w) =- z0 + X) bmwm,
ro=l

where

w = 5 + it,      Zo = Mo + iz>o-

Since the functions (6) are the isothermic coordinate functions of a mini-

mal surface, it follows, from the theorem of Weierstrass, that these functions

may be written in the form

(64) *,(«, v) = M*jO) + .7=1,2,3,

where $,-(z) is a function which is analytic in D and where $,(2) is its con-

jugate function. We may write

*j(z) = X ai.n{z - z0)n, j = 1, 2, 3;
71=0

then

*j(z) = X «,,n(z — zo)"> 3 = 1» 2, 3,

where the series for f>,(z) and $,-(z) are absolutely convergent in the interior

of and on Co- Therefore

CO CO

(65) $,(z) = äj.o + X «).»X Pn,mWm, j = 1, 2, 3,
71= 1 771= 1

where

Pn.m = X 5*1 - ' ' 5i„,  » ^ w, #1 + ■ • •  +        = m, kX ̂   1, I = 1, 2, • • • , »,

(66)
Pn.m =0, n> m.

If Cfl is the circle concentric with C and of radius i?, 0<R<p, then the

function (63) maps the interior of Cr conformally on the interior of a closed

rectifiable Jordan curve yg, that lies in the interior of y. After we have set

w = Rei* in (63) and (65), it follows from (4), (63), (64), (65) and (66) that

X *,(«, v)dz \ = - tt2X X E E 4„,,5n,ro58,(_mi?2',
j=l L •/ t« J i_2 m=l 71=1 s=l

which, with (59), implies

°°   (-1   m t—m

(67) X E E E An,,Bn,mBs,t_mR*' = 0,
(=2 m-1 71-1 «=1

where
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(68) Bn,m = mbmPn.m, », «W ■» 1, 2» ' • • ,

and where

3

(69) An,s - As,n = X äj,„äj,s, n, s = 1, 2, • • • .
3=1

But the circle Cr is an arbitrary circle concentric with and interior to the

circle C; therefore the relation (67) is independent of R, 0<R<p. Hence

/—1   m   t—wi

(70) EEE An,,Bn,mB,,t_m = 0, t = 2, 3, • • • .
m=l n=l s=l

From (70) we obtain, by an induction,

(71) An,, = 0, n, s = 1, 2, ■ • • .

For, when t = 2'm (70) we obtain, by (66) and (68),

(72) Aulblbl=Q.

But the function (63) maps the interior of C on the interior of 7 in a one-to-

one manner(16). Therefore bi^O. Hence it follows from (72) that

(73) Äi,i = 0.

Now suppose that

(74) An,s = 0, 2 + I» # 2.3,

where n, s and p are positive integers. We shall show that

(75) An>, = 0, n + s = p.

For t = p, (70) yields, by (66), (68), (74) and the fact that b^O,

j>-i
(76) E KP ~ k)bkbp-kAk,p_k = 0.

*=i

By Lemma 2, for a fixed i?, 0<i?<p, the functions

CO

(77) Gq{w) = h{w) + vgn>" = zo + £        + *tw«   9 = 1, 2, • ■ • , £ - 1,
i»=i

are schlicht in the circle | w| ^i?, provided

I Vq I < e5, 0 = 1, 2, • ■ ■ , p — 1,

where e9 is a positive constant whose existence was established in Lemma 2.

(16) This is a consequence of Darboux's theorem. See W. F. Osgood, Functions of a Complex

Variable, p. 167.
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We further restrict nq to satisfy the relation

R"\vo \ <S,

for g=l, 2, • • • , p — l, where 5 is the distance between Jr and Co, in order

that the map yq,R of Cr by (77) shall lie inside C0. Moreover, (m0, fo) is inside

yq,R. Hence if

(78) 0 < I tj3 I < dg = min J\a, —j, q = 1, 2, ■ ■ ■ , p - I,

then we obtain the following result, which is analogous to (76), for the func-

tions (77):

p-i
(79a) X HP — k)bkbp-.kAk,p-k + 2q(p — q)bp-trjqAqiP_q = 0,

k=i

e} 2 2
(79b) 2-i HP — k)bkbp-kAk,p-k + q (rjq + 2t]qbq)Aq,q = 0,

where (79a) holds for all q, 1 ̂ q^p — 1, except q = p/2, and where (79b) holds

for q = p/2(1'1). From (76) and (79) we obtain

(80a) 2q(p — q)bp-qrtqAqiP-q = 0,

(80b) q\vl + 2r,qbq)Aq,q = 0,

where (80a) holds for all q, l2ag3a£— 1, except q = p/2, and where (80b) holds

for q = p/2.
Since r/9 is an arbitrary constant which is subject only to the restriction

(78), it follows from the relation (80b) that

(81) Aq,q = 0,      q = p/2,

provided p is even. If qx is a fixed positive integer, 1 &qi£>p — l, and qi9^p/2,

and if 6P_515^0, then it follows from (80a) that

(82) Aqi,p_qi = 0.

If q2 is a fixed positive integer, 1 tkqz^p — 1 and q2^p/2, and if öj,_92 = 0, then

we consider the function

(83) ki(w) = h(w) + v,,!^",

where 77P'-32 is a fixed constant,

0 < j 77p—Q2 I   < dp—qi.

(17) When we state "except for q = p/2," we mean that if p is an even integer, then q does

not take on the integral value p/2.
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The function (83) is schlicht in the circle \ w\ ^i?(18), and maps Cr on a closed

rectifiable Jordan yR that lies inside Co- Moreover, (uq, v0) is inside yR . From

(63) and (83) we obtain
00

(84) Äi(w) = zo + X cmwm,
m=l

where

cm = bm,   m ^ p — q2;      cp-S2 = yP-q2.

If we apply (84) as we have applied (63) in the earlier part of this proof of

Theorem 4, then we obtain the following result analogous to (80a):

(85) 2q2(p — qzWp-mVq'tA gi,p-ti = 0,

where v'g'2 is an arbitrary constant,

(86) o < I nüi I < Kr

Here the constant d'q2 is in the same relation to hi(w) as dq2 is to h(w). Since

y]p-g,^0 and q29^p/2, it follows from (85) and (86) that

(87) -4«2.p-92 = 0-

From (81), (82) and (87) it follows that (75) holds. Since (73) holds, our in-

duction is now complete.

From (69), (71) and the substitution

dj.m = Ctj.m — ißi.m, J = 1, 2, 3, «* = 0* 1, • • ■ ,

we get the following relations:

(88)

X («3,f»«/,« — ßj.nßj.s)  = 0,
1=1

3

Z (<*i.*ßi* + «/..iS,-.,) = 0, | 1(19);
3=1

here a,-,o, a,-,m and /3,-,m, m = \, 2, • • • , are the Fourier coefficients in the ex-

pansion of Xj(u, v),j=l, 2, 3, about the point (u0, v0).

We transform the axes in the xit x2, x3-space such that the new origin is at

the image of (uo, Vo), the plane xl =0 is tangent to the surface there, and the

positive normal to the surface there coincides with the positive xl -axis. This

transformation is given by (60) and (61), where

(18) This holds because | »;i_g2| <</„_,,, where <ZP_32 was denned in (78).

(19) Compare with J. W. Hahn and E. F. Beckenbach, Triples of conjugate harmonic func-

tions and minimal surfaces, Duke Mathematical Journal, vol. 2 (1936), Lemma 1, p. 699, and

footnote, p. 700.
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3

a,- = — X ^h,-Xk(uo, vo), j — 1, 2, 3.

The relations (88) are invariant under this rigid transformation. For, since

the functions (6) form a triple of conjugate harmonic functions, it follows

that the new coordinate functions,

3

*,(*■ v) = £ \kj[xk(u, v) — xk(u0, v0)], j = 1, 2, 3,
k-l

form a triple of conjugate harmonic functions. Hence we may write, in terms

of polar coordinates,

CO

(89) Xj(u, v) — dj,o + X fm(«j,» cos ™® + ß'i.m sin md),     j = 1, 2, 3,
tn=l

where

3 3

(90) aj,m = 2~1 ̂kjUk.m,     ßj.m = Z ^kjßk.m, »» = 1, 2, • • • , j = 1, 2, 3.
(fc-1 jfc=l

From (61), (88) and (90) we obtain

3

2 («/,««*,« — ̂ i.nßi.s)  = 0,

w       t ,
X (a'-.n(3,'.» + «;.8|8,-,„) = 0, », 5 ^ 1.
3 = 1

Therefore the relations (88) are invariant under a rigid transformation.

To prove that the functions (6) define a plane surface, it is sufficient to

show

(92) a'3,o — «23',». = ßa.m = 0, m = 1, 2, • • • .

Since xj (u0, v0) = 0,j = l, 2, 3, it follows that

(93) «4, = 0, j = 1, 2, 3.

Let Z be the positive integer for which

3

(94a) X)= 0. »» = 0, 1, ■■•,/- 1,
M

(94b) £ «£ ^ 0(2°).

_ 3-1

(20) If 2~L3j„ia'j!„ = Q f°r a'l positive m, then it follows, from the first relation in (91), that

y* jB', a — 0 for all positive m; and therefore (92) holds.
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From (89) we obtain

(95a) ctitß's.t — aitßit = 0,

(95b) ccitßit - «j'Xi = 0,
/2 /2 /2 ff ff

(95c) <*i,( + a*,i + «3,t = ai.jfo,» — a2,i/3i,((21),

since the positive normal to 5 at the point (0, 0, 0) coincides with the posi-

tive x3'-axis. Equations (95a) and (95b) are linear and homogeneous in a'3t,

and 03,,; since by (94b) and (95c) their determinant of coefficients is not zero,

it follows that

(96) «3,( = ßit = 0.

From (91), for n=s = t, (94b) and (96) we obtain

/2 /2 ,2 /2
oti.t + <*2,t = /3i,j + ß2,t 0,

(97) ' R>   4-   ' R' 0
£*l,«01,i + «2,iP2,( = U,

which, with (95c) and (96), imply

(98) öem = ßiu      a,',, = - /3i',(.

From (91), for s = t^n, (96) and (98) we obtain

'     '    i_    '     '    i     ' a' 'a' n
ai,*ai,( -r «2,7.0:2,! + a2,tPi,n — ai,(P2,n = 0,

— ai,n«2,f + Ct2,nOil,t + «2,(02,7t + «1,(01,7. = 0, tl t.

If we eliminate first a^, „ and then 02, „ from these last two relations, then we

obtain two other relations which, with the first relation in (97), imply

(99) «l',„ = ß2,n, Ci2,n =  — ßl.n, ft ^ t.

From (91), for «=s^/, and (99) we obtain

/      / _ '2 /2
«3,7103,71  =  0, «3,7!  = 03,7., ft t,

from which it follows that

(100) «3,n = 03,n = 0, n^t.

From (91), for n=s<t, (94a) and (100), we obtain (92).

(21) If z — zo = r(cos 0+i sin 6), then for r sufficiently small the components of the unit normal

vector to the surface are f,-f,(«, »), j=l, 2, 3, ») = [K,^,ra';lA,i)/^i-X!J +°W,
where 0(r) denotes a quantity ^(r) (not always the same quantity) such that |^(r")A| is

bounded. Note that n = 0, f2 = 0, f3= 1 at (0, 0, 0).
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Corollary. If the functions (6) are harmonic in a simply connected domain

D, such that their Fourier expansions about the fixed point (u„, v0) of D are

oo

Xj(u, v) = ay,j + X rm(ctj,m cos md + ß,-,m sin md),     j = 1, 2, 3,

and if

3 3

Z («3.»<*3.» — ßi.nßi.s) = 0, £ (al.nßi,> + <X,,*ßi,n) = 0, M, S ^ 1,

3-1 3-1

/Aew the functions (6) are ZAe isothermic coordinate functions of a plane surface.

Part II. We now consider the case when the functions (6) map D isother-

mically on a surface 5 that lies on a sphere S, whose radius a is finite and non-

null, such that circles are mapped on circles. Since the functions (6) have the

representation (18), it follows that they may be continued isothermically to

map the whole u, v-plane isothermically on S such that circles are mapped on

circles. Let the point P on S correspond to the point z = °°, and let p be the

equatorial plane corresponding to P as a pole. Then the stereographic pro-

jection of S on p, with P as pole, induces an isothermic map of the u, 7>plane

on p such that circles are mapped on circles, and such that the point at infinity

in the u, z/-plane corresponds to the point at infinity in the plane p. Let us

take the center M of S as the origin in a system of coordinates on p, such that

the positive j-axis, the positive /-axis, and the ray MP, in that order, have

the same disposition as the coordinate axes (xlt x2, X3). The mapping function

must have one of the following representations:

(101a) w = s + it = f(z) = az + ß,

or

(101b) w = s + it = f(z) = az + ß, a^O,

where (101a) holds if the map of the u, 7>plane on p is directly conformal, and

where (101b) holds if the map is inversely conformal.

Consider the system of axes (x{, x{, x3') in space, with origin at M, and

with the positive x{-, xl- and x3'-axes having the directions of the positive

s-axis, the positive /-axis and the ray MP respectively. There exists a rigid

transformation in the xi, x2, x3-space which carries the origin into the point M,

and which carries the positive X\-, x2- and X3-axes into the positive x( -, x{ - and

Xs'-axes respectively; this transformation has the form (60), where (61) holds.

Let the new coordinate functions of .S be

(102) */ = */(«, v), j = 1, 2, 3.

Since the functions (6) map circles on circles, the functions (102) map circles

on circles; therefore, as noted in Lemma 1, the functions (102) have the form
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(18) where/(z) is given by (101). Hence, since a^O in (101), we have, for the

arbitrary closed rectifiable Jordan curve y in D,

3 f c ~|2    4a4  3 r c ~12
(103) 2j\   \ Xj(«,v)dz =—-Z        4>i{s,t)dw\ ,

j=i L j T J       a2  ,=i L j y> J

where y' is the image of y on the plane p and where

s t a
4>i(s, t) =-■ >    4>2(s, t) =-1    4,3(5, t) - —-

a2 + s2 + t2 a2 + s2 + t2 a2 + s2 + t2

As it previously has been shown (22), (59) is invariant under a rigid trans-

formation ; hence, since the radius a of S is different from zero, it follows from

(59) and (103) that

(104) 0<to] = 0

holds. Since y is an arbitrary closed rectifiable Jordan curve in D, it follows

that (104) holds for each closed rectifiable Jordan curve y' in D', where D'

is the map on the plane p by (101).

Without any loss of generality, we may assume the line 5 = 0 passes

through D'. Then there exists a closed rectifiable Jordan curve T in D' with

the following description:

(1) the vertices of T have the following polar coordinates,

4»:   (r, r), A2:   (r, - t),

A3:    (r + a, — r),   A^.   (r + «, r),      0 < r < x/2, 0 < r, 0 < co;

(2) T is composed of two arcs of circles and two straight-line segments:

arc A\A2 is an arc of the circle 52-r-/2 = r2, arc A3Ai is an arc of the circle

52+/2 = (r+w)2, each arc subtending an angle 2r at the origin, and A2A3 and

AiA-i are on rays through the origin.

For the closed rectifiable Jordan curve V we obtain

? [ I^dw\ = ~ ^ Xl(r' ^ sin ^ _ 4 X2(r< w) sin2 J.      ? = 2t,

where

(r + a))2 r2   If    (r + co)2 r2r (r + co)2   _  >-2 i r

X r' La2 + (r + a>)2    a2 +r2 J La2 + (r + co)2     a2 + r2

a2 + r2 1

g..j,
a2 + (r + oi)2.

(22) See the first part of this proof of Theorem 4.
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r  /      r + w r\ r r + w~]
X*(r,u)=   al —- ~ j + arc tan-arc tan-.

_  \a2 + (r + co)2    a1 + r1/ a a J

Since

ÖX2 2a(r + a))2

du [a2 + (r + co)2]2
^0,

it follows that xt(r< w)^0. Fix r and w so that %2('*> w)j^0. Since £ sin £ and

4 sin2 £/2 are not proportional,

£ sin £ = £2 -—+••• ,       4 sin2 — = £2 - — + • • • ,
6 2 12

there exists a £ such that

(105) Z[Jr^'(^0^J 7-0.
Now (105) is a contradiction of (104). Therefore the functions (6) do not map

D on a surface that lies on a sphere of finite non-null radius.
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